suspended CVD graphene
![]() ![]() google scholar |
Curriculum Vitae
Christian Schönenberger (CS) has always been engaged in a wide range of topics. He got excited by quantum physics when he was working as an electrical engineer at the ETHZ, developing pulsed lasers for atom and molecular spectroscopy. This new world of science motivated him to study a second time, after electrical engineering, physics. After obtaining his master degree from the ETHZ, he conducted a PhD in experimental physics at the IBM Zurich research lab in the early time of scanning-probe microscopy. He demonstrated the first magnetic force microscope that could image magnetism and topography simultaneously.
He then moved to Philips Research (NL) where he later became a senior staff member. At Philips he developed, among other things, a low-temperature scanning tunneling microscope which allowed for the first time to probe electron correlations in devices at the single-electron level. He was then appointed full professor at the Univ. of Basel in 1995 where he established the nanoelectronics group. Low temperature physics and micro- and nanofabrication was all build up by CS at Basel from scratch. This initiative established the grounds for nanoelectronics in Basel and helped nanoscience to become a major focus at the Department of Physics. This led to a series of appointments in nano- and quantum science, experimental and theoretical.
As the most important recognition, the Department of Physics became the Swiss leading house in nanoscience in 2001. CS was a co-founder, later the co-director and from 2006 onwards till 2022 he was the director of this centre. Under his initative, the scope of the centre was further extended to applied sciences, leading to the foundation of the Swiss Nanoscience Institute in 2006. CS was also a co-founder and an active participant within QC2, which is the Basel Center of Excellence in Quantum Computing and Quantum Coherence. Most recently, CS engaged himself as co-founder of the deep-tech company YQuantum where he acts as scientific advisor. Though having remained a small Department, the visibility could substantially be raised over the last 15 years. Today, the Department of Physics at the University of Basel is a leading institution in the field of quantum and nanoscience.
Interests
Nano electronics, charge- and spin-transport in low-dimensional systems, quantum phenomena, spintronics, nanowire and quantum-dot physics, carbon nanotubes and graphene, shot-noise and charge-fluctuation phenomena, quantum correlations and many-body physics in low-dimensional tunable model systems
Address
Nanoelectronics group at the Department of Physics of the University of Basel
Swiss Nanoscience Institute, University of Basel
University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
christian.schoenenberger@unibas.ch , www.nanoelectronics.ch
Education
1976-1979 | Electrical Engineer of Applied Sciences |
1982-1986 | Physics at the ETH-Zürich |
1986-1990 | Ph.D. thesis at the IBM Research Laboratory at Rüschlikon, Switzerland on Magnetic Force Microscopy |
Career
1979-1980 | Molecular Spectroscopy Group of Prof. K. Dressler at Physical Chemistry, ETH-Zürich |
1986-1990 | IBM Research Rüschlikon |
1990-1992 | Postdoctoral Fellow at Philips Research in Eindhoven |
1993-1995 | Permanent Research Staff Member at Philips Research |
1995-2024 | Full Chair in Experimental Physics at the University of Basel |
2006-2022 | Director of the Swiss Nanoscience Institute |
2024- | Professor emeritus |
2024- | Scientifc advisor to the deep-tech company YQuantum |
Memberships
Member of APS, DPG, SPG, SSOM, SATW
Awards
1990 | PhD medal ETHZ |
1991 | Swiss Physical Society Price |
1994 | Profil-II award of the Swiss National Science Foundation |
2010 | Life-time member of the Swiss Academy of Technical Sciences |
2012 | Fellow of the American Physical Society |
2012 | ERC advanced researcher grant |
2018 | 2nd ERC advanced researcher grant |
Impact
>250 publications, H-index > 70 (Web of Science & > 89 google scholar) with 65 citations per publication on average (a total of ~17’000 citations as of Jan. 2025). > 150 invited lectures at international conferences and workshops. Supervisor of > 70 PhD theses to completion, (co) organizer of 15 schools, 7 international and 8 national conferences.
List of Selected Publications
- Understanding Magnetic Force Microscopy, C. Schönenberger and S. F. Alvarado, Z. Phys. B – Cond. Matter 80, 373 (1990), PhD thesis.
- What are the Holes in Self-Assembled Alkanethiols on Gold, C. Schönenberger, J. A. M. Sondag-Huethorst, J. Jorritsma, and L. G. J. Fokkink, Langmuir 10, 611 (1994).
- Shot-Noise Suppression in the Single-Electron Tunneling Regime, H. Birk, M. J. M. de Jong, and C. Schönenberger, Phys. Rev. Lett. 75, 1610 (1995).
- Aharonov Bohm Oscillations in Carbon Nanotubes, A. Bachtold, C. Strunk, J.-P. Salvetat, J.-M. Bonard, L. Forro, T. Nussbaumer, and C. Schönenberger, Nature 397, 673 (1999).
- Electrical Conduction through DNA Molecules, H.-W. Fink and Christian Schönenberger, Nature 398, 407 (1999).
- 1/3-Shot-Noise Suppression in Diffusive Nanowires, M. Henny, S. Oberholzer, C. Strunk, and C. Schönenberger, Phys. Rev. B 59, 2871 (1999).
- The Fermionic Hanbury-Brown and Twiss Experiment, Henny, S. Oberholzer, C. Strunk, T. Heinzel, K. Ensslin, M. Holland, and C. Schönenberger, Science 284 (1999) 296.
- A Quantum Dot in the Kondo Regime coupled to Superconductors, M. R. Buitelaar, T. Nussbaumer, and C. Schönenberger, Phys. Rev. Lett. 89, 256801 (2002).
- Quantum Shot Noise, C. Beenakker and C. Schönenberger, Physics Today 56 (5), 37-42 (2003).
- Multiple Andreev Reflections in a Carbon Nanotube Quantum Dot, M. R. Buitelaar, W. Belzig, T. Nussbaumer, B. Babic, C. Bruder, and C. Schönenberger, Phys. Rev. Lett. 91, 057005 (2003).
- Electric field control of spin transport, S. Sahoo, T. Kontos, J. Furer, C. Hoffmann, M. Gräber, A. Cottet, and C. Schönenberger, Nature Physics 1, 99-102 (2005).
- Even-odd effect in Andreev Transport through a Carbon Nanotube Quantum Dot, A. Eichler, M. Weiss, S. Oberholzer, and C. Schönenberger, A. Levy Yeyati, J. C. Cuevas, and A. Martin-Rodero, Phys. Rev. Lett. 99, 126602 (2007).
- Cooper-pair splitter realized in a two-quantum-dot Y-junction, L. Hofstetter, C. Csonka, J. Nygard and C. Schönenberger, Nature 461, 960 (2009).
- Hybrid Superconductor Quantum Dot Devices, S. De Franceschi, L. Kouwenhoven, C. Schönenbergeer and W. Wernsdorfer, Nature Nanotechnology 5, 703 (2010).
- Nernst Limit in Dual-Gated Si-Nanowire FET Sensors, O. Knopfmacher, A. Tarasov, Wangyang Fu, M. Wipf, B. Niesen, M. Calame, and C. Schönenberger, Nano Lett. 10., 2268 (2010).
- Graphene Transistors Are Insensitive to pH Changes in Solution, W. Fu, C. Nef, O. Knopfmacher, A. Tarasov, M. Weiss, M. Calame, and C. Sch€onenberger, Nano Lett. 11, 3597 (2011).
- Spontaneously Gapped Ground State in Suspended Bilayer Graphene, F. Freitag, J. Trbovic, M. Weiss, and C. Schönenberger, Phys. Rev. Lett. 108, 76602 (2012).
- Near-Unity Cooper Pair Splitting Efficiency, J. Schindele, A. Baumgartner, and C. Schönenberger, Phys. Rev. Lett. 109, 157002 (2012).
- Ballistic Interferences in Suspended Graphene, P. Rickhaus, R. Maurand, Ming-Hao Liu, M. Weiss, K. Richter, and C. Schönenberger, Nature Comm. 4, 2342 (2013).
- Nonlocal Spectroscopy of Andreev Bound States, J. Schindele, A. Baumgartner, R. Maurand, M. Weiss, and C. Schönenberger, Phys. Rev. B 89, 45422 (2014).
- Snake Trajectories in Ultraclean Graphene p–n Junctions, P. Rickhaus, P. Makk, Ming-Hao Liu, E. Tovari, M. Weiss, R. Maurand, and C. Schönenberger, Nature Comm. 6, 6470 (2015).
- Clean Carbon Nanotubes coupled to Superconducting Impedance-Matching Circuits, V. Ranjan, G. Puebla-Hellmann, M. Jung, T. Hasler, A. Nunnenkamp, M. Muoth, C. Hierold, A. Wallraff, and C. Schönenberger, Nature Comm. 6, 7165 (2015).
- Resonant and Inelastic Andreev Tunneling Observed on a Carbon Nanotube Quantum Dot, J. Gramich, A. Baumgartner, and C. Schönenberger, Phys. Rev. Lett. 115, 216801 (2015).
- Giant Valley-Isospin Conductance Oscillations in Ballistic Graphene, C. Handschin, P.Makk, P. Rickhaus, R. Maurand, K. Watanabe, T. Taniguchi, K. Richter, Ming-Hao Liu, and C. Schönenberger, Nano Letters 17, 5389-5393 (2017).
- Measuring a Quantum Dot with an Impedance-Matching On-Chip Superconducting LC Resonator at Gigahertz Frequencies, M. -C. Harabula, T. Hasler, G. Fülöp, M. Jung, V. Ranjan, and C. Schönenberger, Phys. Rev. Appl. 8, 54006 (2017).
- High-Detection Efficiency and Low-Timing Jitter with Amorphous Superconducting Nanowire Single-Photon Detectors, M. Caloz, M. Perrenoud, C. Autebert, B. Korzh, M. Weiss, C. Schönenberger, R. J. Warburton, H. Zbinden, and F. Bussières, Appl. Phys. Lett. 112, 61103 (2018).
- Quantum-Confined Stark Effect in a MoS2 Monolayer van der Waals Heterostructure, J. G. Roch, N. Leisgang, G. Froehlicher, P. Makk, K. Watanabe, T. Taniguchi, C. Schönenberger, and R. J. Warburton, Nano Letters 18, 1070-1074 (2018).
- Large Spin Relaxation Anisotropy and Valley-Zeeman Spin-Orbit Coupling in WSe2/Gr/hBN Heterostructures, S. Zihlmann, A. W. Cummings, J. H. Garcia, M. Kedves, K. Watanabe, T. Taniguchi, C. Schönenberger, and P. Makk, Phys. Rev. B 97, 75434 (2018).
- New Generation of Moiré Superlattices in Doubly Aligned hBN/Graphene/hBN Heterostructures, L. Wang, S. Zihlmann, Ming-Hao Liu, P. Makk, K. Watanabe, T. Taniguchi, A. Baumgartner, and C. Schönenberger, Nano Lett. 19, 2371 (2019).
- In-Situ Strain Tuning in hBN-Encapsulated Graphene Electronic Devices, L. Wang, S. Zihlmann, A. Baumgartner, J. Overbeck, K. Watanabe, T. Taniguchi, P. Makk, and C. Schönenberger, Nano Letters 19, 4097-4102 (2019).
- Spectroscopy of the Superconducting Proximity Effect in Nanowires using Integrated Quantum Dots, C. Jünger, A. Baumgartner, R. Delagrange, D. Chevallier, S. Lehmann, M. Nilsson, K. A. Dick, C. Thelander, and C. Schönenberger, Communications Physics 2, 76 (2019).
- One-Dimensional Edge Transport in Few-Layer WTe2, A. Kononov, G. Abulizi, K. Qu, J. Yan, D. Mandrus, K. Watanabe, T. Taniguchi, and C. Schönenberger, Nano Lett. 20, 4228 (2020).
- A Double Quantum Dot Spin Valve, A. Bordoloi, V. Zannier, L. Sorba, C. Schönenberger, and A. Baumgartner, Communications Physics 3, 135 (2020).
- Magnetic Field independent Sub-Gap States in Hybrid Rashba Nanowires, C. Jünger, R. Delagrange, D. Chevallier, S. Lehmann, K. A. Dick, C. Thelander, J. Klinovaja, D. Loss, A. Baumgartner, and C. Schönenberger, Phys. Rev. Lett. 125, 17701 (2020).
- Circuit Quantum Electrodynamics with Carbon-Nanotube-Based Superconducting Quantum Circuits, M. Mergenthaler, A. Nersisyan, A. Patterson, M. Esposito, A. Baumgartner, C. Schönenberger, G. A. D. Briggs, E. A. Laird, and P. J. Leek, Phys. Rev. Applied 15, 64050 (2021).
- Phase-Dependent Microwave Response of a Graphene Josephson Junction, R. Haller, G. Fülöp, D. Indolese, J. Ridderbos, R. Kraft, Luk Yi Cheung, J. H. Ungerer, K. Watanabe, T. Taniguchi, D. Beckmann, R. Danneau, P. Virtanen, and C. Schönenberger, Phys. Rev. Research 4, 13198 (2022).
- Transparent Josephson Junctions in Higher-Order Topological Insulator WTe2 via Pd Diffusion, M. Endres, A. Kononov, M. Stiefel, M. Wyss, H. S. Arachchige, Jiaqiang Yan, D. Mandrus, K. Watanabe, T. Taniguchi, and C. Schönenberger. Phys. Rev. Mat. 6, L081201 (2022).
- Spin Cross-Correlation Experiments in an Electron Entangler, A. Bordoloi, V. Zannier, L. Sorba, C. Schönenberger, and A. Baumgartner, Nature 612, 454-458 (2022).
- Current-Phase Relation of WTe2 Josephson Junctions, M. Endres, A. Kononov, H. S. Arachchige, Jiaqiang Yan, D. Mandrus, K. Watanabe, T. Taniguchi, and C. Schönenberger, Nano Letters 23, 4654-4659, (2023).
- Charge-Sensing of a Ge/Si Core/Shell Nanowire Double Quantum Dot using a High-Impedance Superconducting Resonator, J. H. Ungerer, Chevalier P. Kwon, T. Patlatiuk, J. Ridderbos, A. Kononov, D. Sarmah, E. P. A. M. Bakkers, D. Zumbühl, and C. Schönenberger, Materials for Quantum Technologies 3, 31001, (2023).
- Gate Tunable Josephson Diode in Proximitized InAs Supercurrent Interferometers, C. Ciaccia, R. Haller, A. C. C. Drachmann, T. Lindemann, M. J. Manfra, C. Schrade, and C. Schönenberger, Phys. Rev. Research 5, 33131 (2023).
- AC Josephson Effect in a Gate-Tunable Cd3As2 Nanowire Superconducting Weak Link, R. Haller, M. Osterwalder, G. Fülöp, J. Ridderbos, M. Jung, and C. Schönenberger, Phys. Rev. B 108, 94514 (2023).
- Electron Wave and Quantum Optics in Graphene, H. Chakraborti, C. Gorini, A. Knothe, Ming-Hao Liu, P. Makk, F. D. Parmentier, D. Perconte, K. Richter, P. Roulleau, C. Schönenberger,B. Sacépé, and W. Yang, (review paper) Journal of Physics: Condensed Matter 36 (2024).
- Charge-4e Supercurrent in an InAs-Al Superconductor-Semiconductor Heterostructure, C. Ciaccia, R. Haller, A. C. C. Drachmann, T. Lindemann, M. J. Manfra, and Schrade C. C. Schönenberger, Communication Physics 7, 41 (2024).
- Strong Coupling between a Microwave Photon and a Singlet-Triplet Qubit, J. H. Ungerer, A. Pally, A. Kononov, S. Lehmann, J. Ridderbos, C. Thelander, K. A. Dick, V. F. Maisi, P. Scarlino, A. Baumgartner, and C. Schönenberger, Nature Comm. 15, 1068 (2024).
- Coherent Control of a Few-Channel Hole Type Gatemon Qubit, H. Zheng, L. Y. Cheung, N. Sangwan, A. Kononov, R. Haller, J. Ridderbos, C. Ciaccia, J. H. Ungerer, A. Li, E. P. A. M. Bakkers, A. Baumgartner, and C. Schönenberger, Nano Lett. 24, 7173 (2024).
- Photon-Mediated Long-Range Coupling of Two Andreev Pair Qubits, L. Y. Cheung, R. Haller, A. Kononov, C. Ciaccia, J. H. Ungerer, T. Kanne, J. Nygård, P. Winkel, T. Reisinger, I. M. Pop, A. Baumgartner, and C. Schönenberger, Nature Physics 20, 1793–1797 (2024).
- A Coherence Sweet Spot with Enhanced Dipolar Coupling, J. H. Ungerer, A. Pally, S. Bosco, A. Kononov, D. Sarmah, S. Lehmann, C. Thelander, V. F. Maisi, P. Scarlino, D. Loss, A. Baumgartner, and C. Schönenberger, submitted, 2024.