Quantum transport in graphene

Quantum transport in graphene

Ballistic graphene offers a promising platform for electron optical devices. We have developed a versatile technology that allows to suspend graphene and complement it with arbitrary bottom and top-gate structures.1 Using current annealing we demonstrated exceptional high nobilities approaching 102

Cooper-pair splitter in low-dimensional quantum devices

Cooper-pair splitter in low-dimensional quantum devices

This projects aims at a single electron pair source which delivers (in principle) on demand pairs of spin-entangled electrons, whereof each electron may leave the device through different arms. While similar photonic EPR sources are widely used in optics in

Ultracaclean carbon nanotube quantum devices

Ultracaclean carbon nanotube quantum devices

Carbon nanotubes (CNTs) are almost ideal one-dimensional conductors. However, potential variation caused likely by charge tarps in the substrate induced backscatering on a length scale of a few 100 nm. There are two strategies to overcome this problem: in one