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1 Introduction

The pursuit of understanding and harnessing quantum phenomena is a cor-
nerstone of scientific exploration which has contributed to many technological
advances, including quantum computation. The promises that quantum algo-
rithms can be performed exponentially faster than their classical counterparts,
has led scientists and engineers to build a new type of information processors
based on so called quantum bits or qubits, basic computational units which
store information in a superposition of quantum states [1, 2]. However, many
challenges and open questions remain on the way to build a large scale func-
tional quantum processor, such as improving the ability to write, control and
readout the qubit state while at the same time decoupling it from external
noise sources. To tackle these issues, numerous platforms have emerged in-
cluding neutral atoms [3], trapped ions [4], semiconducting quantum dots [5]
and superconducting circuits [6]. Within the field of solid state physics the
leading platform is currently the one based on superconducting qubits. These
qubits are constructed from collective electromagnetic modes of macroscopic
electrical circuit elements and offer the attractive feature of having an energy
spectrum which can be designed by the choice of circuit parameters. In addi-
tion to the qubit itself, a superconducting quantum processor also requires a
set of low-dissipative components in order to control and readout the qubit,
such as quantum-noise-limited parametric amplifiers.

To individually address qubit states in a superconducting circuit, a non lin-
ear element is required. The most common building block of superconducting
quantum devices is the Josephson tunnel junction [7], a non-linear inductor
that is made of two superconducting electrodes (S) separated by an insulating
(I) tunnel barrier. For a sufficiently thin tunnel barrier, a supercurrent can flow
between the electrodes, characterized by the so called current-phase relation
(CPR). The CPR dictates the supercurrent flow depending on the phase drop
of the superconducting order parameter across the electrodes. Therefore, the
shape of the CPR also determines the Hamiltonian of the circuit and its use
as a qubit [8], parametric amplifier [9, 10] or other devices, such as supercon-
ducting diodes [11]. By connecting two or more junctions in a loop, forming
what is know as a superconducting quantum interference device (SQUID), it
becomes possible to engineer an effective Josephson element with an arbitrary
CPR, and consequently a system with an arbitrary Hamiltonian. The partic-
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1. Introduction

ular use of the device will depend not only on the CPR of the junction but as
well on the circuit architecture designed around it. One limitation of using SIS
junctions is that the shape of the CPR can hardly be modified after fabrication
because it is fixed by the physical dimensions of the barrier.

A promising alternative is based on Josephson junctions made of a semi-
conducting weak link, for example a nanowire, a van der Waals material or a
two-dimensional electron gas (2DEG). The gate tunability of the semiconduc-
tor allows tuning the CPR of the junction and loosens the constraints on the
fabrication of hybrid semiconducting-superconducting devices. Furthermore,
the CPR of hybrid junctions is not simply sinusoidal, as for SIS junctions,
but contains higher order harmonics, and interference effects between these
non-sinusoidal components at finite magnetic flux contributes additional flex-
ibility to the device design [12–14]. With a semiconducting weak link and
a non-sinusoidal CPR, it becomes possible to adjust the Hamiltonian of the
system continuously and over a wide range with a loop consisting of only two
junctions. Several circuit elements, including superconducting diodes [15, 16],
qubits [17, 18] and parametric amplifiers [19] have already been realized us-
ing a single hybrid Josephson junction with a 2DEG as weak link. Here, the
advantages of using a 2DEG are its wide gate tunability and top-down fab-
rication techniques, which are difficult to realize with nanowires and van der
Waals materials. There are, however, some issues that affect 2DEGs, such
as microwave losses and decoherence sources originating from the substrate
which the material is grown upon and from the heterostructure itself.

In continuation of the results obtained with a single junction, in this the-
sis we report the realization of hybrid superconducting quantum devices using
SQUIDs consisting of two planar Josephson junctions formed in an InAs 2DEG
proximitized by an epitaxial aluminium layer [20, 21]. For the first time, we
harness interference effects between the non-sinusoidal components of the CPR
of these hybrid junctions to realize a gate and flux tunable superconducting
diode. Using the same technique, we also investigate the performance of a
qubit and a parametric amplifier based on hybrid SQUIDs. In addition, we
probe the response of high impedance superconducting resonators on InP sub-
strates, on top of which InAs 2DEGs are most commonly grown. We show
that, at least for these type of resonators, the substrate is not a limiting factor.
Our results pave the way for the realization of superconducting devices which
can be operated in different regimes and tuned continuously from one regime
to the other while maintaining a simple and minimalistic design.

The thesis is organized as follows. In Chapter 2 we present the underlying
theoretical framework of 2DEGs and Josephson junctions. We discuss advan-
tages and disadvantages of the two methods used later on in the thesis to probe

2
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the Josephson effect, namely switching current experiments and Josephson ra-
diation measurements. We also present the equations governing the Hamil-
tonian of one of the most popular superconducting qubit, the transmon, and
give a brief introduction to parametric amplification. Chapter 3 describes the
preliminary characterization procedures of the proximitized InAs 2DEGs used
in this thesis and introduces granular aluminium, a high kinetic inductance su-
perconductor with promising applications for high impedance superconducting
circuits. Chapter 4 contains a detailed description of the fabrication proce-
dures of both hybrid devices and evaporated/sputtered superconducting res-
onators. Next, we move to discuss specific experimental results. Chapter 5
investigates the microwave compatibility of granular aluminium resonators on
InP substrates, outlining the limiting factors for the resonators quality factor.
Chapter 6 investigates a gate-tunable Josephson diode in a two-dimensional
hybrid SQUID. We discuss its properties and the maximum diode efficiency
achieved. In Chapter 7, using the same device, we focus on the emergence of
charge-4e supercurrent and introduce a novel method to deduce the harmonic
content of highly transmissive Josephson junctions by performing Josephson
radiation experiments. Chapter 8 explores the use of hybrid SQUIDs for cir-
cuit quantum electrodynamics. We show our results on a gate and flux tunable
transmon as well as some preliminary results on a hybrid Josephson parametric
amplifier. Finally, Chapter 9 concludes the thesis by summarizing key findings,
discussing their implications, and outlining potential future directions.

1
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2 Theoretical Concepts
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In this chapter we discuss the key theoretical concepts required to understand
the phenomena investigated in the thesis. Namely, we will outline the basic
properties of a semiconducting two-dimensional electron gas (2DEG), we will
cover superconductivity and the Josephson effect, and finally we will conclude
with an overview on superconducting quantum circuits, such as the transmon
qubit and the Josephson parametric amplifier.

2.1. 2DEG

The advent of 2DEGs has been the key to enable numerous milestone exper-
iments within condensed matter physics, starting from the ones that investi-
gate integer [22] and fractional quantum Hall effect [23], moving to ballistic
transport studies such as conductance quantization [24], Aharonov-Bohm in-
terference [25] and many more. Two-dimensional electron gasses are also the
building block of High Electron Mobility Transistors (HEMTs), a crucial com-
ponent for signal amplification in high-frequency electronics.

The motion of electrons in a 2DEG is confined in a two-dimensional plane
by means of potential wells, or quantum wells (QW), obtained by engineer-
ing the band alignment of semiconducting heterostructures. These structures
consist of several material layers grown via molecular beam epitaxy (MBE) un-
der ultra-high-vacuum conditions, ensuring high compositional purity in each
layer, defect-free interfaces and atomically precise layer thickness. The result-
ing minimal lattice disorder, and the confined electronic motion are the reasons
for the high electron mobility observed in these systems. The mean free path
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Figure 2.1. a) The two-dimensional electron gas (2DEG) is formed in a
low band gap material (light green) of thickness Lz, sandwiched between two
large band gap materials (dark green). Ec Ev represent the conduction and
valence band edge respectively. In this case, the Fermi energy EF lies within
the conducting band of the low gap material. Confinement in the z-direction
leads to quantized energy levels (blue and orange) in the potential well formed
by the band gap misalignment. b) Energy dispersion E as a function of the
wave vectors kx and ky. Ez,1 and Ez,2 are the energies of the first two quantized
states in the potential well. Step-like density of states D(E) corresponding to
this type of energy dispersion.

le measured in 2DEGs can be on the order of a few microns [26], making them
an exceptional platform for exploring and studying quantum effects. Further-
more, MBE-grown heterostructures offer the possibility to precisely tune the
elemental composition of each layer, allowing to realize potential wells tailored
to the specific application.

Confining an electronic system involves imposing boundary conditions on
the electron wavefunctions. As a consequence, both the wave vector k and
the energy levels of the electrons will be quantized into discrete values. Let us
consider the case of a small band gap material sandwiched between two large
band gap materials. In Fig.2.1a) we plot the evolution of the bottom of the
conduction band and the top of the valence band as determined by the ma-
terials crystal structure along the growth-(z-)direction. We consider the case
when the chemical potential at zero temperature, also called Fermi energy EF,
is located in the conduction band. The position of EF depends on the mate-
rials forming the stack, and can be further adjusted by adding dopant layers
during the heterostructure growth. In this case, electrons in the conduction
band of the central semiconductor are trapped along z by potential barriers
originating from discontinuities in the energy gap, whereas they are free to

6
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2.1. 2DEG

move in the xy-plane. The width of the well is given by Lz, and the dimen-
sions of the sample in the x and y direction are Lx and Ly respectively. The
wavefunction and energies of the quantised states can be calculated by solv-
ing the Schrödinger equation within the effective mass approximation, which
treats charge carries moving in the periodic potential of the lattice as if they
were free particles with an effective mass m∗ [27].

We divide the problem in two parts: the free motion in the xy-plane, and
the confined motion along the z-axis. The total wavefunction can be written
as:

Ψ(x, y, z) = ϕ(x, y)ψ(z). (2.1)

Since in the xy-plane the motion is free, electron wavefuntions are described
by plane waves of the form:

ϕ(x, y) = 1
LxLy

ei(kxx+kyy), (2.2)

where kx and ky are the electron wave vectors in the x and y direction. the
energy corresponding to this motion is the kinetic energy of a free electron
with effective mass m∗ which is given by Exy(kx, ky) = ℏ2(k2

x + k2
y)/(2m∗).

To find the expression of ψ(z) instead, it is necessary to know the expression
of the confining potential V (z) and solve the Schrödinger equation:

− ℏ2

2m∗
∂2ψ(z)
∂z2 + V (z)ψ(z) = Ezψ(z). (2.3)

Here we consider the simplest case of infinitely high confining barriers. The
general solution of ψ(z) inside the well can be written as a combination of
forward and backward propagating plane waves:

ψ(z) = Aei(kzz) +Be−i(kzz), (2.4)

where kz is the electron wave vector in the z direction. Since the barrier
are infinitely high, we impose ψ(0) = ψ(Lz) = 0. As a consequence, only
quantized values of kz are permitted within the well, specifically in units of
kz,n = πn

Lz
with n being an integer. The allowed energy levels in the well will

also be quantized Ez,n = ℏ2k2
z,n/(2m∗) with energy spacing between two con-

secutive levels proportional to 1
L2

z
. In practical cases, without infinite barriers,

the exact values of Ez,n and their separation will depend on the shape of the
confining potential. In Fig. 2.1b) we plot the total energy dispersion relation
E = Ez,n + Exy(kx, ky), consisting of n parabolic sub-bands vertically shifted
by Ez,n.

2
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2. Theoretical Concepts

Assuming spin degenerate energy levels, the density of states per sub-band in
a two-dimensional system is a constant value given by D(E) = m∗/(πℏ2) [27,
28]. Knowing the expression of D(E) allows us to compute the density of
electrons ne in a 2DEG. When a single sub-band is occupied, ne is given by:

ne =
∫ EF

Ez,1

D(E)dE = m∗

πℏ2 (EF − Ez,1) = k2
F

2π , (2.5)

where we have written (EF−Ez,1) = ℏ2k2
F

2m∗ in terms of the Fermi wave vector kF.
The Fermi velocity and Fermi wavelength are instead defined as vF = ℏkF/m

∗

and λF = 2π/kF respectively.

Another important parameter of a 2DEG is the electron mobility µ, defined
as the change in the electrons drift velocity vd with respect to the applied
electric field [27, 28]. Both µ and ne can be determined from Hall bar mea-
surement as described in Section 3.2. From such measurements, the electron
mean free path can be calculated as [28]:

le = vdτe ≈ vFτe = ℏµ
√

2πne

e
, (2.6)

where we have approximated the drift velocity with the Fermi velocity, and
have written the average scattering time of electrons as τe = m∗µ/e. The
electron mean free path is one of the reference length scales which determine
the transport regime of our devices.

The 2DEGs investigated in this thesis are formed in a 7 nm-thick InAs layer
sandwiched between two In1-xGaxAs barrier. A detailed description of the
heterostructure together with a discussion of the 2DEG transport properties
are presented in Chapter 3.

2.1.1. Spin Orbit Interaction

In the previous section we have neglected the effect of the electron spin and
derived a doubly degenerate energy dispersion E↑(k⃗) = E↓(k⃗) for spin ↑ and
spin ↓ electrons, characterized by k⃗ = (kx, ky). Introducing an external mag-
netic field B⃗ allows us to differentiate the spin-degenerate sub-bands, which
get split by the Zeeman energy EZ = E↑ − E↓ = gµBB [28], where g is the
Lande g-factor and µB is the Bohr’s magneton.

In addition, when electrons traverse the crystal with momentum vector k⃗,
they encounter an effective magnetic field caused by their interaction with the

8
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2.2. Superconductivity

electric field of the lattice, denoted as E⃗ . This effect, known as the spin-orbit
interaction (SOI), gives rise to [28]:

B⃗SO = −1
2

ℏ
c2me

k⃗ × E⃗ , (2.7)

where me is the electron mass and c is the speed of light in vacuum.

As a consequence, analogously to the effect of an external magnetic field,
SOI can lift the degeneracy of the electron energy dispersion. In general,
this effect is stronger in crystals composed of elements with large nuclear
charge (consequently large E⃗) and with broken spatial inversion symmetry. In
two-dimensional systems, we can identify two influences related to SOI which
affect the dispersion within a specific energy band. On one hand, crystal
lattice asymmetries are responsible for the Dresselhaus contribution, and on
the other hand, structure inversion asymmetries, produced by the confinement
potential of the heterostructure are responsible for the Rashba contribution.
The Hamiltonian for a 2DEG in a zincblende crystal in the presence of SOI
can be approximated by [28]:

HSO = H0 + αR(σxky − σykx) + βD(σxkx − σyky), (2.8)

where σx and σy are the components of the Pauli spin vector in the x- and
y-direction. H0 is the electrons Hamiltonian in the absence of SOI, while the
coefficients αR and βD describe the Rashba and Dresselhaus contribution to
SOI respectively.

The dominant SOI contribution in InAs 2DEGs is the Rashba term [28, 29].
This can be electrically tuned via a top gate voltage producing additional
electric field in the growth direction [30–32]. While in this thesis we will
not make direct use of the spin dependent energy dispersion in the 2DEG,
we wanted to point it out here because of its promising applications in spin
qubits [33–37].

2.2. Superconductivity

Superconductivity stands as one of the most intriguing phenomena in physics,
featuring materials that below a certain critical temperature Tc conduct elec-
tricity without any resistance and expel magnetic fields. This section aims
to investigate the fundamental aspects behind this intriguing behaviour, ex-
ploring the quantum mechanics and macroscopic phenomena that define the
unique properties of superconductors.

2
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Figure 2.2. a) Temperature dependence of the superconducting gap ∆
numerically evaluated from BCS theory [41] The black dashed line shows the
approximate analytical dependence for T ∼ Tc.

At a microscopic scale, the behaviour of a superconductor reflects the dy-
namics of its charge carriers, and in particular the properties of their collective
motion. According to the Bardeen-Cooper-Schrieffer (BCS) theory of conven-
tional superconductors, electrons with opposite spin and momentum in these
materials form Cooper pairs and condense into a common ground state [38].
The superconducting condensate is characterized by a complex order parame-
ter or energy gap with magnitude ∆ corresponding to the strength of the pair-
ing interaction, and with a phase factor eiφ which represents the macroscopic
coherence of the system. The attractive interaction that causes electrons at
the Fermi energy to form Cooper pairs creates a gap in the single-particle den-
sity of states where scattering would normally occur. The BCS theory predicts
the following expression for the density of states of quasiparticle excitations
out of the superconducting ground state [39]:

Ds(E) = D(EF) |E|√
E2 − ∆2

θ(|E| − ∆), (2.9)

where D(EF) is the density of states at the Fermi energy in the normal state,
and θ is the Heaviside function. The absence of available states within the
gap leads to the phenomenon of zero-resistance current flow. The expulsion
of magnetic field from the bulk of superconductor, the so called Meissner
effect [40], is instead caused by a dissipationless screening current flowing in a
narrow region below the surface.

2.2.1. Effect of Finite Temperature
At zero temperature and magnetic field the superconducting energy gap can
be expressed within the BCS theory as

∆0 = 1.76kBTc. (2.10)

10
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2.2. Superconductivity

As the temperature of the system is increased, thermal energy disrupts the
pairing and forms normal-conducting excitations, also called quasiparticles,
out of the superconducting ground state. Eventually, above Tc, the material
reverts to its normal, non-superconducting state.

The temperature dependence of the gap can be computed numerically using
BCS theory [41]. This is shown in Fig. 2.2: ∆ remains nearly constant up to
∼ 0.4Tc and drops to zero near Tc. The gap dependence for T ≈ Tc can be
approximated as [41]:

∆(T )
∆0

≈ 1.74
(

1 − T

Tc

)1/2
, (2.11)

depicted by the black dashed line.

The density of thermal quasiparticles nQP at temperature T is given by [42,
43]:

nQP = D(EF)
√

2π∆kBTe
− ∆

kBT , (2.12)

where D(EF) is the density of states at the Fermi energy in the normal state.

It is important to notice that although superconductors conduct dc current
without any resistance, at finite frequencies the excitation of quasiparticles
adds dissipation to the circuit. This can be understood by modelling the ac
response of the superconductor with a two-fluid model, which considers the
total response as the sum of the contribution from ns superconducting electrons
and nn normal electrons. Within this model, the complex conductivity of a
superconducting wire is written as [41]:

σ(ω) =
∑

j=n,s

[σ1j(ω) − iσ2j(ω)] , with (2.13)

σ1j = nje2τj

me

1
1 + ω2τ2

j

, (2.14)

σ2j = nje2τj

me

ωτj

1 + ω2τ2
j

, (2.15)

where τn and τs are the average scattering times of the two fluids, me is the
electron mass, and ω is the frequency of the applied ac field. For τs → ∞
the real part of the conductivity σ1s becomes proportional to a Dirac delta
function δ(ω). This reflects the fact that for a dc field, the superconductor
response is dissipationless. However, at all non zero frequencies the normal
fluid contribution will cause finite dissipation. Even at temperatures well be-
low Tc, non-thermal quasiparticles produced, for example, by electromagnetic

2

11



2. Theoretical Concepts

noise or by the impact of high energy particles on the substrate, will limit the
ac response of the superconductor [44–46].

The imaginary part of the conductivity σ2s for τs → ∞ instead is a measure
of the inertia of superconducting charge carriers. Being the scattering time
divergent, the ac field will have to overcome a finite inertia of the charge
carriers in order to drive the superconducting fluid. This is commonly referred
to as the kinetic inductance Lkin of the superconductor. For ω → 0 its value
is obtained by setting:

1
Z

= − i

ωLkin
= tW

l
σ2s → Lkin = l

tW

me

nse2 . (2.16)

Here Z represents the wire impedance, t is the film thickness, and W and l
stand for the wire width and length respectively. In the design of supercon-
ducting circuits, the kinetic inductance becomes an important parameter in
case of thin films of disordered superconductors.

The kinetic inductance of the condensate in the low frequency limit (0 ≪
ℏω ≪ 2∆0) can be related to the normal state resistance of the wire Rn
by [41, 47, 48]:

Lkin/□ = ℏRn

π∆0

W

l
tanh−1

(
∆0

2kBT

)
, (2.17)

Based on this simple relation, given the superconducting gap or the critical
temperature, it is possible to estimate the kinetic inductance in the supercon-
ducting state by measuring the normal-state resistance.

2.2.2. Effect of Finite Magnetic Field
Applying an external magnetic field breaks the degeneracy of electrons with
opposite spin and momentum involved in the formation of Cooper pairs, and
eventually destroys the superconducting state. Two important length scales
have to be defined when describing response of a superconductor to a magnetic
field: the coherence length ξ and the penetration depth λp.

The coherence length is the distance over which electrons participating in
the pairing will propagate during the interaction time ℏ/∆ and it is typically
associated to the size of the Cooper pairs. For crystalline superconductors it
is given by ξ0 = ℏvF/∆, while for disordered superconductors in the diffusive
regime le < ξ0 it reduces to [39]:

ξ =
√

ℏD
2∆ , (2.18)
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where D = vFle/2 is the electrons diffusion coefficient in 2D.

As previously mentioned, superconductors tend to expel external magnetic
fields by reactive screening currents flowing in a region close to the surface.
The thickness of this region, across which the magnetic field decays exponen-
tially, is the superconductor penetration depth λp. In case of magnetic fields
homogeneous over the superconductor coherence length, λp can be approxi-
mated with the value found by the London theory [49]:

λL =
(

me

µ0nse2

)1/2

. (2.19)

However, in the presence of disorder, the mean free path is reduced and the
ability of the condensate to screen external magnetic fields is weakened. This
is approximated by an effective increased penetration depth [41]:

λp,eff = λL

(
1 + ξ0

le

)1/2
. (2.20)

The behaviour of superconductors in a magnetic field depends on the rela-
tive values of the penetration depth and the coherence length. In so called
type-I superconductors, where λp < ξ, the magnetic field is expelled from the
bulk up to a critical magnetic field Bc after which superconductivity is de-
stroyed at once. In contrast, if λp > ξ, above a first critical field value Bc1,
it becomes thermodynamically favoured for the magnetic field to penetrate
the superconductors in units of flux quantum Φ0 = h/(2e). The magnetic
field penetrates in the form of so called Abrikosov vortices, which are normal
regions separated from the superconducting regions by circulating screening
currents. The density of vortices increases with magnetic field until a second
critical value Bc2, above which superconductivity is fully destroyed. Although
magnetic vortices create areas with decreased superconducting gap, serving
as quasiparticles traps [50, 51], uncontrolled vortex motion within a quantum
circuit acts as a noise source [52].

For conventional bulk superconductors, λp ∼ 50 nm and ξ ∼ 1.6 µm [53, 54],
so that they show type-I behaviour. However, in thin films, the mean free path
decreases due to scattering at the film boundaries, leading to a larger λp and
a smaller ξ. As a consequence, superconductors that are of type-I in bulk can
become type-II in thin films.

2.3. Josephson Junctions

The Josephson effect describes the dissipationless current flow between two su-
perconducting electrodes separated by a weak link. The effect is named after
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B. D. Josephson who theoretically predicted the effect for two superconductors
separated by a thin insulating barrier in 1962 [55]. Afterwards, supercurrent
flow was observed with any kind of material or constriction that would locally
weaken the superconducting condensate.

In this type of junctions, commonly referred to as Josephson junctions (JJs),
the dissipationless current of Cooper pairs is induced by a difference in the
macroscopic phases between the superconducting electrodes φ = φ1 − φ2,
and it is sustained up to a critical current value Ic. The relation between
the current I flowing through the JJ and φ is called current-phase relation
(CPR), and its analytical expression depends on the type of weak link. For
a superconductor-insulator-superconductor (SIS) junction, the CPR takes the
form of the first Josephson equation:

I = Ic sin(φ). (2.21)

Passing a constant dc current I through a JJ will result in a constant phase
difference φ = arcsin(I/Ic) (modulo 2π). At I = Ic, the phase is equal to its
critical value φc corresponding to the maximum of the CPR. For a sinusoidal
JJ φc = π/2. We notice that the other solution for the phase at constant bias
current φ = π − arcsin(I/Ic) (modulo 2π) is a local maxima in the potential
energy Epot of the junction [56], and therefore is unstable.

When I exceeds Ic, the junction switches to the normal state and develops a
finite voltage drop. According to the second Josephson equation, this voltage
drop is determined by the time evolution of the phase difference across the
electrodes as [41]:

V = ℏ
2e
∂φ

∂t
= 2π

Φ0

∂φ

∂t
. (2.22)

Taking the time derivative of the CPR and making use of the second Joseph-
son relation in Eq (2.22), we obtain:

∂I

∂t
= ∂I

∂φ

∂φ

∂t
= 2e

ℏ
∂I

∂φ
V. (2.23)

From the above equation we see that JJs effectively behave as non linear
inductors. The inductance of the Josephson junction, an essential component
of many quantum circuits, can be written as:

LJ(φ) =
(

2π
Φ0

∂I(φ)
∂φ

)−1

. (2.24)

At zero phase in a SIS junction, LJ becomes 2π
Φ0Ic

.
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Figure 2.3. a) A hybrid Josephson junction formed by a semiconducting
weak link (green) of length L sandwiched between two superconducting elec-
trodes (blue). A phase difference of φ is applied between the electrodes. The
transmission probability across the weak link is limited to τ ∈ [0, 1] by local
impurities which are depicted as a star. b) An electron with excitation energy
E is Andreev reflected into a hole which then undergoes the same process at
the opposite interface. If the phase acquired in a round trip is a multiple of 2π,
Andreev bound state (ABS) will form. c) Local impurities couple electrons
at the same excitation energy moving left and right. d) Energy dispersion of
ABS at τ = 1 and τ = 1 for a short junction L ≪ ξ. When τ = 1, the energy
dispersion for right moving (solid line), and left moving (dashed line) electrons
is degenerate at φ = π. This degeneracy is lifted for τ ̸= 1.

In the following we will discuss the expression for the CPR of a Josephson
junction where the insulating barrier is replaced with a semiconducting weak
link (e.g. a two-dimensional electron gas).

2.3.1. Semiconducting Weak Links

The process governing the supercurrent flow in superconductor-semiconductor-
superconductor (hybrid) Josephson junctions are coherent Andreev reflections
at the interfaces between the semiconductor and the superconductor. Simi-
lar to Fabry-Pérot resonances in an optical cavity, resonant electronic modes
can form in the semiconducting weak link at specific energies, which transfer
Cooper pairs from one side of the junction to the other. In the following, we
will start by considering a single conduction channel in the zero temperature
limit, and afterwards, we will extend the discussion to finite temperatures and
multichannel junctions.
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Single Channel

When an electron within the semiconductor reaches one of the interfaces with
the superconductor, because of the absence of accessible single-particle states
within the gap, it must be reflected. If it is normal-reflected as an electron,
there is no charge transfer, and therefore no net-current across the interface.
However, a spin ↑ electron reaching the interface can also pair with a spin ↓
electron with opposite momentum and enter the superconductor as a Copper
pair. The missing spin ↓ electron can equivalently be seen as a spin ↑ hole
having the same energy of the incoming electron and approximately the same
momentum, which is retro-reflected towards the other interface [57–59]. Dur-
ing this process, referred to as Andreev reflection, a charge of 2e is transferred
to one superconducting electrodes. The retro-reflected hole can undergo the
same process at the opposite interface and be Andreev-reflected again as an
electron. Andreev reflection is a phase coherent process, and if the total phase
acquired over a round trip is a multiple of 2π stationary modes known as An-
dreev bound states (ABSs) will form. Figure 2.3 illustrates the process for
a semiconducting weak link of length L sandwiched between two electrodes
made of the same superconductor. Over a round trip of two consecutive An-
dreev reflection, a Cooper pair is transferred from one electrode to the other.

The probability of Andreev reflection is weakened by the presence of a poten-
tial barrier at the interface between the semiconductor and the superconductor
as discussed in the Blonder, Tinkham and Klapwijk theory [60]. In the follow-
ing, we consider the case of Andreev reflection probability equal to one, and
hence of a perfect interface.

To calculate the energies of the ABSs we have to find an expression for the
total phase acquired during a round trip. We assume a one dimensional wire,
and that the left and right electrodes have a superconducting phase equal to
−φ/2 and φ/2 respectively, so that the phase difference between the electrodes
is φ. The total phase acquired in a round trip consists of the phase picked up
after the reflection at each of the two interfaces and the phase accumulated
while traversing the semiconducting region. When the coherence length of
the superconductor ξ is much larger than L, we can neglect the contribution
coming from the time spent in weak link and write the total phase as [59]:

φtot = −2 arccos
(
E

∆

)
± φ (2.25)

where the ± sign stand for a left and right moving electron respectively, and
E is the excitation energy of the electron, which we take to be |E| < ∆.

In the most general case, we have to take into account the finite length of the
weak link. Additionally, we must factor in the transmission probability τ which
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Figure 2.4. Numerical solution of the ABS energies for different ratios be-
tween the junction length L and the coherence length ξ of the superconductor
in the electrodes. From a) to c), as we increase L, more states becomes avail-
able in the gap and get pushed to lower energies. The green and the black
lines indicate the energy dispersion for τ = 0.8 and τ = 1. Solid and dashed
lines help to distinguish between the energy dispersion of left and right moving
electrons in the case of τ = 1.

might differ from unity due, for example, to impurities in the semiconductor.
In this case, φtot takes the form [59, 61]:

φtot = −2 arccos
(
E

∆

)
+ 2L

ξ

E

∆ ± arccos
(
τ cos(φ) + (1 − τ) cos

(
Lxr

ξ

E

∆

))
,

(2.26)
which is derived including the presence of a point impurity at position x0 ∈
[−L/2, L/2] and where xr = 2x0/L. For τ = 1 and L ≪ ξ we recover Eq.(2.25).
Andreev bound states will form at energies E that satisfy φtot = 0 (modulo
2π). An analytical expression for the stationary solutions of Eq.2.26 does not
exist. In Fig. 2.4 we plot numerical solutions for E/∆ > 0 at different ratios
L/ξ for τ = 1 and τ = 0.8. When increasing the junction length, more states
enter the gap, some of which with relatively low energies. These low energy
states can absorb photons and act as source of dissipation in microwave cir-
cuits [62–64]. Therefore, short junctions, with L ≪ ξ, are typically preferred in
many applications. However, the minimum junction length achievable is often
limited by the fabrication procedure. In the present work (see Chapter 4), we
were able to fabricate junctions ∼ 150 nm long. Given the typical coherence
length in Al thin films ξ ∼ 500 nm [41], this results in a ratio L/ξ ∼ 0.3.
In addition, in a two-dimensional system, when the width of the junction is
much larger than the Fermi wavelength of electrons in the weak link, there
can be conductive channels with a transversal component of momentum. The
effective length of these channels can be much longer than the physical length
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Figure 2.5. a) Bimodal distribution of transmission probabilities. The distri-
bution peaks for channels having low transmission probability (closed), giving
little contribution to the supercurrent, and for channels with high transmission
probability (open), which carry most of the supercurrent. b) The blue curve
shows the current-phase relation of a short diffusive Josephson junction. The
orange dashed curve is a fit to the blue curve with a sine Fourier series from
which we extract |c2/c1| ∼ 0.2. The black dashed curve is a fit to Eq (2.34)
from which we extract an effective transmission probability τ∗ ∼ 0.86.

of the junction, and they can therefore induce more states in the gap.

In the limit L ≪ ξ, it is possible to derive an analytical expression for the
ABSs energies taking into account the junction transparency [63, 65, 66]:

E±
A = ±∆

√
1 − τ sin2 (φ/2). (2.27)

At zero temperature, only the lowest energy ABS is occupied, and the corre-
sponding supercurrent is given by:

I(φ) = 2e
ℏ
∂E−

A
∂φ

= e∆
2ℏ

τ sin(φ)√
1 − τ sin2(φ/2)

. (2.28)

At finite temperature instead, the ABSs population is given by the Fermi
distribution, and the CPR takes the form [67]:

I(φ) = e∆
2ℏ

τ sin(φ)√
1 − τ sin2(φ/2)

tanh

(
∆
√

1 − τ sin2(φ/2)
2kBT

)
. (2.29)

Many Channels

Typically, hybrid Josephson junctions contain several conduction channels
each characterized by a different transmission probability τn contributing In
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to the total supercurrent. The number N of conduction channels can be es-
timated from the ratio between the width of the junction W and the Fermi
wavelength λF of electrons using N ≈ 2W/λF [28]. The InAs two-dimensional
electron gases used in this thesis, typically have λF of approximately ∼ 10 nm
(see Chapter 3 and Ref. [68, 69]). Since we fabricate junctions which are at
least 1 µm wide, this results in approximately 100 conduction channels. Given
this dense spectrum of ABSs, the total current for short junctions L ≪ ξ
and at zero temperature can be written in integral from as the sum over all
transmission probability values:

I(φ) = e∆
2ℏ sin(φ)

∫ 1

0
f(τ) τ√

1 − τ sin2
(

φ
2

)dτ (2.30)

where f(τ) is the distribution function of the transmission probabilities. In
the diffusive limit, the f(τ) can be calculated with random matrix theory and
has been found to be [70–72]:

f(τ) = πℏGN

2e2
1

τ
√

1 − τ
, (2.31)

where GN is the junction normal state conductance.

By inserting the expression of f in the diffusive limit into Eq. (2.30), the
total CPR becomes [73]:

Idiff.(φ) = πGN∆
e

cos
(
φ

2

)
arctanh

[
sin
(
φ

2

)]
. (2.32)

In Fig. 2.5a) we plot the bimodal distribution of transmission probabilities
given by Eq. (2.31) together with the corresponding CPR given by Idiff.(φ).
The Josephson junctions in this study are about 150 nm long, the mean free
path of the InAs 2DEG is approximately le ∼ 200 nm and they typically have
multiple conduction channels. As a consequence, Eq. (2.32) can well describe
their CPR.

In general, any CPR can be expressed in a Fourier series as:

I(φ) =
∞∑

m=1

cm sin(mφ), (2.33)

where the sin(mφ) terms correspond to processes involving the simultaneous,
coherent transport of m Cooper-pairs [74, 75] carrying a charge m×2e. When
the CPR can be parametrized by the junction transparency τ , then the more
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transparent a junction is, the higher the ratio between the amplitude of suc-
cessive harmonics |cm+1(τ)/cm(τ)|.

Another commonly used way of describing the junction CPR is to assume
that transport is determined by N channels all with an effective transmission
probability τ∗ [76]:

I(φ) = N
e∆
2ℏ

τ∗ sin(φ)√
1 − τ∗ sin2(φ/2)

. (2.34)

We fit the CPR given by Eq. (2.32) with a Fourier series, and with Eq (2.34).
We extract a |c2/c1| ratio of ∼ 0.2 and an effective transmission probability of
∼ 0.86. Knowing the harmonic content of the CPR of a Josephson junction
is a fundamental aspect in the design of any quantum circuit. As shown in
Fig. 2.5b) the Fourier fit follows the CPR at all values of φ. The fit with
Eq (2.34) instead, deviated from the CPR around φ = π. This highlights
the limitations of Eq (2.34) in capturing the behaviour of an arbitrary CPR.
However, τ∗ can still be used to describe the behaviour of a junction with a
few highly transmissive channels [76].

Spin Orbit Interaction

So far, as we will do for the rest of this work, we have assumed that spin
↑ and spin ↓ electrons are degenerate and that each Andreev bound state is
doubly occupied. However, SOI in the weak link can add an additional flavour
to the picture. The presence of SOI can split the ABSs and produce spin-
selective transitions which can be accessed by microwave photons. Here, we
will not discuss these additional effects, and direct the interested reader to
Ref. [59, 77–79].

2.3.2. Probing the Josephson Effect
In this section we discuss the techniques used in this thesis to characterize the
Josephson effect. First, we investigate the interference pattern in the critical
current of a junction as a function of a magnetic field applied perpendicular to
the junction area - the Fraunhofer pattern. Afterwards, we present the dc and
the ac methods to access the harmonic content of the current-phase relation
of the junction.

Fraunhofer Pattern

The Josephson effect commonly manifest itself as interference patterns arising
as the phase difference between the electrodes φ is changed - i.e. by an external
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Figure 2.6. a) False-colour SEM image of a Josephson junction made of
an InAs two-dimensional electron gas weak link sandwiched between two Al
electrodes (see Chapter 3 for details). The length L and the width W of the
junction are indicated by the arrows as well as the superconductor penetra-
tion depth λp. The white dashed line indicates the contour used to calculate
changes in the phase difference between the electrodes φ as a function of the
applied magnetic field Bz. b) Measured Fraunhofer pattern for a junction with
W ∼ 2.5 µm and L ∼ 150 nm. The map of differential resistance dV/dI as a
function of current bias I and Bz is overlaid with the theoretical curve obtained
from Eq. (2.36). To match the theory to the experiment we set L∗

eff = 2Leff,
with Leff = L+ 2λp.

magnetic field. Let us consider a Josephson junction as in Fig. 2.6, having
length L and width W . We want to understand how φ evolves as a function
of a magnetic field applied perpendicularly to the junction area Bz. Because
of the continuity of the superconducting order parameter, when integrating
the changes in its phase along a close path, the integral must be an integer
multiple of 2π. Applying this condition to the path indicated with the white
dashed line in Fig. 2.6a), extending over a distance dy, we obtain [56]:

∂φ

∂y
= 2π

Φ0
BzLeff → φ(y) = 2π

Φ0
BzyLeff = 2πΦext

Φ0
, (2.35)

where Φext is the magnetic field flux through the junction, and Leff = L+ 2λp
takes into account the fact that the magnetic field will penetrate over a distance
given by the superconducting penetration depth in both electrodes. Also, we
have dropped the integration constant since the initial value of φ will be irrel-
evant in the following discussion.

Integrating the CPR of the junction expressed in Fourier series over the
junction width we obtain the dependence of the supercurrent on the applied
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magnetic field:

I(Bz, φ) =
∫ W/2

−W/2

I(Bz, φ, y)
W

dy = 1
W

∫ W/2

−W/2

∞∑
m=0

cm(y) · sin(mky)dy, (2.36)

where k = 2π
Φ0
BzLeff. The evolution of the critical current Ic as a function

of magnetic field, commonly referred to as Fraunhofer pattern, is obtained by
taking the absolute value of Eq. (2.36), Ic(Bz) = |I(Bz, φ)|. In general, the
Fourier coefficients cm depend on y, and the Fraunhofer pattern embeds this
dependence. However, while it is straightforward to generate Ic(Bz) knowing
cm(y), extracting the critical current distribution along y from a measurement
of the Fraunhofer pattern is not easy, as many equivalent solutions exist.

In Fig.2.6b), we overlay the Fraunhofer pattern obtained from measurements
with the calculated Ic(Bz). The junction has an InAs two-dimensional electron
gas as a weak link and a 10 nm-thick aluminium film as superconducting elec-
trodes. The width and length of the junction are W ∼ 2.5µm and L ∼ 150 nm
respectively. The theoretical curve is derived from Fourier coefficients obtained
by fitting Eq. (2.32). We assume homogeneity along the y direction, meaning
cm(y) ∼ cm for all m, and use λp = 200 nm as previously reported [54] for
thin Al films. In the differential resistance map as a function of current bias
I and Bz, we identify the critical current Ic as the boundary between the
superconducting regime (dark blue) and the ohmic regime (turquoise). Both
curves are normalized with respect to the maximum critical current value. In
order to match the theoretical curve to the experimental one, we have to use
an effective length two times larger than the expected one L∗

eff = 2Leff. In
this way, the first minima align with the numerically calculated values. The
periodicity of the oscillations however, is different for the two curves. This
discrepancy is typically attributed to flux focusing effect from the supercon-
ducting banks [69]. Due to the Meissner effect, field lines will be expelled from
the superconductor and lead to a larger effective field in the junction.

Superconducting Quantum Interference Devices

Superconducting quantum interference devices (SQUIDs) are the building blocks
of numerous quantum technologies, with applications in sensing [80], qubits[81,
82] and amplifiers[83, 84].

SQUIDs are typically realized in two ways, either with a single Josephson
junction or with two Josephson junctions embedded in a superconducting loop.
These two realization are historically named based on their readout methods.
Loops with a single JJ are known as radio frequency (rf) SQUIDs, and the junc-
tion is typically probed by coupling the loop to a resonant tank circuit. On
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Figure 2.7. a) Schematic of a a) rf SQUID and a b) dc SQUID. The magnetic
field flux through the loop is indicated with Φext. The phase drop over the
junctions are given by φi with i = 1, 2. The current I flowing through the
SQUID causes an additional magnetic field flux (purple lines) due to the loop
inductances Lloop and L1,L2.

the other hand, loops with two JJs are known as direct current (dc) SQUIDs,
and are typically studied by measuring their switching current. Examples of
a dc and a rf SQUID are shown in Fig. 2.7. Loop inductances Lloop, given by
the sum of the geometrical inductance Lgeo and the kinetic inductance Lkin,
also need to be taken into account in the device description when they become
comparable to the Josephson inductances.

In both implementations the phase difference across the JJ (or the JJs)
in the SQUID is related to externally applied field by the so called fluxoid
relation [56, 85]:

φtot = φ− 2πΦext

Φ0
+ 2π

Φ0
LloopI(φ) != 2nπ, (2.37)

φtot = φ1 − φ2 − 2πΦext

Φ0
+ 2π

Φ0
[L2I2(φ2) − L1I1(φ1)] != 2nπ, (2.38)

where φ1 and φ2 are the internal phases of JJ1 and JJ2 in the dc SQUID. In
this second case, we have separated the contribution of the loop inductance
over the two arms of the SQUID, indicated with L1 and L2. The flux of the
external magnetic field Bext through the SQUID is given by Φext = BextA,
where A is the area of the loop.

Let us consider Eq. (2.37) for a rf SQUID, with n = 0 and for a SIS junc-
tion with current phase relation I(φ) = Ic sin(φ). In the absence of loop
inductances the relation between the internal phase φ and the external phase
φext = 2πΦext

Φ0
is approximately linear, and by applying a given magnetic field,

one can phase bias the junction to any value φ ∈ [0, 2π]. However, when in-
creasing either Lloop or Ic, the function φext(φ) develops regions with negative
derivative. This leads to hysteresis in φ(φext) as illustrated in Fig.2.8 for a
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Figure 2.8. a) The external phase φext as a function of internal phase φ
for an rf SQUID with loop inductance Lloop = 1.8 nH and sinusoidal current-
phase relation. For low critical current Ic the relation is nearly linear, but
becomes nonlinear as Ic in increased. For the chosen loop inductance, the
crossover to the hysteretic regime appears for Ic ∼ 180 nA (green curve).
(b) The internal phase as function of external phase. The relation is found
by inverting the curve shown in a). In the hysteretic regime, the phase bias
values φ = (2n + 1)π are not accessible and the value of the phase can take
on two values depending on the sweep direction: when sweeping φext from left
to right the phase stays on the green branch while it follows the red dashed
branch upon reversing flux bias direction.

fixed value of Lloop = 1.8 nH. In the hysteretic regime, the phase biasing at
φ = (2n+ 1)π, with n an integer, become inaccessible. For a SIS junction the
condition for the onset of hysteresis in φ(φext) is given by [86]:

LloopIc >
Φ0

2π . (2.39)

In case of a non-sinusoidal CPR as in Eq. 2.32, at a given value of loop induc-
tance, the hysteretic regime is entered already at lower critical current values.
We solve numerically φ(φext) for Lloop = 1.8 nH, and find the onset of hystere-
sis at Ic,sin ∼ 180 nA and Ic,diff ∼ 90 nA for a sinusoidal and a many channel
diffusive CPR respectively. These are important design considerations when
characterizing the CPR of a Josephson junction with an rf SQUID.

Coupling the SQUID to a tank resonant circuit can provide several infor-
mation about the junction under study, including the harmonic content of the
CPR, and the microwave response of the junction [86]. A more compact way
of characterizing a JJ, which does not require an additional microwave circuit,
is to embed it in a dc SQUID. This is a particularly interesting device since
it allows to combine the CPR of two or more JJ in an effective Josephson
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Figure 2.9. a) Schematic of a dc SQUID without loop inductances. The
colour code matches the one for the curves in b): orange and green indicate
the current flowing through the left JJ1 and right JJ2 Josephson junction
respectively; in blue we indicate the total current in the SQUID, sum of I1
and I2. b) Individual current-phase relation (CPR) of the two junctions in
orange and green as a function of the phase drop φ2. The expression of the
CPR is given by Eq. (2.28) with τ1 = τ2 = 0.8. The critical current ratio
is Ic2/Ic1 = 12. In blue, the total CPR of the SQUID. When the externally
applied phase φext is zero, the critical phase value of the SQUID φc,SQUID
matches the critical phase value of the large junction φc,SQUID, as indicated by
the vertical dashed lines. At finite magnetic field φc,SQUID is shifted compared
to φc2 by δφ. c) We compare the critical current of the SQUID as a function
of magnetic field as obtained from maxφ2 [I1(φ2 + φext) + I2(φ2)] (blue) and
from Eq. (2.40). We set τ2 = 0.001 and τ1 = 0.99. d) Same as in c) for
τ1 = τ2 = 0.8.

element with an arbitrary harmonic content.

A dc SQUID is measured by passing a dc current I though the loop and
recording the switching to the normal state. The total current flowing through
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the device is the sum of the current in each junction I = I1(φ1)+I2(φ2). From
Eq.(2.37) for n = 0 and neglecting the role of loop inductances, we see that
the phase drops over the junctions are related by φ1 = φ2 + φext. If we
consider an asymmetric SQUID, where the critical current of one junction is
much larger than the other Ic2 ≫ Ic1, the switching dynamics of the device
from the superconducting to the normal state will give us access to the CPR
of the small JJ. This is illustrated in Fig. 2.9b): increasing the current bias I
of the SQUID, close to the critical current of JJ2, the phase φ2 will be fixed
around its critical value φ2 = φc2 + δφ. The total CPR can be then expressed
as:

I(φext) ≈ I1(φc2 + φext) + I2(φc2). (2.40)

Therefore, measuring the critical current of the SQUID allows to directly visu-
alize I1(φext) provided that φ2 does not deviate significantly from φc2 [76, 87].

Recently, the authors in Ref. [88] highlighted that this methods can give
misleading results depending on the CPR of JJ2 (also called reference junc-
tion) and JJ1 (also called junction under study). They have summarised their
findings with the following condition, which is necessary to access the real
CPR of the studied junction:{

max ∂φ2I2 > − max ∂φ1I1

min ∂φ2I2 > − min ∂φ1I1.
(2.41)

The equation above states that the oscillations in the derivative of the studied
CPR should fall inside the oscillations in the derivative of the reference CPR.

In Fig. 2.9c) and d) we compare the value of critical current as it would
appear from current bias measurement from an asymmetric SQUID, with the
CPR of the junction under study. The first curve (scatter plot with blue mark-
ers) is obtained by extracting the maximum of I(φ2, φext) = I1(φ2 + φext) +
I2(φ2) at different values of φext. The second curve (black dashed line) is plot-
ted using Eq. (2.40). We use for CPRs the expression for a single channel short
diffusive junction as given in Eq. (2.28) with transmission probabilities τ1 and
τ2. We normalize the CPR so that we can fix Ic2/Ic1 = 12. In Fig. 2.9c)
we compare the two curves for τ1 = 0.99 and τ2 = 0.001. This configura-
tion, where a low transmission probability SIS reference junction is used to
extract the CPR of high transmission probability junctions, was actually the
one used in the paper where this method was first developed [87]. The SQUID
oscillations in this case fail to reproduce the CPR of the studied junction for
external phase values such that φext + φc2 ≈ π. This is a result of the fact
that ∂φ1I1 does not fall inside ∂φ2I2 in such phase bias range. The two curves
overlap better when the junctions have the same transmission probabilities
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Figure 2.10. a) Schematic of Cooper pair transport in a Josephson junction
with voltage bias V . Transfer of one (red) and two (orange) Cooper pairs
(with charge 2e and 4e) results in photon emission at frequency fJ,1 and fJ,2
respectively. A photon emitted from Copper pairs transport can either take
or give part of its energy to an environmental photon at frequency fenv. b)
Normalized power Pdet,norm. as a function of V and detection frequency fdet.
Emission lines corresponding to transport of one and two Cooper pair are
indicated by the red and orange dashed lines. Single Cooper pair emission
processes assisted by environmental photons are shown with dashed grey lines.
The relative intensity of the emission peaks depends on fdet. Around fdet ∼
7 GHz, it is possible to distinguish the 4e emission process from the others,
and indicated by the orange lines.

τ1 = τ2 = 0.8, as shown in Fig. 2.9d).

As mentioned before, in addition to being a great characterization tool,
SQUIDs can be used to engineer an effective Josephson junction with an al-
most arbitrary CPR. By properly designing the loop inductances, the critical
currents and transmission probabilities of the junctions (gate tunable in the
case of semiconducting weak link), it becomes possible, at finite magnetic flux,
to obtain a CPR with the desired harmonic content. This finds applications
in superconducting electronics[12, 89] superconducting qubits [13, 90, 91] as
well as quantum limited parametric amplifiers [83, 84].
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Josephson Radiation

Another characterization method, which in principle removes the need of em-
bedding the junction in a loop to access the harmonic content of its CPR,
is the measurement of Josephson radiation. In the normal state, the voltage
drop over the junction is governed by the second Josephson equation given by
Eq. (2.22). Applying a constant voltage bias V over the junction, the phase
will linearly evolve in time according to:

φ = 2e
ℏ
V t. (2.42)

Substituting this equation into the expansion in Fourier series of the CPR of
a JJ we get:

I(t) =
∞∑

m=1

cm sin(m2e
ℏ
V t). (2.43)

As a consequence, an applied dc voltage causes an ac supercurrent oscillating
at the Josephson frequency fJ = 2eV/h. This transforms into the emission
of microwave photons at fJ. In the presence of higher harmonics, photon
emission at higher frequencies fJ,m = m × 2eV/h also occurs [74, 75]. The
amplitude of the Fourier coefficients cm in Eq. (2.43) reflects the probability
of photon emission due to coherent transfer of single (m = 1) or multiple
(m > 1) Copper pairs, as illustrated in Fig. 2.10a).

Josephson radiation can be measured by connecting one electrode of the
junction to a power spectrum analyser (detector), as detailed in Chapter 7 and
Appendix C. The probability of photon emission due to Cooper pair transport
depends on the impedance of the environment surrounding the Josephson junc-
tion [92], which in turns has a complex behaviour as a function of frequency.
The frequency dependence of the environmental impedance can be engineered,
but it is also influenced by standing wave patterns in the measurement rf lines
due to spurious impedance mismatch conditions. In Fig. 2.10b) we show a
typical radiation spectrum obtained by measuring the emission power as func-
tion of detection frequency fdet and voltage drop V for a junction similar to
the one in Fig. 2.6. A peak in the measured power occurs when the Josephson
radiation frequency matches fdet.

In addition to the peak corresponding to the fundamental Josephson emis-
sion at fJ,1, there are replicas of it appearing at a constant frequency offset on
the right and on the left of the predicted peak position. These extra processes
can be understood as a photon from a spurious environmental mode which is
upconverted to a detector photon by taking up the energy 2eV provided by
the inelastic transfer of a Cooper-pair (right shift in frequency). The energy
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balance in this case reads hfdet = hfenv + 2eV , where fenv corresponds to
the resonant frequency of an environmental cavity. Such resonance can be
caused for example by a standing wave pattern along the microwave lines.
The complementary process is also possible, meaning that a photon coming
from a Cooper-pair transfer can be downconverted to a detector photon by
giving up the energy hfenv to the environment (left shift in frequency). The
energy balance in this case reads hfdet = 2eV − hfenv. At fdet > 6 GHz, their
contribution diminishes, while the peak corresponding to the transfer of two
Cooper pairs at fJ,2 becomes visible.

Measuring Josephson radiation requires engineering the switching behaviour
to ensure a (approximately) constant voltage drop over the junction in the
frequency range we have access to. For a typical measurement bandwidth
from 3 GHz to 8 GHz, this means trying to stabilize the voltage in a range
within ∼ ±15 µV (see Fig. 2.10b).

The switching dynamics of a JJ are well captured by the resistively and
capacitively shunted junction (RCSJ) model. Within the RCSJ model, the
junction is described as a parallel circuit consisting of an ideal JJ with current
phase relation I(φ), shunted with a capacitor C and a resistor R. The equiv-
alent circuit diagram is shown in Fig. 2.11a). The capacitor accounts for the
geometrical capacitance between the electrodes, while the resistor describes
dissipation in the system. In general, R depends on the current bias I, but
for simplicity we will assume it to be constant and equal to the normal state
resistance of the junction. Applying Kirchhoff’s laws and using the second
Josephson equation we obtain the following differential equation for the time
evolution of the phase across the junction [56]:

I = ℏ2

2eC
d2φ

dt2
+ ℏ

2eR
dφ

dt
+ Icg(φ) + IN, (2.44)

where g(φ) is the dimensionless shape of the CPR and IN is a noise term
that we assume to be thermal noise at a temperature T . We solve the equa-
tion numerically for different values of I following the code presented in the
supplementary of Ref. [93]. Knowing φ(t), the dc voltage is calculated as
V = ℏ

2e

〈
dφ(t)

dt

〉
. The switching behaviour of a junction is often categorized by

the Stewart-McCumber parameter, defined as:

βC = 2e
ℏ
IcR

2C. (2.45)

The IV curve in different limit scenarios are plotted in Fig. 2.11b) for a si-
nusoidal CPR with g = sin(φ). In the simulation, we fix T = 0.10 K for the
electronic temperature of realistic experimental scenarios. In so called under-
damped junction, characterized by βC ≫ 1, increasing the bias current from
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Figure 2.11. a) Circuit diagram of the resistively (R) and capacitively (C)
shunted junction (RCSJ) model for a Josephson junction with current-phase
relation Icg(φ). b) Voltage V as a function of current I as obtained from
solutions of Eq. (2.44) using the code presented in Ref. [93]. Both the blue and
the orange curve are obtained for R = 10 Ω, Ic = 500 nA, g(φ) = sin(φ) and
T = 0.1 K, but they differ for the value of C. For the blue curve we set to C =
1 pF, corresponding to a Stewart-McCumber parameter βC ∼ 0.8 (overdamped
regime). For the orange curve we set to C = 50 pF, corresponding to a Stewart-
McCumber parameter βC ∼ 8 (underdamped regime). Reversing the current
bias direction (orange arrows), the underdamped curve shows hysteresis. The
black dashed line follows V = RI. c) Power spectral density of V (t) calculated
as in Ref. [93] for R = 10 Ω, Ic = 500 nA and C = 1 pF. The red and orange
dashed lines represent the expected peak position of the 2e and 4e emission
processes respectively. d) Same as in c) but for C = 1 nF.

zero, the resistance jumps to its normal state value right after reaching the
critical current. When reversing the current direction, the junction stays in
normal state even for I < Ic, because it takes time to dampen the phase oscilla-
tions. When βC ≪ 1 instead, the junction is the so called overdamped regime,
the switching is more gradual and does not show hysteresis. In the overdamped
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regime, since there is no sudden jump in the IV curve, more voltage bias value
are accessible, which would benefit radiation measurements. However, in this
case the voltage drop close to the switching is not stable because part of the
current will flow as Josephson and displacement current, which are not con-
stant in time. Voltage fluctuations will appear in the emission spectrum as
higher order peaks even in the case of g = sin(φ), hindering to observe the
real harmonic content of the CPR [93]. To reduce this effect, it is necessary to
increase C to reach the linear regime where V = RI faster. This is illustrated
in Fig. 2.11c) and d) where we plot the power spectral density of V (t) as calcu-
lated from Eq. (2.44) for C = 1 pH and C = 1 nH. For the case of C = 1 pH,
the accessible voltage bias range increases, but spurious peaks appear in the
power spectrum. Instead, in the case of C = 1 nH, spurious peaks disappear,
but the accessible voltage bias range decreases. Another option to alleviate
the effect of non constant voltage drop in overdamped junctions, is to decrease
Ic so that the voltage bias values where radiation occurs are further away from
the switching.

Despite of the many caveats, measurements of Josephson radiation are a
powerful tool to characterize the harmonic content of a CPR. We will use this
tool in Chapter 7 to investigate the effective CPR of a dc SQUID formed by
two hybrid junctions as a function of flux.

In the next section, we move on to introduce the applications of Josephson
junctions and SQUIDs for superconducting qubits.

2.4. The Transmon Qubit

The basic building block of a quantum computer is a quantum bit (qubit),
a quantum two level system, that stores information in the superposition of
two quantum states [1]. One prevalent approach to build a quantum processor
involves superconducting qubits. These qubits store information within the
quantum properties of nanofabricated, anharmonic oscillators made from su-
perconducting circuit components. Unlike various other platforms—like elec-
tron spins in silicon, quantum dots or trapped ions whose energy states relies
on natural microscopic quantum systems, the energy-level characteristics of
superconducting qubits can be tailored by adjusting circuit element parame-
ters.

In this section, we introduces the widely used transmon qubit, an essential
component in contemporary superconducting qubits. We discuss the equations
governing its energy spectrum as an artificial two-level system, and its coupling
to an external resonator.
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Figure 2.12. a) Schematic of a LC circuit with a linear inductor L. The
magnetic flux through the inductor is indicated by Φ. b) Schematic of a LC
circuit with a non-linear inductor realized with a Josephson junction. The
total capacitance of the circuit CΣ is the sum of the shunt capacitance C as
before, and of the junction capacitance CJ. c) Potential energy as a function
of phase φ = 2πΦ/Φ0 (in blue) and eigenenergies Ei (in black) for a harmonic
oscillator as in a) (dashed curves) and a anharmonic oscillator as in b) (solid
curve). The eigenenergies for the anharmonic oscillator are calculated in the
transmon limit with EJ/EC ∼ 50, where EJ = 2πΦIc

Φ0
and EC = e2/(2CΣ).

2.4.1. An Artificial Two-level System
In order to derive the energy spectrum of a transmon qubit, we have to di-
agonalize its Hamiltonian, and for this we need a quantum description of the
corresponding electrical circuit. Let us start by considering a simple circuit
as shown in Fig. 2.12a), consisting of an inductance L and a capacitance C
connected in parallel. The classical Hamiltonian H of this circuit is the sum
of the charging energy Q2

2C
on the capacitor and the inductive energy Φ2

2L
on

the inductor:
H = Q2

2C + Φ2

2L, (2.46)

where Φ is the magnetic flux through the inductor and Q represent the charge
on the capacitor.

In analogy to a mechanical harmonic oscillator made of a mass attached to
a spring, we can interpret the above expression as the sum of a kinetic energy
term and a potential energy term, and identify Φ and Q as canonical variables
satisfying Poisson brackets. Anticipating the use of a non-linear inductor (the
Josephson junction), a convenient choice is to treat Φ as generalized position
coordinate, and Q as generalized momentum. In this way, we can determine
with Φ both the voltage drop over the inductor V = Φ̇ and the current pass-
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ing through it I = g(Φ), where g(Φ) represents the inductor constitutive law.
Through canonical quantization we can then introduce the quantum mechan-
ical operators Φ̂ and Q̂ satisfying the commutation relation

[
Φ̂, Q̂

]
= iℏ.

Similar to a mechanical quantum harmonic oscillator, Φ̂ and Q̂ can be ex-
pressed in terms of the raising and lowering operators â†, â†:

â = 1
2

(
Φ̂

ΦZPF
+ i

Q̂

QZPF

)
, (2.47)

â† = 1
2

(
Φ̂

ΦZPF
− i

Q̂

QZPF

)
, (2.48)

Φ̂ = ΦZPF(â+ â†), (2.49)
Q̂ = −iQZPF(â− â†), (2.50)

where, ΦZPF =
√

ℏZ0
2 and QZPF =

√
ℏ

2Z0
represent the zero-point fluctuations

of flux and charge respectively, and Z0 =
√
L/C is the circuit characteristic

impedance.

The Hamiltonian of the system becomes [8]:

Ĥ = ℏω0

(
â†â+ 1

2

)
= Ĥ = ℏω0

(
n̂+ 1

2

)
, (2.51)

where n̂ is the photon number operator and ω0 = 1/
√
LC is the circuit res-

onance frequency. In the basis of the eigenvectors of n̂, denoted as |n⟩, the
eigenenergies of the circuit are:

En = ℏω0

(
n+ 1

2

)
. (2.52)

The quantum harmonic oscillator is an important building block of circuit
quantum electrodynamics, since every linear system can be decomposed into
a set of independent harmonic modes. In particular, the Hamiltonian of a
transmission line resonator can be written as [8]:

Ĥ =
∞∑

m=0

(
ℏωmâ

†
mâm + 1

2

)
, (2.53)

where â†
m and âm are the field operators of mode m and ωm is the resonance

frequency of the mode. The expression for ωm depends on the geometry of the
resonator and on the boundary conditions as detailed in Ref. [94]. Typically,
our focus lies in understanding a circuit behaviour within a specific frequency
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range. In these scenarios, isolating a single mode becomes practical, allowing
us to disregard the dynamics associated with other modes.

However, the parabolic potential given by Φ2

2L
produces eigenenergies which

are equally spaced by ℏω0, as depicted in Fig. 2.12c). This makes it impossible
to isolate two energy levels with distinct energy spacing that we would like to
use as a computational space. To do that, we have to replace L with a non
linear inductor - i.e. a Josephson junction (see Fig. 2.12b)). Let us consider
a SIS junction with current-phase relation given by I(Φ) = Ic sin(2πΦ/Φ0),
where we have used φ = 2πΦ/Φ0. The inductive energy associated with this
element is

EL(Φ) =
∫
I(Φ)dΦ = −EJ cos(2πΦ

Φ0
), (2.54)

where EJ = 2πΦIc
Φ0

is the so called Josephson energy.

The Hamiltonian of this new circuit is given by:

ĤT = Q̂2

2CΣ
+ EL(Φ) = Q̂2

2CΣ
− EJ cos

(
2πΦ̂
Φ0

)
= 4ECN̂

2 − EJ cos(φ̂), (2.55)

where we have introduced the charge number operator N̂ = Q̂/(2e) and the
phase operator φ̂ = (2π/Φ0)Φ̂, and we have defined the charging energy EC =
e2/(2CΣ). Notice that in this case the total capacitance CΣ is the sum of the
shunt capacitance C and the junction capacitance CJ. This Hamiltonian can
be diagonalized numerically if written in the eigenbasis of N̂ , when it takes
the form [95]:

ĤT = 4Ec

∞∑
N=−∞

(N −Ng)2|N⟩⟨N | − EJ

2

∞∑
N=−∞

(|N⟩⟨N + 1| + |N + 1⟩⟨N |).

(2.56)
The energy spectrum of ĤT is governed by the ratio EJ/EC. The eigenener-
gies for EJ/EC ∼ 50, where the transmon is commonly designed, are shown in
Fig. 2.12c) superimposed with the cosine potential provided by the Josephson
junction. In this case, the transition energy E01 between the ground and the
first excited state differs from the transition energy E12 between the first and
the second excited state.

In the so called transmon limit, where EJ/EC ≫ 1, the eigenfunctions are
delocalized in the charge space and localized in the phase space. As a conse-
quence, the system in insensitive to charge fluctuations. On the other hand,
phase fluctuations can be assumed to be small δφ ≪ 1. This large EJ/EC
ratio, obtained by shunting the Josephson junction with a large capacitance,
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Figure 2.13. a) Schematic of a transmon qubit (red) coupled to one mode of
a transmission line resonator (orange) and to an additional drive port (purple).
The transmon has a total capacitance CΣ and a non linear inductance given
by L(Φ), with Φ being the magnetic field flux through the inductor. The
resonator mode is modelled via an harmonic oscillator with capacitance C
and inductance L. The drive port is connected to an ac voltage source at
frequency ωd. Coupling to the resonator and the drive port is controlled via
the capacitances Cg and Cd respectively. b) False colour optical image of a
transmon qubit. The colour code corresponds to the schematic in a). The
transmon capacitance is formed by the T-shaped metalling island and ground
(in blue). The Josephson junction shorts the island to ground. Cg is given
by the spacial overlap between the island the the end of the resonator central
conductor. Cd is formed by the overlap of the island with the drive line, which
are electrically isolated with a dielectric layer.

is the reason for the longer coherence time in the transmon qubit compared
to previous implementations [96]. In this limit, the frequency of the first en-
ergy transition f01 and the anharmonicity α of the energy spectrum, can be
approximated by:

ω01 = E01

ℏ
≈

√
8EJEC − EC

ℏ
, (2.57)

α = E12 − E01

ℏ
≈ EC

ℏ
. (2.58)

Typical transmon qubits have a critical current of Ic ∼ 25 nA and a total
parallel capacitance CΣ ∼ 65 fF, resulting in f01 ∼ 5 GHz and α ∼ −350 MHz.

2.4.2. Readout and Control
Now that we have introduced the quantum harmonic oscillator (a supercon-
ducting resonator) and the transmon artificial atom, we can discuss their in-
teraction. Because of their large size, coming from the need of a large shunt
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capacitance, it is natural to couple transmon qubits and microwave resonators
capacitively via a spatial overlap.

A schematic of a resonator coupled through a gate capacitance Cg to a trans-
mon qubit is shown in Fig. 2.13. If we consider only one mode in the resonator,
with resonance frequency ωr, and only the first two levels E0 (|g⟩) and E1 (|e⟩)
in the transmon energy spectrum, the Hamiltonian of the coupled system can
be described by the well known Jaynes-Cummings (JC) Hamiltonian [95, 97]:

HJC = ℏωrâ
†â+ ℏω01

2 σ̂z + ℏg(â†σ̂− + âσ̂+), (2.59)

where σ̂z = |e⟩⟨e| − |g⟩⟨g| is the Pauli z-matrix, σ̂− = |g⟩⟨e| and σ̂+ = |e⟩⟨g|
are the components of the Pauli x-matrix, and â, â† are the field operators for
the resonator. The coupling constant g is given by [8]:

g = ωr
Cg

CΣ

(
EJ

2EC

) 1
4
√
πZr

RQ
(2.60)

where Zr =
√
L/C is the resonator impedance and RQ = h/e2 is the resis-

tance quantum. It should be noted that the Hamiltonian in Eq. (2.59) holds
for weak coupling, meaning g ≪ ωr, ω01.

For solutions of Eq. (2.59), we refer to Ref. [8]. Here, we want to discuss
a particular case when the detuning ∆qr = ω01 − ωr between frequency of
the qubit and the resonance frequency of the resonator is sufficiently large,
so that g/∆qr ≪ 1. In this case, the JC Hamiltonian can be approximately
diagonalized as [98]:

HJC ≈ ℏ
2 (ω01 + χqr)σ̂z + ℏ

2 (ωr + χqrσ̂z)â†â, (2.61)

whose solutions are the pairs of atom-field states |g, n⟩ with the transmon in
the ground state and n photons in the cavity, and |e, n− 1⟩ with the transmon
in the excited state and n − 1 photons in the cavity. The qubit state infor-
mation is encoded in the frequency shift of the readout resonator, given by
χqr = g2

∆qr
. This technique employed for measuring the qubit state is termed

quantum non-demolition, since it preserves the qubit’s state after the readout.
In addition, by rearranging the terms in Eq. (2.61) it becomes visible that the
number of photons inside the resonator is reflected by the qubit frequency,
which is shifted by 2χqrn [98]. This effect is commonly referred to as ac Stark
shift.

To drive transitions between the ground and the excited state, an additional
term has to be added to the system Hamiltonian. This is typically achieved
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by providing an additional port capacitively coupled to the qubit, as shown
in Fig. 2.13a). The drive term can be taken of the form Ωσ̂x cos(ωdt), where
σ̂x is Pauli x-matrix, Ω is the drive amplitude and ωd the drive frequency.
Because of the finite overlap in charge space, |g⟩ and |e⟩ possess a finite elec-
tric dipole moment the drive couples to in order to drive transitions between
them. The transition rate is determined by the generalized Rabi frequency
ΩR =

√
Ω2 + ∆2

qd, where ∆qd = ω01 − ωd.

In Eq. (2.59) we have neglected the effect of photon losses and decoherence,
for which we refer to Ref. [6]. In practice it is possible to drive the qubit and
read its state via the dispersive shift on the readout resonator, provided that
the loss and decoherence rates are slower than the drive and readout processes.

2.4.3. Flux and Gate Tunable Transmon
Let us now consider the case of a transmon qubit where the Josephson junction
is made of a semiconducting weak link. The critical current of this type of
junction is typically tunable via a gate voltage VG and the corresponding qubit
is commonly referred to as gate tunable transmon (gatemon). As we have seen
in Section 2.3.1, the CPR of such junctions is often non-sinusoidal and can be
parametrized by the transmission probability τ through the weak link. Here
for simplicity we consider single channel Josephson junctions with aluminium
leads (with a superconducting gap of ∆ ∼ 200 µeV). The Josephson potential
can be expanded in cosine Fourier series as [99]:

EL(φ, τ) = −
∞∑

m=0

cm(τ) cos(mφ), (2.62)

which in the charge number basis becomes:

EL = −
∞∑

m=0

cm(τ)
∞∑

N=−∞

|N⟩⟨N +m| + |N +m⟩⟨N |. (2.63)

The mth harmonic term corresponds to the transfer of m Cooper pairs across
the junction. In matrix form, the corresponding Fourier coefficient cm(τ) will
occupy the mth off-diagonal positions below and above the diagonal of the
Hamiltonian. The eigenstates and eigenenergies of the system can be then
obtained as in the transmon case.

The ability to adjust the critical current of the junction, thereby tuning
the qubit frequency using a gate, has gathered significant interest in these
devices [17, 100, 101]. Moreover, introducing flux tunability by incorporating
an extra non-sinusoidal junction in parallel (see Fig. 2.14) offers the potential
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CΣ

I1(φ1,τ1) I2(φ2,τ2)

Φext

VG1 VG2

Figure 2.14. a) Schematic of a gate and flux tunable transmon with a total
capacitance CΣ and an effective Josepshon junction formed by the parallel of
two Josephson junctions threaded by a magnetic field flux Φext. Each junction
is characterized by a current-phase relation Ii(φi, τi) with φi being the phase
drop over the junction and τi the transmission probability. The critical current
can be further tuned by a set of local electrostatic gates VG1 and VG1.

to create an effective Josephson junction with a customizable CPR. This en-
ables the realization of a qubit with a versatile energy spectrum. Compared
to equivalent implementations of flux tunable qubits with SIS junctions, using
semiconducting weak links allows to reduce the number of junctions needed
for a particular design thanks to interference effects between the higher order
harmonics of the CPRs.

Neglecting loop inductances, the expression of the Josephson potential for
two junctions with a non-sinusoidal CPR in parallel reads:

EL(φ2, φext, τ1, τ2) = −
∞∑

m=1

c1,m(τ1) cos [m(φ2 + φext)]−
∞∑

m=1

c2,m(τ2) cos(mφ2),

(2.64)
where τ1 and τ2 are the transmission probabilities of JJ1 and JJ2 respectively,
and we have used φext = 2πΦext/Φ0 = φ1 − φ2. In the charge number basis,
the first term in Eq. (2.64) is given by:

EL,1 = −
∞∑

m=0

cm(τ1)
∞∑

N=−∞

|N⟩⟨N +m|eimφext + |N +m⟩⟨N |e−imφext . (2.65)

Depending on the flux position and the value of the transmission probabilities,
the SQUID behaves as an effective Josephson element with Josephson potential
EL(φ2, φext, τ1, τ2).

In Fig. 2.15 we plot the transition energy E01 between the two lowest states
and the anharmonicity α of the system as a function of φext for different trans-
mission probabilities. We fix τ2 = 0.6 and EC = 250 MHz, and increase τ1
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Figure 2.15. a) Transition energy E01 from the ground to the first excited
state as a function of external phase φext for a flux tunable gatemon. The
transmission probability of one junction has been fixed to τ2 = 0.6, and we plot
E01 for different values of τ1. EC is−250 MHz for all curves. b) Anharmonicity
α as a function of φext for different values of τ1 as is a) The black dashed line
show the value of α as calculated in the transmon limit for a sinusoidal current-
phase relation.

from 0.2 to 0.4 and 0.8. For all curves, at φext = π the qubit frequency reaches
its minimum as the inductive energy also reaches its lowest value. However,
the shape of the oscillations depends on the asymmetry between the trans-
mission probabilities of the junctions. The behaviour of the transition energy
as a function of φext hinders changes in the Josephson potential for the three
cases. Instead, this becomes visible in the dependence of α on φext for the
three curves. Changes in the Josephson potential change the relative spacing
between energy levels. Compared to the case of sinusoidal junctions, here the
interference between higher harmonics can produce large changes (in the order
of GHz) in the anharmonicity of the spectrum, similar to what happens in so
called fluxonium qubit [82, 102].

A particularly interesting energy spectrum is obtained for τ1 = τ2 and
φext = π. In this configuration, the first and all the odd harmonics in the
two JJs interfere destructively. The result is a π-periodic Josephson poten-
tial coming from the sum of the second (and all the even) harmonics in the
CPR of the junctions. The supercurrent in this configuration is being car-
ried by pairs of Cooper pairs with charge 4e, and the two lowest eigenstates of
the system correspond to an odd or even number of Cooper pairs on the island.

In Fig. 2.16a) we plot the eigenstates of the system superimposed with the
Josephson potential. The two lowest and almost degenerate eigenstates E0
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Figure 2.16. a) Josephson potential (blue curve) with eigenenergies and
wavefunctions for the first four eigenstates of parity protected qubit as a func-
tion of phase φ2. The energy spectrum is obtained for an external phase
φext = π and for a transmission probability τ = τ1 = τ2 = 0.8. EC has been
fixed to −250 MHz. b) Occupation probability of the ground |g⟩ and excited
|e⟩ state of the parity protected qubit in the charge basis. |g⟩ and |e⟩ corre-
spond respectively to a superposition of an even and an odd number of Cooper
pairs on the island.

and E1 correspond to a symmetric and antisymmetric superposition of the
phase particle being trapped in the potential minima at 0 and π. In charge
space these two levels encode a different Cooper pair parity, and they do not
overlap. As a consequence, the electric dipole moment associated with transi-
tions from E0 to E1 is zero. In the absence of coupling between E0 to E1 this
kind of qubit has a large relaxation time, but at the same time it cannot be
directly driven through a capacitively coupled port. Additionally, the qubit is
severely limited by magnetic fluctuations, which tilt the Josephson potential
and couple the two parity states [13, 91].

This so called parity protected qubit was originally proposed and realized
with SIS junctions arranged in a rhombus geometry to produce the π-periodic
Josephson potential [103]. Few years later, the implementation with only two
gate tunable nanowire based junctions followed [90]. Even if effort has been put
in recent years to reduce the effect of magnetic noise in this kind of device [13,
104], mostly by concatenating several SQUIDs in parallel or in series, the
realization of a parity protected qubit with coherence time comparable to
single junction transmon is still missing. A promising alternative is to use a
two-dimensional semiconducting platform to combine both gate tunability and
scalability.
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2.5. Josephson Parametric Amplifiers

This section is a consequence of a personal interest in one of the most impor-
tant device in any cryogenic setups operating with superconducting qubits: the
Josephson parametric amplifier (JPA). There are numerous comprehensive ar-
ticles and reviews in literature to which we refer the reader for a detailed expla-
nation of the operational principles and applications of this device [9, 10, 105].
Here we give a brief overview of the main concepts, and discuss how a JPA,
normally realized with SIS Josephson junctions, can benefit from using a gate
tunable weak link. While several implementations of a JPA with hybrid junc-
tions have already been shown [19, 106, 107], in the following we are going
to focus once again on how to harness the interference effects between non-
sinusoidal CPRs of two junctions in a SQUID.

To effectively measure the state of a qubit, amplification of extremely small
signals is crucial. This often requires employing multiple amplifiers in a series
while minimizing the additional noise introduced. The noise figure, or equiv-
alently the effective noise temperature, of an amplifier chain is determined by
the first amplifier in the chain. Hence, it is important to start the amplifica-
tion process as close as possible to the qubit, with a device operating at the
same temperature. In contrast to standard HEMT amplifiers, which dissipate
too much power, superconducting parametric amplifiers can be located on the
mixing chamber plate at 20 mK together with the qubit(s).

The key ingredients of a parametric amplifier are a resonant structure - i.e.
a LC oscillator -, and a parameter, entering the expression for the resonance
frequency, which can be modulated by an external input. The typical analogy
used to understand parametric amplifiers is to field of quantum optics. There,
a medium with a non-linear relative dielectric constant ϵeff, which depends on
the applied electric field E , causes frequency mixing between photons propa-
gating through it [108]. Depending on the properties of the medium, two main
processes are possible. When the dielectric constant is proportional to the am-
plitude of the electric field, a three-wave mixing process takes place, where a
photon from a pump field is converted to a signal and a idler photons with
frequencies following the relation ωP = ωS + ωI . Instead, when the dielectric
constant is proportional to the intensity of the electric field E2, a four-wave
mixing process takes place, where two pump photons are converted into a
signal and a idler photon satisfying ωP + ωP = ωS + ωI . In both cases, one
converts energy from the pump to the signal and idler modes and produce gain.

The relative dielectric constant of a medium determines the speed at which
electromagnetic waves propagate through it vph = c/

√
ϵeff where c is the speed

of light in vacuum. In superconducting circuits, the phase velocity in a LC
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circuit is given by vph ∝ 1/
√
LC, from which ϵeff ∝ LC. As we have seen in

the previous chapters, a parameter which can be easily modulated in LC cir-
cuits realized with Josephson junctions, is the Josephson inductance. Which
amplification process is allowed depends then on the topology of the circuit or
equivalently from its Hamiltonian.

Let us consider an LC circuit and let us replace the inductance with a generic
Josephson element with potential energy U(φ), where φ is the phase drop
over the element. The Hamiltonian of the circuit is given by Ĥ = 4ECN̂

2 −
U(φ̂). By Taylor expanding the potential close to its global minimum and by
expressing the charge number and the phase operator in terms of the bosonic
raising and lowering operators we obtain [14, 109]:

Ĥ = ℏωrâ
†â+

∑
m≥3

ℏgm(â+ â†)m, (3)

where ωr =
√

8EC a2
ℏ2 is the circuit resonance frequency, a2 is the second-order

Taylor coefficient and gm denotes the mth-order non-linearity of the Hamilto-
nian.

The third-order non-linearity g3, governs three-wave mixing processes, while
the fourth-order non-linearity g4 is responsible for four-wave mixing processes.
For applications, three-wave mixing amplification is typically preferred since
it is more energy efficient (one pump photon is converted to one signal pho-
ton) and because it easier to filter the pump tone out from the measurement
(typically ωP ≈ 2ωS).

However, amplifiers based on three-wave mixing need more design efforts.
In particular, to avoid limiting the maximum input signal power causing
the gain to drop, it is necessary to design a circuit with large g3 but small
g4 [84, 110, 111]. In Ref. [84] the authors address the problem with super-
conducting non-linear asymmetric inductive elements (SNAILs) based on SIS
junctions. In Ref. [14] instead the authors propose to use a SQUID based
on single channel hybrid junctions. Both works are based on SQUID devices,
but while Ref. [84] focuses on engineering the asymmetry between the SQUID
arms, Ref. [14] proposes a way to exploit the interference between higher order
harmonics of the junction CPRs. In Section 8.3 we show preliminary results on
a JPA realized using a SQUID made of multichannel hybrid junctions which
is in principle able to combine the benefits of both approaches.

And that’s it, with these concepts and premises at hand, we are ready to
go.
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In this chapter we discuss the materials of choice in this thesis. First, we
describe the proximitized InAs two-dimensional electron gas (2DEG) provided
by the groups of Michael Manfra and Giorgio Biasiol. Then, in Section 3.4,
we introduce granular aluminium, a high kinetic inductance superconductor
that we use to test the microwave compatibility of high-impedance resonators
on an InP substrate.

3.1. Proximitized 2DEGs

While superconductors offer intriguing properties on their own, their interac-
tion with semiconductors introduces a new dimension to the research land-
scape. A proximitized semiconductor, meaning a semiconductor that inherits
superconducting properties due to the close proximity to a superconductor, is
a combined system where the unique attributes of both material systems come
to play. The semiconductor retains its electrically tunable properties, while
the superconductor carries disspationless current.

In the quest for achieving the best proximitized two-dimensional electron gas
(2DEG), several research groups have proposed different recipes and combina-
tions of materials. The initial effort to realize hybrid two-dimensional devices
involved attempting to contact surface inversion or sub-surface 2DEGs with
superconductors evaporated ex situ, primarily using materials such as alu-
minium (Al) or niobium (Nb) [68, 69, 112–119]. Historically, surface inversion
2DEGs were predominantly used because of the larger and easily accessible
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contact area. However, being at the surface, the mobility of electrons is limited
by interface scattering and strongly depends on the details of the fabrication
process. On the other hand, sub-surface 2DEGs can have higher mobilities,
but obtaining transparent and homogeneous superconducting contact in a re-
producible way is more challenging. In both cases, the ex situ evaporation of
the superconductor created poor interface quality, which reduced the super-
conducting proximity effect.

A fundamental breakthrough on the path toward superconducting - semi-
conducting hybrids was the first successful realization of an epitaxial interface
between InAs nanowires and Al. This achievement was made possible by de-
positing the superconductor in situ, within the same Molecular Beam Epitaxy
(MBE) chamber in which the wires were grown, all while maintaining a vacuum
environment [120, 121]. Tunnel spectroscopy measurements revealed a hard
superconducting gap, in contrast to experiments where the superconductor
was evaporated ex situ, leading to inevitable interface impurities that soft-
ened the gap. Briefly after the success with nanowires, in Ref. [20] the authors
managed to epitaxially grow Al on a InAs 2DEG. In this case, the InAs quan-
tum well was grown in close proximity to the surface, but was protected by a
barrier of In0.81Ga0.19As with a thickness of approximately d ∼ 10 nm. This
arrangement allows the 2DEG to inherit the properties of the superconductor
while retaining the large effective g-factor of the semiconductor g∗ ∼ −15 [29]
and a significantly high mobility µ ∼ 10 000 cm2 V−1 s−1.

The choice of both InAs and Al comes as a compromise between material
properties and ease of fabrication. Among the most commonly used III-V
materials, InAs occupies an intermediate position between GaAs and InSb in
terms of spin-orbit coupling, electron mobility, and the development of fabri-
cation processes. A unique characteristic of InAs, within the III-V group, is
that the energy bands bend down at the surface, effectively pinning the Fermi
level in the conduction band. This feature allows the fabrication of Ohmic
contacts and improves the proximity effect. As a superconductor, Al possesses
several advantageous properties. It is chemically stable, forming a self-limiting
oxide layer that preserves the quality of the epitaxial interface. It has a critical
temperature of approximately Tc,Al ∼ 1.2 K [122], which is lower than other
commonly used superconductors such as Niobium for which Tc,Nb ∼ 9 K [123].
However, Tc,Al is still high enough the be suitable to use in dilution cryostats
with a base temperature of 20 mK. Additionally, it has a relatively small lat-
tice mismatch with several common semiconductors.

This material system has been grown in different versions [21, 124–126] and
is used by several research groups for applications in superconducting elec-
tronics and spintronics [15, 89, 127], superconducting qubits [17], parametric
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amplifiers [19], and to investigate topological phase transitions [128–130].

More recently, high mobility (µ ∼ 500 000 cm2 V−1 s−1) shallow two - di-
mensional hole gases (2DHG) in germanium [131] have attracted an increased
interest as a promising alternative to III-V materials. Germanium has a
large and gate tunable effective g-factor, can be isotopically purified reduc-
ing the detrimental effect of nuclear spins on the coherence of different types
of qubits [132], and can be integrated on silicon wafers. Ballistic supercur-
rent have been observed over a 1 µm long Josephson junction made of ex situ
evaporated Al [133, 134], but the realization of an epitaxial interface to the
superconductor is still missing.

In this thesis, we investigate proximitized InAs 2DEGs provided by the
groups of Michael Manfra at Purdue University and of Giorgio Biasiol at the Is-
tituto Officina dei Materiali (IOM) in Trieste. These two materials are similar
to each other, with the difference that the wafer stacks provided by the group
in Purdue start from an InP substrate, while those provided by IOM start
from a GaAs substrate. As a consequence, the composition of the buffer layers
used to match the lattice constants of InP and GaAs to that of InAs is differ-
ent, but the active region stays the same. The choice of InP originally came
from moderate compatibility with superconducting microwave resonators [17].
However, since both wafer stacks are piezoelectric, realizing resonators with
high quality factor is a challenging task.

3.2. InAs 2DEG on InP Substrate

The two-dimensional electron gases provided by the group of Michael Manfra
are grown by molecular beam epitaxy (MBE) on semi-insulating Fe-doped InP
(001) substrates. A graded buffer layer, with a thickness of ∼ 1 µm consisting
of different compositions of In1−xAlxAs (x varying from 0.52 to 0.84), is used
to match the lattice constant of InP (∼ 5.87 Å) to the one of InAs (∼ 6.06 Å).
The 2DEG is formed within an InAs layer with a thickness of 7 nm, which is
sandwiched between two In0.75Ga0.25As barriers. Because the bandgap of InAs
is smaller than that of In0.75Ga0.25As, this material stack forms a quantum
well potential for the electrons within the InAs layer. The bottom barrier has
a thickness of 4 nm, while the top barrier is 10 nm, to achieve good isolation
from the surface, and good coupling to the superconductor. An additional
barrier consisting of 2 monolayers of GaAs is added at the end of the semi-
conducting stack to protect the 2DEG during etching. Finally, 10 nm of Al
are grown in situ without breaking vacuum in the MBE chamber, ensuring a
transparent interface between the semiconductor and the semiconductor. Fig-
ure 3.1 shows a transmission electron microscope image of the wafer stack and
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Figure 3.1. a),b) Illustration and transmission electron image of the top
layers of the wafer stack. The substrate is ∼ 500 µm thick. Figure adapted
from [135]. c) Conduction band energies and electrons wavefunction probabil-
ity density ρ along the growth direction z. Figure adapted from [20].

the electrons wavefunction probability density ρ in the quantum well as ob-
tained from a Schrödinger-Poisson solver. A finite probability at the interface
with the superconductor and an epitaxial interface result in a robust proximity
effect.

3.2.1. Wafer Characterization

This section is primarily concerned with three key characteristics of the wafer:
the mobility of the 2DEG, the superconducting properties of the Al film, and
the supercurrent properties of hybrid Josephson junctions realized with the
proximitized 2DEG.

Hallbar - Electron Density and Mobility

Standard Hall bar measurements are used to extract the peak mobility as
a function of the electron density n of the 2DEG. The device is shown in
Fig. 3.2a). We achieve galvanic isolation of the Hall bar from the rest of the
chip by removing the aluminium layer, the 2DEG, and approximately 300 nm
of the buffer layer. Subsequently, we selectively remove the aluminium from a
stripe that is W = 20 µm wide and L = 150 µm long to expose the 2DEG. An
oxide layer, 15 nm thick, separates the 2DEG from a Ti/Au electrostatic gate
VTG that is evaporated on top in order to tune the electron density. An AC
current bias of I = 5 nA is passed through the device as we measure the lon-
gitudinal Vxx and transverse Vxy voltage drop over the Hall bar as a function
of perpendicular magnetic field B⊥ and VTG.
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Figure 3.2. a) False colour optical image of a typical Hall bar device for
mobility measurement. It shows the aluminium (Al) leads (blue) used for wire
bonding, and the gold (Au) topgate electrode VTG (yellow) used to tune the
electron density in the InAs. Below the gate, the Al has been removed and
the exposed InAs is isolated from the Au electrode with an Hafnium oxide
layer (not visible). We source a dc current I superimposed with a small ac
component, and we measure the longitudinal Vxx and transversal Vxy voltage
drop over the device. We also apply a perpendicular magnetic field B⊥. b)
Mobility µ as a function of carrier density ne at different gate voltage as
extracted from Hall bar measurement T ∼ 250mK. The inset shown the
electron mean free path le as a function of VTG.

The electron density n and mobility µ can be calculated as [28]:

ne = 1
e∂ρxy/∂B⊥

, (3.1)

µ = 1
eneρxx

, (3.2)

where ρxx = Vxx
I

W
L

and ρxy = Vxy
I

. Figure 3.2b) shows the evolution of ne
and µ as a function of VTG. As the electron density increases from negative to
positive gate voltages, the mobility peaks at around µmax ∼ 10 400 cm2 V−1 s−1

and then saturates to ∼ 3000 cm2 V−1 s−1. This behavior reflects that at
low electron density, the mobility of the 2DEG is limited by scattering off
background impurities, whereas at positive gate voltages, as electrons approach
the surface, the mobility is constrained by surface defects. The mean free path
le is calculated as [28]:

le = ℏµ
e

√
2πne. (3.3)

This device yielded a maximum mean free path of approximately le,max ∼
200 nm. However, because of inhomogeneities during the growth in regions
close to the edges, the mean free path can vary depending on the position
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Figure 3.3. a) False colour optical image of an aluminium (Al) bar device
used to extract the crtical temperature Tc and the normal state resistance Rn
of the superconducting film. We source a dc current I superimposed with a
small ac component, and we measure the voltage drop V over the device. We
can apply a magnetic field perpendicular B⊥ and parallel B∥ to the film plane.
b) Differential resistance dV/dI as a function of temperature T . The vertical
and horizontal dashed lines indicate the value of Tc and Rn. c) Differential
resistance as a function of perpendicular and (nominally) parallel magnetic
field.

on the wafer where the chip is cleaved from. Additionally, le depends on the
specific fabrication round, as the 2DEG is sensible to surface treatments.

Al Film - Lkin

The epitaxial aluminium films evaporated on this wafer stack are 10 nm in or-
der to sustain high in-plane magnetic field. As such, they have a considerable
fraction on kinetic inductance Lkin that one has to take into account for device
fabrication. To estimate its value, we measure the critical temperature Tc and
the normal state resistance Rn of an aluminium bar as shown in Fig. 3.3. We
extract a Rn of approximately 15 Ω and a Tc of approximately 1.25 K. Using
Eq. 2.17 at T = 20 mK, with ∆0 = 1.76kBTc, we extract a kinetic inductance
per square Lkin/□ ∼ 4.85 pH.

The critical magnetic field of aluminium films increases with decreasing
thickness, and the in-plane critical field B∥,c of 10 nm of Al is expected in
the range from 1 T to 2 T [122, 135]. In Fig. 3.3c) we plot the differential
resistance dV/dI of the Al bar as a function of perpendicular B⊥ and parallel
B∥ magnetic field. In order to measure the highest value of B∥,c it is important
to correct for any misalignment of the applied magnetic field. Without the aid
of a 3-axis vector to correct for small misalignments, here we could obtain an
increase of the critical field from B⊥,c ∼ 50 mT (out of sample plane) to
B∥,c ∼ 0.5 T (in-plane).
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Figure 3.4. a) False colour electron image of a hybrid Josephson junction.
The inset shows a 3D representation of the structure. The aluminium (Al)
leads (blue) are used for wire bonding, and the gold (Au) topgate electrode VTG
(yellow) changes the electron density in the weak link. Below the gate, the Al
has been removed and the exposed InAs is isolated from the Au electrode with
an Hafnium oxide layer (not visible). We source a dc current I superimposed
with a small ac component, and we measure the voltage drop V over the device.
b) Voltage drop as a function of I and VTG. The black dashed line shows the
junction critical current. c) Differential conductance dI/dV as a function of V
and VTG. Multiple Andreev reflection processes are visible as dips in dI/dV
at positions V = 2∆∗/n, where ∆∗ is the superconducting gap induced in the
InAs below the leads, and n is an integer.

Hybrid Josephson Junction - ∆∗ and τ∗

In this section, we characterize transport in hybrid Josephson junctions re-
alized in the proximitized 2DEG. The key features of these hybrid junctions
are the wide gate tunability of their critical current, and the high harmonic
content of their current-phase relation (CPR), which here we parametrize with
an effective transmission probability τ∗.

In Fig. 3.4a) we show an example of a Josephson junction obtained by se-
lectively removing a L = 200 nm long stripe from a W = 20 µm wide Al bar.
Considering as coherence length of the electrodes the one of Al thin films,
ξ ∼ 500 nm [41], with le ≈ L < ξ, this junction is in the short diffusive regime.
A global topgate VTG, isolated from the junction by 15 nm of HfO2, is used
to tune the carrier density of the InAs weak link and therefore the critical
current of the junction. Figure 3.4b) shows the voltage drop over the junction
V measured as a function of current bias I and VTG. The critical current
Ic, indicated by the black dashed line, can be tuned from approximately 8 µA
down to zero.

In Fig. 3.4c) we plot the differential conductance dI/dV of the junction
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Figure 3.5. a) False colour electron image of a superconducting quantum
interference device (SQUID) with aluminium (Al) leads (blue). Each Joseph-
son junction is equipped with a set of local electrostatic gates (in orange and
yellow): VG1 controls the critical current of the first junction JJ1, while VG2
and VFG control the second junction JJ2. We source a dc current I superim-
posed with a small ac component, and we measure the voltage drop V across
the device. The perpendicular magnetic field is indicated as B⊥. The arms
of VG1 are separated by 40 nm, and form a narrow constriction in the InAs
(green) as shown by the inset in b), corresponding to the region inside the
black dashed line in a) The scale bar is the inset is 200 nm. b) Differential
resistance dV/dI of JJ1 as a function of I and VG1, while JJ2 is pinched off.
At sufficiently negative gate voltage values the narrow constriction acts as a
superconducting quantum point contact. We observe critical current revivals
as indicated by the white arrows. c) dV/dI as a function of I and B⊥ in a
asymmetric SQUID configuration where Ic,2 ≈ 10 Ic,1 at VG1 = −1.475 V and
VG2 = 0 V. The current-phase relation of JJ1 is fitted with Eq. (3.6) to extract
an effective transmission probability τ∗ ∼ 0.88.

as a function of V and VTG. In high transmission probability junctions, one
expects dips in differential conductance at positions V = 2∆∗/n [136]. We
observe dips in the dI/dV curves at positions corresponding to n = 1, 2 and 3
multiple Andreev reflections (MAR), and we extract a value of the induced gap
of ∆∗ ∼ 180 µeV. Using the carrier density ne(VTG = 0 V) ∼ 112 × 1015 m−2

as extracted from Hall bar measurements on the same wafer, we calculate
a Fermi wavelength λF =

√
2π/ne ∼ 8 nm, that corresponds to approxi-

mately N = 2W/λF ∼ 5000 conduction channels in the junction [28]. In-
stead, the number of channels obtained by considering a short ballistic junc-
tion (τ∗ = 1) with critical current Ic = 8 µA, is an order of magnitude lower
N = 2ℏIc/e∆ ∼ 400 (see Section 2.3.1). This indicates that transport across
the junction is determined by many channels with a wide distribution of trans-
mission probabilities.
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To directly visualize the CPR of the junction, we move to a dc SQUID ge-
ometry. A typical device is shown in Fig. 3.5a). The carrier density in each
junction can be locally tuned with a set of independent topgates VG1 and VG2
for JJ1 and JJ2 respectively. To address the few channels regime, we realize
a SQPC with a split gate having ∼ 40 nm separation between the arms. One
of the junction is equipped with an additional finger gate VFG to fine tune the
carrier density in the remaining conducting channels. With standard lockin
techniques we measure the differential resistance dV/dI of the SQUID as a
function of gate voltages and perpendicular magnetic field B⊥.

In Fig. 3.5b) we plot dV/dI of JJ1 close to pinch off as a function of I and
VG1 when JJ2 is depleted (represented with an open circuit). We do not ob-
serve critical current plateaus as expected in ballistic SQPC [134, 137], but
we measure resonances in Ic (white arrows) that can be attributed to opening
and closing of highly transmissive channels [138–140].

To estimate the transmission probability of the junction we gate tune the
SQUID in an asymmetric configuration where the critical current Ic,2 of JJ2
is much larger than the critical current Ic,1 of JJ1 (Ic,2 ≈ 10 Ic,1). In this
configuration, the phase drop φ2 over JJ2 will remain approximately constant
around φc,2, and the oscillation of the critical current as a function of perpen-
dicular magnetic field will reproduce the CPR of JJ1. This can be understood
by inserting the fluxoid relation φ1 − φ2 = 2πΦext/Φ0 into the expression of
the total current flowing through the SQUID:

I = I1(φ1) + I2(φ2) ≈ I1(2πΦext/Φ0 + φ2) + I2(φ2), (3.4)

where Φext = B⊥A and A is the area enclosed by the superconducting loop.

Increasing the current bias, the SQUID will switch to the normal state at
a current value Ic ≈ I1(2πΦext/Φ0 + φc,2) + I2(φc,2). Figure 3.5c) shows the
measurement result for a device similar to the one in Fig. 3.5a). We plot
dV/dI of the SQUID as a function of I and B⊥. At each magnetic field value,
the critical current, indicated by the black dashed line, is extracted from the
maximum in differential resistance. The CPR of a short diffusive junction in
the zero temperature limits reads[141]:

I(φ) =
∑

j

(
τje∆
ℏ

)
sin(φ)√

1 − τj sin2(φ/2)
, (3.5)

where τj is the transmission probability per mode. In multichannel devices
with disorder, the distribution of transmission eigenvalues is given by Eq. 2.32.
We approximate this complex CPR with a single-channel CPR with an effective
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Figure 3.6. a) Illustration of the top layers of the wafer stack. The substrate
is ∼ 500 µm thick. b) Conduction band energies and electrons wavefunction
probability density ρ along the growth direction z. Figure adapted from [124].

transmission probability τ∗ written as:

I(φ) = N
e∆
2ℏ

τ∗ sin(φ)√
1 − τ∗ sin2(φ/2)

. (3.6)

We subtract the linear background coming from the Fraunhofer pattern of the
reference junction, and we fit the oscillations in Ic with Eq. (3.6) using N e∆

2ℏ
as a single fit parameter. We extract an effective transmission probability
τ∗

1 ∼ 0.88. As discussed in Section 2.3.2, this method of investigating the
junction harmonic content has several limitations [88]. However,it gives a
good estimate assuming that both junctions have similar τ∗.

3.3. InAs 2DEG on GaAs Substrate

The two-dimensional electron gases provided by the group of Giorgio Biasiol
are grown by MBE on semi-insulating GaAs (001) substrates. Also in this
case, a 1 µm thick graded buffer of In1−xAlxAs (x varying from 0.15 to 0.81) is
used to release the strain coming from the lattice mismatch between GaAs (∼
5.65 Å) and InAs (∼ 6.06 Å). A superlattice layer of AlGaAs/GaAs is inserted
between the GaAs and the graded buffer layer to block impurities from the
substrate and flatten the surface. An additional 300 nm thick In0.84Al0.16As
layer is grown on top of the buffer layer to further reduce strain. The 2DEG is
formed in a 7 nm thick InAs layer sandwiched between 10 nm of In0.81Ga0.19As
on top and at the surface and 9 nm of In0.81Ga0.19As together with 50 nm of
In0.81Al0.19As at the bottom. The In0.81Al0.19As barrier also contains a silicon
doping layer used to provide carriers to the 2DEG. Finally, without breaking
the MBE vacuum, 50 nm of Al are evaporated on top. Figure 3.6 shows a
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Figure 3.7. a) Design of a chip consisting of three superconducting coplanar
transmission line resonators inductively coupled to a common feedline. The
chip has been fabricated using as a superconductor the epitaxial aluminium
film of the wafers in Fig. 3.6. The expected resonance frequencies for a kinetic
inductance per square of Lkin/□ = 1 pH are indicated on top of the corre-
sponding resonator. The expected resonance frequencies for a negligibly small
kinetic inductance (Lkin/□ = 25 fH) are pointed at with black arrows. b) Mag-
nitude of the reflection coefficient |S21| as a function of frequency f measured
using a vector network analyser. The red solid line shows the result of a Son-
net simulation with Lkin/□ = 25 fH. c) and d) Circular fit on the resonance at
∼ 8 GHz and ∼ 8.25 GHz respectively. The internal quality factor Qi and the
coupling quality factor Qc for each resonance are given on top each fit.

schematic of the full wafer stack and the electron wavefunction probability
density ρ in the 2DEG obtained from a Schrödinger-Poisson solver. As for the
previous structure, ρ is not zero at the interface with the superconudctor.

3.3.1. Wafer Characterization

Details about the growth and the characterization of this second type of wafer
can be found in Ref. [124, 142–144]. Since we only received the first sample
from this wafer during the final stage of the thesis, we did not perform any
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dc characterization, but instead we directly proceeded to device design based
on the information we found in literature and those provided to us by our
collaborators in Trieste and Budapest.

Al Film - Lkin

One important parameter that was missing, in particular for the design of
resonators made of the epitaxial Al film, was the kinetic inductance of this
new film. Based on the value of kinetic inductance per square that we ex-
tracted for the 10 nm Al film, from Eq. 2.17 we were expecting Lkin/□ to be
around 1 pH/□. To verify this, we fabricated three λ/4 hangers transmission
line resonators inductively coupled to a common feedline. The design is shown
in Fig. 3.7: one resonator is far away from the others, while the other two
are coupled at the voltage antinode. Their resonance frequencies, estimated
using a finite-element simulation software (Sonnet) with Lkin/□1 pH, were ex-
pected at 6.82 GHz, 7.26 GHz, 8.23 GHz. For the simulation, we have used
ϵGaAs = 12.35 [145] as the dielectric constant of the GaAs substrate.

To define the central conductor we etch away the Al, together with the
2DEG and ∼ 400 nm of buffer layer. The etching techniques are detailed in
Chapter 4. The measurement (see Fig. 3.7) shows two resonances around
8 GHz and 8.25 GHz. In contrast with our expectations, we have to set in the
simulation a negligibly small kinetic inductance (Lkin/□ = 25 fH) to match the
data (red solid line in Fig. 3.7b)). Using Lkin/□ = 25 fH, the resonance that
we expected at 8.23 GHz gets instead pushed up to 9.7 GHz falling outside
of the measurement bandwidth. We use a circular fitting procedure [146] to
extract the coupling and the internal quality factors of the two resonators.
The simulated coupling quality factors Qc,simu. ∼ 1400 for the resonance at
8 GHz and Qc,simu. ∼ 1800 for the resonance at 8.25 GHz, differs by more than
a factor of three compared to the measured one: Qc ∼ 300 for the resonance at
8 GHz and Qc ∼ 500 respectively. This discrepancy is most probably caused
by an overetching of the ground plane stripe separating the resonators from
the feedline. We extract Qi ≈ 1300 for the resonance at 8 GHz and Qi ≈ 700
for the resonance at 8.25 GHz. The relatively low internal quality factor of the
resonators might be cause by a combination of dielectric losses in the substrate
and in the buffer layer.

3.4. Granular Aluminium

In this section, we summarize the key properties of a high kinetic inductance
material called granular aluminium, explaining the reasons why it is attracting
increasing interest in the superconducting circuit community and why we in
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particular wanted to use it.

The experiment we intended to perform was motivated by recent develop-
ments in coupling a superconducting resonator to the spin of a trapped quasi-
particle in a hybrid Josephson Junction. In Ref. [78], the authors inductively
couple a resonator to the an InAs nanowire junction and show a dispersive
shift dependent on the spin orientation of the occupied Andreev bound state
(ABS). While this technique enables the authors to read out the quasiparticle
spin, they cannot directly drive the spin in their setup.

In our case, we wanted to exploit the fact that spin orbit interactions in
a InAs 2DEG give rise to an effective electric dipole moment of the quasi-
particle spin transition [37], which can couple to the electric field fluctuations
at the voltage antinode of a resonator. As the electric field fluctuations are
proportional to the square root of the resonator impedance, what we needed
was a high kinetic inductance superconductor compatible with our fabrication
process.

Superconductivity in so called granular aluminium (grAl) films, which in
general denotes disordered Al films, was first discovered exactly 70 years ago
by W. Buckel and R. Hilsch in Göttingen [147]. In this original publication
the authors evaporated Al on a quartz substrate at 4 K, and they measured
a critical temperature Tc ∼ 2.59 K for a 20 nm thick film, well above the lit-
erature value of 1.2 K [122]. Interestingly, when they cycled the chip to room
temperature and cooled it down again, the Tc enhancement vanished. They
attributed the rise in Tc to the emergence of crystallographic defects in the
film induced by the low deposition temperature, and the disappearance of this
effect during the second cooldown to the film’s recrystallization at room tem-
perature.

After more than 10 years from that discovery, Abeles and Cohen [148, 149]
stabilized the enhancement of Tc by evaporating Al at room temperature in
a partial oxygen pressure pO2 . Presumably, due the precipitation of oxygen
in the form of Al oxide at the boundaries between Al grains, these granular
films did not recrystallize after thermal cycling. In 1973, G. Deuthscher [150],
used electron diffraction to investigate the crystallinity of the Al grains, and
measured the normal state film resistivity ρn and Tc as a function of grain
size. He observed an increase ρ as a function of oxygen pressure and a dome
shape behaviour of Tc(ρn). The grain size on the other hand, decreased with
increasing pO2 eventually saturating at around 3 nm.

More recently, after ∼ 40 years since the last publication, grAl has gained
renewed interest thanks to the work in the groups of the same G. Deuthscher
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at Tel-Aviv University and of I. Pop at the Karlsruhe Institute of Technology
(KIT). The group in Israel has been focused on understanding the supercon-
ducting properties of grAl [151–154], whereas the group in KIT has used this
material system for kinetic inductance detectors [155, 156], to investigate the
effect of quasiparticles on superconducting resonators [157–159], for supercon-
ducting qubits [102, 160, 161] and more.

Granular aluminium offers several advantages compared to other platforms
such as Josephson junctions arrays or other disordered superconductors (mostly
nitrides), commonly used to realize high impedance resonators. The fabri-
cation of Josephson junction arrays relies on the inductance of hundreds of
junctions patterned in a compact geometry to reduce stray capacitance [82,
162, 163]. In this platform, it is difficult to achieve at the same time a high
impedance, while minimizing the addition of unwanted non-linearities to the
quantum circuit [162, 164]. Disordered superconductors such as NbTi, TiN,
or NiTiN thin films, allow to reduce the effects of these non-linearities [165].
However, the maximum achievable kinetic indutance is limited in the range of
a few hundreds pH/□ when the film is thinner than 10 nm [166–169]. Gran-
ular aluminium films instead, have a normal state resistivity which can be
varied, depending on the partial oxygen pressure during evaporation, from
ρn = 1 µΩ cm to 1 × 104 µΩ cm. The ratio between the zero temperature su-
perconducting gap ∆0 and the critical temperature of the film increases up to
∆0/kbTc ∼ 2.2 [150, 155] compared to the BCS value of 1.76. By inserting
these values in Eq. 2.17, assuming a film thickness of t = 20 nm, one finds that
it is possible to obtain a kinetic inductance per square up to Lkin/□ ∼ 2.5 nH.

In previous projects within the group, NbTiN films were sputtered over the
entire chip, and the patterning achieved through inductive coupled plasma
(ICP) etching. In our case, the detrimental effects of highly energetic ions
on the substrate posed a significant concern due to the presence of the near-
surface 2DEG. The large kinetic inductance of grAl, and its compatibility with
standard lift-off processes, made it our material of choice. We present the fab-
rication process in Section 4.2.2, and discuss the quality of grAl resonators on
a InP substrate in Ch. 5.
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Vecteezy.com

This chapter contains an overview of the fabrication processes we have used
to realize hybrid epitaxial Al/InAs devices on both InP and GaAs substrates,
as well as high kinetic inductance resonators on InP substrates. We show
the fabrication of devices made entirely from the epi-Al/InAs system. In this
case, all components, including the microwave circuit and the junction are al-
ready electrically connected. This removes the need for additional and often
critical contacting steps. However, the kinetic inductance of the epitaxial alu-
minium film is sometimes not enough for specific applications which require
high impedance resonators. Here we show the fabrication of high kinetic in-
ductance superconducting resonators made of NbTiN and granular aluminium
thin films on InP substrates. The aim is to extract an upper bound to the
quality factor achievable with high impedance resonators on II-V materials.

4.1. Epi-Al/InAs Devices

This section outlines the fabrication process of both dc and rf devices entirely
(except for the electrostatic gates) realized using the epitaxial aluminium. A
more detailed description is given in the Appendix E.1 and fantastically ex-
plained in Ref. [170]. These kind of structures are particularly flexible since
they mostly rely on top-down fabrication steps. However, the overall quality
of the final device can be constrained by several factors. Resonators may ex-
perience limitations due to losses stemming from the substrate and dielectric
materials in the buffer layer, as well as inductive losses within the thin epi-
taxial aluminium layer. Additionally, the performance of the junction can be
adversely affected by quasiparticle poisoning in the absence of effective quasi-
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Figure 4.1. a) Starting point of device fabrication: a quarter of 2-inch wafer.
In the next panels, the aluminium (Al) is gray in the optical images while it is
shown in gray or in blue in the schematics depending on whether it represents
an electrostatic gate or epitaxial film. The buffer layer will be in different
shades of dark grey or in black in both the images and the schematics. The
InAs is shown in green in the schematics and pointed at with arrows when
visible in the optical images. b) In the first step, we define the leads or the
central conductor for the case of a transmission line resonator as shown in the
optical image. We etch away the Al, the InAs and part of the buffer to define
the shape of the electrical circuit. The inset schematically shows the result of
this first step. c) We define the Josephson junction by selectively removing
the Al from narrow stripes along the leads. d) Afterwards, we selectively
grow an hafnium oxide (HfO2) layer at the position indicated by the arrows
to galvanically isolate the electrostatic gates which are evaporated on top. e)
Finally, we directly bond on the epitaxial Al.

particle abatement mechanisms.

We typically start from a quarter of a 2-inch wafer as shown in Fig. 4.1a).
To cleave the wafer into chips of the desired dimensions, typically 10 × 5 cm,
we spin coat a protective layer of ∼ 200 nm of PMMA 950K (AR-P 672.045).
Every time before spinning a resist to be used as a mask, we clean the chip
with 5 min dip in 1-3 Dioxolane followed by a 30 s rinse in acetone and IPA.
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The mask for etching the mesa and to define the device template consists of
two layers of PMMA 950 with a total thickness of ∼ 400 nm. Two layers are
used instead of just one in order to have a more stable mask during the wet
etch. Windows in the mask are patterned using standard e-beam lithography
(EBL) followed by a development in a 1:3 mixture of methylisobutylketone
(MIBK) and IPA for 1 min. We remove PMMA residues with 1 min in a low
power (30 W) oxygen plasma and post-bake the resist at 120 ◦C for 2 min to
improve its adhesion to the substrate and remove the undercut (the post-bake
step is repeated after every wet etch). First, we use a Transene D-type solution
at a temperature of 50 ◦C to etch away the epitaxial aluminium, with the etch-
ing time determined by the thickness of the film. We always check the outcome
of this step with an optical microscope, since if the etching is not complete, Al
residues will act as a disordered mask for the mesa etch solution, practically
wasting the chip. The mesa etch solution consists of a mixture 220:55:3:3 of
H2O:C6H8O7:H3PO4:H2O2 mixed in this order, and works equally well for
both the wafer stacks used in this thesis. We wait 5 min after having added
H2O2 and before dipping the chip to have a stable etching rate of ∼ 30 nm/min
of the buffer on the InP substrates and of ∼ 50 nm/min of the buffer on GaAs
substrates. In order to remove partially conductive layers in the buffer, we
etch deep trenches of minimum 300 nm and 450 nm respectively. The result of
this step is shown in Fig. 4.1b).

Afterwards, the Josephson junctions are defined following the same e-beam
procedure, and the Al film is selectively removed using Transene D. The min-
imum junction length we have managed to achieve with a uniform etch profile
along the junction was around 150 nm for a width of 3 µm (see Fig. 4.1c)).

Around 25 nm to 35 nm of Hafnium oxide (HfO2) are grown via atomic
layer deposition (ALD), either across the entire wafer or in localized regions
to isolate the subsequent electrostatic gate layer. To mitigate any ears that
may arise during the liftoff of the ALD-grown dielectric, we use a three-layers
PMMA stack and an acceleration voltage of 10 kV, which increases the under-
cut of the exposed profile. An important parameter is the growth temperature.
Figure 4.2 shows a comparison between the mobilities as a function of carriers
density of two Hall bars where the oxide was grown at 200 ◦C and 90 ◦C. The
mobility decreases by a factor of 2 when the oxide is grown at high temper-
ature. We speculate that this is due to inter-diffusion of atoms between the
layers in the buffer, that changes the strain profile and therefore the 2DEG
mobility. We grow the oxide at 90 ◦C, and wait 3 min per precursor pulse for
the reaction to be complete, with a recipe we have learned from Asbjørn C.
C. Drachmann from the Niels Bohr Institute in Copenhagen.

Finally, we use an e-beam evaporator to deposit the electrostatic gates (see
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Figure 4.2. a) Mobility µ as a function of carrier density ne at different gate
voltage as extracted from Hall bar measurement at T = 250mK. The inset
shows the electron mean free path le as a function of VTG. The hafnium oxide
layer in this case was grown at 90 ◦C. b) Same as in a) for a chip from the
same wafer, where the hafnium oxide was grown at 200 ◦C.

Fig. 4.1d)). This is done in either one or two steps depending on the gate
geometry. When the design includes split gates or fine structures, we first pat-
tern those using a thin resist stack and a low e-beam aperture, and then we
pattern the bonding pads, with a thicker resist and evaporating a lot of metal
at different tilt angles to be sure to climb the mesa walls. Typically we evapo-
rate Ti/Au (5/20 nm) for the fine structures and Ti/Au or Ti/Al (10/300 nm)
for the pads.

We bond the final device with a semi-automatic bonder from Bondtec©

equipped with a 5630i bonding head and a 30 µm thick Al wire. This specific
head is particularly well-suited for bonding on very brittle III-V substrates. It
employs a double-sided clamp to hold the wire in place, and the wire is cut
after the second bond with a rapid movement of the clamp itself. In contrast
to deep-access bonding heads or similar equipment, where the wire is cut by
moving the stage, this method enables a faster, more precise and more reliable
bonding process. The result is shown in Fig. 4.1e).

4.2. High Kinetic Inductance Resonators

In this section, we outline the fabrication of NbTiN and granular aluminium
thin films on double polished InP (001) substrates as a first step to couple
high impedance superconducting resonators to proximitized InAs Josephson
junctions. While the fabrication of NbTiN resonators had already been well
established within our group at the beginning of this work (as detailed in
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Ref. [86]), the procedure for granular aluminium was learned from the group
of Ioan Pop at the Karlsruhe Institute of Technology and subsequently brought
in-house.

4.2.1. NbTiN Sputtering
For our purposes, designing and characterizing NbTiN resonators served as
a reproducibility test before transitioning to the more challenging fabrication
of grAl-based resonators. In previous projects within the group, NbTiN films
were deposited onto relatively large 4-inch wafers, and the patterning achieved
through inductive coupled plasma (ICP) etching. In our case, the detrimental
effects of highly energetic ions on the substrate posed a significant concern
due to the presence of the near-surface 2DEG. As a consequence, we chose to
lift-off the sputtered films, and limit the formation of metallic residues on the
mask edges by employing a multilayer resist stack and a minimalistic design.

To pattern the resonators we have used both e-beam and optical lithography.
The main disadvantage of optical lithography is that most resist developers
contain a percentage of tetramethylammonium hydroxide (TMAH) that etches
Al. As a consequence, patterning hybrid devices that contain Al films carries
significant risks, as any inaccuracies in the writing or development process can
lead to the loss of an entire chip. Nevertheless, optical exposure is much faster
and allows fast characterization of different designs (when the exposure works).

The InP substrate is cleaned with 5 min sonication in 1-3 Dioxolane followed
by an acetone and IPA rinse, and blow dry. To increase the undercut of the
e-beam exposure, we spin coat a more sensitive bottom layer resist consisting
of 2 layers of EL6 (MMA(8.5)MAA from MicroResist) and one layer of less
sensitive PMMA 950K. We then pattern the design using 30 kV of accelera-
tion voltage, and develop the resist for 60 s in MIBK:IPA (1:3). For optical
lithography, we spin coat LOR3A as a bottom layer, and S1805 as top layer.
and expose the design using a laser writer with 6 mW of power. We develop
the resist for 50 s in MF319 followed by a 60 s rinse in DI water.

Sputtering of NbTiN is obtained in a AJA© ATC Orion 8 sputtering ma-
chine from a NbTi target in a N2 atmosphere. We deposit 20 nm at a rate
of approximately 0.2 nm s−1, corresponding to a sheet kinetic inductance of
∼ 10 pH. We strip the resist with 30 min in Dioxolane at room temperature
followed by 30 min in acetone at 50 ◦C and a 30 s rinse in IPA before blow dry.
At the end, the ground plane is defined by a 150 nm thick gold layer sputtered
on the backside of the chip, while we protect the frontside with a layer of
PMMA.
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Figure 4.3. a) False colour optical image of a NbTiN resonator (light yellow)
on a InP substrate (dark blue). The ground plane is defined by a gold (Au)
layer (yellow) evaporated on the back of the chip. b) Resistance R as a function
of temperature T of a NbTiN bar used to extract the crtical temperature Tc
and the normal state resistance Rn of the superconducting film. c) Circular
fit on the resonance at f0 ∼ 6.48 GHz. We extract a coupling quality factor
Qc ∼ 8800.

A typical device is shown in Fig. 4.3a). It consists of a λ/2 stripline res-
onator capacitively coupled to a launching pad. The resonator is measured
at T ≈ 1.6 K using a variable temperature insert (see Appendix SETUP for
details). Figure. 4.3c) shows the complex reflection coefficient S11 and the
result of a circle fit used to extract the resonance frequency f0 ∼ 6.485 GHz
and the coupling quality factor Qc ∼ 8800. The internal quality factor Qi was
in this case ∼ 7200.

We estimate the resonance frequency and the coupling strength with Sonnet
simulations, using ϵInAs = 12.55 as relative dielectric constant of the InP sub-
strate [171]. To extract the kinetic inductance per square of 20 nm of NbTiN
we measure the resistance of a film as a function of temperature. This is
shown in Fig. 4.3b). Using Eq. 2.17, together with the expression for the zero
temperature NbTiN superconducting gap ∆0 = 1.86kBTc [172], we extract a
kinetic inductance per square Lkin/□ ∼ 7.55 pH. From the simulations, setting
this value of Lkin/□ we obtain a resonance frequency f0,simu. ∼ 6.768 GHz, in
good agreement with the measured one. On the other hand, the simulated
coupling quality factor Qc,simu. ∼ 4500 differs by a factor of 2 compared to the
measured one. This discrepancy can be caused by standing waves patterns in
the rf lines due to spurious impedance mismatches.

The impedance and the resonance frequency of the resonator can also be
estimated by calculating the geometrical inductance Lgeo and the capacitance
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C of a straight microstrip with length l, having a width w, and separated by a
distance h, given by the thickness of the substrate, from the ground plane. The
expression for Lgeo and C in case of a straight microstrip are given by [173]:

Lgeo = 60l
ν0

log
(8h
w

+ w

4h

)
(4.1)

C = ϵeff l

60ν0 log
( 8h

w
+ w

4h

) (4.2)

ϵeff = ϵr + 1
2 + ϵr − 1

2

[(
1 + 12h

w

)− 1
2

+ 0.04
(

1 − w

h

)2
]

(4.3)

were ν0 is the speed of light in vacuum, ϵr is the relative dielectric constant
of the substrate, and ϵeff is the effective permittivity of the microstrip. The
impedance and the resonance frequency of a λ/2 microstrip are given by:

f0 = vph

2l = 1
2l

√
LlCl

(4.4)

Zr =
√
Ll

Cl
(4.5)

where Ll = Lgeo,l +Lkin,l and Cl are the total inductance and capacitance per
unit length of the line. Inserting our design parameters in the above equation,
we obtain f0 ∼ 5.839 GHz and Zr ∼ 180 Ω. The lower value of resonance fre-
quency obtained from this calculation compared to the measured or simulated
one can be explained by the fact that bending the microstrip (as in Fig. 4.3a))
effectively reduces its electrical length [173] and thus increases its resonance
frequency.

Being overall satisfied with the compact design and with the agreement to
the simulations, and we moved to the fabrication of granular aluminium.

4.2.2. Granular Aluminium Evaporation
I acquired knowledge about the fabrication procedure of grAl from the group
of Ioan M. Pop at the Karlsruhe Institute of Technology (KIT), and in partic-
ular from Mahya Khorramshani, to whom I express sincere gratitude for her
patience and availability. Throughout this period, we successfully fabricated
and measured grAl resonators on InP substrates using the KIT facilities. Pat-
terning is done entirely using a reverse optical lithography routine, and grAl
is evaporated using a Plassys MEB 550S© e-beam evaporator. Details about
the fabrication can be found elsewhere [51, 98]. The measurements we have
performed at KIT on these resonators are outlined in Chapter 5. In the fol-
lowing, we outline the implementation and testing processes for evaporation
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Figure 4.4. a) Balzers-Pfeiffer© PLS 500 Labor-System e-beam evaporator
used for the evaporation of granular aluminium (grAl). b) Inside of the cham-
ber and c) zoom-in on the oxygen O2 inlet. The positions of the copper boat
for the aluminium (Al) crucible and of the pump are indicated by the arrows.
d) Colors of the evaporated film for different oxygen partial pressure pO2 and
consequently different room temperature sheet resistance R□. All film have
the same nominal thickness of ∼ 20nm. In the bottom left panel we observe a
clear gradient in film colour, indicate by the arrow, which corresponds to the
direction along which O2 reaches the sample. e) R□ as a function of the ratio
between pO2 and the Al evaporation rate r for different films. The depen-
dence of R□ on pO2/r can be fitted with an exponential in case of evaporation
rounds close to each other in time, but is random for evaporation separated by
a long time distance. In this last case, the same pO2/r ratio results in different
values of R□ as indicated by the vertical dashed lines. f) R□ as a function
of temperature T and parallel magnetic field B∥ for film #2 and #3. From
Eq. 2.17 we extract a sheet kinetic inductance of Lkin,□ ∼ 2 nH (film #2) and
Lkin,□ ∼ 0.3 nH (film #3). g) R□ as a function of parallel magnetic field B∥
for film #2 and #3. Both films shows an in plane critical field B∥,c > 2.5 T.

of grAl in Basel, established together with Alessia Pally.
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Fabrication in Basel

The spin coating, exposure and lift off procedures are the same as outlined
in Section 4.2.1. The evaporation step instead deserves some more attention.
Pictures of the machine we have used for grAl evaporation in Basel from the
outside and the inside of the chamber are shown in Fig. 4.4a)-c). The system is
a Balzers-Pfeiffer© PLS 500 Labor-System e-beam evaporation machine, with
a crucible to host the evaporated metal positioned around 60 cm below the
substrate holder. The Al target sits in a reinfiltrated graphite crucible which
is inserted into a water cooled copper holder. We equipped the system with
an additional copper rod close to the sample that we use to inject oxygen
into the chamber. The base pressure before starting the evaporation is around
2 × 10−7 mbar. We evaporate 25 nm of titanium with the substrate shutter
closed to condition the chamber and improve the pressure. Next, we heat up
the Al target until we reach a rate of 1.4 Å s−1. We introduce oxygen into the
chamber using a voltage controlled valve that allows to tune the oxygen partial
pressure by ±0.1 × 10−6 mbar. When the desired parameter set is reached, we
evaporate 20 nm of grAl.

Figure 4.4 shows the results of four different evaporations obtained by slightly
varying the partial oxygen pressure pO2 and the evaporation rate r. The colour
of the film changes from silvery to dark blue to almost transparent as the film
sheet resistance R□ increases. We measure R□ on test stripes 10 µm wide
and 1 mm long patterned with e-beam lithography. We were able to tune R□

over a wide range, but unfortunately we did not always have consistent re-
sults. Table 4.1 summarizes the film R□ obtained with varying parameters
in different moments in time. Some entries are also plotted in Fig. 4.4e) as a
function of the ratio pO2/r. The evolution of R□ with pO2/r can be fitted with
an exponential when points correspond to subsequent evaporations. However,
we notice that the same combination of parameters repeated after some time
results in a wide variation of film resistance. The behaviour can be attributed
to several factors, including:

1. Drift in pressure sensor readings over time.

2. Contamination from the crucible: the elevated temperatures reached by
the crucible during evaporation can lead to contamination of the target
material. The interaction between the material and the crucible can
cause impurities to transfer, affecting the purity of the deposited film.

3. Breaking of crucible: the beam current has to be increased slowly to
prevent thermal shock to the crucible. However, despite this precau-
tion, the crucible still breaks sometimes. In such cases, it is necessary
to replace the broken crucible with a new one and fill it with fresh ma-
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Table 4.1. Example Table

# Date pO2 (mbar) r (Å s−1) R□ (Ω) Comments
1 08.12.21 1.20e-5 1.2 90.1e3
2 15.12.21 1.00e-5 1.4 2.76e3
3 16.12.21 0.92e-5 1.4 450
4 18.12.21 0.97e-5 1.4 1.41e3
5 11.02.22 0.98e-5 1.4 5 New pressure sensor
6 12.02.22 1.20e-5 1.4 1.06e3
7 23.02.22 1.20e-5 1.4 5.01e3
8 05.04.22 1.20e-5 1.4 14
9 06.04.22 1.40e-5 1.4 29.2e3
10 06.04.22 1.30e-5 1.4 15.3e3 Crucible breaks
11 07.04.22 1.20e-5 1.4 61.3e3
12 12.04.22 1.20e-5 1.4 1.99e3
13 13.04.22 1.10e-5 1.4 3.80e3
14 14.04.22 1.10e-5 1.4 701

terial. Unfortunately, this replacement causes a reset of the deposition
parameters.

4. Oxidation of the target: when the target material interacts with atmo-
spheric oxygen, it forms oxide layers that alter its properties and affect
subsequent depositions.

To compensate for the effect of these variations, several evaporations are nec-
essary to calibrate the set of parameters needed to achieve a given sheet kinetic
inductance. To have more control on this type of evaporation we plan to re-
place the voltage regulated valve with an oxygen flow controller, to evaporate
Al without crucible, and install an in-situ resistance measurement device.

In Fig.4.4f) and Fig.4.4g) we show the dependence of R□ as a function of
temperature T and parallel magnetic field for film #2 and #3. In this range
of resistivity, the ratio ∆0/kbTc for grAl varies in between 2 and 2.2 [150, 155].
From Eq. 2.17, assuming ∆0/kBTc = 2.2, we extract a kinetic inductance per
square Lkin/□ of ∼ 2 nH and ∼ 0.3 nH respectively. This is more than 2 orders
of magnitude larger than what obtained with 20 nm of NbTiN. Both films had
an in-plane critical magnetic field larger than 2.5 T. The value of critical field
that we obtain is smaller than previously reported values [174], probably due
to an imperfect alignment.

The design of the grAl-based resonator we have fabricated in Basel is similar
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to the one we have used for NbTiN resonators. The measurements results can
be found in Chapter 5.
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5 Granular Aluminium Resonators on InP

In this chapter, we investigate the limiting factors of the internal quality factor
Qi of high-impedance resonators on a piezoelectric substrate, i.e. InP (001).
Reference [175] addresses the same problem for low-impedance aluminium res-
onators fabricated on a GaAs (001) substrate. The study highlights that en-
ergy losses arising from the conversion of the electric field in the resonators into
bulk and surface acoustic waves, effectively limit the Qi of these resonators to
∼ 104. Our goal is to investigate whether the the large electric field fluctua-
tions in high-impedance resonators pose an additional limitation on their Qi
when employed on such substrates.

In the following, we discuss measurements of granular aluminium (grAl)
resonators evaporated on Fe-doped InP (001) substrates. To gain insights on
the factors limiting their Qi we analyse the power and temperature dependence
of two distinct batches of resonators fabricated at KIT and at Uni Basel.

5.1. grAl at KIT

The design of grAl resonators fabricated and measured at KIT, is the same as
in Ref. [157]. We show the measurements of two InP chips each hosting a set
of three 20 nm thick resonators with lateral dimensions A = (420 × 5) µm2,
B = (1000 × 40) µm2 and C = (600 × 10) µm2, as shown in Fig. 5.1a). We
measure the normal state sheet resistance R□ of the films using test pads
evaporated simultaneously with the resonators: the rightmost chip has R□ =
0.9 kΩ and the leftmost chip has R□ = 2.8 kΩ. Both chips sit at one end of
a copper waveguide used to provide a low loss microwave environment [176,
177]. The coupling to each resonator is determined by the transversal electric
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Figure 5.1. a) Simplified measurement schematic: the input signal is pro-
vided by a vector network analyser (VNA), and reaches a circulator after 60 dB
of nominal attenuation distributed along the line, a bandpass filter at 12 GHz
and an infrared filter (IR). The signal is subsequently directed into a copper
waveguide, whose endpoint houses two InP chips. Each chip contains three
resonators of varying dimensions labelled A, B, and C. The transverse electric
field profile is represented by the white dashed line. The reflected signal is
then directed to the amplification line. It passes through an isolator before
being amplified by a combination of a HEMT and a room temperature am-
plifier. b) Setup at the mixing chamber. The waveguide has no permalloy or
superconducting shielding.

field profile inside the waveguide. We perform standard microwave reflection
measurements in a Qinu dilution cryostat with a base temperature of 20 mK.
Figure 5.1b) shows the setup at the mixing chamber plate consisting of the
waveguide, the wiring, and a circulator used to redirect incoming and outgoing
signals. The waveguide is thermally anchored to a copper holder attached to
the mixing chamber. It is equipped with a magnetic coil, although this will
not be used in the following, and it has not no permalloy or superconducting
shielding against stray magnetic fields.

From a circular fit of the complex reflection coefficient S11, we extract the
resonance frequency f0, the coupling quality factor Qc and Qi of all resonances
at an average circulating photon number n̄ ∼ 1 − 10. The value of n̄ is
calculated near the resonance frequency as [178]:

n̄ = 4Pin
Q2

l
hf2

0Qc
, (5.1)

where Pin is the power reaching the device, accounting for ∼ −60 dB of nomi-
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Figure 5.2. Overview of fit parameters for the five resonances detected,
each associated with a specific colour. a) resonance frequency f0, b) coupling
quality factor Qc, c) Kerr coefficient K and d) internal quality factor Qi. f0,
Qc and Qi are extracted from a circle fit with n̄ ∼ 1 − 10 average circulating
photons in the resonators. K is extracted for 4 resonance from a fit to the
power dependence of their resonance frequencies (see text).

nal attenuation and ∼ −13 dB of cables losses, and Ql = (1/Qi+1/Qc)−1 is the
loaded or total quality factor. To characterize the resonators non-linearities,
we extract the self-Kerr coefficient K, defined as the resonance frequency shift
per photon, from a linear fit to f0 = −Kn̄. We measure a total of 5 resonances
out of 6. The results are summarized in Fig. 5.2, where the resonances have
been assigned different colours. In the following, we try to attribute each res-
onance to a resonator, or at least to one of the two InP chips.

Figure 5.3 shows the power dependence of the resonances around 7.666 GHz
(orange) and 6.754 GHz (red). In both cases the dip in |S11| correspond-
ing to the resonance frequency, shifts on a faster timescale compared to the
measurement time (0.5 s/trace). Interestingly, the resonance at 6.754 GHz
appears to fluctuate between four discreet values. The parameters plotted
in Fig. 5.2 associated to the red resonance are extracted from a fit of the
uppermost dip at P = −43 dBm. We attribute this instability to non-
equilibrium quasiparticles, likely generated by external radiation, stray elec-
tromagnetic fields, or environmental noise. The impact of quasiparticles on
high-kinetic inductance resonators has been extensively investigated in prior
studies [43, 156, 157, 163, 179]. Our device lacks adequate protection against
these effects. It does not have a permalloy or a superconducting shield, and
it is placed close to both a magnetic coil with unfiltered dc lines and to a
circulator, which also contains magnetic elements. When a source of quasipar-
ticles reaches the resonator it breaks Cooper pairs and causes a change in its
kinetic inductance, consequently shifting its resonance frequency. The effect
and the dynamics of quasiparticles on grAl resonators evaporated on InP will
be further discussed in Section 5.2.3.

5
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Figure 5.3. Magnitude of the reflection coefficient |S11| as a function of
VNA output power P for a) the orange resonator at around f0 ∼ 7.666 GHz
and for b) the red resonator at around f0 ∼ 6.754 GHz. Each trace in a) takes
50 ms and each trace in b) takes 100 ms. Both resonances shift in time, but
interestingly, the one in b) seems to oscillates between four discreet values.

From these considerations, we tend to attribute the red and orange reso-
nances to two resonators on the chip with the larger kinetic inductance, and
therefore larger fluctuations in resonance frequency. The missing resonance
could be assigned to the smallest resonator on this chip, which is either too
weakly coupled to the input port or too susceptible to quasiparticle fluctua-
tions.

On the other hand, we attribute the green, purple and blue resonances to
the resonators on the right chip with the lower kinetic inductance. These
resonances have a self-Kerr of approximately 25 Hz, 120 Hz and 140 Hz re-
spectively. Being K inversely proportional resonator volume [180], we tend to
attribute these resonances to resonator B, C, and A. The relatively low value
of K is a key property of grAl compared to other systems used to realize su-
perinductors such as Josephson junction arrays (K ∼ MHz [162, 164]) or other
disordered superconductors (K ∼ kHz [165]). That is because to effectively
function as an inductor in a quantum circuit, it is desirable to minimize the
introduction of unwanted non-linearities.

The Qi of all resonances (extracted at low photon number) is in the range
of 104, comparable to what has been measured in low impedance resonators
on GaAs substrates [175]. This suggests that the high impedance of these
resonators is not a limiting factor for their use in superconducting circuits on
InP.
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Figure 5.4. a) Magnitude of the reflection coefficient |S11| as a function of
VNA output power P for the blue resonator at around f0 ∼ 7.838 GHz. b)
Internal quality factor Qi as a function of average circulating photon number n̄
in the blue resonator, and in the green and purple resonators, with resonances
frequencies around 7.584 GHz and 7.057 GHz respectively. The maximum
power at which we perform the fit is determined by the birfurcation of the
resonance. The power range we use to extract Qi(n̄) for the blue resonator is
indicated by the black line in a). The dashed lines are fits to Eq. (5.2).

5.1.1. Qi Power Dependence

To gain more insights about the origin of losses in these resonators, we inves-
tigate the power dependence of the Qi of the the green, the purple, and the
blue resonances at around 7.584 GHz, 7.057 GHz and 7.838 GHz respectively.

Figure 5.4a) shows an example of the power dependence of the blue reso-
nance. The time per trace was in this case 0.25 s, and the resonance position
appears stable compared to the red and orange resonances. The black solid
line highlights the power range we use to extract Qi as a function of the aver-
age number of circulating photons in the resonator n̄.

The dependence of Qi on n̄ can be caused either by saturation of two-level-
systems (TLSs) in the substrate [181, 182], or by the activation of quasiparti-
cles (QP) trapped in subgap states [183, 184]. In the following, we will discuss
these processes in more detail.

Changes in both f0 and Qi due to the presence of an ensemble of TLSs
are governed by variations in the real part and imaginary part respectively
of the effective dielectric function ϵeff(f). These variations are driven by the
response of the ensemble within the microwave field of the resonator [182].
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Table 5.1. Table summarizing the results of the fit to Eq. (5.2) of the power
dependence of the resonators internal quality factor Qi on the average number
of circulating photons n̄.

f0 (GHz) Q0,TLS (104) β nc QA (104)
7.584 (green) 2.5 ± 1.0 0.09 ± 0.05 2.9 ± 1.7 6.6 ± 6.8
7.057 (purple) 4.7 ± 2.9 0.35 ± 0.29 4.3 ± 1.1 2.6 ± 0.3
7.838 (blue) 2.14 ± 0.06 0.49 ± 0.04 4.6 ± 0.8 3.02 ± 0.08

Resonant TLSs behaves like absorbers at the resonance frequency effectively
subtracting photons from the resonator. At sufficiently high n̄ (larger than
a critical photon number nc) and temperature (kbT ≫ hf0), TLSs become
saturated and are unable to absorb additional photons. The resonator Qi

depends on n̄ and T according to [181, 182]:

1
Qi,TLS

= 1
Q0,TLS

tanh( hf0
kbT

)
(1 + n̄/nc)β

+ 1
QA

, (5.2)

where Q0,TLS is the quality factor due to the TLS at low temperature and low
photon number, and QA represents the quality factor due to all losses other
than TLSs.

In Fig 5.4b) we plot the extracted Qi as a function of n̄ for all three reso-
nances. For the purple resonance, we were not able to measure the saturation
of Qi at low n̄ without adding further attenuation on the input line. To each
curve we superimpose a fit to Eq. (5.2) using f0 and T = 20 mK as fixed pa-
rameters. The results are summarized in Table 5.1. The contribution of TLSs
to losses depends on the participation ratio of the electric field contained in
the resonator and the one in the substrate. We measure less than a factor
of 2 difference between the single photon Qi of resonators that differ 7 to 20
times in volume. We also observe only a moderate increase, again of less than
a factor of two, between the Qi at n̄ = 1 and n̄ = 103. These results points
in the direction that other loss mechanisms contribute to the observed power
dependence and to limit Qi.

Another possible source for the power dependence of Qi is QP activation.
While thermal QP are practically zero at temperatures < 40 mK, it has been
shown [185–187] that non-thermal QP can persist even at very low temper-
ature and provide additional losses to the system. In fact, in all disordered
superconductors, spatial variations of the order parameter produce a subgap
tail in the quasiparticle density of state where QP can be trapped for a long
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Table 5.2. Table summarizing the results of the fit to Eq. (5.3) of the power
dependence of the resonators internal quality factor Qi on the average number
of circulating photons n̄.

f0 (GHz) QB (104) b (10−5) γ

7.584 (green) 1.86 ± 0.01 1.85 ± 0.04 0.02 ± 0.004
7.057 (purple) 1.70 ± 0.09 1.9 ± 0.3 0.08 ± 0.05
7.838 (blue) 1.23 ± 0.01 4.91 ± 0.07 0.15 ± 0.01

time before recombining [188]. In Ref. [157], the authors derive a phenomeno-
logical model to account for photon assisted quasiparticles (QP) excitation
and recombination. The change in Qi as a function of n̄ due resistive losses
introduced by quasiparticles can be written as:

1
Qi,QP

= b

(
1

1 + γn̄

1+ 1
2 (√

1+4γn̄−1)
− 1

)
+ 1
QB

, (5.3)

where γ and b are constants that account for quasiparticle-photon coupling,
quasiparticle generation and quasiparticle recombination rates. The results
of the fit of Eq. (5.3) to the data in Fig. 5.4b) are summarized in Table 5.2.
For all resonances we extract values of γ lower than what has been reported
in Ref. [157]. Being γ proportional to QP-photon coupling, this suggests a
reduced QP-photon coupling in our system.

Further studies are needed to elucidate the origin of the power dependence
and of the limit on Qi. One has to compare measurements of resonators
made of different materials and with a different participation ratios. Here, the
observed power dependence could be due to both TLS and QP.

5.2. grAl at Uni Basel

In this section, we discuss the measurements on resonators fabricated during
evaporation #14 in Table 4.1. The normal state sheet resistance of this film
is R□ = 0.7 kΩ. The device, fabricated with standard e-beam lithography as
described in Section 4.2.1, is shown in Fig. 5.5a). The bonding pad is con-
nected to a standard reflectometry setup and measurements are performed in
a dilution cryostat with a base temperature of 50 mK equipped with a 3-axis
vector magnet (see Appendix. A for details). The magnitude of the reflection
coefficient |S11| as a function of the VNA frequency is shown in Fig. 5.5b).
We measure resonances corresponding to the fundamental mode, and to the
2nd, 3rd and 4th harmonic modes of the resonator at 3.5509 GHz, 5.1825 GHz,
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Figure 5.5. a) False colour optical image of a granular aluminium resonator
(light yellow) on a InP substrate (dark blue). The ground plane is defined by
a gold (Au) layer (yellow) evaporated on the back of the chip. b) Magnitude
of the reflection coefficient |S11| as a function of VNA frequency f . We mea-
sure resonances corresponding to the fundamental mode and up to the fourth
harmonic mode.

6.8945 GHz and 7.9219 GHz respectively. From Sonnet simulations, by match-
ing the simulated resonance frequency of fundamental mode to the measured
one, we extract a kinetic inductance per square Lkin/□ ∼ 285 pH. However,
the frequencies of the higher harmonic modes extracted from the simulation
with this value of kinetic inductance do not match the measured ones. We
attribute the mismatch to inhomogeneities in the resonator, caused, for ex-
ample, by a gradient in the film resistivity along the resonator length. From
a circle fit to the fundamental resonator mode, we extract a coupling factor
Qc ∼ 105 an order of magnitude larger than the one obtained from simulations
Qc,simu ∼ 104. We are not sure what this discrepancy can be attributed to.
One contributing factor could be the formation of standing waves along the
reflectometry setup, and along the launching pad itself.

Using the equations for the capacitance and inductance of a straight mi-
crostrip as presented in Section 4.2.1, we estimate a resonator impedance of
Zr ∼ 750 Ω. Compared to the NbTiN resonator in Section 4.2.1, this res-
onator is more compact and it has ∼ 5 times higher impedance for the same
film thickness t = 20 nm. This means that grAl allows to fabricate high
impedance resonators which occupy little space on the chip, using simple lift
off procedures and with less constrains on the film thickness.
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Figure 5.6. a) Magnitude of the reflection coefficient |S11| as a function of
VNA output power P for the resonator fundamental mode. From the shift in
resonance frequency (white circles) with power we extract a Kerr coefficient
K ∼ 0.2 Hz. b) Internal quality factor Qi as a function of average circulating
photon number n̄. The power range we use to extract Qi(n̄) is indicated by
the black line in a). The orange and the red dashed lines are fit to Eq. (5.2)
and Eq. (5.3) respectively.

5.2.1. Power Dependence

Similarly to the discussion on the grAl resonators fabricated at KIT, in this
section we discuss the dependence of f0 and Qi on the input power.

Figure 5.6a) shows the power dependence of the resonance frequency of the
fundamental mode. The black solid line indicates the power range before bifur-
cation where we fit the resonance to extract f0, (n̄) and Qi. From a linear fit to
f0(n̄) we extract a self-kerr K ∼ 0.2 Hz. The dependence of Qi on (n̄) is plotted
in Fig. 5.6b). We fit this data to Eq.(5.2) and extract Q0,TLS = (14 ± 3) × 104,
QA = (16 ± 3) × 104, nc = 730 ± 200 and β = 0.19 ± 0.07. Since the curve does
not reach saturation at high photon numbers, there is a relatively large uncer-
tainty in the fit parameters. The single photon Qi is approximately 8 × 104,
and increases less than a factor of 2 with input power up to ∼ 12 × 104

In Fig. 5.6b) we also plot the fit of the data to Eq. (5.3). At large input
power the fit deviates from the data because we go outside the range of va-
lidity of the model Eq. (5.3) is based on. From the fit, we extract values of
QB = (7.50 ± 0.03) × 104 and b = (5.0 ± 0.1) × 10−6, which are comparable to
what has been observed for grAl resonators on sapphire substrates [157]. The
value of γ we extract, of (2.7±0.3)×10−4, is instead three orders of magnitude
lower than what has been reported in Ref. [157], supporting the hypothesis of
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a reduced QP-photon coupling in our system.

Since we lack the comparison with data from resonators with different par-
ticipation ratio, it is difficult to pinpoint the main origin of the Qi power de-
pendence. If our device was limited by excess quasiparticles in the substrate,
QB would correspond to a fractional quasiparticles density of [51, 157, 174]:

xQP = NQP

NCP +NQP
≈ 1
QB

≈ 10 × 10−6 (5.4)

comparable to previously reported values [157, 185, 187]. Here, NCP and
NQP are the total number of Cooper pairs and quasiparticles respectively. We
will further discuss the effect of excess QP and their dynamics in Section 5.2.3.

5.2.2. Temperature Dependence
In this section we complement the previous discussion with the analysis of the
temperature dependence of f0 and Qi.

The resonance frequency depends on the temperature T of the substrate
because of two main contributions: a reduction in the density of Cooper pairs,
resulting in changes to the kinetic inductance of the film as temperature in-
creases, and changes in the ϵeff(f) due to off-resonance TLSs [182]. In the
following, we analyse these processes in more detail.

The shift in resonance frequency due to changes in kinetic inductance can
be written as [157, 189, 190]:

δf0,CP(T ) = f0(T ) − f0 = f0
α

2

√
πkTc

T
exp
(−kTc

T

)
(5.5)

where α is the kinetic inductance fraction Lkin/(Lkin + Lgeo) and Tc is the
film critical temperature. We include possible variations of the ratio k =
∆0/(kBTc), where ∆0 is the zero temperature superconducting gap, from the
standard BCS value of 1.76.

Figure 5.7a) shows a fit of δf0(T ) for the fundamental mode to Eq. (5.5) us-
ing kTc as a single fit parameter. We extract α ∼ 0.83±0.3 and kTc ∼ 3.6±0.1.
We compare the value of α extracted from the fit to the value obtained by cal-
culating Lgeo from Eq. (4.1). We use Lkin/□ = 285 pH as obtained by matching
the measured resonance to the simulated one. Inserting the design parameters
we extract α ∼ 0.96. This suggests that the geometrical inductance is in prac-
tice higher than what has been calculated from Eq. (4.1), probably because of
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Figure 5.7. a) Shift in resonance frequency δf0 as a function of temperature
T . the orange line is a fit to Eq. (5.5). The black dashed line is the expected
δf0 due to an increase in temperature according to Eq. (5.6) using Q0,TLS as
extracted from the fit in Fig. 5.6. b) Temperature dependence of the resonator
internal quality factor Qi overlapped with the contributions from two levels
systems Qi,TLS(T ) (purple), quasiparticles Qi,QP(T ) (red), and residual loss
mechanisms QA (black). The sum of all different contributions Qi,tot(T )−1 =
1/Qi,TLS(T ) + 1/Qi,QP(T ) + 1/QA is plotted in orange.

the meandered structure of the resonator.

By measuring |S11| as a function of temperature away from the resonance
frequency, we estimate the Tc ∼ 1.9 K for this film. This corresponds to
k ∼ 1.9, using the product kTc obtained from the fit, in line with the experi-
mental value for grAl [102, 150].

The second contribution to δf0(T ) comes from off-resonant TLSs, and can
be written as [182]:

δf0,TLS(T ) = f0

πQ0,TLS

[
ℜ
{

Ψ
(1

2 + hf0

2πikBT

)}
− log

(
hf0

2πkBT

)]
, (5.6)

where Ψ is the complex digamma function. According to the equation above,
off-resonance TLSs cause a initial negative shift of the resonance frequency as
function of temperature, followed by a positive shift. In the data in Fig 5.7a)
we indeed observe an initial increase in f0 before of the effects of the increasing
kinetic inductance. We then calculate δf0,TLS(T ) using Q0,TLS as extracted
from the fit of Eq. 5.2 to the data in Fig. 5.6b). This is shown by the black
dashed line in Fig 5.7a). The effect of off-resonance TLSs is negligible, and
does not explain the initial increase in f0 we see in the data. Instead, we tend
to attribute this behaviour due to residual vortices being trapped within the
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Figure 5.8. a) Magnitude of the reflection coefficient |S11| as a function
of VNA frequency f and parallel magnetic field B. b) |S11| as a function of
f and temperature T , measured after a), and after B has been swept back
to zero. The resonance frequency at base temperature is lower compared to
its value before the field sweep as indicated by the white arrow. The upward
shift in resonance frequency as the temperature is increased is attributed to
the removal of vortices from the film.

resonators. These vortices are removed as the temperature increases, prior to
the effects due to a decrease in the Cooper pair density.

This explanation is supported by the behaviour observed in a measurement
of the resonance frequency of the second harmonic mode f2nd

0 as a function
of temperature, performed after a magnetic field sweep. In Fig. 5.8 we plot
the dependence of f2nd

0 as a function of magnetic field B. The field is ap-
plied using only the z-axis of a 3-axis vector magnet, which is roughly parallel
to the sample plane. However, we do not compensate for the sample tilt,
and as a consequence, the applied field also has a perpendicular component.
Similarly to temperature, also a magnetic field can break Cooper pairs thus
causing a decrease in the resonance frequency. In addition, the finite out-of-
plane component causes vortices to be trapped in the film. As a consequence,
when the field is swept back to zero, we measure a dip in S11 at a lower fre-
quency, ∼ 5.12 GHz, compared to the value before the magnetic sweep, at
∼ 5.1825 GHz. Next, in Fig. 5.8b), we plot the temperature dependence of
the same resonance, measured right after the magnetic field sweep. Here, f2nd

0
increases by more than ∼ 10 MHz before decreasing due to kinetic inductance
effects. This supports the hypothesis of trapped vortices as the reason for the
observed initial increase in f0 observe in Fig 5.7a).

To conclude, in Fig.5.7b) we plot the Qi of the fundamental resonator mode
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Figure 5.9. a) In blue, magnitude of the reflection coefficient |S11| as a
function of VNA frequency f of the fundamental resonator mode. A quasi-
particle burst event causes a shift (that here we assume to be rigid) of the
resonator response to lower frequencies (red curve). Monitoring the S11 at
fixed frequency fread. we can resolve the shift in time. b) S11 = I + iQ in
the IQ plane. A frequency sweep (blue) is overlapped with a time trace (red)
measured at fread.. A quasiparticle burst is identified by a sudden jump in
the resonator response followed by a decay back to the equilibrium value (red
arrow).

as a function of temperature, superimposed with the contributions coming
from TLSs (Qi,TLS), quasiparticles (Qi,QP), and residual loss channels (QA).
We extract Qi,TLS(T ) and QA using the parameters obtained from the fit of
Eq. (5.2) to the data in Fig. 5.6b). As temperature increases, Qi decreases
due to the larger resistive loss coming from the increase in the equilibrium
quasiparticles density nQP. We model the dependence of Qi on nQP as [43,
175]:

1
Qi,QP

= α

π

√
2∆0

hf0

√
2πkBT∆0 exp

(
− ∆0

kBT

)
∆0

(5.7)

We plot Qi,QP(T ) using the parameters extracted from the fit of Eq. (5.8) to
the data in Fig. 5.7a), with ∆0 = kTckB. The orange dashed line shows the
total Qi,tot(T )−1 = 1/Qi,TLS(T ) + 1/Qi,QP(T ) + 1/QA, which well reproduces
the data.

5.2.3. Excess Quasiparticles Dynamics
As mentioned in Section 5.1.1 and Section 5.2.1, a potential limitation to the
Qi of these resonators might stem from non-equilibrium excess quasiparticles
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Figure 5.10. a) Continuous monitoring of the Q component of the resonator
response at fixed frequency. We record multiple traces, covering a total time
of about 35 min. Approximately every 40 s, sudden jumps of the resonator
response are observed, followed by a slow relaxation over ∼ 1 s. b) Plot of the
time trace indicated by the arrow in a), where changes in I and Q have been
converted to resonance frequency shift δ0. c) Multiple events are averaged (see
Ref. [157]) and further converted to fluctuations in the fractional quasiparticle
density δxQP. We do not observe a dependence of the relaxation time on the
average number of circulating photons n̄.

within the substrate. As documented in prior studies [156, 191], high-energy
particles, causing phonon bursts on the substrate, could potentially serve as a
source for these QPs.

To explore this effect, we measure the time-dependent complex reflection
coefficient S11 = I + iQ at a constant readout frequency fread. As depicted
in Fig. 5.9, the impact of a high energy particle causes a burst of QPs that
leads to a red shift of the resonant curve. By monitoring S11(t) at fread, a QP
burst event is identified by a jump in the IQ plane followed by a relaxation
back to the steady state value. We focus on the fundamental mode, and we set
the measurement bandwidth to 1 kHz, in order to be able to resolve the burst
event in time, while still having a good signal to noise ratio. Figure 5.10a)
shows a map of multiple time traces consecutively recorded over a total time
of ∼ 30 min. Quasiparticles burst events, indicated by a peak in the imaginary
part of recorded signal, occur approximately every ∼ 40 s.
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5.3. Conclusion

First, we fit the resonance curve measured in the same conditions as the time
trace. From this fit parameters, we can then reconstruct the time evolution of
f0 from S11(t, fread) (see Ref. [51]). A typical trace of the shift in resonance
frequency as a function of time δf0(t) = f0(t) − f0 is plotted in Fig. 5.10b).

Since f0 is proportional to (Lkin)−1/2 and Lkin ∝ 1/nCP, where nCP is the
Cooper pair density of the superconductor, one can relate the fluctuations of
the resonance frequency δf0 to the fluctuations in the fractional quasiparticle
density δxQP:

δf0

f0
= −α

2
δLkin

Lkin
= α

2
δNCP

NCP
≈ −α

4
δNQP

NCP +NCP
= −α

4 δxQP, (5.8)

where NCP and NQP are the total number of Cooper pairs and quasiparticles
respectively, and xQP = NQP/(NCP +NQP) is the fractional quasiparticle den-
sity. We have used the fact that δNQP = 2δNCP and NQP ≪ NCP.

In Fig. 5.10c) we plot the decay over time of δxQP at different n̄. Each curve
is obtained by averaging over several QPs bursts event. We select the expo-
nential part of the decay, chosen between 0.1 s and 0.4 s where the curve is ap-
proximately linear in logarithmic scale. From an fit to the curve in this range,
we extract an average relaxation time τ̄ of approximately 0.3 s. In contrast
to what previously reported for grAl resonators on sapphire substrates [157],
we do not observe any dependence of the QPs relaxation dynamic on n̄. This
could be caused by a low QP-photon coupling, as suggested by the low value
of γ obtained in our devices. However, another reason might be the poor mag-
netic shielding of our setup. As previously reported [50, 187], the presence of
vortices in the superconducting film due to stray magnetic field can act as QP
traps and accelerate QPs relaxation. In our setup, the contribution of vor-
tices to QPs relaxation might prevent us from discerning the effect of larger
or smaller n̄. Indeed, the average relaxation time we extract is a factor of 2
smaller than what reported in Ref. [157].

5.3. Conclusion

Granular aluminium resonators fabricated either at KIT or at Uni Basel showed
the highest internal quality factor we have ever achieved on InP. We have anal-
ysed in detail their power and temperature dependence to shed light on the
factors limiting their Qi, which are attributed to the substrate and the poor
magnetic shielding of the device. We record excess quasiparticles dynamics
in the resonators fabricated and measured at Uni Basel, which appear to be
dominated by vortices assisted relaxation and do not show dependence on the
number of circulating photons. We measure values of Qi comparable to what
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has been measured on sapphire substrates (Qi ∼ 105) and one order of magni-
tude larger than the value obtained in Ref. [175] (Qi ∼ 104) for low impedance
resonators on a a GaAs substrate, suggesting that InP is more compatible with
the fabrication of high quality superconducting microwave resonators.

These results points in favour of using grAl for hybrid quantum circuits.
High impedance resonators with large vacuum electric field fluctuations could
be used to enhance coupling to the spin of electrons in quantum dot [192] or to
the spin of quasiparticles occupying Andreev bound states in hybrid Josephson
junction [37, 79].
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The Josephson diode (JD) is a nonreciprocal circuit element that supports a larger critical current in one
direction compared to the other. This effect has gained growing interest because of promising applications
in superconducting electronic circuits with low power consumption. Some implementations of a JD rely on
breaking the inversion symmetry in the material used to realize Josephson junctions (JJs), but recent theoretical
proposals have suggested that the effect can also be engineered by combining two JJs hosting highly transmitting
Andreev bound states in a Superconducting Quantum Interference Device (SQUID) at a small, but finite flux
bias. We have realized a SQUID with two JJs fabricated in a proximitized InAs two-dimensional electron gas
(2DEG). We demonstrate gate control of the diode efficiency from zero up to around 30% at specific flux bias
values which comes close to the maximum of ∼40% predicated in Souto et al. [Phys. Rev. Lett. 129, 267702
(2022)]. The key ingredients to the JD effect in the SQUID arrangement is the presence of highly transmitting
channels in the JJs, a flux bias, and an asymmetry between the two SQUID arms.

DOI: 10.1103/PhysRevResearch.5.033131

I. INTRODUCTION

A widely used device in semiconductor electronics is the
p − n junction, which is a nonreciprocal element with re-
gards to current flow, able to conduct current primarily in
one direction. The presently ongoing rapid scaling of quantum
computers will require low-dissipative control electronics that
operate close to the quantum chip at low temperatures. These
requirements have renewed the question whether there exists a
superconducting equivalent of the diode, namely, a device that
supports a larger supercurrent in one direction than in another:
the Josephson diode (JD) [1,2].

In a conventional Josephson junction (JJ) [3], the current-
phase relation (CPR) is sinusoidal I = Ic sin(ϕ), with Ic being
the critical current of the junction and with the ground state
corresponding to zero phase bias ϕ0 = 0. For this conven-
tional case, the positive critical current I+

c = maxϕ[I (ϕ)] is
obviously equal to the negative one I−

c = |minϕ[I (ϕ)]|. Since
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the critical supercurrent is reciprocal, there is no supercon-
ducting diode effect (SDE).

A general CPR can have a more complex dependence on
the phase [4]. But, in general, I (ϕ) is a 2π -periodic function,
and if either time-reversal symmetry or inversion symmetry
is preserved, it is an odd function, I (−ϕ) = −I (ϕ) [1]. It can
therefore be written as a Fourier series composed of sin(kϕ)
terms where k is a positive integer and the terms for k > 1 are
higher harmonics. If higher harmonics are present, the CPR is
called nonsinusoidal [5,6]. Such a CPR still does not display
a SDE.

A necessary but not sufficient condition for the SDE to
occur is that time-reversal symmetry is broken. This can be
achieved either by an external magnetic-field of or by means
of ferromagnetic elements built into the device. S-F-S junc-
tions, where F (S) denotes a ferromagnet (superconductor),
were proposed [7,8] and experimentally studied in various
configurations [9–11]. These junctions typically display a π

shift in the CPR and are thus know as π junctions. The
energy ground state moves from ϕ0 = 0 to ϕ0 = π . Despite
the presence of a magnetic field and time-reversal symmetry
thus being broken, these junctions do not display a SDE.

Both inversion symmetry and time-reversal symmetry
are broken in so-called anomalous JJs, also known as ϕ0

junctions, where the ground state of the junction has an
“anomalous” shift to ϕ0 with 0 < ϕ0 < π [12]. This situ-
ation is achieved in multiband conductors with spin-orbit

2643-1564/2023/5(3)/033131(12) 033131-1 Published by the American Physical Society

In this chapter, published [89] in Phys. Rev. Research 5, 033131 (2023) we
discuss a gate and flux tunable Josephson diode, fabricated in a proximitized
InAs two-dimensional electron gas.

The Josephson diode (JD) is a non-reciprocal circuit element that supports
a larger critical current in one direction compared to the other. This effect has
gained a growing interest because of promising applications in superconducting
electronic circuits with low power consumption. Some implementations of a JD
rely on breaking the inversion symmetry in the material used to realize Joseph-
son junctions (JJs), but recent theoretical proposals have suggested that the
effect can also be engineered by combining two JJs hosting highly transmit-
ting Andreev bound states in a Superconducting Quantum Interference Device
(SQUID) at a small, but finite flux bias. We have realized a SQUID with two
JJs fabricated in a proximitized InAs two-dimensional electron gas (2DEG).
We demonstrate gate control of the diode efficiency from zero up to around
30% at specific flux bias values which comes close to the maximum of ∼ 40%
predicated in Ref. [12]. The key ingredients to the JD effect in the SQUID
arrangement is the presence of highly transmitting channels in the JJs, a flux
bias and an asymmetry between the two SQUID arms.
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6.1. Introduction
A widely used device in semiconductor electronics is the p−n junction, which
is a nonreciprocal element with regards to current flow, able to conduct current
primarily in one direction. The presently ongoing rapid scaling of quantum
computers will require low-dissipative control electronics that operate close
to the quantum chip at low temperatures. These requirements have renewed
the question whether there exists a superconducting equivalent of the diode,
namely a device that supports a larger supercurrent in one direction than in
another: the Josephson Diode (JD) [193, 194].

In a conventional Josephson Junction (JJ) [55], the current-phase relation
(CPR) is sinusoidal I = Ic sin(φ), with Ic being the critical current of the
junction and with the ground state corresponding to zero phase bias φ0 = 0.
For this conventional case, the positive critical current, I+

c = maxφ[I(φ)] is
obviously equal to the negative one I−

c = |minφ[I(φ)]|. Since the critical
supercurrent is reciprocal, there is no superconducting diode-effect (SDE).

A general CPR can have a more complex dependence on the phase [195]. But
in general, I(φ) is a 2π-periodic function and if either time-reversal symmetry
or inversion symmetry is preserved, it is an odd function: I(−φ) = −I(φ) [193].
It can therefore be written as a Fourier series composed of sin(kφ) terms where
k is a positive integer and the terms for k > 1 are higher harmonics. If higher
harmonics are present, the CPR is called non-sinusoidal [141, 196]. Such a
CPR still does not display a SDE.

A necessary but not sufficient condition for the SDE to occur is that time-
reversal symmetry is broken. This can be achieved either by an external
magnetic-field of or by means of ferromagnetic elements built into the device.
S-F-S junctions, where F (S) denotes a ferromagnet (superconductor) were
proposed [197, 198], and experimentally studied in various configurations [199–
201]. These junctions typically display a π shift in the CPR and are thus know
as π-junctions. The energy ground state moves from φ0 = 0 to φ0 = π. Despite
the presence of a magnetic field and time-reversal symmetry thus being broken,
these junctions do not display a SDE.

Both inversion symmetry and time-reversal symmetry are broken in so-
called anomalous JJs, also known as φ0 junctions, where the ground state
of the junction has an ‘anomalous’ shift to φ0 with 0 < φ0 < π [202]. This
situation is achieved in multiband conductors with spin-orbit interaction [203–
209]. Evidence for φ0 junctions has been found in experiments with nanowires
with strong spin-orbit interaction [210] and in planar Josephson junction ar-
rays [127]. An anomalous JJ is also a necessary condition, but on its own not
sufficient. Indeed, a CPR of the form I(φ) = Icsin(φ − φ0) with 0 < φ0 < π
is an anomalous JJ, but still with I+

c = I−
c .

The SDE has been observed in materials that display magneto-chiral anisotropy.
Here, the normal-state resistivity itself depends on the sign of the current
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density and the sign of the magnetic field [208, 211, 212]. While this is a
small effect in normal metals, it can become large at the transition to a super-
conducting state [213? , 214]. Recently, a large SDE was also observed in a 2D
NbSe2 superconductor with applied out-of-plane magnetic field [215] and even
in field-free situations [193, 216, 217] including twisted graphene [218–220].

Further studies have also considered, among others, polarized supercurrents,
magnetic domain walls, vortex pinning, combination of s-wave and p-wave
pairing, as well as finite-momentum pairing as the origin of a SDE [221–224].
A SDE was even reported in a scanning-probe microscopy study where a single
magnetic impurity was addressed on the surface of a superconductor [225].

Lastly, topological materials with helical edge states can carry supercurrents
with a strong SDE [226–229]. This is evidenced in the highly asymmetric
Fraunhofer pattern with the property that Ic(B) ̸= Ic(−B), where B is the
magnetic field. This arises because of lack of inversion symmetry between the
supercurrent flowing along the two edges of the crystal [226]. This situation
is very much alike an asymmetric SQUID.

Already in the 1970s, when superconducting interference devices were stud-
ied in great detail using tunnel junctions, point contact structures and Dayem
bridges, it was recognized that the critical current of a SQUID can become
non-reciprocal [230–233]. The origin was understood to emerge from an asym-
metry in the two SQUID arms, but the arms needed to have a non-negligible
loop inductance, too. Although the CPR of each single junction was sinusoidal,
the CPR became non-reciprocal for the SQUID device due to asymmetric loop
inductances.

Today, tunable superconductor-semiconductor hybrid devices have become
a flourishing research topic [100, 234–237]. In particular, in JJ made of semi-
conducting weak links, the magnitude of the supercurrent is tunable by local
gate electrodes and, in some devices, the shape of the CPR can be tuned
from sinusoidal to highly non-sinusoidal. Consequently, these devices provide
a platform for the engineering of the SDE with unprecedented tunability. This
has recently been investigated theoretically in Ref. [12, 238]. It has been shown
that one can achieve a large SDE by combining two non-sinusoidal JJs in a
dc-SQUID at finite flux bias even with negligible loop inductances. In this
case, the non-reciprocal transport I+

c ĺ ̸= I−
c originates from the interference

between higher-order harmonics in CPR of the JJs.
In the current work, we use gate-controlled JJs fabricated in an InAs 2DEG

proximitized by an Al layer [76, 239]. These rather wide junctions contain
many channels with a distribution of transmission eigenvalues. The non-
sinusoidal character is due to highly transmissive channels that are present
in these devices [64, 72, 240–243]. By tuning the asymmetry between the
SQUID arms with the respective gate-voltages we show that we can achieve
a SDE up to 30%. This comes close to the maximum theoretically predicted
value [12].
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In Section 6.2 we present the device geometry, the experimental set up and
the basic characterization of the individual JJs. The non-reciprocal character
of the dc-SQUID with JJs having a non-sinusoidal CPR is then shown in
Section 6.3. We also define an analytical framework with which we are able to
distinguish possible origins of the JD effect. Finally, we discuss the measured
gate tunability of the diode efficiency in Section 6.4 and end with the conclusion
in Section 6.5.

6.2. Device and Basic Properties

The circuit diagram of the device is shown in Fig. 6.1(a) and a coloured
electron-microscopy picture is presented in Fig. 6.1(b). The circuit consists
of a dc SQUID formed by two planar JJs realized in a shallow InAs 2DEG
proximitized by Al layer. The 2DEG is obtained from a quantum well grown
on an InP substrate embedded in In0.75Ga0.25As layers of which the top layer
is 10 nm thick. The stack is terminated with an in-situ grown 10 nm thin Al
layer inducing superconductivity in the 2DEG. The SQUID loop and the leads
are defined by etching the Al and, additionally, 300 nm deep into the semicon-
ductor stack. The top and bottom Josephson junctions (JJ1 and JJ2) in the
two branches of the loop are formed by selectively removing the Al in the form
of stripes with length L = 150 nm and width W1 = 3 µm and W2 = 2.5 µm.
A set of gates, G1, G2 and FG, are used to tune the critical current of the
junctions by applying appropriate gate voltages VG1, VG2 and VFG. They are
made of two Ti/Au layers, isolated from the Al and from each other by hafnium
dioxide (HfO2) layers. VG1 extends over the whole width of JJ1, while VG2 is
shaped to gradually deplete JJ2 laterally, creating a Superconducting Quan-
tum Point Contact (SQPC). An additional gate, VFG, can be use to fine tune
the charge carrier density in the SQPC. However, throughout the experiment
the QPC functionality is not used and VFG is kept at 0 V.

Our setup sources a current using a 1 MΩ resistor in series to a dc voltage
superposed by a small ac component with frequency f = 17.7 Hz, supplied by a
lock-in amplifier. The ac component has an amplitude of 5 nA. The SQUID is
additionally shunted at the source to ground with a resistor RS = 10 Ω directly
placed on the sample holder. This shunt resistor has two purposes: a) it limits
the maximum voltage that appears over the junction in the normal state, and
thus, the heating; and (b) it adds damping to the device avoiding hysteretic
switching when assessing the critical current in experiments. We measure the
differential resistance of the shunted device using a voltage amplifier and lock-
in techniques. In all plots where a measured differential resistance dV/dI is
shown the shunt resistor was not subtracted. The measurements presented in
the following were obtained with the SQUID device operating in a dilution
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Figure 6.1. (a) Circuit schematic of a dc SQUID threaded by the external
flux Φext, formed by two gate tunable JJs with non-sinusoidal CPRs with
critical currents Ic1, Ic2, and transparencies τ1, τ2. (b) False-color electron
micrograph of the device. The loop consists of a 10 nm Al film (blue) grown
on top of an InAs 2DEG (green). The JJs are defined by selectively removing
the Al over 150 nm long stripes on each branch of the loop. Electrostatic gates
(yellow and orange) tune the charge carrier density in the junction. We use
15 nm of HfO2 (light blue) as a gate dielectric. On the right, a zoom-in of JJ2
is shown before adding the FG. On top, we show a cross-sectional schematic
of the gate configuration of JJ2 along the dashed black line. The scale bar in
the main figure is 1 µm and in the zoom-in it is 300 nm. Dc and ac current
bias are defined through the voltage drop over a large series resistor with value
Rb = 1 MΩ. The SQUID is shunted to ground with a parallel resistor of value
Rs = 10 Ω. (c) Differential resistance of JJ1 (left) and JJ2 (right) as a function
of gate voltage and current bias. While one junction is being measured, the
other is pinched-off. The top junction has a slightly higher critical current due
to the different channel widths of W1=3 µm and W2=2.5 µm.

refrigerator with a base temperature of ∼ 50 mK.

In Fig. 6.1(c) we show the measured differential resistance of JJ1 (left) and
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JJ2 (right) as a function of gate voltage and bias current. In the following,
we approximate the critical current Ici of the ith-junction, i = {1, 2}, by the
current bias value at which the maximum value in differential resistance is
measured. Here, the bias current is swept from zero to 1.5 µA, looking at
transitions from the superconducting to the normal state. From the measure-
ments we extract Ici(VGi). The critical current of both junctions can be tuned
from a few nA close to pinch-off at negative gate-voltages VG(1,2) ≲ −1 V to
approximately 1 µA. The key features of these hybrid semiconducting-super-
conducting JJs are the gate tunable critical current and the non-sinusoidal
CPR.

In the short-junction limit, i.e. for junctions with a length L shorter than the
superconducting coherence length ξ in the normal metal, the zero temperature
limit of the supercurrent I(φ) is given by [141]:

I(φ) =
∑

j

(
τje∆
ℏ

)
sin(φ)√

1 − τj sin2(φ/2)
. (6.1)

Here, τj is the transmission probability per channel j. In multichannel devices
with disorder, a universal distribution function of transmission eigenvalues was
obtained [70? –72]. The distribution is bimodal with many low transmissive
channels that contribute little to the current, but also with some channels
having a transmission probability close to 1. These high-transmissive channels
lead to the overall non-sinusoidal character. This is approximated with an
effective (but constant) transmission probability τ∗ per channel and written
as a single channel non-sinusoidal CPR given by:

I(φ) = Ic

AN

sin(φ)√
1 − τ∗ sin2(φ/2)

. (6.2)

For the later discussion of the measurements the critical current Ic of the
junction and a unit-less normalization parameter AN are introduced. The
ratio Ic/AN is given by Nτ∗e∆/ℏ with N the number of channels. Note,
for the single junction we have I(−φ) = −I(φ) and thus I+

c = I−
c = Ic.

It is also seen that for small values of τ∗ the CPR approaches a sinusoidal
dependence. From experimental I(φ) curves, we deduce the critical current Ic
of each junction, τ∗ and AN . Note, that only two parameters are independent.

As shown in Fig. 6.1(a) the total supercurrent I across the SQUID is the
sum of the currents flowing in both branches I1 and I2 through the two JJs:

I(φ1, φ2) = I1(φ1) + I2(φ2). (6.3)

The two junctions are described by Ic1, Ic2 and τ∗
1 , τ

∗
2 . The uniqueness of phase

around the loop leads to the so-called fluxoid relation (modulo 2π)

φ1 − φ2 = 2πΦext/Φ0 = φext, (6.4)
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where Φext denotes the externally induced flux, Φ0 = h/2e the superconducting
flux quantum and φext the respective phase. In this form of the fluxoid re-
lation the loop inductance has been neglected. For a finite loop inductance
there is an additional flux contribution which depends on the currents I1 and
I2 flowing in each arm. It has been shown that asymmetric loop inductances
can also induce a superconducting SDE [85, 233, 244]. To estimate the role
of loop inductances in our experiment we perform a full analysis with equa-
tions given in the appendix, specifically in Appendix B.5. Taking Eq. 6.3 and
Eq. 6.4 together yields an effective superconducting junction with a CPR

I(φ) = I1(φ) + I2(φ− φext). (6.5)
For a simple sinusoidal CPR, the addition of the two terms yields a φ0-junction
without a SDE, even when the two JJ have different critical currents. In con-
traSst, in the presence of higher order harmonics, which appear for a non-
sinusoidal CPR, constructive and destructive interference effects, acting oppo-
site for the two current bias directions, give rise to unequal critical currents
I+

c ̸= I−
c , and thus to a SDE [12, 238].

6.3. Josephson Diode Effect

Figure 6.2(a) shows the differential resistance of the SQUID as a function of
current bias and perpendicular magnetic field B⊥, the latter providing the
flux Φext through the SQUID loop. We have chosen a gate configuration with
VG1 = VG2 = 0 V for which the two critical currents are similar: Ic1 = 0.87 µA
and Ic2 = 0.67 µA. A clear SDE is visible. For example, at the place of the
orange arrow, we obtain I+

c = 0.64 µA and I−
c = 0.4 µA.

In this experiment, the current bias is swept from negative to positive values.
This means that we measure the positive switching current I+

c , but on the
negative side, we actually measure what is called the retrapping current I−

r

where the device switches from the normal to the superconducting state. Due
to dissipation, the junction can overheat in the normal state giving rise to a
hysteresis between the switching and retrapping currents with the retrapping
current being smaller in magnitude than the switching current. This would
result in an artificial SDE. To exclude this, we have measured the same plot as
in Fig. 6.2(a) but sweeping now from positive to negative bias currents. The
comparison shows, see Appendix B.3, that the hysteresis between retrapping
and switching currents is small and can be neglected. Physically, this is the
case thanks to the low shunt resistant of Rs = 10 Ω which limits the voltage
over the junction to < 25 µV, and thus, limits the heating.

Another strong argument against an artificial effect is seen in Fig. 6.2(a)
when one looks at the switching values at the place of the red arrow, where
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Figure 6.2. (a) SQUID oscillations with VG1 = VG2 = 0. The critical current
I+

c and the retrapping current I−
r over one flux period are highlighted in orange

and red respectively. At fixed magnetic field, the absolute value of the critical
current in the two sweep directions is not the same. This is best seen in the
region −5 < B⊥ < 0 µT with a visible example taken at the red and orange
arrows, where the SDE has a magnitude of ∼ 23 %. (b) Measurement for a
strongly asymmetric SQUID setting with VG1 = 0 V and VG2 = −1.1 V. Here,
the junction with the large critical current JJ1 serves as the reference junction.
As a consequence, the critical current as a function of flux now reflects the CPR
of the weaker junction JJ2. The CPR is strongly non-sinusoidal and a fit (black
dashed line) yields τ∗

2 = 0.8. (c) Plot of the extracted I+
c (orange) and I−

c (red)
taken from the measurement in (a) and from a measurement where we sweep
the current bias from positive to negative values (see Appendix B.3). The
dashed two curves (green and blue) show simplified model fits with τ∗

1,2 = 0.86
and the critical currents of the junctions taken from Fig. 6.1(c)

I+
c = 0.44 µA and I−

r = 0.6 µA. Here, the sign of the SDE is reversed,
I+

c < I−
r . This cannot be explained by a hysteresis between the switching and

retrapping currents, since the retrapping current should always be smaller than
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the switching current.
As introduced before, a contribution from loop inductances may generate

the SDE, too, if the loop inductances in the two arms are different. Applying
finite element simulations, Appendix B.2, we obtain L1 ≈ 39 pH and L2 ≈
44 pH. The relative phase shift between the two SQUID arms due to the loop
inductances at a bias current I = 1 µA is only 2π

Φ0
(L2 − L1)I ∼ 0.03 rad, and

gives a small contribution to the SDE. We properly simulate the effect of the
loop inductances on the critical current of the SQUID in Appendix B.6 and
find that the loop inductances alone cannot explain the observed SDE in our
experiment.

We also note that the measured CPR of the SQUID in Fig. 6.2(a) is periodic
with a periodicity of 11.6 µT. Since this should correspond to an added flux
quantum Φ0 in the area Ah of the inner SQUID hole, we obtain for Ah =
175 µm2. This is approximately a factor of 2.3 bigger than the geometrical
area defined by the etched square-shaped hole of size 75 µm2. This discrepancy
can be attributed to the flux-focussing effect [245]. The magnetic field above
the superconductor is screened by the Meissner effect leading to an enhanced
magnetic field within the inner hole. The enhancement factor can be estimated
by the ratio of the outer superconducting loop area of ≈ 150µm2 relative to
Ah, which yields a factor of 2 in good agreement with the experiment.

In a sufficiently asymmetric SQUID configuration one can measure the CPR
of the weak junction alone [196]. Figure 6.2(b) shows a measurement of the
CPR of a single junction, obtained during the same cool-down. Here, VG1 =
0 V and VG2 = −1.1 V so that the current in JJ1 is large ∼ 0.9 µA and in JJ2
it is small ∼ 0.1 µA. In such a situation JJ1 acts as reference junction and the
critical current of the weak junction JJ2 can be obtained from Eq. 6.5 as

I+
c = max

φ
(I1(φ) + I2(φ− φext)) (6.6)

I+
c (φext) ≃ Ic1 + I2(φ̃1 − φext), (6.7)

where φ̃1 is the phase value for which JJ1 has its maximal value Ic1. Hence, we
see that under the condition that the reference junction dominates, we obtain
the phase dependence of the critical current of the weak junction from the flux
dependence of the critical current of the SQUID. Applying Eq. 6.2 to fit the
measured data yields for the effective transmission probability τ∗ = 0.8±0.02.
This is a large value, showing that the CPR is strongly non-sinusoidal, some-
thing that is visibly seen in the graph of Fig. 6.2(b). If one makes use of
the universal bimodal distribution function of transmission eigenvalues to de-
termine τ∗ [70? –72], one obtains τ∗ = 0.866. Including different devices
nominally fabricated the same way, we always find a large effective transmis-
sion value of order ∼ 0.8 in agreement with theoretical expectations for a
multichannel disordered junction in the short junction limit.
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In Fig. 6.2(c) we compare the oscillations of I+
c and I−

c as a function Φext
with the simplified model of Eq. 6.5. We take the measured critical currents of
the two junctions as input parameters, i.e. Ic1 = 0.87 µA and Ic2 = 0.67 µA,
and assume τ∗

1 = τ∗
2 = τ∗ as a single fitting parameter. The best agreement

is obtained for τ∗ = 0.86. We note, that a similar model calculation based
only on loop inductances barely matches the measurement. It is shown as a
comparison in Appendix B.6.

The fits for I+
c (green) and I−

c (blue) reproduce the relative shift along the
flux axis very well. The shape of the curves is, however, not reproduced so
well. In the region Φext/Φ0 ∈ [0.25, 0.5] and Φext/Φ0 ∈ [0.5, 0.75] respectively,
the measured I+

c and I−
c curves are higher than what is obtained with the

model. Deviations between the experimental and the modelled curves could
be attributed to the choice of CPR used in the model. First, we considered
an average transparency instead of a distribution of transparencies. Second,
the expression of the current carried by the Andreev bound states could be
different from Eq. 6.2, since our junctions could be in a regime intermediate
to the short and long junction limit. And, in the third place, spin-orbit effects
may affect the CPR, too. For junctions of similar length in the same material
system, it has been shown that spin-orbit interaction splits the ABS into spin-
ful states with different dispersion relations [? ]. Noticeably, the experiment
indicates that these deviations result in an increase of the SDE compared to
what is predicted by the simple model.

Having established that a SDE appears in a SQUID with junctions having
a non-sinusoidal CPR with asymmetry, we summarize in Table 6.1 the neces-
sary conditions for the SDE (DE). To describe the asymmetry we introduce
two asymmetry parameters α and β for the critical currents and the effective
transmission probabilities, respectively:

α = Ic1 − Ic2

Ic1 + Ic2
and β = τ∗

1 − τ∗
2

τ∗
1 + τ∗

2
(6.8)

An extended table, which also considers the effect of loop inductances, is
presented in Appendix B.7. It shows that the diode effect appears when the
SQUID arms are asymmetric. The only exception is for sinusoidal JJs, where
an asymmetry in the critical currents in not enough to produce a diode effect.

6.4. Gate Tunable Diode Efficiency

The SDE can be quantified via the diode efficiency, defined as

η = I+
c − I−

c

I+
c + I−

c
. (6.9)
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Table 6.1. Conditions for obtaining a SDE (DE). An extended table that
includes the loop inductances can found in Appendix B.7. The first column
is used to distinguish the classical sinusoidal CPR (τ∗ = 0) from a strongly
skewed CPR described by a highly transmissive ballistic JJ with an effective
transmission probability τ∗ > 0. α (β) denotes the asymmetry in critical
currents (transmission probabilities) of the two junctions.

τ∗ α β SDE
0 0 n.a. no
0 ̸= 0 n.a. no

̸= 0 0 0 no
̸= 0 0 ̸= 0 yes
̸= 0 ̸= 0 0 yes
̸= 0 ̸= 0 ̸= 0 yes

In Fig. 6.3, we show the magnitude of the diode efficiency |η| as a function
of external flux Φext/Φ0 for different gate configurations as obtained from the
experiment (left) and as calculated from the model (right). In the model,
we make use of the relation between critical current and gate voltage of the
individual junctions Ici(VGi) and use these values as input parameters in the
first approximation. We also use the simulated loop inductance values from
which we obtain the phase response due to screening φL = 4πĪcL̄/Φ0, the loop
inductance asymmetry γ = (L1 − L2)/(L1 + L2) with L1, L2, and Īc and τ̄∗

the respective mean values. We assume that the effect of the gate voltage is
mainly to change the critical current value Ici through the number of channels
N , while τ∗

i roughly stays constant. We fix τ∗
1 = τ∗

2 = 0.86, but we note that
the calculated η plot is insensitive if one varies τ∗

2 between 0.8 and 0.9.

In Fig. 6.3(a), we plot |η| for different values of VG2 at fixed VG1. Both in
the experiment and in the model, |η| drops for −0.7 < VG2 < −0.5 V. As seen
in Fig. 6.1(c), this corresponds to a gate configuration with Ic1 ≈ Ic2, so that
α ≈ 0. As expected, the absence of critical current asymmetry decreases the
diode efficiency. To obtain in the model the same diode efficiencies η as mea-
sured, we had to increase the critical current of JJ1. In the experiment, we had
VG1 fixed at −0.79 V, which would correspond to Ic1 = 470 nA. However, in
order to match the model with the data, we had to use 710 nA, corresponding
to VG1 = −0.74 V, as indicated in the top left corner of the figure. Without
this correction, the measured |η| values would have been larger than what the
model predicts. We attribute this difference in gate voltage to gate-jumps that
occur from time-to-time. We note, that there are days between the measure-
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Figure 6.3. Magnitude of the diode efficiency |η| as a function of external
flux Φext for different gate configurations as obtained from the measurements
(left) and as calculated from the model (right). The sign of η is indicated on
the visible lobes with + and −. The model takes into account the numerically
simulated loop inductances, their asymmetry, and the values Ic(1,2) of the two
junctions obtained from the measurements in Fig. 6.1(c). The JJ transparen-
cies were fixed to τ∗

1 = τ∗
2 = 0.86. (a) |η| as a function of VG2 at fixed VG1,

and (b) |η| as a function of VG1 at fixed VG2. Note, that for Φext/Φ0 = 0.5,
which equals φext = π, η = 0 independent on any other parameters.

ments in Fig. 6.1(c) and in Fig. 6.2(a).

In Fig. 6.3(b) we show the dependence of |η| as a function of VG1 at fixed
VG2 = −0.7 V. As before, to match the model to the experiment, we had to
increase Ic2 from the initially measured value of 590 nA at VG2 to 650 nA,
which correspond to Ic2 measured at VG2 = −0.66 V.

Both in the experiment and in the model one can observe the typical butter-
fly pattern of η as predicted in Ref. [12]. The two arms of maximum |η| meet
at the point of minimum asymmetry at Φext/Φ0 = 0.5 for VG2 ≈ −0.65 V and
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VG1 ≈ −0.75 V for (a) and (b) respectively, where η drops to 0.

The model qualitatively reproduce the gate dependence of the diode effi-
ciency very well. We obtain a maximum |η| of ≃ 0.3 from the experiment.
This 30% efficiency is much larger than what has previously been obtained in
a SQUID with asymmetric loop inductance [246]. Taking a SQUID model with
a single channel JJ junction, we numerically find for the maximum efficiency
η = 0.37. This is obtained for τ1 = 1 and τ2 = 0.75 or the reversed. This could
be achieved by combining a single channel ballistic τ = 1 Josephson junction
realized in atomic contacts [196] with a semiconductor-superconductor hybrid
device as we have discussed here.

6.5. Conclusion

In conclusion, we have investigated the origin of the Superconducting Diode
Effect (SDE) in a supercurrent interferometer realized in a proximitized InAs
quantum well stack. We show that in such a system the SDE can originate
from the non-sinusoidal character of the JJs, and hence, reflecting a subtle
interference between higher-order harmonics of the CPRs of the individual
JJs. In addition to higher harmonics, an asymmetry either in the composition
of the Fourier components in the CPR or in the critical current of the two JJ,
and a finite flux bias φext ̸= {0, π} is required to obtain a SDE. These later
conditions ensure that time-reversal symmetry and inversion symmetry are
both broken. A similar conclusion was drawn by a recent experimental study
in three terminal devices, where a SDE was realized [247]. Further, during the
reviewing process we got aware of a similar study in a dc SQUID realized in
a Ge quantum well structure [248]. Future directions include the possibility
to concatenate more SQUIDs in parallel in order to further increase the diode
efficiency as was proposed in Ref. [12].
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Superconducting qubits with intrinsic noise protection offer a promising approach to improve the
coherence of quantum information. Crucial to such protected qubits is the encoding of the logi-
cal quantum states into wavefunctions with disjoint support. Such encoding can be achieved by
a Josephson element with an unusual charge-4e supercurrent emerging from the coherent transfer
of pairs of Cooper-pairs. In this work, we demonstrate the controlled conversion of a conventional
charge-2e dominated to a charge-4e dominated supercurrent in a superconducting quantum interfer-
ence device (SQUID) consisting of gate-tunable planar Josephson junctions (JJs). We investigate the
ac Josephson effect of the SQUID and measure a dominant photon emission at twice the fundamen-
tal Josephson frequency together with a doubling of the number of Shapiro steps, both consistent
with the appearance of charge-4e supercurrent. Our results present a step towards novel protected
superconducting qubits based on superconductor-semiconductor hybrid materials.

I. INTRODUCTION

The Josephson effect describes the dissipationless cur-
rent flow between two weakly coupled superconductors.
Today, numerous technologies are based on this funda-
mental quantum phenomenon, ranging from supercon-
ducting qubit devices [1–5] to parametric amplifiers [6–
8].

Regardless of whether the weak link consists of an insu-
lator or a normal conducting material, the supercurrent
is a periodic function of the phase difference ϕ between
the superconductors [9]. In a Josephson tunnel junction,
the supercurrent arises from the coherent tunnelling of
individual Cooper-pairs through the insulating barrier,
each carrying a charge 2e [10]. The current-phase re-
lation (CPR) in this case is given by I(ϕ) = Ic sin(ϕ),
with Ic being the critical current. However, when the su-
perconductors are separated by a conducting weak link,
such as a semiconductor or a metal, coherent transport
of multiple Cooper-pairs can also occur, resulting in a
non-sinusoidal CPR [11–15]. In general, the CPR of the
junction can be expanded in a Fourier series as:

I(ϕ) =
∞∑

m=1

cm sin(mϕ). (1)

The sin(mϕ) terms correspond to processes involving the
simultaneous, coherent transport of m Cooper-pairs [16,

∗ E-mail: Carlo.Ciaccia@unibas.ch

17] carrying a charge m × 2e. The amplitude of the
higher harmonic terms cm, m > 1, reflects the proba-
bility of multi-Cooper-pair transport and decreases with
higher harmonics, indicating that transport across the
junction arises mainly from individual Cooper-pairs. Of-
ten, the CPR can be described by the junction trans-
parency τ , defined as the transmission probability of elec-
tron in the weak link. The more transparent a junction
is, the higher the ratio between successive Fourier coeffi-
cients |cm+1(τ)/cm(τ)|.

Several theoretical proposals [18–26] have investigated
possible advantages of using a so-called sin(2ϕ) Joseph-
son junction for the realization of a parity protected
superconducting qubit. In this case, the parity of the
Cooper pairs is protected by using a Josephson element
with a dominant second harmonic term c2 in Eq.(1), cor-
responding to the supercurrent being carried by pairs of
Cooper pairs with charge 4e. The qubit states can be
therefore encoded into the even and odd parity of the
number of Cooper-pairs on a superconducting island.

Important steps towards realizing a parity protected
qubit have been taken with SQUIDs made of tunnel junc-
tions arranged in a rhombus geometry [27, 28]. By de-
signing the loop inductances and the junctions position,
it possible to engineer a CPR with a large second har-
monic component |c2/c1| ∼ 0.5 [29], corresponding to an
effecting transparency τ∗ ∼ 1 [16]. When the magnetic
flux through the SQUID is tuned to half a flux quantum
Φ0/2, the first harmonic is suppressed due to destruc-
tive interference, leaving a dominant second harmonic
term. This method relies on the fabrication of identical

1

In this chapter, published [249] in arXiv 2306.05467 (2023) we introduce a
novel method to deduce the harmonic content of highly transmissive Josephson
junctions by performing emission spectroscopy experiments. With this exper-
iment we can convincingly demonstrate the cancellation of the fundamental
harmonic for a symmetric SQUID configuration at half the flux quantum, and
we can do this quantitatively.

Superconducting qubits with intrinsic noise protection offer a promising ap-
proach to improve the coherence of quantum information. Crucial to such
protected qubits is the encoding of the logical quantum states into wavefunc-
tions with disjoint support. Such encoding can be achieved by a Josephson
element with an unusual charge-4e supercurrent emerging from the coherent
transfer of pairs of Cooper-pairs. In this work, we demonstrate the controlled
conversion of a conventional charge-2e dominated to a charge-4e dominated
supercurrent in a superconducting quantum interference device (SQUID) con-
sisting of gate-tunable planar Josephson junctions (JJs). We investigate the
ac Josephson effect of the SQUID and measure a dominant photon emission
at twice the fundamental Josephson frequency together with a doubling of the
number of Shapiro steps, both consistent with the appearance of charge-4e
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supercurrent. Our results present a step towards novel protected supercon-
ducting qubits based on superconductor-semiconductor hybrid materials.

7.1. Introduction

The Josephson effect describes the dissipationless current flow between two
weakly coupled superconductors. Today, numerous technologies are based on
this fundamental quantum phenomenon, ranging from superconducting qubit
devices [250–254] to parametric amplifiers [111, 255, 256].

Regardless of whether the weak link consists of an insulator or a normal
conducting material, the supercurrent is a periodic function of the phase dif-
ference φ between the superconductors [195]. In a Josephson tunnel junction,
the supercurrent arises from the coherent tunnelling of individual Cooper-pairs
through the insulating barrier, each carrying a charge 2e [7]. The current-phase
relation (CPR) in this case is given by I(φ) = Ic sin(φ), with Ic being the criti-
cal current. However, when the superconductors are separated by a conducting
weak link, such as a semiconductor or a metal, coherent transport of multiple
Cooper-pairs can also occur, resulting in a non-sinusoidal CPR [76, 87, 257–
259]. In general, the CPR of the junction can be expanded in a Fourier series
as:

I(φ) =
∞∑

m=1

cm sin(mφ). (7.1)

The sin(mφ) terms correspond to processes involving the simultaneous, co-
herent transport of m Cooper-pairs [74, 75] carrying a charge m × 2e. The
amplitude of the higher harmonic terms cm, m > 1, reflects the probability of
multi-Cooper-pair transport and decreases with higher harmonics, indicating
that transport across the junction arises mainly from individual Cooper-pairs.
Often, the CPR can be described by the junction transparency τ , defined as
the transmission probability of electron in the weak link. The more transpar-
ent a junction is, the higher the ratio between successive Fourier coefficients
|cm+1(τ)/cm(τ)|.

Several theoretical proposals [13, 91, 260–266] have investigated possible ad-
vantages of using a so-called sin(2φ) Josephson junction for the realization of a
parity protected superconducting qubit. In this case, the parity of the Cooper
pairs is protected by using a Josephson element with a dominant second har-
monic term c2 in Eq.(7.1), corresponding to the supercurrent being carried
by pairs of Cooper pairs with charge 4e. The qubit states can be therefore
encoded into the even and odd parity of the number of Cooper-pairs on a
superconducting island.
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Important steps towards realizing a parity protected qubit have been taken
with SQUIDs made of tunnel junctions arranged in a rhombus geometry [103,
104]. By designing the loop inductances and the junctions position, it possible
to engineer a CPR with a large second harmonic component |c2/c1| ∼ 0.5 [267],
corresponding to an effecting transparency τ∗ ∼ 1 [74]. When the magnetic
flux through the SQUID is tuned to half a flux quantum Φ0/2, the first har-
monic is suppressed due to destructive interference, leaving a dominant second
harmonic term. This method relies on the fabrication of identical junctions,
and departures from symmetry spoils parity protection.

A promising alternative approach is based on gate tunable hybrid super-
conducting - semiconducting materials with high transparency channels. In
Ref. [90] the authors realize a sin(2φ) element with a SQUID made of proxim-
itized InAs nanowires, where local gate control of each junction allows precise
balancing of the first harmonics. They show that the qubit relaxation time
increases by an order of magnitude when the qubit is tuned close to the pro-
tected regime. However, for practical use of the parity protected qubit, the
Josephson energy of the second harmonics in the balanced configuration must
be at the same time much larger than the residual Josephson energy coming
from the first harmonics (for a long relaxation time) and much larger than
the island charging energy (for small dephasing rate). The few conduction
channels in the nanowires limit the maximum obtainable critical current and
make the last requirement difficult to satisfy.

Hybrid two-dimensional materials have seen in recent years a great improve-
ment in growth techniques that allow up-scaling and offer the advantage of
wide gate tunability and top-down fabrication [133, 268]. In this work, we re-
port the observation of a 4e supercurrent in a SQUID consisting of two planar
Josephson junctions formed in an InAs two-dimensional electron gas (2DEG)
proximitized by an epitaxial Al layer [20, 21]. Even if the operation of super-
conducting qubits has already been shown in this material platform [17], the
realization of high quality resonators on III-V substrates remains a challenging
task. Therefore, here we investigate the contribution of the 4e supercurrent by
measuring the evolution in frequency of the ac Josephson radiation emitted by
the SQUID as a function of a dc bias voltage. The high transparency of these
JJs [76] allows us to engineer an effective CPR in which the first harmonic
is suppressed due to destructive interference, leaving a dominant second har-
monic term. To achieve this, we balance the critical current of the junctions
with local gate voltages and tune the magnetic flux through the SQUID loop
to half a flux quantum Φ0/2. In the balanced configuration, radiation mea-
surements reveal a pronounced suppression of emission at the fundamental
Josephson frequency in favour of a strong ac signal at twice this frequency.
We corroborate this finding by additionally detecting fractional half Shapiro
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Figure 7.1. a) Circuit schematic of a dc SQUID formed by two gate tunable
JJs with effective transmission probabilities τ∗

1 , τ∗
2 , threaded by the external

flux Φext. b) False color electron micrograph of the device and experimental
setup. Each junction is fabricated by selectively removing the epi-Al layer
(blue) over 150 nm long stripes. The charge carrier density in the exposed
InAs 2DEG (green) is tuned by a set of electrostatic gates (yellow and orange)
galvanically isolated from the loop by 15 nm of HfO2 (light blue). Dc and ac
current bias are defined through the voltage drop over a bias resistor Rb =
1 MΩ. The SQUID is shunted to ground with Rs = 10 Ω. We send a microwave
tone to the device, and also detect photon emission. The scale bar in the main
figure is 1 µm, and the scale bar in the zoom-in is 300 nm.

steps, characteristic of a sin(2φ) junction.

7.2. Results and Discussion

7.2.1. Device and procedures

A simplified schematic of the device is shown in Fig. 7.1a). A superconduct-
ing loop, threaded by an external magnetic flux Φext, is interrupted on each
arm by a section where the superconductor has been selectively removed. The
Josephson junctions are formed in an InAs 2DEG (green) which is proximi-
tized by the close vicinity to an epitaxial Al layer (blue) grown on top. By
locally removing the Al top layer with etching techniques that are detailed in
Section C.1, we form InAs weak links. Local gate electrodes, VG1 and VG2,
allow us to tune the electron density in the weak links and, consequently, ad-
just the critical currents of the JJs.The hereby formed Josephson junctions are
symmetric by design, but the wet etching step produced two different widths:
∼ 3µm for JJ1 and ∼ 2.5µm for JJ2. Despite of fabrication-related asym-
metries, we were still able to tune the SQUID into a symmetric configuration
by leveraging the gate tunability of the semiconducting weak link. Junctions
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Figure 7.2. Individual components I1 (blue) and I2 (orange) and total cur-
rent (green) flowing through a symmetric SQUID as a function of the phase
drop φ1 at Φext = Φ0/2. The CPR of both junctions is plotted using a single
channel short diffusive model with an effective transparency τ∗ = 0.86. The
current is normalized to units of the critical current Ic. The schematic on the
right helps visualizing the requirements for a sin(2φ) junction: a dominant 4e
supercurrent is obtained with a symmetric SQUID biased at Φ0/2.

this wide typically contain many conduction channels with a bimodal distri-
bution of transparency values distributed between zero and one [70? –72].
Earlier experiments on the same material platform have shown that the CPR
in these junctions can be described by a single channel short diffusive junction
model [76, 89] with an effective transparency τ∗ ∼ 0.86.

Fig. 7.1b) depicts a false-color electron micrograph of the device and the
experimental setup. We apply a dc-current via the voltage drop over a bias
resistor Rb = 1 MΩ. We damp the SQUID with a shunt resistor Rs = 10 Ω to
enable a continuous transition from the superconducting to the normal con-
ducting state. The 10 Ω-shunt increases the region of stable voltage drop across
the junction, and at the same time it reduces both heating and hysteretic be-
haviours. The differential resistance is measured using standard lockin tech-
niques. Furthermore, the microwave-setup allows probing the ac Josephson
effect in two ways. On one hand, the Josephson radiation emitted from the
SQUID under finite dc bias can be detected with a spectrum analyser. Second,
the reverse experiment can be performed, namely, irradiating the device with
a microwave tone and measuring its dc response.

Fig. 7.2 shows the interference between the supercurrent I1 flowing in JJ1
(blue dashed curve) and the supercurrent I2 in JJ2 (orange dashed curve) at
Φext = Φ0/2. The total supercurrent flowing through the SQUID (green solid
curve) is:

I = I1(φ1, τ
∗
1 ) + I2(φ2, τ

∗
2 ). (7.2)

The phase drops over the two JJs are related by the fluxoid relation φ1 −φ2 =

7
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Figure 7.3. a) and b). Differential resistance dV/dI of JJ1 and JJ2 as a
function of gate voltage VG1,VG2 and current bias I. c) and d). IVint-curves at
VG1 = −0.75 V and VG2 = −0.7 V obtained by integrating the corresponding
dV/dI along the white dashed lines shown in a) and b).

2πΦext/Φ0. Here, we have assumed that the phase difference between the
two JJs is solely given by the externally applied flux, neglecting loop and
mutual inductances, which is justified in our device [89]. When the loop is
flux biased at Φext = Φ0/2 and the JJs are the same (τ∗

1 = τ∗
2 ), Cooper-

pairs are transferred with the same amplitude but opposite phase through
the SQUID arms, resulting in a destructive interference of the 2e contribution
with periodicity 2π and in a constructive interference of the 4e supercurrent
with periodicity π. In this way, it is possible to engineer an effective sin(2φ)
junction.

7.2.2. Ac and dc Josephson effect from single junction

In the following, we characterize the dc and ac Josephson effect of the individ-
ual JJs. To this end, we measure the gate dependence of the critical current

104

7



7.2. Results and Discussion

and the radiation spectrum of each junction, while the neighbouring one is
fully depleted.

Figure 7.3a) and Fig. 7.3b) show the differential resistance of JJ1 and
JJ2 as a function of current bias I for different gate-voltages. We identify
the critical current Ic as the boundary between the superconducting regime
(dark blue) and the ohmic regime (turquoise). At negative gate voltages
(VG1 ≤ −0.9 V and VG2 ≤ −1.5 V ) Ic is negligibly small, but it can be gradu-
ally increased with increasing VGi. Ic,max saturates to Ic1,max = 1.1 µA for JJ1
and Ic2,max = 0.8 µA for JJ2 at around VGi = 0.5 V. The slight differences in
the gate dependence of the two junctions is attributed to a different junction
width and gate geometry. To estimate the IcRn product of the junctions, we
measure the resistance at voltage bias larger than twice the superconducting
gap of the leads as obtained from multiple Andreev reflection measurements
conducted on a different chip of the same wafer. Subtracting the shunt resistor,
we obtain a normal state resistance of the junction Rn ∼ 90 Ω, corresponding
to a IcRn ∼ 90 µV. We also note that potential errors in estimating Rn might
have led to an underestimation of the IcRn product. Nonetheless, the signifi-
cantly large IcRn product indicates a high-quality Josephson junction with a
uniform current distribution.

In Fig. 7.3c) and Fig. 7.3d), the IV -curves at VG1 = −0.75 V and VG2 =
−0.7 V, respectively are obtained by integrating the measured dV/dI curves
along the white dashed lines in Fig. 7.3a) and Fig. 7.3b). Both junctions show
an ohmic behaviour down to 2 µV, which allows stable voltage biasing in the
microwave regime of the Josephson emission.
According to the ac Josephson effect, the phase difference of a voltage biased

Josephson junction will evolve linearly in time following

φ(t) = 2π
Φ0
V t, (7.3)

with V being the voltage drop across the junction. Consequently, an ap-
plied dc voltage causes a oscillating supercurrent at the Josephson frequency
fJ = 2eV/h. This transforms into the emission of microwave photons at
fJ. If higher harmonics are present, photon emission at higher frequencies
fJ,m = m × 2eV/h also occurs [93, 269]. In Fig. 7.4a) we show the expected
peak evolution in the emission spectrum of voltage biased JJ as a function
of detection frequency fdet and V . For every voltage bias position, peaks
emerge in the emission spectrum, if the detection frequency matches an inte-
ger multiple of the Josephson frequency fdet = fJ,m. These peaks induce a
fan-like pattern, capturing the linear relation between voltage and the emis-
sion frequency with slope h/(m2e). Emission lines evolving as hfdet/(m2e)
correspond to the coherent transport of m Cooper-pairs across the junction
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Figure 7.4. a) Illustration of the expected peak evolution in the emission
spectrum of voltage biased JJ as a function of detection frequency fdet. A
junction with finite transparency emits photons at the fundamental Josephson
frequency (red dashed line) and integer multiples of it (orange and pink dashed
lines), here corresponding to the coherent transport of pairs of Cooper-pairs.
The dashed grey lines indicate processes associated to the up- and down-
conversion of environmental photons. b) and c) Normalized radiation power
Pdet,norm. as a function of fdet and Vint for the same configuration of c) and
d) in Fig. 7.3. The orange arrow points to the 4e emission peak.

(red, orange, and pink dashed lines for m = 1, 2, and 3). In addition to
the fan-like pattern, replicas of the Josephson emission lines can appear at a
constant frequency offset on the right and on the left of the predicted peak po-
sition due to photon-assisted emission through environmental modes [270]. A
photon from a spurious environmental mode can be upconverted to a detector
photon by taking up the energy 2eV provided by the inelastic tunnelling of a
Cooper-pair (right shift in frequency). The energy balance in this case reads
hfdet = hfenv + 2eV , where fenv corresponds to the resonant frequency of an
environmental cavity. Such resonance can be caused for example by a standing
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wave pattern along the microwave lines. The complementary process is also
possible, meaning that a photon coming from a Cooper-pair tunnelling can
be downconverted to a detector photon by giving up the energy hfenv to the
environment (left shift in frequency). The energy balance in this case reads
hfdet = 2eV − hfenv.

In Fig. 7.4b) and Fig. 7.4c) we plot the normalized radiation power Pdet,norm.

as a function of fdet and Vint for JJ1 and JJ2 respectively. The power is normal-
ized at each detection frequency to compensate for the frequency-dependent
background. A pronounced emission peak at frequency fJ,1 (red dashed line)
corresponding to the 2e single Cooper-pair transport is measured over the en-
tire frequency range from 5 GHz to 8 GHz. The signal due to the 4e double
Cooper-pair transport at frequency fJ,2 (orange dashed line) is weaker but be-
comes clearly visible in the emission spectrum around 7 GHz (orange arrow).
Emission peaks at frequencies corresponding to higher harmonics, m > 2, are
below our detection limit. In addition to the fan-like pattern, there is a strong
replica of the fundamental Josephson emission appearing at a constant fre-
quency offset (fenv ∼ 1.95 GHz) on the right of the predicted peak position.
Its contribution diminishes for fdet > 6 GHz. Changes in power spectrum as
a function of detection frequency arise from a frequency-dependent probabil-
ity of photon emission due to inelastic Cooper pair tunnelling. The emission
probability depends on the impedance of the environment surrounding the
Josephson junction [? ], which in turns has a complex behaviour as a function
of frequency caused, for example, by standing wave patterns in the rf lines
due to spurious impedance mismatch conditions. By setting fdet = 7.1 GHz,
we can disregard the contribution of this environmental mode in the following
investigation.

7.2.3. Ac and dc Josephson effect from a SQUID
Next, we exploit the interference between the two junctions when both carry
a finite supercurrent in order to realize an effective Josephson element with
negligible first harmonic component. We require two conditions: (i) the flux
is to be set to Φext = Φ0/2, and (ii), the JJs are gate-tuned into balance, such
that c1,JJ1 = c1,JJ2 . The key challenge in the experiment is the balancing
of the junctions. As a solution, we adopt an approach proposed in [12] that
is based on the observation that Ic for the forward and reverse current-bias
directions, Ic,+ and Ic,−, is mismatched, unless both junctions are balanced
and Φext = nΦ0/2 with n being an integer. To balance the SQUID, we look at
regions in gate voltage without diode effect, meaning Ic,+ and Ic,− are equal
(symmetric junctions).

In Fig. 7.5 we measure the SQUID in three different configurations. Firstly,
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Figure 7.5. a) Differential resistance dV/dI of the SQUID as a function of
external flux Φext and current bias I for symmetric junctions. Here, VG1 =
−0.865 V and VG2 = −0.9 V. In this balanced configuration, there is no diode
effect. In b), we bias the SQUID at Φext = Φ0/2, and fix VG2 = −0.875 V.
We measure the SQUID differential resistance as a function of current bias
and VG1. Moving from left to right, we go from Ic2 > Ic1 to Ic1 > Ic2,
crossing a balanced configuration. c) Same as in a), but for VG1 = −0.9 V and
VG2 = −1 V. In this unbalanced configuration, there is diode effect.

we fix the gate voltages such that the junctions are symmetric and sweep Φext.
Secondly, we fix VG2 and sweep VG1 at Φext = Φ0/2. Finally, we fix the gate
voltages and sweep Φext in the case of asymmetric junctions.

In Fig. 7.5a) we plot the SQUID differential resistance dV/dI as a func-
tion of current bias I and Φext in a gate configuration where Ic1 ≈ Ic2. No
diode effect is observed over the entire flux bias range. Differences between the
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gate values at which symmetry is achieved and those expected from Fig. 7.3a)
and Fig. 7.3b) are caused by the fact that the critical current of each junc-
tion depends on weather the junction is measured individually or embedded
in SQUID [271]. Simultaneously, we measure the SQUID ac emission at fixed
detection frequency fdet = 7.1 GHz. Figure 7.6a) shows the normalized ra-
diation power Pdet,norm. as a function of Φext and integrated voltage drop
over the SQUID Vint. Because the signal peaks at Vm = hfdet/(m2e), we
scale the voltage axis by hfdet/2e. The emission pattern changes in a striking
manner around Φext = Φ0/2. The fundamental Josephson signal at a scaled
Vint = 1, corresponding to the 2e supercurrent, vanishes almost completely,
while a sharp bright peak at a scaled Vint = 1/2 appears, that corresponds to
the radiation signal coming from the simultaneous inelastic transport of pairs
of Cooper-pairs. An additional horizontal line is visible in the map due to
the spurious environmental mode, as addressed before. On the right panels,
we plot cuts along Vint at Φext = 0.22 Φ0 (blue) and Φext = Φ0/2 (orange).
The radiation power is here presented in a linear scale. At Φext = Φ0/2, the
4e peak emerges as the dominant feature, yet its amplitude is approximately
∼ 25 times smaller compared to the amplitude of the 2e peak measured at
Φext = 0.22 Φ0. This is expected, since the amplitude of the power emission
peak is proportional to the square of Ic, which at Φext = Φ0/2 is only deter-
mined by the second harmonic of the CPR, and is ∼ 5 times smaller than Ic at
Φext = 0.22 Φ0. A detailed analysis of the ratio between the 4e and 2e peaks
can be found in Appendix. C.3.

We investigate the dependence of the emission spectrum as a function of
VG1, when the magnetic flux is set to Φext = Φ0/2 and VG2 = −0.875 V,
shown in Fig. 7.5b) and Fig. 7.6b). Away from the balanced configuration, the
more distinct peak in the emission spectrum is the one corresponding to the 2e
transport. However, once we approach the balanced situation at VG1 ∼ −0.8 V
the signal at V1 = hfdet/2e is suppressed, and instead, the dominant peak in
the emission spectrum becomes the one at V2 = hfdet/4e.

Lastly, in Fig. 7.5c) we plot the dV/dI of the SQUID as a function of I and
Φext in a gate configuration where Ic1 ̸= Ic2. Apart from Φext = Φ0/2, there
is a clearly visible diode effect. Figure 7.6c) shows Pdet,norm. as a function of
Φext in the same gate configuration. The 2e emission peak remains the dom-
inant feature throughout the whole flux bias range. Its amplitude decreases
asymmetrically on the left- and right-hand side of Φext = Φ0/2, following the
asymmetry of the SQUID critical current. Even though the junctions are not
balanced, one can still see that the emission signal slightly increases at volt-
ages V2 = hfdet/4e, in the vicinity of Φext = Φ0/2.

These findings show that a continuous transition between a 2e and a 4e
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Figure 7.6. a) Normalized radiation power Pdet,norm. at fdet = 7.1 GHz
plotted vs external flux Φext and normalized voltage drop over the SQUID Vint.
The map is measured as the same time as in Fig. 7.5a). At half flux quantum,
the 2e radiation signal is suppressed, and the 4e peak becomes the dominant
feature. On the right, radiation power Pdet in linear scale at Φext = 0.22 Φ0
(blue) and Φext = Φ0/2 (orange). b) Same as in a) but for the gate and flux
configuration as in Fig. 7.5b). For specific values of VG1, we see a clear increase
in the visibility of the 4e peak. On the right, radiation power Pdet in linear
scale at VG1 = −0.89 V (blue) and VG1 = −0.8 V (orange). c) Same as in a)
but for the gate configuration as in Fig. 7.5c). Here, throughout the flux bias
range, the 2e peak remains the dominant feature.

supercurrent can be achieved by tuning both gate voltages and the magnetic
flux. Importantly, the 4e supercurrent dominates over a finite window in
parameter space and is not limited to exactly matching boundary conditions.
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Figure 7.7. a) On the left, differential resistance dV/dI as a function of
drive power Pd and bias current I at constant drive frequency fd = 7.5 GHz
and zero external flux Φext = 0 for VG1 = −0.73 V and VG2 = −0.5 V. The
drops in differential resistance correspond to the emergence of Shapiro steps.
On the right, differential resistance as a function of Pd plotted vs normalized
voltage drop Vint over the SQUID. At zero flux, mostly integer Shapiro steps
are visible. b) Same as in a), but at Φext = Φ0/2. The destructive interference
of the first harmonics produces a CPR with double the periodicity of the
individual junctions, inducing the emergence of half integer Shapiro steps.

7.2.4. Shapiro steps
So far, we have used the Josephson radiation measurements to identify the
emergence of a 4e supercurrent in the SQUID. In the last part of this work, we
discuss Shapiro step measurements that complement our radiation experiment.
When a microwave drive tone is sent to a JJ, distinct voltage plateaus in the
V (I) characteristic appear, known as Shapiro steps[272–276]. For a conven-
tional sin(φ) junction, each plateau corresponds to a Cooper-pair absorbing
n photons with frequency fd to overcome the Shapiro step voltage Vn, and
the energy relation reads 2eVn = nhfd. The presence of higher harmonics in

7

111



7. Charge-4e supercurrent in a two-dimensional InAs-Al
superconductor-semiconductor heterostructure

the CPR of the junction changes the energy relation to 2meVn = nhfd, corre-
sponding to m Copper-pairs absorbing n photons to overcome the voltage step.

We apply a microwave tone of fixed frequency fd = 7.5 GHz to the SQUID
with different output power Pd values. The signal is applied to the microwave
input line, connecting the device to the amplification chain through a direc-
tional coupler (see C.2). In Fig. 7.7(a), we plot the SQUID differential resis-
tance dV/dI at Φext = 0 as a function of current bias I and Pd in a symmetric
gate configuration. In the left panel we plot dV/dI versus I, and on the right
we plot the data as a function of the integrated voltage Vint scaled by hfd/2e.
Shapiro-steps occur at integer values of the scaled voltage as dips in differen-
tial resistance.

The data in Fig. 7.7b) is measured for the same gate values as in Fig. 7.7a),
but at Φext = Φ0/2. In this configuration, the SQUID resembles an effective
sin(2φ) junction because the 2e supercurrent is suppressed. The energy rela-
tion for the appearance of Shapiro steps is given in this case by 4eVn = nhfd,
resulting in a doubling of the number of observed steps. In line with the theo-
retical expectations [12], both integer and half-integer Shapiro steps are equally
visible in the data. Differences between this measurement and Shapiro steps
measurements performed on Josephson junction with a high quality factor [?
] are attributed to the 10 Ω-shunt in our device.

7.3. Conclusion

We have demonstrated the realization of an effective sin(2φ) Josephson junc-
tion using a dc SQUID consisting of two planar Josephson junctions formed
in a proximitized InAs 2DEG. We probe the emergence of a dominant second
harmonic in the CPR of the SQUID by measuring the ac Josephson effect as
a function of gate voltages and magnetic flux. Photon emission at the funda-
mental Josephson frequency is suppressed when the SQUID is in a symmetric
configuration and biased at half flux and instead, photons are only emitted at
fJ,2. We provide evidence on how to continuously tune from the 2e to the 4e
supercurrent regime by adjusting the junction gate voltages and the external
magnetic flux. The results are further substantiated through complementary
Shapiro step measurements in a symmetric SQUID configuration at half flux,
revealing additional half-integer steps with same visibility as the integer steps.

Our results indicate, that a robust sin(2φ) JJ can be engineered and could
used to realize parity-protected qubits with this material system. Such parity-
protected qubit provides an alternative route to the protection of quantum
information in superconducting devices and may complement alternative ap-
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proaches based on fluxonium qubits [277–280] and qubits based on topological
wavefunctions [281–287]. Looking ahead, the 2D platform would make it eas-
ier to further protect the qubit from noise and offsets by concatenating several
SQUIDs in parallel [13].
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8 Hybrid SQUIDs for CQED

+-

Building upon the findings of earlier chapters, here we discuss the imple-
mentation of a gate and flux tunable transmon qubit in a proximitized two-
dimensional electron gas (2DEG). We want to harness the high transmission
probabilities of Josephson junctions realized in this platform and the interfer-
ence effects between higher harmonics of their current-phase relation, to tune
the qubit into different regime using gate and flux control. Later in this chap-
ter, we further extend the potential uses of a proximitized two-dimensional
electron gas (2DEG) to the realization of a gate and flux tunable supercon-
ducting parametric amplifier. The material of choice in the following sections
is a InAs 2DEG grown by IOM in Trieste on a (001) GaAs substrate proxim-
itized by 50 nm of epitaxial aluminium (Al).

8.1. Gate Tunable Transmon

We begin by examining the response of a transmon made of a single Joseph-
son junction. Figure 8.1 shows a simplified device schematic consisting of a
λ/4 coplanar transmission line resonator inductively coupled to a feedline for
readout. The resonator is also capacitively coupled to a Josephson junction
(JJ) shunted to ground with a T-shaped capacitor CT. The total parallel ca-
pacitance CΣ given by the sum of CT and the junction capacitance can be
approximated by CΣ ∼ CT since the contribution from the junction is negli-
gible. The parallel of the Josephson junction and CΣ defines the transmon.
With Sonnet simulations, we estimate CΣ to be approximately 88 fF corre-
sponding to a charging energy EC/h = e2/C ∼ 220 MHz.
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Figure 8.1. False colour optical micrograph of the transmon and simplified
measurement setup. The readout resonator (orange) is inductively coupled
to a feedline by a shared inductance M . The other end of the resonator
is capacitively coupled to the transmon island by the capacitance Cg. The
transmon (red) consist of a Josephson junction (JJ) shunted to ground by the
capacitance CΣ. An electrostatic gate VG is used to tune the critical current
of the junction. The qubit drive signal at frequency fd is provided from the
same port, capacitively coupled to the island via Cd. The dc signal and the rf
drive signal are decoupled with a bias tee.

The feedline and resonator are realized within the proximitized 2DEG by
selectively etching away the Al, InAs, and approximately 450 nm of the buffer
layer to define the central conductor. The Josephson junction, measuring
∼ 10 µm wide and ∼ 300 nm long, is formed by locally removing the Al. To
preserve the junction from electron beam imaging procedures, the junction
length is measured using a confocal optical microscope with a lateral resolu-
tion of 100 nm. Additionally, a local gate VG, made of evaporated Al and
electrically isolated from the island by 25 nm of HfO2, enables to tune the
critical current of the junction Ic. The maximum Ic is expected at positive
gate voltage and the minimum Ic at negative gate voltage, when the 2DEG
is depleted. Details about the fabrication procedure are given in Chapter 4.
Through the same port used for the dc gate, decoupled with a bias tee, we
also apply the qubit drive at frequency fd. The coupling capacitance for the
drive Cd is given by the overlap between the gate electrode and the island,
determined by the width of the gate and of the junction. In this design Cd is
approximately ∼ 177 fF, resulting in a strong coupling to the gate line. To re-
duce photon losses to this port it is crucial to reduce Cd. However, in practice,
the wet etching process used to define the junction limits the minimum width
achievable to ∼ 1 µm. An alternative is to couple the drive through a dedicated
port [18], and filter the gate line to reduce transmission at the qubit frequency.

The device is connected to a printed circuit board by Al wire bonds and
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Figure 8.2. a) Transmitted power through the feedline P21 as a function of
probe frequency f and gate voltage VG. The resonator and the qubit mode
vacuum Rabi split by ∆f = g/π when they have the same frequency. The
background has been removed by subtracting from each trace the average along
the gate voltage axis. b) Continuous two-tone spectroscopy: the resonator
phase response at fixed frequency arg(S21) is measured as a function of drive
frequency fd and VG. Peaks in arg(S21) correspond to the qubit frequency.
The background has been removed by subtracting from each trace the average
along the gate voltage axis. The drive power Pd is −25 dBm and a probe
power −40 dBm. The inset shows a vertical cut at the position indicated by
the arrow. We fit arg(S21) as a function of fd with a Lorentzian to extract
the qubit decay rate Γ.

mounted in a copper box thermally anchored to the mixing chamber of a Blue-
fors cryogen-free dilution refrigerator with a base temperature of ∼ 15mK. The
copper box is protected against stray magnetic fields with an aluminium and a
permalloy shield. The dc lines are filtered at room temperature with a D-type
sub connector with cut-off frequency at 640 kHz. Additional filtering is done
at the 100 mK plate through QDevil RC-filters with a cut-off at 65 kHz and
finally at the mixing chamber with silver epoxy filters. Incoming readout rf
signals are attenuated by −66 dB distributed across the cryostat plates, and
then filtered with Ecosorb at the mixing chamber before reaching the trans-
mission line. The qubit drive signal is produced by an Agilent MXG N5183B
signal generator. The drive line is attenuated by −53 dB and also filtered with
Ecosorb. Outgoing rf signals are sent through a Silent Waves quantum-limited
travelling wave parametric amplifier and further amplified by HEMT mounted
on the 4 K-plate plus a room temperature amplifier. An overview of the setup
is provided in Appendix D.1.

In Figure 8.2a) we plot the measured transmitted power P21 as a function

8
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of probe frequency f and VG. The measurement is performed using a Zurich
Instruments SHFQA. We observe a vacuum Rabi splitting between the res-
onator and the qubit mode when they are brought in resonance with each
other. The size of the splitting ∆fr when fr is equal to the qubit frequency
fq (zero detuning), is related to the coupling g between the two modes by
∆fr = g/π [8], where g is given in rad s−1. From the measurement we extract
g/(2π) ∼ 150 MHz. Fitting the resonator response at negative gate volt-
age, when the junction is pinched-off, we extract the bare resonance frequency
fr,b ∼ 8.25 GHz and the coupling quality factor Qc ∼ 900, corresponding to a
coupling rate κ of approximately ∼ 10 MHz. The internal quality factor Qi is
approximately ∼ 1300. Comparing the results of the fit with Sonnet simula-
tions, we extract the kinetic inductance per square of the superconducting film
Lkin/□ ∼ 25 fH. However, based on measurements of similar proximitized films
(see Section 3.2.1) the design of the resonator was made assuming 1 pH/□. As
a consequence, the resonator impedance Zr is not 50 Ω, but instead ∼ 30 Ω.
With a coupling capacitance Cg of approximately 9 fF, we estimate, using
Eq. (2.60), a coupling strength of g/(2π) ∼ 155 MHz in good agreement with
the measured value.

We perform dispersive measurement of fq by monitoring the resonator re-
sponse at fixed frequency fread = fr as a function of a continuous drive tone
applied at fd. This is shown in Fig. 8.2b) for a drive power Pd of −25 dBm
and a probe power of −40 dBm. At positions in gate voltage such that g/∆qr
= g/(fq = fr) ≪ 1, when fd matches fq, the continuous microwave tone will
incoherently drive qubit transitions and shift the resonance frequency. This
will be measured as a change in the resonator response at fread - e.g. as peaks
in the phase response arg(S21). Figure 8.2b) shows a cut in the resonator
response as a function of fd at VG = −2.33 V, corresponding to fq ∼ 6.5 GHz.
We fit the response with a Lorentzian to extract the qubit linewidth Γ and the
qubit lifetime T = 1/Γ. At this particular frequency T is approximately 4 ns.

In Figure 8.3a) we plot Γ as a function of fq as extracted from the data
in Figure 8.2b). The increase in Γ as fq approaches fr (dashed line) can be
explained by an increase in the Purcell decay rate as the detuning between
the qubit and the resonator decreases [8]. This rate captures the fact that
at low detuning, the qubit and the resonator modes hybridize, and the qubit
can relax by emission of a resonator photon. In the future, to address Purcell
decay to the readout resonator we can introduce a Purcell filter in between
the feedline and the resonator. A Purcell filter in its simpler form consists
of a low coupling quality factor resonator which allows signal readout at fr
while reducing qubit decay at fq [6]. However, what also causes a qubit level
broadening is the ac Stark shift from the resonator. The shift depends on
the number of photons in the resonator and its inversely proportional to the
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Figure 8.3. a) Qubit linewidth Γ as a function of qubit frequency fq above
(orange) and below (blue) the resonator bare resonance frequency fr,b (dashed
vertical line). b) Phase of the transmission coefficient arg(S21) measured at
fixed frequency fread = fr as a function of Pd and fd when fq ∼ 12 GHz.

detuning [97]. As a consequence, fluctuation in the number of photons will
cause a larger qubit level broadening at small detuning. The largest T we ex-
tract is approximately 10 ns, too short to perform time domain measurements.

Figure 8.3b) shows the fixed frequency phase response of the resonator as
a function of Pd and fd when the qubit frequency is approximately 12 GHz.
Because of the short qubit lifetime (large Γ) we do not observe multi-photon
transitions with increasing drive power, and we cannot access the qubit an-
harmonicity.

The qubit lifetime could be limited by several factors including radiative
loss through the gate, dielectric losses both in the substrate and in the HfO2
layer as well as fluctuations in the Andreev bound state (ABS) population of
the junction [64], and others [18]. We will delve into the contribution of ABS
in more details in the next section.

8.2. Flux and Gate Tunable Transmon

In this section we introduce flux tunability alongside the already gate-tunable
transmon by incorporating an additional Josephson junction in parallel with
the initial one forming a superconducting quantum interference device (SQUID).
The design is similar to the one presented in Section 8.1. It consists of a λ/4
coplanar transmission line resonator inductively coupled to a feedline for read-
out. The resonator is then capacitively coupled to a SQUID shunted ground
with a T-shaped island. The total parallel capacitance CΣ is approximately
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Figure 8.4. a) False color optical image of a flux tunable transmon. A
single junction is replaced with two junctions in parallel. The critical current
of each junction can be tuned by a local gate VG1 and VG2. The magnetic
field flux through the loop is changed by the current Iflux flowing through
the flux line (green). b) Phase of the transmission coefficient arg(S21) as a
function of probe frequency and VG1 when the other junction is pinched off
(VG2 = −10 V). c) Same as in b) but as a function of VG2 when VG1 = −10 V.

108 fF corresponding to a charging energy EC/h = e2/C ∼ 180 MHz. The
resonator geometry is the same as in Section 8.1, with an impedance of ∼ 30 Ω,
but its length has been increased to bring the resonance frequency down to
∼ 7.7 GHz.

Figure 8.4a) shows a zoom-in on the transmon area. The capacitive island
is now shorted to ground with two JJs in parallel. The critical current of
each junction is tuned by a local gate VG1 and VG2. The qubit drive port is
connected to VG2 with a bias tee. The magnetic field flux through the loop
is controlled by an on-chip flux line. Fabrication steps are the same as in
Section 8.1. The junctions are ∼ 10 µm wide and ∼ 300 nm long, and the
loop area is Aloop ∼ 40 × 40 µm2. The measurement setup is the same as in
Section 8.1, with the only difference that the QDevil RC filters for the dc lines
have now been exchanged with LC filters to limit thermal load to the cryostat
when passing a current Iflux through the flux line.

8.2.1. Gate Response of Individual Junctions

For each junction, we measure the complex transmission coefficient S21 through
the feedline as a function of probe frequency f and VGi when the other junction
in pinched off. This is shown in Fig. 8.4b) and c). We observe an anticrossing
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Feedline Resonator Qubit

Figure 8.5. QUCS schematic of the device equivalent electrical circuit. The
feedline and the resonator are represented as transmission lines of width W ,
gap S and length L on a GaAs substrate. The transmon is modelled as an RLC
circuit where the inductor represents the Josephson inductance of the junction,
the capacitor is given by the capacitance of the T-island, and the resistor
embed the dissipative part of the junction impedance. The values of the mutual
inductance (represented by the component Tr1), coupling capacitance Cg and
island capacitance CΣ are extracted from Sonnet simulations. We perform an
S-parameter simulation as a function of a parameter sweep that controls the
junctions critical current.

between the resonator and the qubit mode in both cases. We fit the resonator
response when both junctions are depleted at sufficiently negative gate volt-
age to extract the bare coupling and internal quality factors, Qc ∼ 2700 and
Qi ∼ 4300 respectively. At positive gate voltages, when the qubit frequency
is above the resonator, the response is very different. When only JJ1 is con-
ducting (at VG1 = 0 V, VG2 = −100 V) the quality factor of the resonance
decreases to Qi ∼ 1200, while when only JJ2 is conducting (at VG2 = 0 V,
VG1 = −100 V) the resonance becomes barely visible.

To understand this behaviour we simulate an equivalent electrical circuit
where the transmon island is described within the resistively and capacitively
shunted junction model (see Section 2.3.2). We use the QUCS simulation soft-
ware, whose circuit schematic is shown in Fig. 8.5. The feedline and the res-
onator are represented as coplanar transmission lines on a GaAs substrate, and
all circuit parameters are extracted from Sonnet simulations. The shunt re-
sistance describes the dissipative component of the Josephson junction, which
can be attributed to residual quasiparticles or, as investigated in Ref. [64],
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to fluctuations in the ABS population. Because of the fluctuation-dissipation
relation [288], changes in the occupation of ABSs due to thermal activation
of microwave-induced transitions will result in a finite real part component of
the junction impedance. In Ref. [64], the authors show that the value of Rs
in a multichannel short-diffusive junction at the π point in the CPR can be
as low as 100 Ω. In this device, the Josephson junctions are ∼ 10 µm wide,
therefore containing many channels with a wide distribution of transmission
probabilities, and approximately L ∼ 300 nm long. This length, given the
typical coherence length in Al films ξ ∼ 500 nm [41], results in a ratio L/ξ of
approximately ∼ 0.6. In addition, channels with a transversal component of
momentum have an effective length much longer than L resulting in an even
larger L/ξ ratio. As discussed in Section 2.3.1, a large value of L/ξ leads to
a dense spectrum of ABS with low energies. These states exist not only near
the π point but across the entire phase range, contributing to a low real part
of the junction impedance.

We model the dependence of the critical current on the gate voltage param-
eter VG with a smooth step function:

Ic = Ic,min − Ic,max

1 + e
VG+2

0.1

+ Ic,max (8.1)

where Ic,max and Ic,min are the maximum and minimum critical current of
the junction. The corresponding Josephson inductance is calculated as LJ =
Φ/(2πIc). The RLC circuit modelling the transmon acts on the resonator as a
frequency dependent load with resonance frequency at fRLC = 1

2π
√

LJCΣ
and

linewidth ΓRLC = 1/(RsCΣ). As for the quantum case, the resonator and the
RLC mode will anticross when fRLC = fr,qucs. The absence of a quantum
treatment is reflected in the absence of vacuum Rabi splitting into two reso-
nance for a single VG value.

From dc measurements on junctions with L ∼ 150 nm (see Chapter6), in a
∼ 10 µm wide junction we expect a maximum critical current of approximately
3 µA at zero gate voltage. However, assuming Ic,max = 3 µA in the simulation,
brings fRLC at VG = 0 to approximately 50 GHz, which is too high to have an
influence on the resonator mode for any finite value of Rs. Therefore, in the
simulation, we have to use a lower value of Ic,max to observe an effect on the
resonator response at VG = 0. This is justified by the inverse dependence of the
critical current of a Josephson junction on the length of the weak link [195]. We
simulate the transmission coefficient S21 for different values of shunt resistance
Rs as a function of f and VG. In Fig. 8.6a) we plot the result of the simulation
for Rs = 10 kΩ, and Ic,max = 150 nA, corresponding to fRLC(VG = 0) ∼
10 GHz. On the same graph we plot fRLC calculated using Eq. (8.1) to get
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Figure 8.6. a) QUCS simulation of the phase of the transmission coefficient
arg(S21) as a function of frequency f and of the parameter VG that controls
the value of the inductance in the RLC circuit. The shunt resistor Rs is set to
10 kΩ. The frequency span on the y-axis is much larger than the simulation
frequency in order to show the resonance frequency of the RLC circuit fRLC
(black line), and the resonance linewidth ΓRLC (grey area). The inset shows
a zoom in on the simulation results. b) Same as in a) for Rs = 1 kΩ.

LJ(VG). The inset shows a zoom-in on the resonator response. Here, the
resonator response is approximately symmetric with respect to the point where
fRLC crosses fr,qucs. Fig. 8.6b) shows instead the results of the simulation
with Rs = 1 kΩ. In this case, the resonator is coupled to a ten times more
dissipative load. The fact that fRLC is much closer to fr,qucs on the right
side of the crossing compared to the left side, gives rise to the asymmetry
in the anticrossing as we observe in the experiment. The abrupt change in
the resonance is a consequence of the fact that fRLC appears as a vertical
line in the voltage and frequency range we are looking at. Analogously, the
disappearance of the resonance for JJ2 in Fig. 8.4c), can be attributed to a
lower critical current, which would bring the qubit frequency closer to the
resonator resonance frequency at zero gate voltage, or a lower value of Rs
(larger dissipation).

8.2.2. Flux Response

We now discuss the case when both junctions carry a finite supercurrent. We
perform dispersive measurements as a function of Iflux, which controls the
magnetic field flux through the loop, and as a function of a continuous drive
tone applied at fd via the gate VG2.

Two-tone spectroscopy maps at different gate voltage configurations (VG1,
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Figure 8.7. a) and b) Magnitude of the transmission coefficient |S21| mea-
sured at fixed frequency fread = fr as a function of drive frequency fd and flux
current bias Iflux for (VG1 = −3.46 V, VG2 = −2.42 V) and (VG1 = −3.49 V,
VG2 = −2.68 V) respectively. The drive power is −37 dBm and the readout
power is −50 dBm. c) and d) Phase of the transmission coefficient arg(S21)
measured as in a) and b) but for (VG1 = −3.47 V, VG2 = −2.51 V) and
(VG1 = −3.47 V, VG2 = −2.58 V) respectively. For the gate configuration
in d) the two junctions have similar effective transmission probabilities. As
a consequence the transition from the ground to the second excited state f02
becomes visible around half flux quantum Iflux ∼ −1.5 mA. In this case, the
drive power is −30 dBm and the readout power is −50 dBm.

VG2) are plotted in Fig. 8.7. As discussed in Section 2.4.3, we can change both
the average value of fq and its flux dependence thanks to the gate tunability
and the non-sinusoidal CPR of each junction. To preserve the shape and am-
plitude of the oscillations of fq with flux, and move them down in frequency,
we can bring both gates to more negative voltages. This is shown in Fig. 8.7a)
and b), where we plot two maps obtained for (VG1 = −3.46 V, VG2 = −2.42 V)
and (VG1 = −3.49 V, VG2 = −2.68 V) respectively. Alternatively, we can mod-
ify the dependence of fq on Iflux by changing the asymmetry in critical current
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between the junctions.

In Section 2.4.3 we have discussed how the energy spectrum changes signifi-
cantly as a function of flux in case of non-sinusoidal CPR with similar effective
transmission probabilities. To prove this, we chose VG1 and VG2 so that the two
junctions have similar Josephson energies. We chose this point as determined
from two-tone spectroscopy of each junction separately (see Appendix D.2).
Then, we perform two-tone spectroscopy measurements as a function of flux
for different values of VG2. At VG1 = −3.47 V and VG2 = −2.58 V the two
junctions have similar Josephson energy corresponding to a qubit frequency
of approximately 2 GHz. Even though in this device the broad linewidth of
the qubit makes it difficult to distinguish multi-photon transitions and extract
information about qubit spectrum, we are still able to resolve some features.
Fig. 8.7c) and d) show two of these measurements for asymmetric and approx-
imately symmetric junctions respectively. In case of similar effective trans-
mission probabilities (symmetric junctions), the anharmonicity of the qubit is
expected to change sign and increase in modulus when the external flux equals
half flux quantum. In Fig. 8.7d) we see a second transition detaching from the
main one and going up in energy at around Iflux ∼ −1.5 mA. This line can be
attributed to the transition from the ground to the second excited state f02
involving two photons.

To better resolve the energy spectrum of the qubit and perform time do-
main measurements it is crucial to reduce the qubit linewidth. This can be
achieved by realizing shorter and narrower junctions and by limiting photon
losses through the dc control lines.

8.3. Flux and Gate Tunable Josephson Parametric Amplifier

In this section we present preliminary results on a Josephson parametric am-
plifier (JPA) realized using two gate tunable Josephson junctions arranged in
a SQUID geometry. The goal is to make use of the gate tunability of hybrid
junctions and the interference effects between higher order harmonics of their
CPRs, to realize a JPA which can be tuned continuously from a three-wave
mixing to a four-wave mixing amplification regime. A brief overview of the
concepts behind parametric amplification, and references for a more in depth
understanding are provided in Section 2.5.

Figure 8.8 shows the device schematic. It consists of a λ/4 transmission
line resonator capacitively coupled to a feedline and shorted to ground at the
other end with a SQUID. The resonator and the feedline are realized within
the same proximitized 2DEG, and with the same fabrication steps as in Sec-

8
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Figure 8.8. a) Optical image of the device. A lambda quarter transmission
line resonator is capacitively coupled to an input feedline with a coupling rate
κ and shorted to ground with a SQUID. The critical current of each junction
is tuned by a local gate voltage VG1 and VG2. We probe the resonator response
at frequency f . A pump tone af frequency fP is sent to the device via VG1.
The gate line and the pump line are decoupled with a bias tee. b) Zoom-in
on the loop area. The magnetic field flux through the loop is controlled by
the perpendicular magnetic field B⊥. A locally grown HfO2 layer electrically
isolate the gates from the resonator. c) Optical image of the bonded device.

tion 8.1. The junctions are ∼ 10 µm wide and ∼ 250 nm long, and the loop
area is Aloop ∼ 35 × 35 µm2. A set of local gates VG1 and VG2 controls the
charge carrier density in the weak links and tunes the corresponding critical
currents.

The device is measured using a standard reflectometry setup in a Triton 200
dilution refrigerator with a base temperature of 50 mK. The input and output
signal lines are connected to the device via a directional coupler positioned
on the mixing chamber. The input line is attenuated by a total of −63 dB
including the −20 dB coming from the directional coupler. The amplification
chain consists of a HEMT and a room temperature amplifier. An additional
line, with −40 dB attenuation, is connected to VG1 and decoupled from the dc
signal with a bias tee. This line is used to provide the pump tone at frequency
fP. The dc lines are filtered at room temperature with a D-type sub connector
with cut-off frequency at 640 kHz and at the mixing chamber with home build
silver epoxy filters. The magnetic flux through the loop is controlled with
a three-axis vector magnet. As a consequence, the device has no magnetic
shielding. A complete overview of the setup is shown in Appendix D.4.
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Figure 8.9. a) Magnitude of the reflection coefficient |S11| measured as
a function of probe frequency f and VG2. Instead, VG1 does not have any
effect on the resonator response. b) Magnitude of the reflection coefficient
|S11| measured as a function of f and perpendicular magnetic field B⊥ at
VG2 = 0 V. Jumps in the map correspond to jumps in tthe internal phase of
the SQUID. c) Same as in b) but for VG2 = −2.4 V. d) Same as in b) but for
VG2 = −2.6 V. The arrows indicate the direction of the magnetic field sweep.

8.3.1. Gate and Flux Response

In Fig. 8.9a), we plot the magnitude of the complex reflection coefficient |S11|
as a function of probe frequency f and VG2. As we lower the critical current
of JJ2 by applying a negative gate voltage, the resonance frequency fr shifts
down because of the larger Josephson inductance of the SQUID. For sufficiently
negative values of VG2, JJ2 is fully pinched off, and the resonance frequency
is only determined by the Josephson inductance of JJ1. Unfortunately, fr
does not show any dependence on VG1, indicating that the gate electrode
is interrupted at some point. This can be caused either by the mesa step
( ∼ 450 nm) or by lift-off residuals at the edge of the HfO2 layer.

Figure 8.9b) shows the dependence of |S11| on the perpendicular magnetic
field B⊥ at VG2 = 0 V. The oscillations in the critical current of the SQUID
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as a function of B⊥ cause oscillations of fr. The response is hysteretic, with
jumps whenever the magnetic field flux Φext = B⊥Aloop is close to a multiple
of half flux quantum. Similar to an rf SQUID (see Section 2.3.2), this happens
whenever the inductance of the junction with the smaller critical current is
not larger than the inductance of the rest of the loop [85, 289]. Decreasing
the critical current in JJ2 at negative values of VG2, the hysteresis is reduced
and eventually removed. This is shown in Fig. 8.9c) and d). The oscillations
in resonance frequency are deeper the more symmetric the junctions are, and
eventually disappear when JJ2 is pinched off.

From a fit to the resonator response at VG2 = 0 V and zero magnetic field
flux we extract a coupling quality factor Qc of approximately ∼ 50 correspond-
ing to a coupling rate κ ∼ 100 MHz. The internal quality factor Qi is also
approximately 50. Most probably, the limiting factors of Qi are once again
photon losses to the gate lines and a large dissipative part of the junction
impedance. From the value of fr at VG2 = −10 V, when JJ2 is pinched off,
we can extract the Josephson inductance of JJ1. From Sonnet simulations,
by matching the simulated resonance frequency to the measured one, we ob-
tain LJ1 ∼ 0.4 nH, corresponding to a critical current Ic1 of approximately
800 nA. This relatively low critical current, compared to what expected for
short junctions of similar width, suggests a non-negligible real part of the
junction impedance.

8.3.2. Gain
Next, we study the effect on the resonator response of a pump tone applied
at a frequency fP through VG1. When the pump is connected to the gate of
a hybrid JJ, a three-wave mixing amplification process is possible provided
that the critical current depends linearly on the gate. In this case, the critical
current, and therefore the Josephson inductance of the junction, will depend
linearly on the amplitude of the pump signal, satisfying the condition for three-
wave mixing [? ]. Unfortunately, in this device we cannot investigate this effect
since the gate electrode to which the pump line is connected to is interrupted
before reaching the junction.

In the following, keeping the external flux at zero, we monitor the resonator
response as a function of the pump frequency and pump power while tuning
the asymmetry between the SQUID arms using VG2. In Fig. 8.10, we plot
|S11| as a function of f and fP at for different values of VG2. The signal power
is P = −45 dBm and the pump power is PP = 15.5 dBm. At VG2 = 0 V,
parametric amplification is obtained when the pump tone is positioned slightly
above fr. A single peak develops within a certain pump frequency range. As
we tune VG2 to more negative voltages, a second region with gain appears at

128

8



8.3. Flux and Gate Tunable Josephson Parametric Amplifier

5.0 5.1 5.2
fP (GHz)

4.9

5.0

5.1

5.2

5.3

5.4

f (
G

H
z)

5.0 5.1 5.2
fP (GHz)

4.9

5.0

5.1

5.2

5.3

5.4

f (
G

H
z)

5.0 5.1 5.2
fP (GHz)

4.9

5.0

5.1

5.2

5.3

5.4

f (
G

H
z)

5.0 5.1 5.2
fP (GHz)

4.9

5.0

5.1

5.2

5.3

5.4

f (
G

H
z)

0.01 0.12
|S11|Pump

a) b)

c) d)

5.00 5.25
0.00
0.05
0.10

Figure 8.10. a) Magnitude of the reflection coefficient |S11| measured as a
function of probe frequency f and pump frequency fP for a gate voltage on
JJ2 of VG2 = 0 V at Φext/Φ0 = 0. The pump tone is visible in the map as
a sharp peak as indicated by the white dashed line. The inset shows vertical
cuts in the map at the positions indicated by the green arrow (pump detuned
from the resonance frequency) orange arrow (amplification regime) The gain is
evaluated as the ratio between the orange and the green curve at the position
indicated by the black arrows. b), c) and d) same as in a) but for VG2 = −2.2 V,
VG2 = −2.4 V and VG2 = −5 V.

lower pump frequency for fP slightly below fr. In this case, two peaks develop
within each region. While the behaviour at VG2 = 0 V is in agreement with
a four-wave mixing process as previously reported for a parametric amplifier
realized in a similar material platform [19], the reason for the double peak
is still unclear. A maximum gain of 6 dB is extracted as the ratio between
maximum of the trace when there is amplification and the value of |S11| taken
at the same frequency when the pump tone is far detuned. This is illustrated
by the inset of Fig. 8.10a).

Figure 8.11a) shows the dependence of the gain profile at VG2 = 0 V as
a function of PP with fixed pump frequency fP = 5.19 GHz. We use this
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Figure 8.11. a) Magnitude of the reflection coefficient |S11| measured as a
function of probe frequency f and pump power PP for VG2 = 0 V at Φext/Φ0 =
0. The pump frequency is set to fP = 5.19 GHz. b) |S11| as a function of
signal power set on the vector network analyser PVNA for fP = 5.19 GHz and
PP = 15.5 dBm. The inset shows the power gain in dB calculated as the ratio
between maximum of each vertical trace in the map and the value of |S11| at
the same frequency taken on a reference curve with the pump off.

measurement, together with the data in Fig. 8.10a) to find the optimal pump
power and frequency to have maximum gain, which is obtained approximately
at PP = 15.5 and fP = 5.19 GHz. In Figure 8.11b) we show the gain profile as
a function of signal power for the optimal set of pump parameters. The gain
stays constant for a wide range of input power.

As discussed in Ref. [84] and in Ref. [14], the third and fourth order non-
linearities in the Josephson potential of the SQUID, and the corresponding
amplification processes, depend on the applied magnetic flux and on the asym-
metry between the arms of the loop. However, being not satisfied with the
gate response and the unstable gain profile, we did not proceed on this device
to further study the gain flux dependence. Given the poor magnetic shield-
ing, magnetic field fluctuations are expected to limit the stability of the gain
profile. While this section is not conclusive, I hope it contributes as a starting
point for future implementations of gate and flux tunable JPA.

8.4. Conclusions

Following up on our results on charge 4e supercurrent in the previous chapter,
we have implemented a gate and flux tunable transmon qubit. We have to
improve the qubit quality factor by reducing the length of the JJs and there-
fore the dissipative part of the junction impedance. To address Purcell decay
to the readout resonator we can introduce a Purcell filter to the design. To
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reduce photon losses through the dc lines we can use a dedicated port for the
drive tone and implement on chip low pass filters for the gates and the flux
line. Also, we can decrease the width of the junctions to decrease the coupling
capacitance to the gates.

We have also outlined some preliminary results on a JPA with a gate tunable
SQUID aimed at realizing gate and flux control over the parametric amplifi-
cation regime. We show gate and flux control of the resonator frequency, and
a 6 dB gain at zero flux obtained with a four-wave mixing process (fP ≈ fS).
We do not observe three-wave mixing amplification, yet. To increase the gain
of the JPA, similar as in the transmon case, one needs to fabricate shorter
and narrower junctions and reduce losses through the dc lines. A dedicated
pump port, allowing to engineer the coupling to the pump independently on
the gate capacitance would also be beneficial. To achieve three-wave mixing
amplification it is necessary to gain gate control over both junctions and shield
magnetic field fluctuations.

8
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9 Summary and Outlook

The main goal of this thesis was to explore the potential use of a proximitized
InAs two-dimensional electron gas (2DEG) for hybrid superconducting quan-
tum circuits. Our approach has been to harness the inherent gate-tunability
and scalability of this material platform to improve the flexibility and control
of the design of superconducting circuits.

With standard characterization procedures, we have extracted the relevant
material parameters such as the electron density and the mobility of the 2DEG,
as well as the induced superconducting gap and the kinetic inductance of
the proximitized system. In addition, we have studied both the dc and the
ac Josephson effect in planar Josephson junctions (JJ) realized in this plat-
form. A key ingredient of these devices is the non-sinusoidal character of their
current-phase relation (CPR). To investigate the CPR of the JJs, we discuss
advantages and disadvantages of the two characterization methods used in this
thesis, namely switching current experiments in dc superconducting quantum
interference devices (SQUIDs) and measurements of Josephson radiation. We
estimate the effective transmission probability of these JJs using both methods.

We have detailed the fabrication process of epi-aluminium/InAs devices as
well as the realization of NbTiN and granular aluminium (grAl) superconduct-
ing resonators. We have shown the fabrication of grAl resonators in Basel and
the characterization of their microwave losses on InP substrates. We combine
our findings with measurements of grAl resonators fabricated at KIT. Our
results indicate that InP is compatible with high impedance resonators for ap-
plications in hybrid superconducting circuits. An interesting approach would
be to try to control the spin of quasiparticles in Andreev bound states via the
vacuum electric field fluctuations of high impedance resonators, as shown for
electrons in semiconducting quantum dots [192, 290].

Making use of the interference effects of higher harmonics in the CPR of two
epi-Al/InAs hybrid JJs in a SQUID, we demonstrate that we can engineer an
effective Josephson element with an arbitrary CPR. This holds potential ap-
plications for several superconducting quantum devices. First, we have imple-
mented a gate and flux tunable Josephson diode with efficiency up to ∼ 30%,
close to the maximum theoretically predicted value of ∼ 40% [12]. The diode
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efficiency could be further increased, up to ∼ 80% by concatenating several
interferometers in parallel. Such configuration could be easily implemented
within the 2DEG system.

Performing Josephson radiation experiments, we report the emergence of a
charge-4e-dominated supercurrent through the SQUID corresponding to the
coherent transport of pairs of Cooper pairs. This happens when the junctions
are symmetric and the flux is set to half flux quantum. We demonstrate the
capability to engineer a robust sin(2φ) Josephson element that could be used
to realize a parity protected qubit in this material system. Further investigat-
ing this effect, we have shown preliminary results on a gate and flux tunable
transmon qubit. Here, a proximitized InAs 2DEG is used to realize both the
JJs and the microwave circuit. This simplifies the fabrication process removing
the need for typically cumbersome contacting procedures. We show that the
qubit frequency can be tuned with both gate and magnetic flux. However, for
practical applications, the qubit lifetime needs to be increased by improving
the quality of the JJs and of the heterostructure. The optimization of the gate
dielectric as well as the systematic filtering of both dc and rf control lines will
also contribute to a larger qubit lifetime.

Finally, we have investigated the performances of a Josephson parametric
amplifier connecting a hybrid SQUID to the current antinode of a λ/4 trans-
mission line resonator. We have achieved a maximum gain of 6 dB, which
however, is not stable with the gate voltage. Similarly to the transmon qubit,
the amplifier gain and stability would also benefit from a better quality of the
junctions and from an additional filtering of the control lines. In addition,
individual gate control over both junctions and magnetic shielding of the de-
vice is required to achieve a Kerr-free three-wave mixing amplification process.

This work sets the stage for future development of hybrid superconducting
circuits using planar heterostructures. The fabrication procedure, the designs
and the operational principles investigated in this thesis can be applied not
only to InAs 2DEGs, but also to all the other emerging platforms, such as
Ge/SiGe two-dimensional hole gases [132].
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A Extended Setup - grAl on InP
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Figure A.1. Detailed measurement setup of granular aluminium resonators
in a Triton 200 dilution cryostat.

Figure A.1 shows the measurement setup used to characterized granular
aluminium resonators on a InP substrate as discussed in Chapter 5.

The chip is mounted on a double-sided Ni/Au plated Roger© 4350 PCB
screwed onto a copper plate. The device is glued onto the central copper area
such that the microwave bond terminals are as close as possible to the PCB
counterpart. The PCB central conductor is bonded to the resonator input pad.

Readout rf signals are produced and measured with either a R&S vector
network analyser. The input signal is attenuated by a total of −63 dB at-
tenuation before reaching the PCB. It is connected to the coupling port of a
directional coupler which then feeds the reflected signal to the amplification
chain. The amplification chain consists of a cryogenic HEMT amplifier (nom-
inally +40 dB gain) located on the 4K stage isolated from the device with two
terminated circulators. The signal is further amplified with a room tempera-
ture amplifier (nominally +40 dB gain). Signals are produced and measured
with a R&S vector network analyser.

A magnetic field can be applied with a 3-axis vector magnet. Measurements
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are performed in a Triton 200 dilution refrigerator with a base temperature of
∼ 50 mK.
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B.1. Fabrication & Measurement Set-up

The wafer used in this experiment was grown by molecular beam epitaxy
(MBE). The stack consists from bottom to top of an InP substrate, a 1-µm-
thick buffer realized with In1−xAlxAs alloys, a 4 nm In0.75Ga0.25As bottom
barrier, a 7 nm InAs layer, a 10 nm In0.75Ga0.25As top barrier, two monolay-
ers of GaAs acting as stop etch layer, and 10 nm of Al deposited in situ
without breaking the MBE vacuum. The two-dimensional electron gas is
characterized from a Hall bar devices and shows a peak electron mobility of
µ = 12′000 cm2V−1s−1 for an electron density of 16 x 1011 cm−2, correspond-
ing to an electron mean free path of le ≈ 230 nm.

The device is fabricated using standard electron beam lithography tech-
niques. The MESA is electrically isolated by first removing the top Al film
with Al etchant Transene D, followed by a deep III–V chemical wet etch with
H2O:C6H8O7:H3PO4:H2O2 (220:55:3:3). Next, the Al film on the mesa is
selectively etched with Al etchant Transene D to define the planar JJ. Elec-
trostatic gates are made of two Ti/Au layers, isolated from the Al and from
each other by hafnium oxide (HfO2) layers grown by atomic layer deposition
(ALD) at a temperature of 90 °C over the entire sample. The first layer of
gates is made of electron-beam evaporated Ti/Au (5 nm/25 nm) on top of
15 nm HfO2. Connections to the external circuit are obtained by evaporating
Ti/Au (5/85 nm) leads at ±17° to overcome the MESA step. A second layer
of gates, made of angle-evaporated Ti/Au (5/85 nm), is patterned on top of
25 nm of HfO2.

Measurements are carried out in a Triton 200 cryogen-free dilution refriger-
ator with a base temperature of ≈ 50 mK. An overview of the measurement
set-up is shown in Fig. B.1. The setup sources a current using a 1 MΩ resistor
in series to a dc voltage source on which a small ac component with frequency
f = 17.7 Hz, supplied by a lock-in amplifier, is superposed. This current is
applied to the source contact of the SQUID on the left with the drain contact
on the right side galvanically connected to ground. The SQUID is shunted at
the source to ground with a resistor RS = 10 Ω. This shunt resistor is directly
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Figure B.1. (a) False color optical image of the full device together with a
sketch of the measurement setup. The scale bar is 100 µm. (b) Zoom-in over
the SQUID showing the loop area threaded by the external flux Φext. The
electron density in the junction region is tuned via a set of gates coloured in
yellow and brown. The scale bar is 3 µm

placed on the sample holder. In addition, a finger capacitance of ≈ 0.7 pF is
patterned in parallel to the SQUID (lower right of the optical image). The
original purpose of the capacitance was to increase the quality factor of the
Josephson junctions. However, its effect is negligible, since the capacitance
provided by the leads is larger. We measure the differential resistance of the
shunted device using a voltage amplifier and lock-in techniques. The flux
through the SQUID is generated by a vector magnet.

B.2. Estimation of Loop Inductances

In the following we will detail the evaluation of the inductance of the loop
branches. The loop geometry is defined as indicated by the white dashed lines
in Fig. B.2(a). The width of the two branches corresponds to the junctions
width in the upper and lower path, W1 = 3 µm, W2 = 2.5 µm, and the width
on the left and right sides it is set equal to WL = (W1 + W2)/2 = 2.75 µm.
In reality there is no lateral confinement in the superconductor. Hence, the
artificial confinement increases the inductance values so that the simulated
inductances for this geometry yield upper bounds to the inductances of the
device. With finite-element simulations performed in Sonnet, we compute
the two-port impedances Zi,k with i,k ∈ {1, 2} for different frequencies. The
impedance is evaluated between two sets of floating co-calibrated ports, posi-
tioned on the left and right side of the loop. In the simulation we use InP as a
substrate, with a relative dielectric constant ϵr = 12.55 [171]. The kinetic in-
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Figure B.2. Sonnet simulations of the loop inductances. The super-
conducting loop is segmented into an upper (lower) branch 1 (2) indicated by
the white dashed boxes. The respective width are W1 = 3 µm, W2 = 2.5 µm
and WL = 2.75 µm. The two inductances L1, L2 and the mutual inductance M
are deduced from the slope of the frequency dependent two-port impedances.
It is seen that M ≪ L1,2 and that there is a small asymmetry of ∼ 6 % in the
loop inductances.

ductance of the Al film is evaluated by measuring the temperature dependence
of the resistance of an Al bar realized on a different chip from the same wafer.
We measure a critical temperature of 1.25 K and a normal state resistance of
15.5 Ω. The kinetic sheet inductance Lkin/□ ≈ 5 pH is then obtained through
Eq. (2.17).

B.3. Retrapping versus Switching Current

In Fig. B.3 we compare the switching current with the retrapping current
values. We show that the two values coincide in this experiment to a good
accuracy. We think that this is due to the low parallel resistor which keeps the
voltage over the junction small in the normal state, hence, reducing overheating
effects. Additionally, the shunt resistor adds damping at the plasma frequency
of the junctions, which reduces the quality factor.

The two measurements in Fig. B.3(a) were obtained for exact the same
parameter settings, except for the direction of current-bias sweep. In the
upper (lower) measurement the current was decreased (increased) starting with
positive (negative) values at +3 µA (−3 µA) and sweeping down (up) to −3 µA
(+3 µA). (b) shows the critical and retrapping current, Ic and Ir, extracted
from the downsweep data at positions where the differential resistance shows a

B
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Figure B.3. (a) Two differential resistance plots of the SQUID device for
the same gate settings as a function of external flux Φext and current bias I.
In the upper plot the current was swept downwards from positive to negative
values, while in the lower it was swept upwards. (b) and (c) compare the
critical current values Ic with the retrapping ones Ir, obtained from (a) and
(b) at the position of the peaks in dV/dI. The arrows ↑, ↓ indicate the sweep
direction. (d) compares I+↑

c with I−↓
c and in (e) the diode efficiency is shown

for three ways using the data in (b)-(d).

peak. (c) shows the same, but extracted from the upsweep data. On sweeping
downwards, we denote the negative critical current as I−↓

c and the positive
retrapping current as I+↓

r . In analogy, on sweeping upwards, the positive
critical current is denoted by I+↑

c and the negative retrapping current by I−↑
r .

In (d) we compare the positive and negative critical currents, both obtained
in a proper way using oppositive sweep directions.

Now we can compare the extracted diode efficiency for three cases: i) for
the case when we extract the critical currents from sweeping the current bias
into negative direction only, η↓, ii) into positive direction only, η↑, and iii),
when we deduce the critical current properly, η↑↓. The three curves are di-
rectly obtained from the graphs (b)-(d). All three methods yield qualitatively
the same efficiencies with no significant differences. Importantly, one clearly
cannot say that η↑↓ would yield in general lower efficiencies.
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Figure B.4. SQUID oscillation at different gate voltage configurations. VG2
is fixed at −0.5 V, while VG1 is swept from −0.57 V to −0.8 V. The asymmetry
in the SQUID oscillations follows the asymmetry in critical current between
the two junctions. We have Ic1(VG1 = −0.57 V ) > Ic2(VG2 = −0.5 V ) and
Ic1(VG1 = −0.8 V ) < Ic2(VG2 = −0.5 V ).

B.4. SQUID Oscillations at Different Gate Voltages

In this appendix we show how the SQUID pattern develops when the critical
current of one junction is tuned from being larger, equal and finally smaller
than the critical current of the other junction. Fig. B.4 shows the differen-
tial resistance of the SQUID as a function of current bias and perpendicular
magnetic field. VG2 is fixed at −0.5 V, while VG1 is swept from −0.57 V
to −0.8 V. As extracted from Fig. 6.1(c), Ic2(VG2 = −0.5) ∼ 720 nA, while
Ic1(VG1 = −0.57) ∼ 1.12 µA and Ic1(VG1 = −0.8) ∼ 360 nA (gate voltages
are given in units of V).

The sign of the diode efficiency is mirrored with respect the magnetic field
value corresponding to half flux quantum when the critical current asymmetry
α between the two junctions changes sign. We also notice a dip in differential
resistance developing around half flux quantum that evolves with α (see arrow
in Fig. B.4).

B
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B.5. Model Including Loop Inductances

As introduced in the main text, we model the current-phase relation of a single
junction i ∈ [1, 2] with

Ii(φ1) = Niτ
∗
i e∆
ℏ

sin(φi)√
1 − τ∗

i sin2(φi/2)
, (B.1)

where Ni stands for the number of channels and τ∗
i for an effective transmission

probability of junction i. The more general approach would be to assume a
distribution function for the transmission probability of each channel. To avoid
this complication we assume that all channels have the same transmission
probability τ∗

i .
We introduce the normalization parameter Ai as

Ai := maxφi

{
sin(φi)√

1 − τ∗
i sin2(φi)

}
. (B.2)

Note, that Ai only depends on τ∗
i . We thus get the normalized CPR as

Ii(φi) = Ici

Ai

sin(φi)√
1 − τ∗

i sin2(φi/2)
. (B.3)

In this notation of the CPR, N has been replaced by the critical current Ic,
which appears now explicitly.

Flux quantization in the loop imposes:

φ1 − φ2 = 2πΦ/Φ0. (B.4)

Here, the total flux in the loop Φ is given by the external flux Φext and the
contributions from the screening currents expressed through the loop induc-
tances, L1 and L2, that belong to the two branches. If mutual inductances are
considered, too, one has to introduce new effective inductances L′

1 = L1 −M
and L′

2 = L2 −M , where M describes the mutual inductance. We obtain for
the total flux:

Φ = Φext − L′
1I1(φ1) + L′

2I2(φ2) (B.5)

Therefore, Eq. B.4 now reads:

φ1 − φ2 = φext + 2π
Φ0

(
L′

2I2(φ2) − L′
1I1(φ1)

)
. (B.6)

Our simulations show, however, that the effect of the mutual inductance can
be neglected in our experiment. Hence, there are six remaining parameters in
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the problem: Ic1, Ic2, τ∗
1 , τ∗

2 , L1, and L2. Since the appearance of the SDE in a
SQUID is related to asymmetries, we introduce three asymmetry parameters:

α := Ic1 − Ic2

Ic1 + Ic2
, (B.7)

β := τ∗
1 − τ∗

2
τ∗

1 + τ∗
2
, (B.8)

γ := L1 − L2

L1 + L2
. (B.9)

The new set of parameters is now given by the three asymmetries and the
average values of the two junctions for the critical current Īc, the transmission
probability τ̄ and the inductance L̄.

To find the critical current one has to find the maximum or minimum of the
total supercurrent:

I(φ1, φ2) = I1(φ1) + I2(φ2). (B.10)

Making use of Eq. B.6, we get:

I(φ1, I) = I1(φ1) + I2(φ1 − φext + κL1I1(φ1)
−κL2(I − I1(φ1))), (B.11)

with κ = 2π/Φ0. In the latter form, we have eliminated φ2 using the fluxoid
condition. However, due to the loop inductances, the equation for the total
current I is now itself implicitly dependent on I. One can still solve this equa-
tion recursively or by introducing Lagrange multipliers to then search for the
maximum or minimum currents, yielding I+

c and I−
c [244].

To find I+
c numerically, we preset the value of I, 0 ≤ I ≤ 2Īc, starting with

a small one and search for solutions φ1 of Eq. B.11. If solutions exist, we
increment I by a small step δI until there are no solutions φ1 anymore. This
defines I+

c . In analogy we obtain I−
c .

B.6. Comparison to Diode Effect due to Loop Inductances

Here, we present a comparison of the measured critical currents I+
c and I−

c
shown in Fig. 6.2(c) with model simulations. Specifically, we discuss the effect
of the loop inductance and its asymmetry on the SDE. The comparison shows
that the SDE can poorly be reproduced taking only the loop inductances into
account. This is shown in figure Fig. B.5.

B
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Figure B.5. Sequence of simulations for I+
c (green dashed curves) and I−

c
(blue dashed curves) to measured (upsweep) data I+

c (orange dots) and I−
r (red

dots). In (a) a sinusoidal CPR with the estimated loop inductance asymmetry
is considered, while in graphs (b)-(e) the effective transparencies τ∗ of the
junctions ar increased. Further details are given in the text.

Figure B.5 shows a sequence of simulations, blue and green dashed curves,
to a set of measurements of I+

c (orange) and I−
r (red). In all five simulations

the critical currents Ic1 and Ic2 of the two junctions are taken from the ex-
periment, from Fig. 6.1c. Since VG1 = VG2 = 0 we obtain Ic1 = 0.87 µA
and Ic2 = 0.67 µA. In (a) we assume sinusoidal CPRs for both junctions JJ1
and JJ2, and we take the simulated loop inductances into account. Due to
the slight asymmetry in loop inductance a small SDE appears. However, this
effect is far smaller than what has been measured. Hence, one cannot fit the
measurement with the loop inductance asymmetry alone. In (b)-(e) we keep
the loop inductances as estimated, but change to non-sinusoidal CPRs by in-
creasing τ∗

1 = τ∗
2 to appreciable values ranging from 0.5 − 0.99, indicated in

the figures. As before, we obtain the blue and green dashed curves taking the
known critical currents Ic1 and Ic2 of the two junctions. The best match in
this sequence is found for τ∗

1 = τ∗
2 ≈ 0.86. One can see that the model matches

the key features of the experiment very well. However, there are deviations, as
seen by the stronger curvature that the measurement points display as com-
pared to the model. The model assumes an almost triangular shape for very
large transparencies τ∗

1 = τ∗
2 ≈ 0.99. These differences are yet not understood.

B.7. Conditions for a Diode Effect in a SQUID Device

The following three figures illustrate that an asymmetry is required to obtain
a SDE. in Fig. B.6(a) and (b) sinusoidal CPRs are assumed. In (a) the loop
inductance asymmetry γ is varied, while the critical-current asymmetry α = 0.
In contrast, in (b) α is varied, while γ = 0. The loop inductance has been
chosen such that the average phase drop over the inductor φL = 4πĪcL̄Φ0
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Figure B.6. Magnitude of the diode efficiency |η| as a function of the applied
external flux Φext expressed in number of magnetic flux quanta Φ0, numerically
calculated for a SQUID with two sinusoidal CPRs with an asymmetry (a) in
loop inductance γ and (b) in critical current α. The inductances were chosen
such that φL = π. In (c), |η| is plotted for a SQUID without loop inductances
and two JJs, each with a non-sinusoidal single-channel CPR, as a function of
τ1 and normalized external flux for τ2 = 0.7 and for α = γ = φL = 0.

assumes a large value of φL = π. In (c) a SQUID with two single-channel non-
sinusoidal CPRs with different transmission probabilities τ1,2 ̸= 0 (asymmetry
β ̸= 0) are considered, while α = γ = φL = 0.

In general, it is seen that the diode efficiency is zero at the symmetry points
corresponding in (a) to γ = 0, in (b) to α = 0 and in (c) to τ1 = τ2. Further
on, η = 0 for φext = 2πΦext/Φ0 = 0, π, and 2π. For these cases one can show
that the CPR of the SQUID is odd in the phase difference φ. This follows from
Eq. 6.5 and the fact that I1(φ) and I2(φ) are odd functions in φ. In addition,
we note that the position of maximum diode efficiency in flux depends on what
kind of asymmetry dominates. It can take up values > 30 %.
To obtain a SDE in a SQUID loop, an asymmetry is required. This we have
illustrated in the previous figure Fig. B.6 where out of the three asymmetry
parameters α, β, γ only one was different from zero. In the following ta-
ble we show under which conditions the SDE appears depending on all three
asymmetry parameters. Table B.1 shows that at least one symmetry has to
be broken to get the SDE effect. This is a sufficient condition for almost all
cases. There is only one exception. It arises for sinusoidal CPRs where a differ-
ence in critical currents of the two junctions is not enough for a SDE to appear.
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Table B.1. Conditions for obtaining a superconducting diode-effect (SDE).
In the first column τ∗ = 0 is used to refer to a sinusoidal CPR, while τ∗ ̸= 0
indicates a highly transmissive CPR containing higher order terms in the CPR.
If L̄ = 0, loop inductances are not considered, while they play a role in the
entries where L̄ ̸= 0. α (β) denotes the asymmetry in Ic (τ∗) of the two JJs,
while γ denotes the asymmetry in the loop inductances in the two arms of the
SQUID.

τ∗ β α L̄ γ SDE
0 n.a. 0 0 n.a. no
0 n.a. 0 ̸= 0 0 no
0 n.a. 0 ̸= 0 ̸= 0 yes
0 n.a. ̸= 0 0 n.a. no
0 n.a. ̸= 0 ̸= 0 0 yes
0 n.a. ̸= 0 ̸= 0 ̸= 0 yes

̸= 0 0 0 0 n.a. no
̸= 0 0 0 ̸= 0 0 no
̸= 0 0 0 ̸= 0 ̸= 0 yes
̸= 0 0 ̸= 0 0 n.a. yes
̸= 0 0 ̸= 0 ̸= 0 0 yes
̸= 0 0 ̸= 0 ̸= 0 ̸= 0 yes
̸= 0 ̸= 0 0 0 n.a. yes
̸= 0 ̸= 0 0 ̸= 0 0 yes
̸= 0 ̸= 0 0 ̸= 0 ̸= 0 yes
̸= 0 ̸= 0 ̸= 0 0 n.a. yes
̸= 0 ̸= 0 ̸= 0 ̸= 0 0 yes
̸= 0 ̸= 0 ̸= 0 ̸= 0 ̸= 0 yes
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C.1. Methods

The proximitized InAs 2DEG used in this project is grown starting from a
semi-insulating InP (100) substrate. A 1 µm thick InxAl1−xAs buffer layer is
used to match the lattice constant of InP to the one of InAs. The quantum
well consists of a 7 nm InAs layer sandwiched between a 10 nm (top barrier)
and a 4 nm (bottom barrier) In0.75Ga0.25As layer. The 10 nm Al layer is
epitaxially grown on top of a capping GaAs thin film without breaking the
vacuum, ensuring a pristine interface between the semiconductor and the su-
perconductor. Here we show results obtained from a wafer stack with mobility
µ = 11,000 cm2V−1s−1 at electron densities of 2.0 × 1012cm−2, measured on
a different chip coming from the same wafer.

The device is fabricated using standard electron beam lithography tech-
niques. The SQUID is electrically isolated by etching the Al layer and 300 nm
of buffer around it. First, the Al film is removed with Al etchant Transene
D, followed by a deep III–V chemical wet etch H2O:C6H8O7:H3PO4:H2O2
(220:55:3:3). Next, JJs are formed by selectively removing the Al over 150nm-
long stripes on each branch of the loop. A 15 nm-thick layer of insulating HfO2
is grown by atomic layer deposition at a temperature of 90 °C over the entire
sample. The set of gates are realized in two steps. A thin Ti/Au (5/25 nm)
layer is evaporated on top of the mesa to define the gate geometry, and then
leads and bonding pads are defined by evaporating a Ti/Au (5/85 nm) layer at
and angle of ±17° to overcome the mesa step. More information about the full
wafer stack and the fabrication procedure can be found in Ref. [239, 268, 291?
].

C.2. Extended Setup Description

The chip is mounted on a double-sided Ni/Au plated Roger© 4350 PCB screwed
onto a copper plate. A 10Ω metal film resistor is soldered on the back side of
the PCB in-between the ground plane and the central conductor of the SMP
connector. The device is glued onto the central copper area such that the mi-
crowave bond terminals are as close as possible to the PCB counterpart. The
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Figure C.1. Detailed description of the measurement setup.

PCB central conductor is bonded to one side of the SQUID, whereas the other
side is bonded to the PCB ground resulting in a resistively shunted junction
configuration. Both wire bonds are made as short as possible. Additional bond
wires connect to the differential voltage measure and gate voltage supplies.

The dc supply lines are filtered at room temperature, on the PCB, and are
thermalized to the mixing chamber plate via silver-epoxy filters that provide
a cut-off of ≈ 6 MHz. A current bias is generated by a 1 MΩ resistor in series
with a voltage source. The current couples via a bias-tee to the microwave
line that connects through the device to ground. The voltage drop across the
junction is measured differentially with a voltage amplifier and lock-in tech-
niques.

A constant voltage drop across a Josephson junction leads to an oscillating
current. The amplification chain collects this radiation signal and feeds it to a
R&S FSW SSA spectrum analyser. The ac signal is coupled via the bias-tee to
a cryogenic HEMT amplifier (nominally +40 dB gain) located on the 4K stage
that is isolated from the device with two terminated circulators. The signal is
further amplified with a room temperature amplifier (nominally +40 dB gain).
The following measurement parameters are set at the spectrum analyzer to
sense the amplified Josephson emission: detection bandwidth 20 MHz, span
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22 MHz, resolution bandwidth 20 MHz, video bandwidth 100 Hz and 1001
points resulting in a sweep time of 1 s. In addition to the sensing line, a drive
line connects to the device via a directional coupler. A Agilent MXG N5183B
signal generator is used to send an microwave tone to the SQUID tp o per-
form Shapiro step measurements. The detection bandwidth is limited by the
directional coupler to 2.5 − 8.5 GHz.

The external magnetic field flux Φextext is applied with a 3-axis vector mag-
net sourced with a Keithley 2400. Measurements were performed in a dilution
refrigerator with a base temperature of ∼ 50 mK.

C.3. Peaks amplitude dependence on External Flux

In this sections, we attempt to relate the ratio between the 4e and 2e emis-
sion peaks amplitude to the harmonics content of a junction with effective
transparency τ∗. Considering a Josepshon junction as an ac current source in
parallel with a resistor Rs[270], the power dissipated in the circuit is given by:

P = RsI
2
c

2 = Rs

2

∞∑
m=1

c2
m(τ∗), (C.1)

where Ic is the critical current of the junction and c2
m(τ∗) is the contribution

to the dissipated power coming from the m-th harmonic.

For each detection frequency, we define the amplitude of the m-th peak
Pdet,m as the difference between the peak height and the minimum of the
detected power. The ratio of the Fourier coefficients of the CPR of the junction
is directly proportional to the square root of the amplitudes of the emission
peaks: ∣∣∣c2

c1

∣∣∣ ∝
√
Pdet,2

Pdet,1
. (C.2)

In practice, additional processes increase the amplitude of higher harmon-
ics peaks compared to the one expected from the harmonic content of the
CPR [56]. At current bias values I larger but close Ic, part of the current has
to flow as normal current through the shunt resistor and displacement current
through the parallel capacitance. The interplay between super-, normal and
displacement current results in a time varying voltage over the junction that
causes emission at multiples of the fundamental Josephson frequency even in
the case of a fully sinusoidal CPR [93]. For I ≫ Ic instead, most of the cur-
rent flows as normal current, resulting in a more constant junction voltage.
Emission of photons at current bias values such that the ratio k = I/Ic is ≫ 1
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Figure C.2. a) Differential resistance dV/dI of the SQUID as a function of
external flux Φext and current bias I for symmetric junctions. Here, VG1 =
−0.865 V and VG2 = −0.845 V. b) Normalized radiation power Pdet,norm. at
fdet = 7.1 GHz as a function of external flux Φext and normalized voltage drop
over the SQUID. The map is measured as the same time as in a). We show
the periodic suppression of the 2e peak and the emergence of a dominant 4e
peak.

is then characterized by a well defined emission frequency.

At a detection frequency of 7.1 GHz, the 4e emission peak occurs at a voltage
bias of ∼ 7.34 µV. To pinpoint the current value associated with 4e emission,
we integrate the measured dV/dI curves across the range of current bias values.
Subsequently, we seek the current bias value corresponding to Vint = 7.34 µV.

FigureC.2a) shows the differential resistance dV/dI as a function of bias
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Figure C.3. a) Cut in the emission spectrum in Fig. C.2b) at zero flux.
The horizontal black dashed lines highlight, from bottom to top, the signal
baseline, the 4e and the 2e peak height. b) Cut in the emission spectrum
in Fig. C.2b) at half flux. The horizontal black dashed lines highlight, the
signal baseline and the 4e peak height. A small 2e emission signal is visible at
Vint = −hfdet/2e.

current I and external flux Φext at VG1 = −0.865 V and VG2 = −0.845 V. In
this gate voltage configuration, the two junctions are symmetric. The differ-
ence in gate positions at which balance is achieved in this case compared to
the one shown in the main text can be attributed to gate hysteresis and gate
drift occurring during the time period between measurements. At Φext = 0,
the critical current of the SQUID is Ic ∼ 0.7 µA and k is only ∼ 1.6. This
results in a time varying voltage over the SQUID, and therefore in a finite
contribution to the 4e emission amplitude that adds on top of the one coming
from the CPR of the junctions. On the other hand, at Φext = Φ0/2 the critical
current of the SQUID is Ic ∼ 0.12 µA, corresponding to a much higher current
bias to critical current ratio for the 4e emission k ∼ 9.5. The lower critical
current value also reduces the contribution from environmental modes, so that
at Φext = Φ0/2, the 4e peak amplitude can be more faithfully related to the
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Figure C.4. a) Absolute value of the ratio between the second and first
Fourier coefficients |c2/c1| as a function of the junction transparency τ . The
dashed line corresponds to the square root of the ratio between the 4e and the
2e emission peak amplitude at half and zero flux respectively. By comparing
this with the |c2/c1| ratio calculated from the fit, we extract a junction trans-
parency of 0.88. b) The ratio p (see main text) as a function of Φext extracted
from Fig. C.2b). We compare this to the evolution of the ratio |c2| /

√
c2

1 + c2
2

as a function of Φext extracted from the Fourier fit of the CPR of a SQUID
formed by two identical single channels junctions with transparency 0.88.

harmonic content of the CPR. Since each junction contribute c2
i to the emis-

sion signal, the peak amplitudes for a SQUID in the symmetric configuration
are proportional to 2c2

i .

Figure C.2b) shows the normalized radiation power Pdet,norm. measured at
the same time as in Fig.C.2a) at fixed detection frequency fdet = 7.1 GHz
as a function of integrated voltage Vint and Φext. One can observe a periodic
suppression of the 2e peak and emergence of the 4e peak.

In Fig.C.4e), we plot the second to first harmonic ratio |c2/c1| of a non-
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sinusoidal CPR as a function of the junction transparency τ∗. The Fourier
coefficient are extracted for each τ∗ by fitting the CPR with a Fourier se-
ries with 10 harmonics. The |c2/c1| ratio calculated from Eq.(C.2) using as
Pdet,1 the 2e peak emission amplitude at Φext = 0, and as Pdet,2 the 4e peak
emission amplitude at Φext = Φ0/2, corresponds to an effective transparency
of τ∗ ∼ 0.88. This is in good agreement with the effective transparency ex-
tracted for the same device using an asymmetric SQUID configuration[89].

Finally, Fig.C.4f) shows the normalized ratio p =
√
Pdet,2/

√
P 2

det,1 + P 2
det,2

as a function of Φext as extracted from Fig.C.2b). In the same figure we plot
the evolution of the ratio |c2| /

√
c2

1 + c2
2 with Φext as extracted from a fit of

Fourier series to the CPR of a symmetric SQUID with effective transparency
τ∗ = 0.88. The ratio extracted from amplitudes of the peaks is vertically
shifted relative to the fit. We attribute this shift to additional contributions
to the 4e peak originating from a time-varying voltage across the SQUID and
environmental processes.

C.4. Evolution of the 4e Peak amplitude with Gate voltages
Configuration

In the following, we fix the external flux at half flux quantum Φ0/2 and we
study the evolution of the 4e peak emission amplitude in different gate voltage
configurations.

The left panels of Fig. C.5 show the differential resistance dV/dI of the
SQUID as a function of bias current I and gate voltage VG1 at Φ0/2 for dif-
ferent values of VG2. The symmetry point is identified in each plot by the
value of VG1 at which the critical current of the SQUID reaches its minimum,
indicating the cancellation of the contribution from the first harmonics. By
increasing VG2, the critical current of the SQUID in the symmetric configura-
tion also increases.

At the same time, we measure the radiation signal from the SQUID. In the
right panels of Fig. C.5, we plot the normalized radiation power Pdet,norm at
fixed detection frequency fdet = 7.1 GHz as a function of VG1 and voltage drop
Vint. In Fig. C.6a), b) and c), we show the radiation power in the symmetric
configuration. The 4e peak amplitude increases with the critical current of the
SQUID (see Fig. C.6d)) and at the same time, the width of the peak becomes
larger. The last can be understood by looking at the k ratio: decreasing k,
the voltage drop over the SQUID at the current bias value corresponding to
the 4e emission will be less well defined, leading to a broader emission peak.
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Figure C.5. a) Differential resistance dV/dI of the SQUID as a function of
gate voltage VG1 and current bias I. The external flux is kept at half flux
quantum Φ0/2 and VG2 = −1.1 V. On the right, normalized radiation power
Pdet,norm. at fdet = 7.1 GHz plotted as a function of VG1 and voltage drop Vint
over the SQUID. b) and c) Same as in a) but for VG2 = −0.875 V and −0.7 V
respectively.

The ability to tune the amplitude of the 4e peak over a wide range is a
significant advantage of the 2D platform compared to the nanowire platform
for the realization of a parity-protected qubit. To achieve a small dephasing
rate, the Josephson energy of the second harmonics in the balanced configu-
ration must be much larger than the island charging energy. This is difficult
to achieve with a Josephson junction with only a few conduction channels.
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Figure C.6. a) b) and c) Radiation power in linear scale as a function of
Vint shown for the positions in gate voltage as indicated by the arrows in
Fig. C.5a), b) and c). d) Amplitude of the 4e emission peak in the symmetric
SQUID configuration as a function of VG2.
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Supplementary
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Figure D.1. Detailed measurement setup of a gate and flux tunable transmon
in a Blufors dilution cryostat.

D.1. Extended Setup - Gate and Flux Tunable Transmon

Figure D.1 shows the measurement setup for measuring the gate and flux tun-
able transmons discussed in Chapter 8.

The device is connected to a printed circuit board (PCB) by Al wire bonds
and mounted in a copper box thermally anchored to the mixing chamber of a
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Figure D.2. a) Phase of the transmission coefficient arg(S21) at fixed readout
frequency as a function of drive frequency fd and VG1 when the other junction
is pinched off (VG2 = −10 V). b) Same as in a) but as a function of VG2 when
VG1 = −10 V.

Bluefors cryogen-free dilution refrigerator with a base temperature of ∼ 15mK.
The copper box is protected against stray magnetic fields with an aluminium
(light green dashed box) and a permalloy shield (black dashed box).

The dc lines are filtered at room temperature with a D-type sub connector
with cut-off frequency at 640 kHz. Additional filtering is done at the 100 mK
plate through QDevil RC-filters with a cut-off at 65 kHz and finally at the
mixing chamber with silver epoxy filters.

Readout rf signals are produced and measured with either a R&S vector
network analyser or with a Zurich Instrument SHFQA. Input signals are at-
tenuated by −53 dB distributed across the cryostat plates, and then filtered
with Ecosorb at the mixing chamber before reaching the device. The qubit
drive signal is produced by an Agilent MXG N5183B signal generator de-
coupled from the dc gate line with a bias tee made of a 15 nF capacitance
and a 1.05 kΩ resistor soldered on the PCB. The drive line is attenuated by
−53 dB and also filtered with Ecosorb. Outgoing rf signals are sent through a
Silent Waves quantum-limited travelling wave parametric amplifier (TWPA)
and further amplified by a HEMT LNF-LNC1 12A (1-12 GHz) mounted on
the 4 K-plate plus a room temperature amplifier. The TWPA and the HEMT
are isolated from the device by two terminated circulators and a dual stage
isolator respectively. The pump line for the TWPA is attenuated by a total of
−52 dB and filtered with Ecosorb. It reaches the input of the TWPA via the
coupling port of a directional coupler positioned after the dual stage isolator.
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Figure D.3. a) to k) Phase of the transmission coefficient arg(S21) at fixed
readout frequency as a function of drive frequency fd and flux current Iflux at
different gate voltage configurations. VG1 is fixed to −3.47 V and VG2 varies
from −2.7 V to −2.5 V in steps of 0.2 V.

D.2. Two-tone Maps Individual Junctions

In this section we characterize the gate response of the individual junctions
forming the transmon qubit discussed in Section 8.2 of Chapter 8. Figure D.2
shows two tone spectroscopy maps as a function of drive frequency fd and
gate voltage VGi for each junction when the other is pinched off. We use this
measurement to determine gate voltage configurations where the two junctions
have similar Josephson energy. Both maps are measured with a readout power
of −50 dBm and a drive power of −30 dBm. We can tune both qubit over
several GHz. The linewidth of the qubit when only JJ2 is contributing to its
Josephson energy is wider compared to when only JJ1 is on.

D.3. Additional Two-tone Maps as a Function of Flux

In this section we show additional two-tone spectroscopy maps measured as a
function of magnetic field flux at different gate voltage configurations. We fix
VG1 to −3.47 V, corresponding to a qubit frequency of approximately 2 GHz

D
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Figure D.4. Detailed measurement setup of a gate and flux tunable Joseph-
son parametric amplifier in a Triton 200 dilution cryostat.

when JJ2 is pinched off. Then, we vary VG2 from −2.7 V to −2.5 V in steps of
0.2 V, and measure the fixed frequency resonator response as a function of a
continuous drive tone at frequency fd and flux current Iflux. This is shown in
Fig. D.3. The oscillations with flux of the qubit frequency change depending on
the asymmetry between the Josephson energies of the junctions. As expected,
the qubit frequency at zero flux (Iflux ∼ −0.8 mA) increases as we increase
VG2.

D.4. Extended Setup - Josephson Parametric Amplifier

Figure D.4 shows the measurement setup for the gate and flux tunable Joseph-
son parametric amplifier discussed in Chapter 8.

The chip is mounted on a double-sided Ni/Au plated Roger© 4350 PCB
screwed onto a copper plate. The device is glued onto the central copper area
such that the microwave bond terminals are as close as possible to the PCB
counterpart. The PCB central conductor is bonded to the resonator input pad.

Readout rf signals are produced and measured either with a R&S vector
network analyser. Input signals are attenuated by −63 dB distributed across
the cryostat plates. The pump signal is produced by an Agilent MXG N5183B
signal generator decoupled from the dc gate line with a bias tee made of a
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15 nF capacitance and a 1.05 kΩ resistor soldered on the PCB. The pump
line is attenuated by −40 dB. Outgoing rf signals are amplified by a HEMT
LNF-LNC1 12A (1-12 GHz) mounted on the 4 K-plate plus a room temper-
ature amplifier. The HEMT is isolated from the device by two terminated
circulators.

The dc supply lines are filtered at room temperature, and are thermalized
to the mixing chamber plate via silver-epoxy filters that provide a cut-off of
≈ 6 MHz.

The external magnetic field is applied with a 3-axis vector magnet sourced
with a Keithley 2400. Measurements are performed in a Triton 200 dilution
refrigerator with a base temperature of ∼ 50 mK.

D

179





E Fabrication Recipes

In the following, we list the relevant fabrication recipes to realize the devices
investigate in this thesis.

E.1. Epi-Al/InAs Devices

This recipe was developed in collaboration with Asbjørn C. C. Drachmann
from the University of Copenhagen.

Cleaving • Spin PMMA 950K (AR-P 672.045) for 40 s at
4000 rpm with 4 s ramp-up time ( ∼ 200 nm). It
will serve as a protection layer

• Cleave with a diamond tip
Cleaning • Sonicate in 1-3 Dioxolane, f = 80 kHz, P = 50 −

70% for 5 mins
• Acetone and IPA rinse, 30 s each.
• Blow dry

MESA etch
mask

• Double layer resist (repeat procedure 2 times):
– Spin PMMA 950K (AR-P 672.045) for 40 s at

4000 rpm with 4 s ramp-up time
– Bake for 3 min at 180 ◦C on hot plate

Exposure MESA • Parameters: acc. voltage = 30 kV, aperture =
60 µm, area dose = 260 µC cm−2, writefied =
1950 µm

• Resist development:
– 60 s MIBK/IPA 1:3 at room temperature
– 10 s rinse in IPA
– Blow dry
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Al etch • O2-plasma: O2-flow= 0.5 Nl/h, t = 60 s, P = 30 W
• Prepare two beakers in the warm bath at 50 ◦C:

– Beaker (50 ml) Transene D
– Beaker (50 ml) DI-water

• Prepare one beaker at room temperature:
– Beaker (500 ml) DI-water

• Wait 30 min for the Transene D and the water in
the warm bath to thermalize with the bath

• Post-bake 2 min at 120 ◦C to improve resist adhe-
sion and remove undercut

• Etch 8 s in Transene D to remove 10 nm Al, and
17 s to remove 50 nm Al.

• Stop the etching with 20 s in the beaker with
50 ml DI-water at 50 ◦C and 40 s in the beaker
with 500 ml DI-water at room temperature

• Blow dry
MESA etch • Post-bake 2 min at 120 ◦C to improve resist adhe-

sion
• In a beaker with a magnetic stirrer mix in this or-

der H2O:C6H8O7:H3PO4:H2O2 (220:55:3:3)
• After having added H2O2, wait 5 min.
• Etch 9 min to remove ∼ 300 nm of buffer from the

wafer on InP substrate, and 12 min to remove ∼
450 nm of buffer from the wafer on GaAs substrate

• Stop the etching with 1 min in DI-water
• Blow dry
• Post-bake 2 min at 120 ◦C to improve resist adhe-

sion
• Repeat Al etch procedure to remove overhanging

Al from the MESA walls
• Strip resit: 30 min in 1-3 Dioxolane. Acetone and

IPA rinse, 30 s each. Blow dry
Al etch mask • Double layer resist (repeat procedure 2 times):

– Spin PMMA 950K (AR-P 672.045) for 40 s at
4000 rpm with 4 s ramp-up time

– Bake for 3 min at 180 ◦C on hot plate
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Exposure Al • Parameters: acc. voltage = 30 kV, aperture =
10 µm, area dose = 700 µC cm−2, writefied =
400 µm. Write 50 nm wide lines.

• Resist development:
– 60 s MIBK/IPA 1:3 at room temperature
– 10 s rinse in IPA
– Blow dry

Al etch
(∼ 200 nm wide
junction)

• O2-plasma: O2-flow= 0.5 Nl/h, t = 60 s, P = 30 W
• Prepare two beakers in the warm bath at 50 ◦C:

– Beaker 50 ml) Transene D
– Beaker (50 ml) DI-water

• Prepare one beaker at room temperature:
– Beaker (500 ml) DI-water

• Wait 30 min for the Transene D and the water in
the warm bath to thermalize with the bath

• Post-bake 2 min at 120 ◦C to improve resist adhe-
sion and remove undercut

• Etch 8 s in Transene D to remove 10 nm Al, and
17 s to remove 50 nm Al.

• Stop the etching with 20 s in the beaker with
50 ml DI-water at 50 ◦C and 40 s in the beaker
with 500 ml DI-water at room temperature

• Blow dry
• Strip resit: 30 min in 1-3 Dioxolane. Acetone and

IPA rinse, 30 s each. Blow dry
Oxide mask • Triple layer resist (repeat procedure 3 times):

– Spin PMMA 950K (AR-P 672.045) for 40 s at
4000 rpm with 4 s ramp-up time

– Bake for 3 min at 180 ◦C on hot plate
Exposure oxide • Parameters: acc. voltage = 10 kV, aperture =

30 µm, area dose = 260 µC cm−2, writefied =
400 µm

• Resist development:
– 60 s MIBK/IPA 1:3 at room temperature
– 10 s rinse in IPA
– Blow dry

E
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E. Fabrication Recipes

Selective Atomic
Layer Deposition

• O2-plasma: O2-flow= 0.5 Nl/h, t = 60 s, P = 30 W
• Oxide growth at T = 90 ◦C, p = 3.2 mbar, N2

flow = 20 sccm:
– Pulse TOMAH for 0.55 s
– Wait 180 s
– Pulse H2O for 0.02 s
– Wait 180 s
– Repeat n times. 150 cycles correspond

to ∼ 25 nm
• Lift-off: 30 min in 1-3 Dioxolane. 30 min in ace-

tone at 50 ◦C. IPA rinse, and blow dry
Gates mask • Triple layer resist (repeat procedure 3 times):

– Spin PMMA 950K (AR-P 672.045) for 40 s at
4000 rpm with 4 s ramp-up time

– Bake for 3 min at 180 ◦C on hot plate
Exposure gates • Parameters: acc. voltage = 10 kV, aperture =

30 µm, area dose = 260 µC cm−2, writefied =
1950 µm

• Resist development:
– 60 s MIBK/IPA 1:3 at room temperature
– 10 s rinse in IPA
– Blow dry

Evaporation
gates (375 nm)

• O2-plasma: O2-flow= 0.5 Nl/h, t = 60 s, P = 30 W
• Evaporate 5 nm Ti with 17◦ tilt
• Evaporate 5 nm Ti with −17◦ tilt
• Evaporate 5 nm Ti with no tilt
• Repeat 3 times:

– Evaporate 50 nm Au or Al with 17◦ tilt
– Evaporate 50 nm Au or Al with −17◦ tilt

• Evaporate 50 nm Au or Al with no tilt
• Lift-off: 30 min in 1-3 Dioxolane. 30 min in ace-

tone at 50 ◦C. IPA rinse, and blow dry
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E.2. NbTiN resonators

E.2. NbTiN resonators

Cleaning • Sonicate in 1-3 Dioxolane, f = 80 kHz, P = 50 −
70% for 5 mins

• Acetone and IPA rinse, 30 s each.
• Blow dry

Mask • eBeam
– Spin EL6 (MMA(8.5)MAA) for 40 s with

4000 rpm with 4 s ramp-up time (repeat proce-
dure 2 times for ∼ 240 nm)

– Bake for 90 s at 185 ◦C on hot plate
– Spin PMMA 950K (AR-P 672.045) for 40 s with

4000 rpm with 4 s ramp-up time ( ∼ 200 nm)
– Bake for 3 min at 180 ◦C on hot plate

• Laser writer
– Spin LOR3A for 40 s with 4000 rpm with 3 s

ramp-up time
– Bake for 5 mins at 180 ◦C on hot plate
– Spin S1805 for 40 s with 4000 rpm with 3 s ramp-

up time
– Bake for 2 min at 125 ◦C on hot plate

Exposure • eBeam
– Parameters: acc. voltage = 30 kV, aperture =

30 µm, area dose = 260 µC cm−2, writefied =
1950 µm

– Resist development: 60 s MIBK/IPA 1:3 at room
temperature

– 10 s rinse in IPA
– Blow dry

• Laser writer
– Parameters: pure optical focus, P = 6 mW,
– Resist development: 50 s MF319 at room tem-

perature
– 60 s rinse in DI-water
– Blow dry
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E. Fabrication Recipes

NbTiN sputter
deposition
AJA© ATC
Orion 8 sput-
tering machine

• O2-plasma: O2-flow= 0.5 Nl/h, t = 60 s, P = 30 W
• Conditioning

Ti sputtering: Substrate shutter closed!
Ar-flow=35 sccm, PDC =100 W, p =4 mTorr,
t =20 min → Typically 20 min after the condi-
tioning the chamber pressure is < 1 × 10−9 Torr

• Pre-sputtering
NbTi+N2 sputtering: Substrate shutter closed!
Ar-flow=50 sccm, N2-flow=3.5 sccm, PDC =275 W,
p =2 mTorr, t =4 min

• Deposition
– Open substrate shutter for t =100 s

→ 20 nm thick NbTiN film (rate∼0.2 nm/s)
– Close substrate shutter and turn off the plasma

Lift-off • 30 min in 1-3 Dioxolane. 30 min in acetone at
50 ◦C.

• Sonication in acetone for 5 min at f = 80 kHz,
P = 50 − 70%

• IPA rinse, and blow dry
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E.3. GrAl resonators

E.3. GrAl resonators

This recipe was developed in collaboration with Mahya Khorramshahi from
the group of Ioan Pop at the Karlsruher Institut für Technologie, and Alessia
Pally from the Nanoelectronics group in Basel.

Cleaning • Sonicate in 1-3 Dioxolane, f = 80 kHz, P = 50 −
70% for 5 mins

• Acetone and IPA rinse, 30 s each.
• Blow dry

Mask • eBeam
– Spin EL6 (MMA(8.5)MAA) for 40 s with

4000 rpm with 4 s ramp-up time
– Bake for 90 s at 185 ◦C on hot plate
– Spin PMMA 950K (AR-P 672.045) for 40 s with

4000 rpm with 4 s ramp-up time
– Bake for 3 min at 180 ◦C on hot plate

• Laser writer
– Spin LOR3A for 40 s with 4000 rpm with 3 s

ramp-up time
– Bake for 5 mins at 180 ◦C on hot plate
– Spin S1805 for 40 s with 4000 rpm with 3 s ramp-

up time
– Bake for 2 min at 125 ◦C on hot plate

Exposure • eBeam
– Parameters: acc. voltage = 30 kV, aperture =

30 µm, area dose = 260 µC cm−2, writefied =
1950 µm

– Resist development: 60 s MIBK/IPA 1:3 at room
temperature

– 10 s rinse in IPA
– Blow dry

• Laser writer
– Parameters: pure optical focus, P = 6 mW,
– Resist development: 50 s MF319 at room tem-

perature
– 60 s rinse in DI-water
– Blow dry
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E. Fabrication Recipes

Granular Alu-
minium deposi-
tion
Balzers-Pfeiffe©

PLS 500 Labor-
System evapora-
tion machine

• O2-plasma: O2-flow= 0.5 Nl/h, t = 60 s, P = 30 W
• Conditioning

– Ti evaporation 25 nm. Substrate shutter closed!
– Typically after the conditioning the chamber

pressure is ∼ 1 × 10−7 mbar
• Deposition

– Parameters: evaporation rate = 1.4 Å s−1, pO2 =
1.1 × 10−5 mbar,

– Open substrate shutter
– Deposit 20 nm Al
– Close substrate shutter

Lift-off • 30 min in 1-3 Dioxolane. 30 min in acetone at
50 ◦C.

• Sonication in acetone for 5 min at f = 80 kHz,
P = 50 − 70%

• IPA rinse, and blow dry
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