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1 Introduction

The field of quantum- and nanoelectronics has driven solid-state physics by
exploring quantum states and low dimensionality. Motivated on one hand
by fundamental research purposes, this field has brought remarkable break-
throughs in engineering and controlling quantum states, broadening our un-
derstanding of nature. On the other hand, the field is thrust by applications in
computation and sensing, witnessed by the miniaturization problem proposed
by Moore [1, 2] and the rise of quantum computation [3–5].

A specific area providing fruitful outcomes to both ends is the physics of
hybrid devices, particularly, semiconductors-superconductors devices. These
have attracted large interest in fundamental research, for example as potential
hosts of topological quantum states [6–9], thermoelectrics [10], or even as a
source of spin-entangled electron pairs [11]. From a technological point of
view, these devices can be used as gate tunable qubits [12], in sensing small
magnetic fields [13] and radiation [14].

So far, hybrid devices have been successfully implemented in many systems
such as metals [15], molecular-beam epitaxy (MBE) grown quantum wells
[16] and nanowires [17]. With the discovery of graphene [18] a new class of
materials came into play, the two-dimensional materials [19].

Two-dimensional (2D) materials represent strong candidates for high per-
formance devices at the atomic limit [20], being compatible with silicon chip
fabrication [21]. On a fundamental research level 2D materials are revolu-
tionizing the field of quantum electronics and optics, with their extraordinary
properties, such as strong spin-orbit interaction, spin and valley degrees of
freedom [22, 23], the possibility of creating complex vertical heterostructures
[24] and exploration of the twist angle which opened a whole new field of re-
search [25]. A step further could be given by combining the exotic properties
of these 2D materials with superconducting hybrid devices. This has success-
fully been done for graphene [26] and has shown promising results of other
semimetals [27], however, very few results have been reported for 2D semicon-
ductors [28, 29]. The immediate benefit of having a gate tunable system is
the fine control over the charge carriers in the device as a whole or as locally
defined nanostructures [30].
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1. Introduction

In this dissertation, we introduce platforms for hybrid semiconductor- super-
conductor devices based on 2D semiconductor crystals, namely molybdenum
disulfide (MoS2) and indium selenide (InSe). These are combined with su-
perconductors such as aluminium, molybdenum rhenium, and tin. The main
challenge lies in achieving reliable electrical contact to the 2D semiconductors
and obtaining coherent coupling across the material interface. The properties
of these devices are explored in spectroscopy measurements which show evi-
dences of quantum coherent phenomena. Additionally, we demonstrate control
over the semiconductor by a well-defined nanostructure, a quantum point con-
tact, which can be used for probing superconducting proximitized regions [31],
but for many other applications.

Outline of the thesis
We start the thesis by providing the theoretical background in low dimension
transport, superconductivity and 2D semiconductors in chapter 2. Chapter 3
describes the techniques employed for fabricating our devices including the iso-
lation of the 2D crystals, stacking of heterostructures, contacting techniques,
and a description of the measurement setup. The experimental part starts
in chapter 4. We engineer confinement potential in the 2D system using a
quantum point contact and probe its effects on the system. Chapter 5 and 6
are dedicated to superconductor-semiconductor hybrid devices. In chapter 5,
we introduce a novel contacting technique, now extended to hybrid devices.
We probe the superconducting energy gap in temperature and magnetic field
in spectroscopy measurements. Additionally, we observe evidences of coherent
transport, expressed in quantum interference effects phenomena. In chapter
6 we demonstrate the versatility of the contacting technique by employing it
to InSe. The quantum interference effects present some divergences from the
MoS2 devices, which are discussed in terms of the semi-classical model. Lastly,
in chapter 7 we summarize the findings and propose future experiments.

2
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2 Theoretical background

In this chapter, we discuss the relevant theoretical concepts necessary to un-
derstand the experiments in this work. The electrical properties and physical
phenomena are briefly described with references for further readings. We start
by introducing 2D materials, in particular, molybdenum disulfide (MoS2) and
indium selenide (InSe). We describe the fundamental physical mechanisms in
low-dimensions structures, such as quantum point contacts and quantum dots.
After that, we give a short introduction to superconductivity and its effects in
normal-superconductor junctions.

3



2. Theoretical background

2.1. Electronic transport phenomena

We start by providing some basic quantities of electronic transport through
2D systems which will be used later on, such as the conductivity, mobility and
charge carrier density.

2.1.1. Conductivity in the Drude model

For the mean free path shorter than other relevant length scales, like the de-
vice size or the coherence length, the Drude model can be used to describe the
transport properties [32]. We consider a non-interacting electron gas in a solid
with randomly distributed scatterers. The electrons are accelerated by an elec-
tric field E, momentum is randomized by scattering. The average momentum
gained between two collisions is ⟨p⟩ = eEτ , where e is the electron charge and
τ is an average time between collisions, called mean free time. Assuming a
density n of electrons in this conductor, a current density is expressed by

j = en( ⟨p⟩
m∗ ) = ne2τ

m∗ E (2.1)

where m∗ is the effective mass of the electrons in the periodic potential of
a solid. The quantity connecting the current density j and the electric field
applied E is the conductivity, defined as

σD = ne2τ

m∗ . (2.2)

The resistivity ρ is defined ρ = 1/σD. An important quantity is the mobility,
which is defined as

µ = eτ

m∗ , (2.3)

such that σ = neµ. The scattering time τ provides a characteristic length
scale between the scatterers, known as mean free path ℓmfp, which characterizes
the average length an electron can travel without relaxing its momentum and
its given by

ℓmfp = vF τ (2.4)

where vF is the Fermi velocity of the electrons carrying current vF = ℏkF /m
∗.

The Fermi wavevector kF is given by the Fermi energy EF by

kF =
√

2m∗EF

ℏ2 . (2.5)

4
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2.2. Two-dimensional materials

2.1.2. Charge carrier density and field effect mobility
To estimate the number of charge carriers induced by an applied voltage at
the gate Vg, we consider a simple plate capacitor model in 2D semiconductor
devices. The charge carrier density is then simply

n = c

e
(Vg − Vo) (2.6)

with the capacitance per unit of area c = ε0εr/d, where ε0 (εr) is the
vacuum (relative) permittivity of the dielectric material and d the thickness of
the dielectric material. Vo is the depletion voltage, associated to the bottom
of the conduction band (CB). We use εSiO2 ≈ 3.9 and εhBN ≈ 4.

From the gate voltage response of a semiconductor and using equations 2.2
and 2.6, one has a recipe to obtain the field effect mobility µF E

µF E = dσ

dVg
· d

ε0.εr
(2.7)

2.1.3. Density of states in two dimensions
For a parabolic dispersion relation in two dimensions centered at gamma point

E = ℏ2k2

2m∗ (2.8)

k are the electron wavenumber in a plane kx,y. For a given energy EF the
number of states available in the system per unit of area is given by the sum
in reciprocal space of the available kx,y

N(E) = 2 (for spin) · 1
A

∫ k(E)

0
d2k = m∗

πℏ2

∫ E

0
dE′ = m∗

πℏ2E (2.9)

with the density of states in two dimension

D2D(E) = dN(E)
dE

= m∗

πℏ2 . (2.10)

2.2. Two-dimensional materials

A two-dimension electron gas (2DEG) is typically obtained in a quantum well
by offsets in the band structure at the interfaces of materials such as the in-
terface of GaAs/AlGaAs [33] or InAs/InGaAs [34]. The band offsets form
effective potential barriers in the out-of-plane direction confining the freedom
of electrons to a two-dimensional plane. These structures are grown by Molec-
ular Beam Epitaxy, a costly method in resources and personnel. The isolation

2
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2. Theoretical background

of a single layer graphite in 2004 [18], graphene, opens a new opportunity to low
dimensionality. 2D materials are crystals that can be thinned down to a sin-
gle layer of atoms, producing natural platforms for 2DEGs. Since then, many
other materials joined the 2D materials family [19]. The semiconductors MoS2,
InSe, black phosphorous, insulators such as hexagonal boron nitride (hBN),
and even superconductors such as NbSe2 and PdTe2. These materials are all
composed of planes of covalent bonds interconnected by van der Waals force
to the adjacent planes. Besides the possibility pf mechanical exfoliating them
to thinner layers, it is also possible to create heterointerfaces between materi-
als with different lattices without causing interface strain [24], which gives a
greater freedom of choice compared to MBE and similar techniques. Beyond
the vertical degree of freedom, 2D materials founded the field of twistronics,
by engineering band structures using the twist angle between crystal planes
[25]. In this work, we focused on two 2D semiconductors, namely MoS2 and
InSe.

2.2.1. Molybdenum Disulfide

2H phasea) b)

Mo
S

Top view

Side view

Figure 2.1. Illustration of the crystal structure of 2H phase MoS2 in different
perspectives. Adapted from [35, 36].

Transition metal dichalcogenides (TMDCs) are interesting materials for
their large spin-orbit interaction, large effective electron masses, optical activ-
ity, and potentially large electron mobility. These materials have a chemical
composition of MX2, where M is a transition metal (such as molybdenum,
tungsten, niobium, etc.) and X is a chalcogen (sulfur, selenium, tellurium,
etc.). Every M atom forms covalent bonds to X atoms, such that a plane
of M atoms is sandwiched between planes of X atoms, as shown in Figure

6
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2.2. Two-dimensional materials

2.1. Within the TMDC family MoS2 is the most investigated semiconductor.
Like the other members of its family, MoS2 has in-plane six-fold symmetry of
rotation, with atoms placed in a honeycomb from top view.

Every Mo atom is bonded to six S atoms with a spacing of about 2.5 Å. The
single layer MoS2 is connected to the adjacent one by van der Waals attraction
with a spacing of about 0.6 Å.

MΓ ΓK

K K’

Q

En
er

gy

bulk

a) b)

monolayer

E

k ΔECB

c) d)

Figure 2.2. a) Band structure of bulk and monolayer MoS2. b) Detail of the
spin-split close to the CB minimum around the K points. c) Bulk crystal d)
Optical image of monolayer MoS2. Scalebar is 6µm.

The six-fold symmetry is also reflected in reciprocal space. The band struc-
ture of MoS2 is depicted on Figure 2.2. For a monolayer MoS2 there is a direct
band gap with band edges located at the K and K

′ points of the Brillouin
zone (BZ) about 2 eV. For multilayer, the CB minimum shifts to the Q points
of BZ, with three inequivalent Q points, resulting in an indirect band gap.

For thin crystals of MoS2 the parity of the layer number determines the pres-
ence of an inversion symmetry in the crystal. An odd number of layers do not
have an inversion center for the chalcogenide atoms. As a consequence, mono-
and trilayer MoS2 present an intrinsic spin-orbit interaction and a spin split-
ting in the bands [37]. Calculations of an intrinsic spin-orbit interaction yield
in a spin-split in opposite directions for K and K′ points of about 3 meV [38].
However, experimental data points to values five times higher [39]. The two
subbands have slightly different effective masses, i.e. in different curvatures in
the dispersion relation, as shown in Figure 2.2. The spin and valley degrees of
freedom make MoS2 an interesting platform for spin- and valleytronic devices
[40].

MoS2 is usually a n-doped semiconductor [38]. The mobility encountered in

2
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2. Theoretical background

hBN encapsulated devices reaches up to µ ∼ 5000 cm2/Vs [39]. Nevertheless,
recent advances in synthesis resulted in electron mobilities above 44000 cm2/Vs
[41].

Electron-electron interactions play an important role in MoS2. At low charge
carrier density, there is evidence for a first-order phase transition to a ferro-
magnetic phase due to inter-valley exchange scattering [42]. At high CB oc-
cupation, utilizing ionic liquid gating, MoS2 becomes a superconductor [43].
At such carrier concentration, it is thought that phonon-mediated coupling
overcomes Coulomb repulsion turning the system into the superconducting
state.

Although MoS2 can exhibit high mobility, it is also known for containing
several types of crystal defects. The most common are S vacancies, which are
extensively studied [44–46] and in some cases even engineered [47, 48].

2.2.2. Indium Selenide

1L

M K

Top view

En
er

gy

Side view

a) b)

c)In

Se

Γ

bulk

monolayer

Figure 2.3. a) Illustration of the crystal structure of γ-phase InSe and stack-
ing of bilayer in ABC configuration. Adapted from [49]. b) Band structure of
bulk and monolayer InSe. Adapted from [50]. c) Optical image of exfoliated
InSe flakes. Scalebar is 10µm.

Another group of 2D materials is the III-VI post-transition metal monochalco-
genide such as gallium selenide and indium selenide (InSe). InSe attracted
interest among the 2D semiconductors due to high mobility ∼12700 cm2/V s
and small effective mass m∗

e ≃ 0.14me [49].
Its essential layer is composed by a In-Se-Se-In sheet of atoms connected by

covalent bonds, as shown in Figure 2.3 a).

8
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2.2. Two-dimensional materials

InSe is very promising for optical applications. It possesses a direct bandgap
from bulk (0.26 eV) to bilayer (0.99 eV), which corresponds to photon energies
from near-infrared to visible. The monolayer InSe has an indirect bandgap
with CB minimum at the Γ point and a Mexican hat shaped valence band
(VB), shown in Figure 2.3 b).

Recent results demonstrate a field effect transistor based in 2D InSe with
gate efficiency, ohmic current injection, and channel length reaching the cur-
rent state-of-the-art Si standards [51]. The Mexican hat-shaped VB could host
ferromagnetism, superconductivity, and topological quantum phase transition
[52]. Quantum hall effect has been observed for up to 10 layers flakes [49]. InSe
possesses Rashba type spin-orbit interaction tunable with electric field and
layer number [53]. Gate confinement nanostructures have been demonstrated
experimentally [54, 55]. Predictions exist of engineering superconductivity in
InSe by various mechanisms, such as twisting [56], doping [57] or straining
[58].

2.2.3. Schottky barrier formation at metal-2D semiconductors
interface

At the interface between a metal and a bulk semiconductor, there is an abrupt
change in the band structure and the Fermi energy. Once metal and semicon-
ductor are put in contact, carriers are exchanged until an equilibrium distri-
bution is reached, where the electrochemical potential becomes equal across
the interface and far in the bulk of the two materials. This change in the
chemical potential across the interface, compared to the bulk values, requires
a compensating change in the electrical potential bending the semiconductor
band. The result is an energy barrier, called Schottky barrier, which in a first
approximation is calculated by the difference of the metal work function and
the semiconductor electron affinity [59].

The situation for 2D materials differs from the 3D case since the thickness
is much shorter than the depletion width. The Schottky barrier energy, in this
case, is thought to be the difference between the metal work function energy
and the conduction band energy of the 2D semiconductor [60]. The literature
uses the term Schottky barrier in the context of 2D materials as a term to
describe all the mechanisms that can induce Fermi level pinning to the band
gap or that cause worsening of the contact quality. These are several factors,
which are summarized below starting from a dirty regime, that is when defects
modify the electronic properties of the system, to a clean regime, where we
consider perfect interfaces and crystal lattices.

Starting from the dirty regime, defects induce Fermi level pinning by several
mechanisms [60], namely chemical reactions and intercalation of the contact
material into the 2D semiconductor, such as shown in XPS characterization of
TMDCs contacted by Ti, Ir, Sc and Cr [61–63]. The intercalation and reac-

2
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2. Theoretical background

RM

Rch

RM

Rjun RjunRch

Rint Rint

´ Rch
´

RM

Rch

RM

Rint Rint

´ Rch
´

Figure 2.4. Schematic of the generalized resistance network that generates
a Schottky barrier in a thin semiconductor FET.

tion of Pd in WTe2 is also well studied and used to induce superconductivity
in the system [64, 65]. High-temperature metal deposition can also introduce
defects by kinetic damage to the 2D semiconductor [66]. Direct exposure of
TMDCs to polymers is known to cause degradation of the interfaces [67]. Va-
cancies are commonly present in 2D materials and also a cause of the Schottky
barrier, as they generate defect states up to 0.4 eV below the CB minimum
in MoS2 [68, 69]. Strain is also known for impacting the band structure of
2D semiconductors [58, 70, 71], which can also influence the contact quality
[72, 73].

Even if one assumes an entirely clean interface between the 3D metal and the
2D semiconductor, there are still mechanisms for a barrier formation such as
metal induced gap states (MIGS), interface dipoles and tunneling through van
der Waals gap and the classical charge exchange mechanism. MIGS are formed
when a semiconductor is in proximity to a metal. The wavefunction of the
electrons in the metal causes a perturbation in the thin semiconductor, giving
rise to new states in its band gap by hybridization [74, 75]. The formation of
interface dipoles arises from charge transfer [76], pushback effect [77] or the
energy level broadening effect [78], which leads to shifts in the energy levels.
In addition, the presence of a physical gap, that can be as large as a few
angstroms, realized by the dangling bonds in the chalcogenide atoms creates
a short vacuum segment for the electrons to tunnel [79].

The effect on transport experiments is summarized in the resistance network
shown in Figure 2.4. Starting from the left electrode represented by the net of
resistors RM, the tunneling process of electrons from this electrode to the 2D
material is described by the parallel resistors Rint at the interface. Inside the
2D material, below the metal, we have a sheet resistivity different from the
free semiconductor symbolized by the resistors R′

ch. A resistor Rjun separates
the junction between different doped parts of the 2D material. Finally, Rch
represents the sheet resistance of the open 2D channel [80]. The ratios between
Rint and R′

ch determines how much of the current flows through the metal only

10
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2.3. Transport through narrow channels, Quantum Point Contacts

passing through Rjun or through the parallel Rint and R′
ch. The transfer length

characterizes the distance over which the current is transferred from the metal
contact to the semiconductor and can also determine whether the area or
length of the contacts dominates the interface resistance.

There is no consensus over the magnitude of the transfer length of MoS2,
with both, few nanometers [81–83] and micron-scale [84, 85] being reported.
Some publications suggest a dependence on the crystal thickness [86], a de-
pendence on the presence of oxide layers [87] or even asymmetric scaling of
source and drain leads [88].

Theoretical predictions in the literature suggest that contacting the edge
of the 2D materials would improve the contact quality [89, 90], reducing the
barrier strength, due to a reduction of the vdW gap and the formation of
MIGS. However, edge contacts showed no advantage over top contacts so far
[91].

2.3. Transport through narrow channels, Quantum Point
Contacts

Figure 2.5. Quantum point contact conductance as a function of gate voltage.
Figure from [92].

In 1988, two groups [92, 93] independently demonstrated that the conduc-
tance of a current passing through a narrow clean constriction in a 2DEG
occurs in quantized values which were multiples of what is now called conduc-
tance quantum.

In the transverse direction, the splitgate confines the electrons in a poten-
tial well of about the size of the Fermi wavelength at discrete energies. By
tuning the voltage applied to the gates one can control the number of modes

2
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2. Theoretical background

occupied. For every mode, the conductance adds a step of e2/h to the total
conductance. For N modes occupied, with spin degeneracy of 2, the total
conductance through the constriction is

GQPC = 2 · e
2

h
N (2.11)

This narrow quasi-one dimensional constriction is known as quantum point
contact (QPC). To understand the quantization of the conductance in detail
we consider a long wire (in z-axis) with finite width (in x) and height (in y-
axis). A three-dimension, time-independent Schrödinger equation describing
the electrons in the wire is[

− ℏ2

2m∇2 + V (x, y, z)
]
ψ(x, y, z) = Eψ(x, y, z). (2.12)

Here we consider an uniform wire, where the potential V (x, y, z) does not
depend on the current direction along z-axis. This differential equation is sep-
arable into solutions in z-direction and in the xy-plane, such that the electron
wavefunction is

ψ(x, y, z) = χn(x, y) · 1
L
eikn

z z (2.13)

the prefactor 1/L for normalization in the current. For the cross-section
direction, we consider a quadratic dispersion relation, such that

εn(kx, ky) = ℏ2

2m∗

(
k2

nx
+ k2

ny

)
(2.14)

The wave numbers kn
z = ±

√
2m
ℏ2 (E − εn) describe the electrons carrying

current in the wire from the left (right), only if E > εn, otherwise it describes
evanescent waves. From the electronic wavefunction, we define the group ve-
locity as

vnz = 1
ℏ
dE

dknz

= ℏkn

m
(2.15)

Now considering a non-equilibrium net current generated by a voltage bias
VSD applied at the ends of the wire, we can calculate the current carried by
single mode n with

In = e

2π

∫ ∞

0
D1D vn [fL(E) − fR(E)] dE (2.16)

where fL,R(E) are the Fermi distribution in the reservoirs on left and right
side of the wire. The density of states in one dimension DoS1D = 1/(dE/dk)
cancels the energy dependence with the group velocity vn leaving

12
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2.3. Transport through narrow channels, Quantum Point Contacts

In = e

h

∫ ∞

0
[fL(E) − fR(E)] dE (2.17)

The difference in Fermi occupations close to T = 0 can be taken as [fL(E) −
fR(E)] = e(µL − µR) = eVSD, which results in

In = e2

h
VSD (2.18)

G = I/VSD we obtain Gn = e2/h for the conductance of a single mode. For
a Fermi energy such that N modes are in the "bias window" between µleft
and µright the total conductance is

GN = e2

h
N (2.19)

Now we adapt this picture to a two-dimensional conductive plane and we
make some assumptions for the shape of confinement potential V (x, y, z) cre-
ated by splitgates.

2.3.1. Parabolic potential approximation
We define the y direction perpendicular to the current flow in the constriction
and x along the current flow. The potential landscape throughout a QPC can
be understood in its simplest form as given by saddle point with parabolic
shapes along each axis, expressed by

Vp(x, y, z) = −1
2m

∗ω2
xx

2 + 1
2m

∗ω2
yy

2 + V0) (2.20)

where ωx and ωy represent the curvatures in x and y, respectively, and V0 is
an offset from the bottom of the potential. In the y direction the eigenenergies
are those of a harmonic oscillator

Ey(n) = ℏωy(n+ 1/2) (2.21)

where n ∈ N0 represents the QPC modes. The transmission through the
potential also depends on the curvature on x direction and is given by [94]

Tn = 1
1 + e−2πεn

, where εn = E − ℏωy(n+ 1/2) − Ez

ℏωx
. (2.22)

With that, we can rewrite the conductance of the QPC as

G =
∑

n

Tn(EF ) (2.23)

summing up to the N-th occupied mode until the Fermi energy EF .
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2. Theoretical background

2.3.2. Hard wall potential approximation
We now consider a QPC potential with a sharper confinement, the hard wall
potential. In this case, we describe the potential as

Vh =
{
V0, if − w/2 ⩽ y ⩽ w/2
∞, otherwise

(2.24)

where W is the width of the potential. The energy separation for the transver-
sal modes is given by the particle-in-a-box solutions

Ey(n) = π2ℏ2n2

2m∗W 2 + V0. (2.25)

Here the spacing between energy levels increases for increasing n. So far
we considered perfect transmission and no scattering between the modes. But
if the transverse mode energies εn depend on x, the eigenmodes in the QPC
center become coupled [95]. For example for the hard wall potential we obtain[

− ℏ2

2m
∂2

∂z2 + εn(E) − E

]
ψn(x, y, z) = Λnmψn(x, y, z) (2.26)

where
Λnm = ℏ2

2m

∫
χmz(y)

[
2 ∂

∂z
χnz

∂

∂z
+ ∂2

∂z2χnz

]
(2.27)

mixes the longitudinal modes. This can cause a non-unitary transmission
of the QPC modes and fluctuations in the step-like conductance. If the lon-
gitudinal wavefunction smoothly varies across the z direction we call it the
adiabatic approach where Λnm ≈ 0.

Further informations and detailed derivations of these results can be found
in Refs. [32], [95] and [96].

2.4. Coulomb blockade and Quantum Dots

Considering a conductive island connected to its environment through small or
highly resistive junctions, the energy U ∼ e2/C for charging a single electron
into the island becomes relevant for small capacitance C. If this energy is
higher than the thermal energy kbT and U/e is higher than the voltage across
the junction, no current can flow, this regime is called Coulomb blockade.
Quantum dots (QD) are small conductive islands where the motion of electrons
is confined in all spacial dimensions, creating quantized energy levels, related
to the quantized kinetic energy of the orbitals allowed for the electrons in the
confinement. The spacing between these energy levels is often called single-
particle level spacing δE and is usually comparable to the changing energy of
the QD. Consequently, the energy required to add an electron to the QD is
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2.5. Superconductivity

Eadd = µN+1 − µN = e2/C + δE. In general, a charge can be transfer to a
QD when at least one of the energy levels lies in the voltage bias window of
the leads as shown in Figure 2.6. Additionally, the electrochemical potential
of the energy level in the QD can be tuned via an electric voltage, e.g. applied
by a gate Vg. With these two parameters, one obtains the so-called Coulomb
diamonds represented in Figure 2.6. The blue lines represent the edge of the
diamond in which the transport is blocked. The panels I to III show different
biasing conditions in which either source or drain aligns to one of the energy
levels, changing the dot occupation by a charge e. The other features in Figure
2.6 are beyond the scope of this work.

VSD

VBG

S
D Eadd EC

N+1 N+2N

I

II

III

IV

μ(N+1)

δEμ(N)

S
D

μ(N+1)

μ(N)

S
D

μ(N+1)

μ(N)

S
D

μ(N+1)

μ(N)
μ*(N)I III

II

IV

Figure 2.6. Coulomb blockade of a QD. The diagrams from I to IV show
different source S and drain D configurations with respect to the quantized
levels in the QD. At the center a plot of the differential conductance as a
function of the bias voltage VSD and the gate voltage VBG. The blue lines
describe the edges of the Coulomb diamonds where the transport is blocked.
The occupation of the QD is marked by N , N + 1, etc. Adapted from [97].

If several QD are present in a sample in a disordered form, their Coulomb
diamonds overlap in a chaotic pattern, often referred as Coulomb shards.

2.5. Superconductivity

In 1911, three years after being able to first condense Helium to the liquid
phase, Kamerlingh Onnes observed that around 4.2 K, the electrical resistance
of mercury dropped from 0.1 Ω to unmeasurably small values [98]. This phe-
nomenon is now known as superconductivity. Another important property
observed in superconductors is the complete expulsion of magnetic fields, this
perfect diamagnetism is known as the Meissner effect [99]. A phenomenolog-
ical explanation was provided by London in 1937 [100], who also introduced
the London penetration depth λL, a length characterizing the scale over which
the fields are expelled. As observed initially for mercury, superconductivity

2
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2. Theoretical background

is quenched above a certain critical temperature Tc, but also above a certain
critical field Bc. Superconductors can be classified in type I, fully expelling
magnetic fields up to Bc, or type II, hosting vortices that allow penetration of
discrete magnetic flux quantum Φ0 = h/2e.

In type II superconductors, the fields are expelled completely up to Bc1,
while for larger fields discrete normal regions develop, corresponding to one
superconducting flux quantum (charge 2e). At the second critical field Bc2 >
Bc1, the superconductivity is then fully suppressed (with the possible exception
of surface superconductivity). For superconductors in general there is also a
finite amount of supercurrent that can be carried without dissipation, the
critical current Ic.

E

EF

DS

+Δ

-Δ

a) b)

Figure 2.7. a) Resistance of mercury as a function of temperature. Adapted
from [98]. b) Quasi-particle density of states of a superconductor given by
equation 2.28. The Cooper pair condensate sits at the Fermi energy EF .

In 1957, Bardeen, Cooper, and Schrieffer provided a microscopic under-
standing of these phenomena (BCS theory [101]). An attractive interaction
mediated by phonons pairs electrons of opposite momentum and spin in so-
called Cooper pairs. These correlated pairs of electrons possess a common
ground state, called the BCS ground state. Single quasiparticle excitations
can be created from the superconductor ground state above a certain energy
∆. The density of states for the quasiparticle excitations is described by

DS(E) =

DN (EF ) |E − EF |√
(E − EF )2) − ∆2

, if |E − EF | > ∆

0, otherwise.
(2.28)

DN is the density of states in the normal state. Figure 2.7 b) plots DS(E).
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2.5. Superconductivity

The zero density of state for quasiparticles within |∆| is also known as the
energy gap of a superconductor. Superconductivity can also be described by
a heuristic macroscopic wavefunction introduced by Ginzburg and Landau
[102], who introduced a global wavefunction ψS representing the Cooper pair
condensate, as

ψS(r, t) =
√
ns((r, t))eiφ(r,t), (2.29)

where ns is a density of Cooper pair and φ is the macrocopic phase of the
superconductor. The Ginzburg-Landau theory also includes the coherence
length ξ which gives a characteristic length for changes in the phase of ∆. For
bulk superconductors the coherence length is given by ξ0 = ℏvF /π∆ and in
the dirty limit ξ =

√
ℏD/2∆.

Further readings in superconductivity can be found in Ref. [103].

2.5.1. Josephson effect

In 1962 Brian D. Josephson proposed that superconductors connected by a
short non-superconducting segment could still carry a supercurrent [104]. Be-
fore this prediction, it was taken that only single electrons could tunnel in-
dependently through a barrier, but as it was later observed by Anderson and
Rowell, Cooper pairs could also tunnel in a correlated manner through a weak
link carrying a supercurrent [105].

The current across a Josephson junction driven by the phase difference be-
tween the two superconductors φ1 − φ2, as described by the first Josephson
relation given by

I(φ) = Ic sin(φ), withφ = φ1 − φ2 (2.30)

where Ic is the critical current of the junction. This effect is known as the
DC Josephson effect. If a voltage is applied across the junction, it causes a
time-dependent variation of the phase difference

dφ

dt
= 2eV

ℏ
. (2.31)

Inserting into the first Josephson relation results in

I(V, t) = Ic sin(φ0 + 2eV t/ℏ). (2.32)

A voltage bias causes a sinusoidally oscillating current across the junction,
known as AC Josephson effect.

For further readings in Josephson effect physics refer to [95] and [106].

2
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2. Theoretical background

2.5.2. SNS junctions

The weak link can be realized by an insulating oxide layer (SIS junctions)
acting as a tunnel barrier, a constriction in a superconductor (SS′ S junctions),
or a normal conductor (SNS junction). Below we describe the microscopic
process involving SNS junctions.

Andreev Reflection and Transmission through a N-S interface

As shown in equation 2.28 for energies within the superconducting gap i.e.
(E − EF ) < ∆ the quasiparticle density of states in a superconductor is zero,
depicted in Figure 2.8 a). Though it is not allowed for quasiparticles in the nor-
mal metal to tunnel to the superconductor, a process called Andreev reflection
(AR) allows the transmission of two charges. An electron with wavenumber
k on the normal metal hits the interface to a superconductor and it is retro-
reflected into a hole, which is the time-reversed of the original electron with
wavenumber k. The charge 2e missing at the normal side allows the creation
of a Cooper pair (with net momentum zero) on the superconductor side. The
process is depicted in Figure 2.8 b). The inverse process can also occur, where
a charge of 2e in form of a Cooper Pair vanishes from the superconductor side
by absorbing a hole from the normal side and turning into an electron.

A description of the transmission probabilities of the Andreev process was
provided by Blonder, Tinkham, and Klapwijk (BTK) [107]. They depend on
the transmission coefficient T of a single electron, which is a property of the
interface and varies from 0 to 1. In the BTK model, T is given by a repulsive
potential barrier Hδ(x), where H is a barrier height. We can then write the
transmission as

T = 1
1 + Z2 where Z = H/ℏvF . (2.33)

here vF is the group velocity at the Fermi energy. Considering E < ∆, the
coefficient A, the probability of an AR, and B, the probability of a normal
reflection at the N-S interface are given by

A = ∆2

E2 + (∆2 − E2)(1 + Z2)2 (2.34)

B = 1 −A. (2.35)

Figure 2.8 c) shows the reflection probabilities A and B as a function of
energy for different values of transmission coefficients T at the interface. Above
the energy gap there are transmission C, of an electron with a wavevector on
the same side of the Fermi surface and the transmission D, of an electron with
a wavevector crossing through the Fermi surface.
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Figure 2.8. a) Schematic of normal- and b) Andreev reflection at the N-S
interface. DoS of the superconductor are represented by the shaded areas. c)
to f) Probabilities A,B,C,D as a function of energy for the indicated trans-
mission values. Adapted from [107].

The current through an N-S interface with V applied bias is written in terms
of these coefficients by

I = N0
e

h

∫ ∞

−∞
[1 +A(E) −B(E)] · [f(E) − f(E + eV )]dE. (2.36)

where N0 is the normal state conductance.
If the interface is not clean, such that T ≪ 1, the probability of an AR

decays proportionally to T 2 for E ≪ ∆, meaning that this process is severely
suppressed.

The coherence between incident electron and retro-reflected hole in an AR
results in a non-zero probability of finding a Cooper pair in the normal con-
ductor. Therefore, the Cooper pair density decays continuously on the scale of
the BCS coherence length ξ. This ‘leak’ of Cooper pairs into normal conductor
is known as the proximity effect [108].

Andreev bound state

After an AR the hole reflected into the normal conductor is free to travel to
another N-S interface, say in series with the previous. There, the Andreev
process can take place once more converting the hole into an electron and
transmitting the change 2e into the superconductor. The electron can restart
the process creating consecutive loops of ARs at the interfaces. If the electron
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Andreev bound state

e 2e2e k

-k
h

N SS

Figure 2.9. Schematic of consecutive AR generating a bound state in the
normal conductor.

(and hole) partial waves interfere constructively, discrete states develop, called
Andreev Bound States (ABS), depicted in Figure 2.9. For every AR the phase
acquired for an electron into a hole ϕeh and for a hole into an electron ϕhe are

ϕeh = − arccos(E/∆) + ϕS , andϕhe = − arccos(E/∆) − ϕS (2.37)

The total phase acquired in a full cycle of reflection is

ϕtot = (ke − kh)L+ ϕ+ 2 arccos(E/∆) (2.38)

here the first term is a phase gained within the normal region with length L,
and ϕ is the phase difference between the two superconductors. For construc-
tive interference ϕtot = 2πn with n ∈ Z. We can solve for the energy in the
short junction limit (L ≪ ξ) which results in

EABS
± = ±∆ cos(ϕ/2) (2.39)

The total current through the SNS junction (in the short junction limit,
L ≪ ξ) is given by the Ambegaokar-Baratoff relation between the normal
state resistance and the critical current of the junction [109] as

ISNS = π∆ sin(ϕ)
2eRN

tanh
(

∆
2kBT

)
(2.40)

In the long junction limit (L ≫ ξ), EABS is determined by the phase
acquired by the quasiparticles in the normal conductor, which scales with
kF . With that, additional states can form inside the superconducting gap
[110, 111].

A bound state can also be formed between a single N-S interface and one
normal interface as long as in the proximity region. The normal interface can
be e.g. the boundaries of the system or defects that reflect the carriers into
the superconductor creating successive reflections.
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Reflectionless tunnelling

As seen in 2.5.2, in a N-S interface with a small transmission coefficient T the
probability of an AR process is highly suppressed with T 2, such that if T ≪ 1
the Cooper pair tunneling can be neglected compared to the single electron
processes.

However, in a diffusive sample electrons are scattered by defects leading
to multiple reflections at the N-S interface, as shown in Figure 2.10 a) for
the case of two reflections at the N-S interface. Isolated, each one of these
reflections has a small probability of AR. But after N -th coherent reflection
the probability of an AR is drastically enhanced reaching Ttot =1 for strong
disorder, an effect known as "reflectionless tunneling" [112].

a) b) c)

Figure 2.10. Reflectionless tunneling. a) Classical trajectories of electron
(hole) being scattered close to the N-S interface. Trajectory 2 encloses a loop
that receives a magnetic flux Φ. b) Current enhancement as a function of reflec-
tion number at N-S interface. Adapted from [112]. c) Normalized conductance
vs voltage bias across a Nb-InGaAs structure for different temperatures. The
zero bias peak is a consequence of reflectionless tunneling. Adapted from [113].

It turns out that the constructive interference is broken for increasing voltage
bias, because of an increasing energy mismatch. This results in a zero bias
enhancement of the current through an N-S interface. Such effect was first
observed by Ref. [113] in a Nb-InGaAs structure. If the trajectories enclose
a loop, if an external magnetic field B is applied there is a phase gain by the
magnetic flux enclosed. Considering a trajectory length L and an enclosed
area A of the loops, the total phase shift between two reflections is given by

∆ϕ = 2EL
ℏvF

+ 4πBAΦ0
. (2.41)

Constructive interference happens for ∆ϕ = 2πn with n ∈ Z.
The result above assumes that the trajectories are not affected by the mag-

netic field. A simple picture discussing the semiclassical trajectories at finite
magnetic fields is discussed in chapter 5 to address our experimental findings.
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Reflectionless tunneling is also shown for ballistic systems as long as the
geometry provides multiple reflections at the N-S interface [114].
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3 Device Fabrication and Experimental
Methods

This chapter describes the fabrication and characterization methods em-
ployed in 2D heterostructures. The first section shows how 2D crystals are
obtained from bulk material by exfoliation. The stacking of heterostructures
by dry transfer technique is depicted in the second section, followed by con-
tacting techniques. The last section details the electric measurement setup
and lock-in techniques employed. A detailed description of the fabrication
steps and parameters is given in appendix A.
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3. Device Fabrication and Experimental Methods

3.1. Fabrication of van der Waals heterostructures

The fabrication of vdW heterostructures consists of several processing steps
that have been developed in recent years. Therefore, most of the processing is
still manual and every sample has its features, e.g. flake shape and thickness,
trapped impurities, etc. In this section, we demonstrate how to isolate thin
layers from the bulk materials using the exfoliation technique. Although it is
possible to grow 2D materials, for example using Chemical Vapor Deposition,
the exfoliation from bulk 3D crystals is simple and yields high crystal quality
for many-layered materials. We find the flake’s thickness by comparing Atomic
Force Microscope (AFM) scans of test samples with the color contrast in the
optical microscope during fabrication. Then, we use the so-called dry-transfer
technique to stack these materials into vertical heterostructures. As much as
possible, the following processes are carried out in the inert atmosphere of a
glovebox filled with purified N2 (>99.9999%) and O2 and H2O residual partial
pressures below 0.1 ppm.

3.1.1. Exfoliation of 2D crystals

a) b) c)

Figure 3.1. Exfoliation of 2D materials. a) Bulk crystal is tapped on adhesion
tape leaving some material. b) The crystal is cleaved several times, covering
the tape with random thickness flakes. c) The tape is brought in contact with
a silicon wafer, depositing some flakes on its surface. Adapted from [115].

As demonstrated for graphene in 2004, van der Waals materials can be me-
chanically exfoliated from a bulk crystal to a single atomic layer by successive
cleaving [18]. Exfoliating vdW materials is possible because these crystals
are formed by sheets of atoms bound in a plane by covalent bonds. These
planes are vertically bound by vdW interaction, much weaker than the co-
valent bonds, favoring the cleaving in the in-plane direction. Exfoliating is
achieved by pressing the bulk crystal against an adhesive tape leaving a frac-
tion of the material sticking to the surface. By successively folding, sticking
and releasing the tape the crystal is thinned down to a few layers. The tape
containing residues of the material is pressed onto a silicon (Si) wafer and
removed, leaving some flakes of various thicknesses on the wafer surface. The

24

3



3.1. Fabrication of van der Waals heterostructures

exfoliation process is similar for all materials used in this work. The exfo-
liation of MoS2 and InSe are preferably carried out in the glovebox, due to
their oxidation and degradation when exposed to air. hBN and graphite can
be exfoliated in air due to their high stability. A common issue faced with
the exfoliation technique is the presence of polymer residues on the flakes.
The gross can be identified with the optical microscope, but AFM scans show
very low contrast contamination that cannot be noticed in a microscope. The
next step is to identify the flake’s thickness. This can be done directly with
AFM scans, or indirectly by associating the thickness to another scale, such
as Raman shift or Photoluminescence spectrum. A quick way to identify the
flake thickness for a given material is by its color contrast in a standard op-
tical microscope as used in the fabrication procedure. [116, 117]. The color
contrast of each material depends on its thickness, its refractive index, and the
properties of the substrate. Figure 3.2 exemplifies this by comparing the green
channel intensity of an optical image to an AFM scan of the same region. In
this example, the green channel was chosen for its monotonic increase (but
not linear) with thickness of InSe from 1 to about 30 layers on a 290nm SiO2
chip.

3.1.2. Dry-transfer method for stacking heterostructures

After acquiring flakes, and determining their thickness and area, the materials
are ready to be stacked into a vertical heterostructure. Here we describe the
dry transfer method [118], using a viscoelastic stamp to capture the flakes one
by one from the exfoliation substrates. The setup is placed inside a glove-
box to avoid degradation and contamination of the materials to be stacked.
The stamps are made of Polydimethylsiloxane (PDMS) and covered with a
sacrificial film of Poly (Bisphenol A) Carbonate (PC). The stamp fabrication
is described in the appendix E. The dry transfer process starts by mounting
the stamp with a small angle to a motorized arm inside the glove box. The
stamp is placed between the microscope objective and the chip containing the
material. The chip is heated to 90◦ C. The stamp descends to the substrate
until it touches the surface. The contrast of the region in contact with the
stamp changes, providing a good control of the area in contact. Once the
desired flake is fully covered, by slowly retracting the stamp upwards the ma-
terial flake detaches from the substrate stinking to PC film. The process can
be now repeated for the next layers of the heterostructure. Once an initial
flake sticks to the stamp, the consecutive flakes are attached by van der Waals
force to the bottom of the previous. The final heterostructure is released onto
a substrate by heating the substrate to 150◦ C which melts the PC layer onto
the substrate surface releasing the stack. The melted PC film is removed in
a Dichloromethane bath followed by a Isopropyl alcohol bath. Typically, the
stack present in this work consists of the semiconductor material encapsulated

3

25



3. Device Fabrication and Experimental Methods

0 10 20
Distance (μm)

100

150

200

G
re

en
 (0

-2
55

)

0 10 20
Distance (μm)

0

10

20

H
ei

gh
t (

nm
)

Green Channel
a)

b)

c)

d)

O
pt

ic
al

AF
M

 h
ei

gh
t

Figure 3.2. Color contrast vs flake thickness. a) Green channel of the optical
image and b) Extracted green intensity (0-255). c) AFM height scan of the
same flake and d) extracted height profile.

by ∼20-30 nm flakes of hBN. At the bottom of the stack, a graphite flake is
placed as an electrical gate for the semiconductor. The hBN encapsulation is
particularly known for protecting materials against oxidation and enhancing
their electron mobility [119, 120]. Once the heterostructure is created, it is
time to produce electrical connections to it. The following section describes
the most common architectures for providing contacts to 2D materials.

3.2. Contacting architectures and materials for 2D
semiconductors

There are several methods for producing electrical contact to 2D materials.
Each has advantages and constrains. The selected technique for the device
depends on the parameter to be optimized, e.g. electron mobility, interface
cleanliness, contact resistance, or production time. This section describes the
contacting strategies we employed in our samples.
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3.2. Contacting architectures and materials for 2D semiconductors

3.2.1. Top contact architecture

MoS2

PMMA PMMA
MoS2 MoS2

1) 2) 3)

Figure 3.3. Top contacts fabrication. 1) Exfoliation of 2D semiconductor
onto SiO2. substrate. 2) EBL and contact material deposition. 3) Final
structure after lift-off.

The simplest device fabrication is building devices directly on the exfoliation
wafer by top contact architecture. The 2D semiconductor flakes are exfoliated
onto a doped Silicon substrate with an insulating SiO2 layer at the surface. The
wafer is immediately spin-coated with PMMA polymer to temporarily protect
the flakes from degrading. The flake thickness is identified by color contrast
and a step of EBL defines the regions where the contacts are evaporated.
After developing the E-beam-resist the sample is immediately mounted to the
E-beam evaporation chamber and pumped down to pressures ≤ 10−6 mbar.
The desired contacting materials are deposited and an acetone bath lifts off
the excess material. As the devices are not encapsulated, after fabrication
they must be quickly cooled to cryogenic temperatures to avoid degradation.
We fabricated top contacted MoS2 devices with several materials such as Bi-
Au, Bi-Al, Sn, and Nb. The contact resistance can vary depending on the
material of choice. For detailed information, see section 3.4. The mobility of
these devices ranges from 100 to 700 cm2/Vs at cryogenic temperatures. These
numbers for electron mobility are expected for non-encapsulated 2D materials.

3.2.2. Bottom contact architecture
This architecture consists in fabricating the electrodes on a substrate and af-
terward depositing the active material onto it by dry transfer method. This
architecture allows easy top hBN encapsulation. Full encapsulation can be
achieved if the electrodes are evaporated onto a hBN flake previous to the
stacking process [121]. We produced samples using bottom contact architec-
ture for MoS2 devices using several electrode materials such as Au, Pd, Al-Pd,
and MoRe-Pt. The contact quality depends not only on the Schottky barrier
but also on the cleanliness and surface topography. For metals that are E-
beam evaporated (Au, Pd, Al) a good surface is easily achieved. For metals
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1) 2) 3)
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Figure 3.4. Bottom contacts fabrication. 1) EBL onto SiO2 substrate and
deposition the contact material. 2) Surface cleaning. O2 plasma for e-beam
evaporated materials and additional AFM cleaning for sputtered materials. 3)
Transfer of the 2D semiconductor by PDMS/PC stamp.

that are sputtered, there is usually a side deposition at the undercuts of the
PMMA, which creates a rugged contact surface. The latter can be improved by
using an AFM cleaning [122]. Field effect gates are implemented by either the
doped Si substrate or a posterior top-gate deposition. In our most remarkable
device, with MoRe contacts to a monolayer MoS2, we obtained resistance-area
product as low as 13.5k Ωµm2 and electron mobility up to 100 cm2/Vs [123].

3.2.3. Edge contact architecture

substrate

hBN

hBN
InSe

graphite

stamp

PC/PDMS

hBN

hBN
InSe

graphite

PMMA PMMA

CHF3

hBN

hBN
InSe

graphite

PMMA PMMA

1) 2) 3)

Figure 3.5. Edge contacts fabrication. 1) Heterostructure stack by dry-
transfer method. The stack is released in a Si substrate. 2) CHF3 plasma
etching of the top hBN and 2D semiconductor. 3) Metal deposition and lift-
off.

Originally developed for graphene [124], this architecture has been also suc-
cessfully expanded to TMDCs such as WTe2 [64]. The fabrication is depicted
in Figure 3.5. Edge contacts are normally made in a hBN encapsulated het-
erostructure. The top hBN is etched away, in a CHF3 plasma, to expose
a lateral cross-section of the 2D material. The contact material is then de-
posited into the holes creating an electrical contact to the rims of the material.

28

3



3.2. Contacting architectures and materials for 2D semiconductors

Our attempts to produce edge contacts to mono- or few-layer MoS2 generated
devices with too high contact resistance for practical use [123]. Literature
present other attempts [91, 125]. However, significant improvements were
made recently [126].

We obtain better results with a few layers InSe devices with MoRe edge
contacts. The measurements are discussed in chapter 6. At VBG = 18 V we
estimate a contact resistance-length product of about 3 MΩµm, which is a
high value in comparison to other contact techniques shown in this work but
presents similar physics as the one discussed in Chapter 5.

3.2.4. Van der Waals contacts

An interesting solution to reduce the Schottky barrier is to use another vdW
material as contacts to the semiconductors. The attractive vdW force pro-
vides a natural connection between the flakes, yielding a clean interface for
contacts. This is realized, for example, by placing graphene flakes at the ex-
tremities of a MoS2, as in Ref. [120, 127, 128]. As graphene by itself is easy
to contact, it can provide good charge injection to the semiconductor. This
type of devices show very low contact resistance and high mobility. The same
technique has also been used for other vdW semiconductors, such as InSe [49]
and WSe2 [129]. We create a short MoS2 junction contacted by the vdW
superconductor NbSe2. The dry transfer technique does not provide enough
resolution to create sub-micrometer junction lengths between NbSe2 flakes.
Designing a trench in a NbSe2 is challenging since the material is prone to ox-
idation when exposed to air [130]. We overcome this issue by covering a thin
NbSe2 flake in a monolayer graphene. These two are stacked and deposited
onto Au electrodes in a Si substrate. An EBL step followed by reactive ion
etching creates a trench in NbSe2/graphene. Afterward a monolayer MoS2
covered by a top hBN is deposited above the trench, creating a 150nm junc-
tion between NbSe2/graphene flakes. An Au topgate is evaporated above the
junction for charge carrier tunability. These results were published in Ref.
[123]. We demonstrate that after the processing, NbSe2 still holds intrinsic
superconductivity, showing that the graphene protects the NbSe2 underneath
against strong oxidation. No sign of proximity-induced superconductivity or
tunneling through N-S interface with low transmission is observed across the
MoS2 junction. Instead, a suppression in conductance tentatively attributed
to environmental Coulomb blockade with weak magnetic field dependence is
observed. The contact resistance-area product is estimated ∼200k Ωµm2.

3.2.5. Vertical interconnect access contacts

Vertical interconnect access (VIA) contacts use the hBN encapsulation to pro-
vide electrical contact to the thin semiconductor material without exposing it

3
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3. Device Fabrication and Experimental Methods

to chemical treatments. The metallic leads are deposited into the hBN flakes
providing a flat and clean interface between metal and semiconductor. The
name is imported from printed circuit boards and coined by Ref. [131] when
adapting to vdW materials in 2018. The fabrication of the VIA contacts is
described below and depicted in Figure 3.6.

1)

4)

2)

5)

3)

6)

hBN hBN hBN

PMMA PMMA

hBN hBN hBN hBN

PMMAPMMA

hBN hBN

SF6

O2
PMMA PMMA

hBN hBN

anchoring point

Figure 3.6. Schematic fabrication of the VIA contacts. 1) Exfoliation and
characterization of the hBN flake. 2) Etching holes into hBN using SF6 plasma
etching. 3) Wash-off PMMA and second step of lithography. 4) Surface clean-
ing with O2 plasma etching. 5) Metal evaporation and lift-off. 6) hBN is taken
to dry transfer technique.

An hBN is exfoliated onto a silicon substrate and selected for sufficient area,
thickness, and cleanliness. The wafer is spin-coated with PMMA polymer
and a step of EBL defines windows that expose the hBN surface. A sulfur
hexafluoride (SF6) plasma etches the hBN flake until the substrate is reached.
The PMMA is washed out and a second step EBL defines areas slightly larger
than the former. This is done to allow metal to deposit at the surface of
hBN serving as anchor points to the VIA contacts. The surface of the sample
is cleaned by O2 plasma etching. The next step consists of depositing the
desired metal, that being Au or MoRe, etc. The excess metal is removed in
an acetone lift-off. The result is metal columns that penetrate the hBN flakes
until the SiO2 surface. With that, the VIA contacts are ready to be peeled out
using the dry transfer technique described above. The semiconductor is put
in direct contact with the metal columns by the van der Waals force induced
between the flakes. After completion of the stack, metallic leads connect the
VIA metal columns to the bond pads, where the sample can be contacted.
We attempted several contacting materials for the VIA architecture, namely
Au, MoRe, Al, Nb and V. Most of them turned out to be impractical for
either being too brittle and cracking the metal column while being pick-up or
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3.3. Measurement setup

pinning too strongly to the substrate. We successfully use Au and MoRe in
ten MoS2 or InSe devices. Electron mobility up to 2500 cm2/Vs and resistance
area product down to 14k Ωµm2. Samples fabricated using VIA contacts are
the main subject of Chapter 5.

3.3. Measurement setup

Most of the experiments realized in this work use a standard lock-in tech-
nique to probe the conductance or current through the devices. The common
measurement setup is depicted in Figure 3.7. A sinusoidal voltage is provided
by the output of a lock-in amplifier which is then coupled to a DC voltage
source through a transformer. The voltage is usually lowered in the voltage
divider filtered for voltage ripples in a pi-filter. This excitation is applied to
the source side of the device. At the drain side, the current is amplified by
an IV converter and supplied to the input of the lock-in and DC multimeter.
The gate channels are also filtered before being supplied to the device gate(s).
In a four-terminal configuration, one can overcome the contact resistance by
directly probing the voltage drop of the system. This is done by adding a
differential voltage amplifier connected to the terminals to be measured and
provided its output to a (second) lock-in amplifier.

VSD

Vout

Vin

Vin

V

DAC

Lock-in

Multimeter

divider IV conv.

diff. amp.
device

s

gate

d
pi-filter

G

+

+

Vin

Vin

Lock-in

Multimeter

Figure 3.7. Summarized schematic of the measurement setup. Values of
single components may vary according to experiment and were omitted.

3.4. Semimetal contacts to MoS2

Besides the contacting architecture the second crucial point for contacting 2D
semiconductor is choosing the correct material for the leads. For the purpose
of this work we are interested in superconducting leads, but an effective way
to reducing the Schottky barrier has been shown recently by Ref. [74] and
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3. Device Fabrication and Experimental Methods

[79], where they use semimetal as contacts which are approaching the quan-
tum limit of resistance in field effect transistors. Semimetals have a reduced
density of states around the Fermi level. As discussed in section 2.2.3, one
of the mechanisms for creating a Schottky barrier to 2D semiconductors is by
inducing MIGS in the band gap of the semiconductor. If these MIGS have a
considerable density of states, they are partially occupied, pinning the Fermi
energy to the gap. When in close contact to MoS2 the reduced density of states
around the Fermi level in the semimetal diminishes the formation of MIGS,
pushing the Fermi level up to the bottom of the conduction band of MoS2.
The few gap states present in MoS2 are fully occupied raising the Fermi level
pinning close to the conduction band minimum, as shown in Figure 3.8 c).

a) b) c)

Figure 3.8. Schematics of density of states for a) semiconductor in the
absence of interface with other materials. b) Metal-semiconductor interface.
The density of states in the semiconductor is altered due to proximity to
metal, generating MIGS, which are partially occupied. The Fermi level is
pinned at the band gap to the branching point between MIGS originating
from VB and CB. c) Semimetal-semiconductor. The semimetal density of
states diminishes the formation of MIGS, which brings the Fermi level to the
bottom of conduction band. Adapted from [74].

Another aspect of realizing ohmic contacts is to overcome the van der Waals
gap formed between contact and semimetal. Ref. [79] has computed that
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3.4. Semimetal contacts to MoS2

semimetallic antimony Sb (0112) hybridizes with the orbitals from MoS2 such
that the p and s orbitals of Sb intersect with the d orbitals of Mo. Reducing
this physical gap between materials optimizes the charge injection into the 2D
semiconductor reducing the resistance-length product to 42Ωµm, approaching
the quantum limit of a metal-semiconductor junction, defined by

RQL = h

2e2

√
π

2n (3.1)

with n the charge carrier density. This limit assumes ballistic transport of
charges with coherent transport across the interface without back-scattering.
Engineering of InSe into a semimetallic phase by yttrium doping has also
achieved resistances close to the quantum limit [51].

To reproduce the results shown in Ref. [74], we fabricated top contacted
monolayer MoS2 devices with Bi/Au leads. A monolayer MoS2 is exfoliated
directly onto a doped Si substrate with 80 nm SiO2 layer and immediately
spin-coated with PMMA resist. Contact leads are patterned by EBL and
after developing the resist the sample is immediately mounted to an E-beam
evaporator and pumped to 10−7 mbar. A film of 20 nm bismuth is evaporated
at 0.5 Å/s, followed by 60 nm Au. The lift-off of the excess material is done
in a 50◦ C acetone bath. We note that bismuth is wetting SiO2 badly, so an
additional Ti/Au (5 nm/80 nm) is needed to create bondpads. The sample was
wire bonded, mounted to a dilution refrigerator, and cooled down to 60mK.

At maximum gate voltage, with n ∼ 2 × 1012 cm−2, we obtain a resistance-
length product of 15k Ωµm or 7kΩµm2 resistance-area product. These values
are two orders of magnitude higher than reported by Ref. [74], but still one
of the lowest among our devices. From 14 samples fabricated1, we obtained
a spread of values, shown in Figure 3.9, with only one sample approaching
the literature value2. This shows that the results are not easily reproducible.
Ref. [79] reports improved reproducibility for Sb (0112). We note that better
Bi films are obtained by cooling the sample to liquid nitrogen temperatures
during the material evaporation.

We exploit the Schottky barrier lowering caused by semimetallic bismuth to
create short S-N-S junctions. The idea is to use semimetallic Bi as a wetting
layer for superconducting contacts. We employ top contact fabrication as
described above, replacing Au with 100 nm Al layer followed by 10 nm Pd
capping layer. The following measurements were realized using standard lock-
in technique at 50 mK.

First, we make sure that the Al contacts are superconducting at low temper-
ature. For that, we probe the voltage drop across the superconducting leads as
a function of the magnetic field. By applying a constant current of I = 1µA
to one of the sides of the lead and grounding the counterpart, we measure the

1Including Bi-Au and Bi-Al contacts
2Ref. [74] present results at 77 K.

3

33



3. Device Fabrication and Experimental Methods

3 6 9 12 15
A (μm2)

101
102
103
104
105

R
(Ω
)

4 5 6 7 8 9
L (μm)

101

103

105
R
(Ω
)

Bi-Au
Bi-Al

Liquid N2 evap.
Room T evap.

a) b)

Figure 3.9. Resistance as a function of a) length and b) area of the Bi con-
tacts to MoS2. The Bi-Au samples are indicated, the other are Bi-Al samples.
The red and blue shades indicate room temperature and liquid nitrogen tem-
perature film evaporation respectively.

voltage drop and translate it to the resistance of the lead in the inset of Figure
3.10. Discounting for the series resistance in the cryostat, we observe a 3 Ω
increase in resistance around |B| ∼ 4 mT. This is compatible with the critical
field of bulk Al [132], demonstrating superconductivity in the Al leads.

Figure 3.10 a) shows the conductance of the MoS2 channel as a function of
the backgate voltage VBG. At maximum VBG = 45 V we obtain a two-terminal
resistance of 600 Ω, the best among the devices fabricated in this project.

Though the contact resistance was lowered, no sign of proximity-induced
superconductivity was observed. Figure 3.10 b) shows the conductance as a
function of the applied bias voltage. Around zero bias a sharp suppression
is observed much narrower than the energy values expected of Al supercon-
ducting gap [133]. Also, the suppression is persistent up to 9T magnetic field.
We tentatively attribute the suppression to the diminished density of states
in the semimetal. In Figure 3.10 b) we also plot the four terminal resistance
through the sample. Considering RT = 2RC + R2DEG we can extract the
contact resistance, yielding 150 Ωµm or 200 Ωµm2.
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Figure 3.10. Bi-Al contacts to MoS2. a) Conductance as function of VBG.
The charge carrier density axis is calculated using a plate capacitor model. The
inset shows the resistance of one of the superconducting leads as a function of
perpendicular magnetic field B. b) Resistance as function of VSD measured
between two and four terminal configuration.

3.5. Summary

We explore several fabrication architectures, contacting materials, and device
geometries. Device architectures such as VIA, edge- and vdW contacts are
well suited to retain the high electron mobility because the hBN encapsu-
lation can be employed. Top contacts are easy to fabricate but suffer from
polymer residues and degradation of the 2D material. Although interesting
for some materials, we did not achieve low contact resistances with edge con-
tacts. We employ several contacting materials searching for optimizing the
Schottky barrier formation, which we believe, is the main reason we observe
no proximity effect in our devices. We also demonstrate semimetallic contacts
to 2D semiconductors showing contact resistances approaching the quantum
limit. We fabricate devices using semimetallic bismuth as a wetting layer for
Al superconducting contacts. Although a substantial decrease in resistance
was achieved compared to other materials, we did not observe any signs of
superconducting effects. We speculate that Bi might cause a strong inverse
proximity effect by a strong spin-orbit interaction given by its high atomic
number. Figure 3.11 summarizes the resistance-area and length product for
the methods and materials employed in this work. For multiple samples of the
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Figure 3.11. a) Resistance-length product and b) Resistance-area product
of MoS2 devices in this work and [123], compared to the records in literature
[74, 79]. Color code is dark blue for semimetals, light blue for superconductors,
and red for metals. Symbol code is ▽ for top contacts, ⃝ for VIA, △ for
bottom contact, and ⋄ for vdW contacts.

same type, we select the ones with the lowest resistance. All the values were
obtained for temperatures at least below 1.7 K.
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4 Quantum Point Contact in monolayer
MoS2

Phenomena involving gate-defined nanostructures have been investigated for
many decades and still bring out innovative results [134]. Implementing lateral
confinement in TMDCs such as MoS2 could provide control over charge, spin,
and valley states which is promising for future experiments and applications
[38]. In this chapter, we study the transport through a small constriction
generated by locally gating a monolayer MoS2. We demonstrate that this con-
striction forms a well-defined quantum point contact (QPC) by quantization
of the conductance through the channel in multiples of 2 × e2/h. Our mea-
surements also present indications of a 0.7 anomaly known in QPC devices.
The energy spacing between QPC states allows us to reach conclusions about
the confinement potential shape. Applying an external magnetic field perpen-
dicular to the sample we analyze the evolution of the plateaus due to Zeeman
splitting and further into quantizing fields.
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4. Quantum point contact in MoS2

4.1. Introduction

Quantum point contacts are the primary gate structure to demonstrate lo-
cal gate control in a two-dimensional system. These constrictions have many
applications in nanoelectronic devices. In ballistic systems, QPCs represent
an interesting point emitter, with an emission profile dependent on the mode
occupation [135]. They can also be used as charge detectors in proximity to a
quantum dot [136], as beam splitters [134], as spin filters [137], to investigate
spin-orbit coupling [138] or for controlled carrier wave package injection [139].
Their characteristic have also been studied in shot noise measurements [140],
thermoelectric transport [141], opto- [142] or magnetotransport [143]. When
in a proximitized region, QPCs can be used as a spectroscopy tool to probe
the superconducting states [144, 145]. Despite all these possibilities, there are
only a few reports exploring QPC in 2D semiconductors, with little explo-
ration of its prospects [127, 128, 146–148]. Here we report the fabrication and
characterization of a QPC to a monolayer MoS2, discussing the electrostatic
environment involved in the channel formation and its characteristics in energy
and magnetic field.

4.2. Fabrication

The sample consists of a monolayer MoS2 encapsulated in hBN flakes and top
contacted by Bi-Au electrodes. We start the fabrication by exfoliating and
selecting a clean hBN flake of ∼ 20 nm thickness. To this flake, an EBL step
defines holes that will be used to electrically contact the sample. An SF6 re-
active plasma etches down the hBN until the SiO2 substrate is reached. The
flake is transferred to the glovebox, where MoS2 is exfoliated to a monolayer
and identified by color contrast. Using the dry transfer technique, the mono-
layer MoS2 is sandwiched between hBN flakes. The etched hBN flake is placed
at the top of MoS2 leaving exposed to the contacts. A multilayer graphite at
the bottom of the stack is used as a global backgate. The stack is released
onto a SiO2 substrate. Figure 4.1 a) shows an optical image of the sample.
Figure 4.1 shows a vertical cross-section of the heterostructure indicating the
thickness of flakes obtained by AFM scans.

After the stacking process, the PC film is removed in a dichloromethane
bath, followed by an IPA bath. The sample is blown dry and immediately
spin-coated to avoid long exposure of the MoS2 surface to the atmosphere.
An EBL step defines PMMA windows around the holes in hBN. The resist
is developed and the sample is transferred to the evaporation chamber and
pumped to 10−6 mbar. A layer of 20 nm Bi is deposited at the steady rate of
0.5 Å/s followed by 50 nm Au capping layer. The excess material is lifted-off in
an acetone bath. A second EBL step defines the splitgate structure, leads to
graphite backgate, and to Bi-Au contact. Those are created by evaporation of
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4.3. Sample characterization
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Figure 4.1. a) Optical image of the sample, showing the flakes limits, con-
tacts, and splitgates deposited at the surface in yellow. The scale bas is 10µm.
b) Schematic of a vertical cross-section of the heterostructure. The flake’s
thicknesses are indicated at the right of the stack. c) Scanning electron mi-
croscopy scan of the splitgate region. The scale bar is 200 nm.

5 nm Ti plus 80 nm Au. The tips of the splitgates are designed to have 100 nm
circular radius, and 70 nm spacing, as shown in Figure 4.1 c). A length of about
1µm separates the center splitgate from contacts leads. Finally, the sample
is glued to a chip carrier, wire bonded and mounted to a dilution refrigerator
and pumped for 12 hs. This helps to remove water molecules adsorbed to
the surface. The measurements described below are performed at the base
temperature of 40 mK.

4.3. Sample characterization

We first characterize the sample without the presence of the splitgate po-
tential. By applying a sinusoidal source-drain voltage added to a constant
voltage VSD = 0.25 mV we measure the differential conductance and DC con-
ductance as a function of VBG applied to the graphite backgate. Figure 4.2
a) shows the conductance of the sample as a function of the backgate voltage
VBG, applying the same voltage to the splitgates. A sharp increase in con-
ductance is observed from VBG =0.5 V, which saturates at VBG ∼1.5 V to a
flat slope around 0.65×e2/h, marked as region A and B, respectively. The
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Figure 4.2. a) Conductance as a function of backgate voltage VBG. b)
Conductance as a function of splitgate voltage VSG at VBG =3.4 V. Three
regions are discussed in the text.

charge carrier concentration axis is calculated from a parallel-plate capacitor
model with depletion voltage VBG = 0.5 V. We model the system as shown
in the inset of Figure 4.2 a). The 2DEG resistance R2DEG is placed in se-
ries with two contact resistances RC at the source and drain. At region B,
VBG >2 V, we extract a slope of about 50 Ω/V. At the maximum backgate
voltage VBG =8 V, we assume RS ≫ R2DEG to extract a upper bound for the
contact resistance as RC ∼ 19 kΩ. This contact resistance is severely higher
than the previously measured for the Bi-Au FET as in section 3.4. The reason
might lay in the exposure of the monolayer MoS2 to sacrifice the PC film of
the stamp and dichloromethane after the stacking phase, which can induce
defects and impurities at the interface. In region A, we assume that R2DEG

is the dominating resistance to extract a field effect mobility from the linear
part of the slope, yielding µF E =1150±100 cm2/Vs. This value is comparable
to other encapsulated monolayer MoS2 devices [39, 149] and to the estimation
from the magnetic field dependence (see appendix A). A mean free path can
be estimated by taking vF from the plate capacitor model. For example at
VBG = 3.4 V, we obtain ℓmfp ∼ 45 nm.

Now we turn to the QPC formation in the 2D channel by applying a nega-
tive voltage to the splitgates. Figure 4.2 b) shows the measured conductance
through the sample as a function of the splitgate voltage VSG at VBG =3.4 V.
We observe three distinct regions. For VSG from zero to −3.5 V (region I) a
slow decrease in conductance occurs. A transition marked by a sharp reduc-
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tion of ∼ 10% in conductance occurs at VSG ∼ −3.5 V, identified as region II.
In region III, as stronger negative voltages are applied to the splitgate the con-
ductance continues to decrease forming step-like features, until total depletion,
at VSG = −6.5 V.
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Figure 4.3. a) Conductance as a function of VSG and VBG. b) Schematic
of the vertical cross-section showing a capacitor network model between gates
and regions of MoS2.

Changing the backgate voltage alters the characteristics of the QPC pinch-
off curve. Figure 4.3 a) shows the conductance as a function of VSG and
VBG at VSD = 0.25 mV. The bright areas represent a finite conductance, with
aforementioned regions I to III. At the dark sites, the transport is blocked
by the depleted QPC (IV), while the rest of the 2DEG is still open. For
VBG > 1.5 V we see the formation of quantized plateaus in region III. For VBG

below this value, there is a direct transition from open 2DEG (I) to depleted
(IV). The region within the red dotted lines represents region II.

We can qualitatively understand the slope structure of this plot using a
simple capacitor model, depicted in Figure 4.3 b). The chemical potential µ(b)

directly below the splitgates is given by

µ(b) = en(b) = cBG∆VBG + c
(b)
SG∆VSG, (4.1)

where the gate voltages ∆VBG,SG is the difference to respective depletion
voltages and cBG and c

(b)
SG are the capacitances of the back- and splitgates to
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the region directly below the splitgates (dark blue regions). The position of
feature with a fix µ(b) in Figure 4.3 a) is then given by

∆VBG(∆VSG) = µ(b) −
c

(b)
SG

cBG
∆.VSG. (4.2)

where the ratio of capacitances c(b)
SG/cBG is roughly the ratio the dielectric

thicknesses dbhBN/dthBN ∼ 0.8 ± 0.1, matching the slope ∼ 0.77 of the right
red dotted line.

The region between the splitgates, i.e. light blue region in Figure 4.3 b)
is only reached by stray electric field lines. This means that the splitgate
capacitance to this region must be smaller then the regions directly underneath
it. Explicitly, we can write c

(QP C)
SG < c

(b)
SG. Considering that the backgate

capacitance cBG is unchanged, we could write equation 4.2 for the region
between the splitgates leads obtaining a smaller slope for the ratio c(QP C)

SG /cBG.
From the slope of the blue line in Figure 4.3 a) we obtain c

(QP C)
SG /cBG ∼ 0.4,

which is consistent with this model.
For VBG < 1.5 V the system goes from region I to IV without showing

quantized plateaus. This implies that the potential formed between splitgates
is too shallow, e.g. in equation 2.22 if ωy/ωy goes to zero, the plateau width
goes to zero.
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Figure 4.4. Zoom in region II of conductance as a function of VSG at
VBG =3.4 V. Two consecutive decreases in conductance are identified. In-
set shows the pinch-off curve for two other backgate voltages indicated. For
VBG =1.3 V the shoulders are not observed above the noise level. The inset
has the same axis as the main figure.
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4.4. Region II: Current redistribution and Sharvin resistance

4.4. Region II: Current redistribution and Sharvin resistance

Figure 4.4 shows a zoom-in region II of the splitgate voltage dependence.
Starting from VSG = −3 V, an initial drop takes place at VSG = −3.5 V,
decreasing the conductance from 0.65 × e2/h to 0.63 × e2/h. Then, a shoulder
is formed followed by further decreasing to 0.60×e2/h. This two-step decrease
is observed for all backgate voltages where region III is also visible.
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Figure 4.5. Simulation of diffusive system. a) Electrical potential and current
density (arrow) for an open conductor. b) Cross section of a) at y = 0.
c) Electrical potential and current density (arrow) for the conductor with
constriction given by the geometry of the splitgates. d) Cross section of c) at
y = 0.

We tentatively attribute these two steps to: i) an initial redirection of the
current distribution in the 2DEG when the constriction is formed, i.e. when the
2DEG region below the splitgates is depleted. At this stage, the 2DEG and the
constriction region are still in the diffusive transport regime. ii) The transition
from a diffusive to ballistic transport in the QPC so that the resistance of the
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diffusive constriction region is replaced by a Sharvin resistance.
To illustrate the change in conductance due to the geometrical current re-

distribution, we simulate1 the electrical potential and the current density of a
fully diffusive system characterized by a local resistivity. Figure 4.5 a) shows
a uniform decrease in electrical potential and constant current density. Once
the splitgates depletes the 2DEG the current is redirected to flow through the
constriction, as depicted in Figure 4.5 b). The electrical potential and the
current density along a cross-section at y = 0 for these two cases are plot-
ted in Figure 4.5 c) and d). The values for resistivity are taken from the
conductance at VBG =8 V and VSG =0 and the estimated area of the MoS2
flake. The boundary conditions for the potential are set by the applied DC
bias VSD =250µV.

From the mobility estimated above and the charge carrier density n ≃ 3.5 ×
10−12cm2/Vs calculated from the plate capacity model at VBG =3.4 V, we
obtain the sample resistivity without the splitgate influence. The increase in
resistance given by the first shoulder, ∼1.2 kΩ corresponds to a decrease in
width from ∼3µm (active MoS2 width) to 70 nm (design splitgate size) over
a length of about 30 nm.

To describe the ballistic case, while the channel is larger than the Fermi
wavelength avoiding discrete quantum states in the constriction, we assume
that the second increase in resistance as a Sharvin resistance RSh that is given
by [150]

RSh = πh

2e2kFw
(4.3)

yielding RSh ∼ 1.3 kΩ for w =70 nm and kF calculated by plate capacitor
model at VBG =3.4 V, consistent with a resistance Sharvin mechanism [151].

These two pieces of information lead us to speculate about the first decrease
in conductance being caused by a geometrical redirection of the current, which
saturates after the constriction is formed giving rise to the first shoulder. The
second decrease takes place as the channel becomes smaller than ℓmfp, due to
Sharvin resistance. Up to the moment of publication of this work, we became
aware of other possible mechanisms that could lead to the two steps described
above. Unfortunately, no strong proof ruling out one mechanism from the
other is yet available.

4.5. Region III: Series resistance extraction and quantized
conductance plateaus

In region III we find quantized conductance plateaus, as reported very early
on for GaAs [92, 93]. However, taking a closer look at the actual conductance

1Using MATLAB partial differential equation (PDE) solver.
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4.5. Region III: Series resistance extraction and quantized conductance
plateaus

values, one finds that they are not given exactly by an integer multiple of
e2/h. This makes it necessary to find an independent way to subtract a series
resistance to identify the plateaus and the corresponding degeneracies. For
this purpose, we extract a series resistance such that the QPC conductance is

GQP C =
( 1
Gtot

−RS

)−1
. (4.4)

The increment in conductance from one plateau to the next is related to the
number of degenerate subbands in the 2DEG. Ref. [128] suggests conductance
increments in steps of e2/h, implying a lift of the spin and valley degenera-
cies in MoS2. However, these results depend strongly on the extracted series
resistance. In the literature, it is common to take the open 2DEG resistance
(without the splitgate influence) as the series resistance. However, this ap-
proach disregards the increase in the resistance due to a redirection of current
density as the region below the splitgates is depleted as discussed above.
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Figure 4.6. a) Conductance of model (Blue) in comparison to measured data
(orange) as a function of VSG. The inset shows how the saturation conductance
1/RS matches region II. b) Corrected conductance of the QPC as a function
of VSG showing plateaus of 2 × e2/h.

To clarify the effect of the series resistance on the QPC pinch-off curve we
plot in Figure 4.5 a) the calculated conductance for a parabolic potential from
equations 2.22 and 2.23, using ℏωx =0.66 meV, ℏωy =0.53 meV. We compare
the model to the measured conductance from Figure 4.2 b). We find a series
resistance of RS =40.9 kΩ causing a conductance saturation to GS = 1/RS .
This value is reached as long as the QPC has sufficient channel occupation,
being independent of the number of subbands or degeneracy contributing to
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transport. Using this analysis to extract the series resistance RS we plot Figure
4.6 b) of the corrected QPC conductance as a function of slipgate voltage.
Quantized plateaus of conductance with increments of 2 × e2/h are obtained,
corresponding to a degeneracy of two. We also point out the presence of a
shoulder at around 1.4 × e2/h which we tentatively attribute to 0.7 anomaly
known in QPCs [152]. Other examples are shown in appendix A. We observe
plateaus up to 5 × 2e2/h at maximum VBG =3.9 V. Small fluctuations in the
conductance plateaus could arise due to mode mixing, away from the adiabatic
approximation, or the presence of defects in the proximity of the constriction,
as discussed in 2.3.

4.6. Transconductance measurements
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Figure 4.7. a) Measurement setup for transconductance. b) Conductance
and transconductance as a function of VSG at VBG =3.9 V.

To increase the sensitivity of the measurements to variation in the conduc-
tance caused by changes in the QPC potential, we measure the transconduc-
tance defined by

gtr = dI/dVG (4.5)

where I is the current through the semiconductor and VG the voltage applied
to the gate. The transconductance is zero for conductance plateaus, and it
has finite values if the conductance changes with respect to the gate voltage
applied. The measurement setup for transconductance is shown in Figure 4.7
a). A sinusoidal voltage modulation provided by a lock-in amplifier is added
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4.7. QPC energy level spacing

to the DC voltage in a transformer and supplied to the splitgates. The sample
is biased with a DC voltage source (VSD =250µV). At the drain, the DC and
differential component of the signal are measured. The sinusoidal modulation
is adjusted to an optimal frequency (f =7.77 Hz) such that the out-of-phase
component of the signal can be neglected.

From the in-phase current modulation, we obtain the transconductance (in
units of A/V ) divided by the amplitude of the voltage modulation to the
splitgate. Figure 4.7 shows the QPC conductance and the measured transcon-
ductance as a function of the splitgate voltage VSG.
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Figure 4.8. Schematic of transconductance as a function of the bias voltage
applied to the QPC and splitgate voltage. The white lines represent jumps in
transconductance as the chemical potential of the leads aligns with the energy
levels in the QPC. The energy alignment of lead with respect to the QPC
levels is shown in the boxes from a) to f).

4.7. QPC energy level spacing

The energy separation between discrete states of the QPC can be probed by
changing the source and drain electrochemical potential difference [153].

By applying a bias voltage across the QPC one can align source and drain
chemical potentials (µS,D) to the transport resonances created by the confin-
ing potential as exemplified in Figure 4.8. As the chemical potential aligns to
one of the energy levels the conductance increases causing a peak in transcon-
ductance, marked as the white lines. The splitgate voltage shifts the energy
levels with respect to the chemical potential producing a sequence of diamonds
in transconductance. The difference in energy between two energy levels can
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be read out at the edges of the diamonds (point b) when µS,D aligns to con-
secutive energy levels.

Figure 4.9 shows the transconductance (gtr) as a function of the VSD and
VSG, plotted in a symmetrical logarithmic scale to allow negative values. For
positive (negative) bias values we observe a positive (negative) transconduc-
tance, as changes in gate voltage cause an increase in current given by the bias
direction. An exception happens at the nodes around VSG =6.75 V, which has
a flipped transconductance. At these nodes the feature previously identified
as 0.7 anomaly develops into a resonance.

To find the actual voltage drop across the QPC, V ∗
SD, one has to consider

the series resistance, such that V ∗
SD = VSD − RSI. This transformation of

the voltages axis results in the replotted data in Figure 4.9 b), showing the
absolute value of the transconductance as a function of V ∗

SD and VSG. The plot
has been normalized by the absolute values of each VSG for better visualization
of the diamonds. The tapered shape comes from the V ∗

SD axis correction as
described above.
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Figure 4.9. a) Transconductance gtr as a function of VSD and VSG at VBG =
−3.4 V. b) Transconductance as a function of corrected QPC bias V ∗

SD with
normalized values for each VSG. The tapered shape comes from the correction
of the voltage bias for a series resistance RS .

The limit of a diamond is extracted at 10% of the normalized scale. The
extracted energy separation ∆ε = εN+1 − εN are shown in Figure 4.10. A
decrease in the energy separation is observed for increasing N, which suggests a
potential shape that is flatter than a parabola. The error bars are given by the
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4.8. Magnetic field subband splitting

asymmetry of the diamonds in V ∗
SD axis. Varying the threshold for estimating

the width of the diamonds changes the absolute values of the spacing but not
the general decreasing trend.
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Figure 4.10. Energy separation between QPC energy level ∆εN extracted
from bias dependence.

Although this simple analysis provides insight into the QPC potential, there
are features that are not well understood. The diamonds have slight asym-
metry for the different bias sides, which gives some uncertainty to the spacing
extraction. The upper and lower boundaries of the diamonds seem to have
different slopes, which could be attributed to changes in the capacitance by
electrostatic screening after each mode is occupied. Between the diamonds,
there seems to be a subset of smaller diamonds, e.g. at VBG = −6.25 V and
−5.75 V. We speculate that these features arise from the small fluctuations
in the conductance plateaus as seen in Figure 4.6 b) and Figure 4.7 b). The
origin is related to the resonances nearby or the mixing modes of the QPC.

4.8. Magnetic field subband splitting

We now investigate the effect of a magnetic field applied perpendicular to the
sample plane. Figure 4.11 a) shows the conductance of the QPC from zero
magnetic field to 500 mT in steps of 25 mT. A line resistance was subtracted
as described above. The lines are displaced in the VSG axis for clarity. At zero
magnetic field, the plateaus occur at multiples of 2×e2/h. As the magnetic field
increases the fluctuations on the conductance plateaus continuously change.
From 4 × e2/h we notice a branching of another conductance plateau which
ends at 3 × e2/h. Similar branching happens from the shoulder at 1.4 × e2/h
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evolving to e2/h value at 500mT [154]. This picture corresponds to Zeeman
splitting of the degenerate spin subbands.

The evolution of the plateaus is best traced by considering the transconduc-
tance as a function of magnetic field B and splitgate voltage VSG, shown in
Figure 4.11 b). The white dashes follow the limits of the quantized conduc-
tance plateaus from zero magnetic field to finite field values as the plateaus
at odd multiples of e2/h evolve in splitgate axis. The map is filled with other
features which we attribute to the fluctuations in the conductance plateau.
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Figure 4.11. a) Evolution of the conductance plateaus from zero to 500mT in
steps of 25mT. Curves are shifted in VSG axis for clarity. b) Transconductance
as a function of VSG and B. White lines are guides to the eye. The numbers
indicate the conductance values in terms of 2 × e2/h.

Figure 4.12 a) shows the continuation of the magnetic field plot up to 9T and
b) and schematic of the features. The QPC formation takes place at about
VSG = −3.5 V and total depletion at VSG = −5.5 V. The black dotted line
below VSG = −3.5 V indicate the evolution of the plateaus multiple of 2×e2/h,
shrink down in magnetic field until the lines of consecutive odd multiples of
e2/h cross, indicated by the black dotted lines [93]. After this crossing the lines
are discontinuous, indicated by the yellow dotted lines. Similar characteristics
have been observed for GaAs [154, 155] and bilayer graphene [156]. The process
that creates these discontinuities is not well understood but is thought to have
a similar origin as the 0.7 anomaly [157]. At even larger magnetic fields, flat
horizontal lines take place, shown as the dotted light grey lines. We attribute
those to the interaction of the Landau levels with puddles of charge carrier
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4.9. Outlook

fluctuations within the QPC channel [158].
Additionally, for splitgate voltages above the QPC formation, there are di-

agonal lines which we interpret as a Landau fan diagram of Landau levels
tuned in carrier density by the splitgate voltage.
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Figure 4.12. Evolution of the conductance plateaus at high magnetic field. a)
Transconductance as a function of B and VSG. b) Schematic outlining features
in a). Numbers indicate conductance plateau values in terms of 2e2/h.

4.9. Outlook

We fabricated a 2DEG by encapsulating a monolayer MoS2 in hBN showing
high electron mobility µF E ∼ 1155 cm2/Vs. By applying a voltage to the lo-
cal splitgates, we were able to control the transport properties in a narrow
constriction. We discuss how the depletion of the 2DEG underneath the split-
gates can influence the sample conductance in the vicinity of the QPC. After
subtraction of the correct series resistance that includes both, the 2DEG resis-
tance and the lines resistances, a conductance quantization in steps of 2×e2/h
demonstrates a ballistic channel with discrete transverse states. The magnetic
field dependence suggests that the degeneracy is rather from the spin than
the valley degree of freedom. With simple electrostatic capacitances given by
plate capacitor model, we were able to reproduce the backgate dependence
of the transport. By probing the QPC energy channels using the chemical
potential of the leads, we extract the energy separation between these chan-
nels, which points to a smooth potential shape with curvature flatter than the
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ideal parabolic potential. The higher subband was not necessary to explain
the QPC features. Perhaps the occupation of this upper subband is too high
in energy and the QPC is already open at this energies.

These experiments demonstrate a reliable one-dimensional channel with
well-understood electrostatic and quantum mechanical features given by sim-
ple models, which enable the use of QPC in MoS2 semiconductors for future
experiments, such as in probing superconducting proximitized regions and as
a building block for QDs for spin-valley qubits.
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5 Superconducting gap spectroscopy and
quantum interference effects on S-MoS2-S
devices1

In this chapter, we demonstrate vertical interconnect access (VIA) contacts
as a platform for superconductor-semiconductor hybrid devices. We build
junctions using molybdenum rhenium, a type II superconductor with high
critical field as contacts to a monolayer MoS2. In the first device, we demon-
strate the contacting of MoS2 using the MoRe. Distinct contact resistance
makes the electron transport mostly dominated by a single N-S junction. A
clear superconductor gap is observed. In a second sample, we demonstrate the
tunneling of quasi-particles through two N-S junctions. Quantum interference
suggests coherent transport. A transition in the periodicity of the resonances
below the superconductor energy gap indicates electron-hole transport. Sub-
gap peaks in conductance close to zero bias voltage is evidence of Andreev
Bound States in the system.

1Parts of this chapter were published in a similar form in Ref.[149]
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5. Superconducting gap spectroscopy and quantum interference effects on
S-MoS2-S devices

5.1. Device I: Superconducting gap spectroscopy at N-S
interface

In this section, we report fabrication and measurements of a superconductor-
semiconductor hybrid device applying VIA contact technique. The material
of choice for the contacts is molybdenum rhenium (MoRe), a type II super-
conductor. A monolayer MoS2 is taken as the semiconductor. The transport
characteristics are dominated by a single N-S interface. To avoid confusion
with devices in the next sections, we name this device I. This section was
published in a similar form in Ref. [149].

5.1.1. Fabrication

The sample consists of an encapsulated monolayer MoS2 contacted by MoRe
VIAs. Figure 5.1 a) shows an optical image of the device’s surface and a
schematic of the heterostructure cross-section. The VIAs were fabricated using
by etching 200 nm radius holes into a 40 nm thick hBN flake with SF6 reactive
ion plasma. Detailed parameters are given in appendix E. In a second EBL
step, a larger areas, ∼300 nm, are defined, where 60 nm of MoRe (50:50) are
deposited by sputtering. MoRe is a type II superconductor with bulk critical
temperature TC ≈ 6-10 K and critical field BC2 ≈ 8-9 T.

The chip containing the MoRe VIA contacts is transferred to the glovebox,
where the heterostructure is assembled. It consists of a monolayer MoS2 en-
capsulated by hBN flakes and contacted by the MoRe VIAs. A graphite flake
serves as backgate. The heterostructure is released onto a SiO2 chip. A final
EBL step defines the leads and bondpads by evaporating Ti/Au electrodes by
standard electron beam evaporation.

Most of the experiments were performed in a dilution refrigerator at 60 mK,
with the exception of the higher temperatures, which were performed in a
variable temperature insert (VTI) with base temperature of 1.7 K.

5.1.2. Single N-S interface transport

The fabrication process yields about 60% of working contacts. The minimal
resistance area product is about 200 kΩµm. The four contacts are labeled
from C1 to C4 in Figure 5.1 a). From simple estimations of the magnetic field
characteristics, we obtain electron mobilities µ ∼ 2500 cm2/Vs (data shown in
appendix B).

We use contacts C2 and C4 for the main analysis, with a channel distance of
about 4µm. We use the standard lock-in technique to probe the conductance
through the device by applying a sinusoidal signal of f =77 Hz of amplitude
VAC =5µV. A DC voltage bias is added to this through a transformer.
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5.1. Device I: Superconducting gap spectroscopy at N-S interface
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Figure 5.1. a) Optical image of the device I surface, indicating the contact
labels. Inset: cross-section of the heterostructure. b) Conductance through
C2-C4 as function of VBG at the bias voltages indicated. Inset: same as blue
dots on a linear scale, illustrating Coulomb resonances.

Figure 5.1 b) shows the conductance G24 = dI/dVSD as a function of the
backgate voltage VBG for three values of bias voltages VSD, zero, 1 mV and
3 mV. Starting with the red dots for VSD = 3 mV, we observe an exponential
increase in conductance from the depletion at VBG ∼ 4 V. Decreasing the bias
voltage to VSD = 1 mV, shifts the depletion to a higher value, VBG ∼ 5 V. The
extreme case happens at VSD = 0, where the depletion happens at VBG ∼
6 V. This shift in the depletion voltage indicates a bias dependence on the
transport, suggesting an energy gap for low biases. Additionally, we observe
sharp resonances in conductance, which are consistent with Coulomb blockade
effects, shown in the inset of Figure 5.1 b). We note that the backgate should
affect the charge carrier density in the semiconductor, the Schottky barrier at
the metal-semiconductor interface and disorders induced by charge islands.

To further investigate the energy gap, we plot the conductance as a function
of voltage bias VSD and backgate voltage VBG in Figure 5.2 a). A suppression
in conductance of a factor of ∼8 takes place at roughly |VSD| =1.2 mV through-
out the whole range of VBG. We attribute this value to the energy gap of bulk
MoRe, which is consistent with literature values [159]. For |VSD| >1.2 mV, we
observe a modulation in the conductance, correspondent to the aforementioned
Coulomb blockade resonances. These resonances result from strong confine-
ment near the contact region. Given that such a sharp gap is only observable
if a tunnel barrier is present between N and S parts, we understand the device
as a MoS2 channel, incoherently coupled to the MoRe contacts with one of the
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Figure 5.2. a) Conductance as a function of VSD and VBG at B = 0 and b)
at B =9 T.

interfaces dominating the transport, namely the one with larger voltage drop.
Figure 5.2 b) shows the conductance as function of the backgate voltage

VBG and voltage bias VSD, now at B =9 T magnetic field applied in out of
plane direction. As expected, the bulk MoRe superconducting gap diminishes,
represented by the reduction in the suppression width in bias. Moreover, a
backgate voltage dependence is observed, giving a tapered shape to the sup-
pression. This is tentatively attributed to a gate independent superconducting
energy gap convoluted with a gate tunable MoS2 conductance.

We further investigate the gap dependence in magnetic field by repeating the
measurements shown in Figure 5.2 for more field values (See appendix B). We
averaged these plots over a gate voltage interval of 0.5 V for each VSD value.
Figure 5.3 d) shows a consistent decrease of the energy gap for increasing
magnetic field. For B = 0 we fit the BTK model, using equation 2.36 modified
to include a broadening parameter [160]. The resulting fit parameters are
consistent with a single N-S junction with low transmission at the interface.

Figure 5.3 e) shows the trend of the energy gap ∆∗ as a function of magnetic
field for three contact configurations. The inflection point of the curves are
taken as the energy gap. To fit the field dependence of the superconducting en-
ergy gap ∆∗ we use the standard theory of superconductivity for pair-breaking
in the dirty limit, where lmfp ≪ ξ [161]. The energy gap ∆∗ is given by the
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Figure 5.3. a) Average conductance as a function of VSD at the indicated
magnetic fields. Curves displaced in y-axis. b) Superconducting energy gap ∆∗

as a function of B for different contact pairs. ∆∗ is extracted from the inflection
points in the averaged curves (red disks), from the Coulomb resonances in
Figure 5.4 (purple stars), and from the data set shown in appendix B (blue
rectangles).

pair braking parameter α by [162]

∆∗(α) = ∆̃(α)[1 − (α/∆̃(α))2/3]3/2, (5.1)

where the order parameter ∆̃(α) is obtained from the self consistent equation
ln(∆̃(α)/∆0) = −πα/4∆̃(α), with ∆0 being the energy gap in absence of
magnetic field. The field dependence of the pair braking parameter α is given
by

α = 0.5∆0(B/Bc)n, (5.2)

with n as characteristic exponent. The best fit we obtain for n = 3, ∆0 =
1.12 meV and the (upper) critical field BC =14.5 T. The latter value is clearly
larger than reported for bulk MoRe.

If a quantum dot is in close proximity to a proximitized S region, the tips of
the Coulomb diamonds are displaced in bias voltage by the superconducting
energy gap [163]. In Figure 5.4, we follow the evolution of Coulomb resonances
in magnetic field. The low-bias ends of the Coulomb resonances are shifted in
energy and in gate voltage, as indicated by the gray dashed lines, consistent
with a MoS2 quantum dot directly coupled to one superconducting contact,
forming an S-QD-N junction. We read out ∆∗ from the bias values at which
50% of the large bias conductance is reached at the tip of the Coulomb blockade
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S-MoS2-S devices

resonances. With this analysis, contacts C1-C2 (purple star) yields a signif-
icantly larger zero field gap, ∆0 ∼1.7 meV, and a rather different functional
dependence on B. The latter is demonstrated by the dotted line obtained for
the exponent n = 2, and BC =6.4 T. Furthermore, these resonances are con-
nected across the gap by a single faint resonance, pointed out by yellow arrows,
best seen at B = 2 T. We attribute these lines to resonant Andreev tunneling,
in which the electrons of a Cooper pair pass through the QD in a higher order
tunneling process [163]. This process is suppressed much stronger by a tunnel
barrier than single particle tunneling, which suggests that the quantum dot is
strongly coupled to the superconductor [164]. The proportions of the quantum
dot are estimated using a circular disk geometry yielding r ∼300 nm.
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Figure 5.4. Extraction of ∆∗ from Coulomb resonances displacement in VSD

for contacts C1-C2. a) to d) show the conductance through contacts C1-C2
as function of VBG and VSD at the indicated magnetic fields. The Coulomb
resonances tips are indicated by the dashed grey lines.

The same analysis is made for contacts C2-C3 (blue rectangles), with data
available in appendix B. For this curve, we obtain n = 1, while ∆∗ ∼ 1.12 meV
and BC ∼ 12 T correspond well to the previously obtained values. While a
larger gap in the transport experiments can be simply attributed to a sig-
nificant fraction of the bias developing across another part of the device, for
example, across the second N-S junction, the different functional dependence
is not well understood.
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5.1. Device I: Superconducting gap spectroscopy at N-S interface

We now analyze the temperature dependence of the energy gap. Figure 5.5
a) shows the conductance of the device for temperatures ranging from 1.7 K to
7.8 K. The curve at 1.7 K is fitted (dashed line) using the BTK model, adjusting
the normal state resistance and the temperature. We use the inflection points
to estimate the energy gap size and plot it as function of temperature in
Figure 5.5 b). These points are fitted to ∆∗ = ∆0

√
1 − T/TC , yielding a

critical temperature TC =7.7 K in good agreement with literature values for
bulk MoRe [159, 165].
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Figure 5.5. a) Conductance as function of VSD at the indicated temperatures
for contacts C2-C3. Curves displaced in y-axis. b) Extraction of ∆∗ as a
function of temperature from the inflection points of the curves in a).

5.1.3. Conclusion for device I
In conclusion, we established superconducting contacts to a monolayer of the
TMDC semiconductor MoS2 using MoRe VIA contacts. The transport cor-
responds to a MoS2 incoherently coupled to MoRe reservoirs. The supercon-
ducting energy gap is in good agreement with a single N-S interface with low
transmission coefficient. The magnetic field- and temperature dependence of
the energy gap ensure conformity to bulk MoRe superconductivity. An asym-
metry in the contact transparency leads to a higher voltage drop at one of the
N-S interfaces, which dominates the transport.

5

59



5. Superconducting gap spectroscopy and quantum interference effects on
S-MoS2-S devices

5.2. Device II: Quantum interference effects on S-MoS2-S
devices

The data in device I exhibited an asymmetry between contacts which led to
single N-S interface physics, i.e., one NS interface was more conducting for
sub-gap voltages, so that the measured voltage drop mainly occurs across the
other, less ideal junction. In this section we introduce a device with more
uniform contacts, demonstrating the two N-S interfaces. The previously ob-
served Coulomb resonances resulting from strong confinement are now replaced
by quantum interference effects. Sub-gap features evidence the formation of
bound states between the Andreev reflections at the N-S interfaces and defects
in the semiconductor.

5.2.1. Fabrication

C1

C2
C3

C4
MoS2

MoRe
VIAs

Au Au

t-hBN

hBN

MoRe

300nm
MoS2

MoS2

b-hBN
graphite

graphite

a) b)

c)

Figure 5.6. a) Optical image of the device II surface with flakes indicated.
Scale bar is 10µm. b) MoRe VIAs contacts and their labels. Scale bar is 3µm.
c) Schematic cross-section of the heterostructure.

Device II2 is fabricated in a similar manner as device I, with improvements
in the VIA contact fabrication. We decrease the channel length to 300 nm and
increase the yield and reproducibility of the contacts. The acceleration voltage
used in the EBL was reduced for a larger undercut in the PMMA mask, which
decreases the side deposition caused by MoRe sputtering. The reactive ion
etching with SF6 was better timed to avoid excessive etching of the substrate
where the VIAs are deposited. An AFM cleaning step was introduced before

2Two samples were produced, showing compatible characteristics.
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stacking the hBN flake to clean residual side deposition and polymer at the
surface of the device. With a yield of 100% the contacts in device II have
normal state resistance in the range of 150 - 200 kΩ which corresponds to a
resistance-area product of 20 - 30 kΩµm2, a factor of ten lower than device I.
Figure 5.6 shows an optical image of the sample surface with contact labels
indicated. We focus our discussion on contacts C1-C2, with a separation of
about 300 nm.

5.2.2. Two N-S interfaces transport
This improved fabrication allows us to investigate new effects, onto which we
put now our focus.

a) b)
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Figure 5.7. a) Conductance as a function of VSD comparing devices I and II
at similar charge carrier density n. b) Conductance of device II as function of
VBG and VSD.

In Figure 5.7 a) we compare the conductance of devices I and II as a function
of VSD for at similar charge carrier density n ∼ 6 × 1012cm−2. The curve
for device I was rescaled for clarity. We observe a doubling in the width of
the suppression in conductance for device II, consistent with a low junction
transparency, but very similar for both contacts. This contrasts with the single
N-S interface transport exhibited by device I. We interpret this structure as a
more even voltage drop between the two interfaces. The quantities ∆/e and
2∆/e are marked in the bias voltage axis.

The conductance as a function of VSD and VBG for device II is plotted
in Figure 5.7 b). The suppression in conductance at |VSD| =2.4 mV extends
throughout the whole VBG range. For VBG <1.8 V, we find Coulomb block-
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ade resonances, most likely due to disorder near the contacts, that become
less screened near the conduction band minimum. Here, we focus on larger
backgate voltages.

In this regime (VBG >1.8 V), we find a continuous, essentially sinusoidal
modulation of the conductance as a function of both, VBG and VSD, without a
discernible Coulomb gap. The visibility of these resonances is ∆G/G ∼ 0.2 for
|VSD| >2.4 mV. At around VBG =5 V, an increase in the average conductance
takes place. This backgate voltage corresponds to n ∼ 3 × 1012cm−2, which
is obtained using a plate capacitor model with 30 nm hBN flake thickness
and depletion voltage at VBG =0.6 V. This charge carrier density suggests
the occupation of the second subband [39]. At zero bias an even stronger
suppression in conductance is observed. These features are discussed below.

5.2.3. Quantum interference effects
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Figure 5.8. Evolution of FP resonances in gate voltage. a) Normalized
conductance as function of VBG and VSD. Normalization is taken for every
bias voltage line. b) Wireplot of the indicated bias in a). The gap edges ∆/e
and 2∆/e are marked as red lines. The black diagonal line follows a resonance
from high (bottom) to small (top) VSD. The zoomed-in regions have the same
VBG range and mark the resonance peaks with orange X.

In this section, we discuss the modulation in conductance often called elec-
tronic Fabry-Perot (FP) resonances [166].
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5.2. Device II: Quantum interference effects on S-MoS2-S devices

To make these resonances more visible, we normalized the conductance along
the backgate axis of the data3, as plotted in Figure 5.8 a). We find a regular
pattern of narrow resonances with an enhanced conductance.

Such resonances in the normal state originate from constructive interference
of the partial electron waves formed between two scatterers, or in a confined
region, as in a cavity. The backgate tunability indicates that this interference
happens in the semiconductor material and that each resonance marks a spe-
cific Fermi wavelength λF , multiples of λF/2 should match the cavity length
L. Thus, a constructive interface takes place when

2LkF
!= 2πN, (5.3)

where N ∈ Z.
We note that there is a change in the slope around |VSD| =1.2 mV and

2.4 mV, switching from positive to negative slope and then back to positive
at small bias. These values of voltage bias correspond to ∆/e and 2∆/e re-
spectively. We understand these changes in the slopes as a mere change in
the visibility of resonances with asymmetric barriers modulated by the DoS in
the superconductor, which results in a bias dependent electrochemical average
potential on the MoS2 channel. The concrete discussion is given in appendix
C, but for the main text it is important to note that the spacing between the
resonances in gate voltage does not depend on the bias.

For hard-wall confinement, the spacing in k-space between two of the reso-
nances matches the cavity length as ∆k = π/L. Relating this spacing to the
spacing of the resonances when plotted as a function of the electron density,
one finds

L =
√

2π/p
√
nN+1 − √

nN
. (5.4)

where p is the band degeneracy4 and nN is the charge carrier density related
to the N-th resonance, which can be translated by equation 2.6 to a backgate
voltage.

From the data in Figure 5.7 b) we extract backgate voltages for consecutive
peaks and estimate L using equation 5.4. The results are plotted in Figure 5.9
b). For high negative, |VSD| > 2∆/e we obtain similar values of ∼220 nm. For
a low bias of |VSD| < 2∆/e the apparent length of the cavity seems to double
i.e. L ∼500 nm.

3For every bias value we calculate the normalized conductance as G(VBG) =
G(VBG) − Gmin

Gmax − Gmin

.
4Considering the two-fold spin degeneracy in monolayer MoS2, p = 2 for the lower sub-

band occupation and p = 4 if upper and lower subbands are occupied.
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Figure 5.9. a) Difference in VBG for two consecutive resonances at VSD =
−0.5 V (orange dots) and VSD = −3.5 V (blue dots). b) Calculated cavity
length using equation 5.4 for two consecutive resonances at VSD = −0.5 V
(orange dots) and VSD = −3.5 V (blue dots). The dashed lines in both figures
represent the mean value of the respective points.

Since this effect seems not to originate from electrostatic effects (see ap-
pendix C), we attribute this apparent doubling of the cavity length to Andreev
reflection (AR) occurring at one of the superconducting reservoirs, which re-
sults in a hole being retro-reflected and retracing the same trajectory as the
original electron, thereby acquiring the same phase one more time. Only after
another AR process, the hole is again converted into an electron partial wave
that can interfere constructively with the original electron wave, as shown in
Figure 5.10 for a) above the superconducting gap and b) sub-gap AR.

Such a discrete quantum state with an AR process at one or more bound-
aries is usually called "Andreev bound state" (ABS), and were observed in
MBE grown 2D systems [167] and in several 1D systems, like carbon nanotubes
[168–170] or semiconducting nanowires [17], and now in a 2D monolayer semi-
conductor. We note that in contrast to previous examples based on quantum
dot physics, in the presented case, electron-electron interactions seem to be
negligible and the ABSs are dominated by the quantized kinetic energy.

5.2.4. Two dimensional Andreev Bound states near a
superconductor in a disorder system

Now we focus on conductance resonances at very low bias, |V | ≪ ∆/e. Figure
5.11 shows data sets for a series of magnetic fields and a smaller backgate
voltage range. In Figure 5.11 a) at zero magnetic field, the conductance shows
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Figure 5.10. 1D schematic of the process resulting in the cavity length dou-
bling. a) In the quasiparticle regime of the superconductor an electron reaches
the N-S interface and is retro-reflected by a NR, traveling the length 2L be-
fore being backscattered and interfering with itself. b) At the superconducting
gap, the electron is retro-reflected as a hole, which travels the length L, then
is backscattered back to the N-S interface. Another Andreev reflection gener-
ates an electron which then interferes with the initial wavefunction. The total
length traveled is 4L.

sharp resonances that can be traced back to the FP resonances discussed above.
These resonances end at a maximum conductance at |VSD| ≈170µV. Below
this voltage, the conductance is suppressed by a factor of ∼ 3 at zero bias
voltage. For the sake of discussion, we call this feature "minigap" [171, 172],
to distinguish it from the superconducting energy gap of bulk MoRe. We find
such a minigap for all gate voltages, and similar characteristics in experiments
with other contact pairs. For larger magnetic fields, for example in Figure 5.11
b), the peaks of the minigap split in energy, which results in a slightly larger
minigap and two "sub-minigap" resonances, all essentially independent of the
gate voltage, in contrast to the sloped resonances discussed in the previous
section. At a certain magnetic field of B ∼2 T, the two sub-minigap peaks
merge at zero bias to form a single maximum that sticks to VSD = 0 as a
function of VBG. This zero bias peak (ZBP) persists for an extended magnetic
field range of ∼1.2 T. An example is shown in Figure 5.11 c) at B =2.8 T.

At even larger magnetic fields, the amplitude of the ZBP decreases below
the resolution of our experiments without a discernible splitting and with the
ordinary FP resonances becoming visible also in the minigap region, as shown
in Figure 5.11 d) for B =4 T. The resonance spacing is essentially still the
same as at zero field, consistent with the fact that the bulk MoRe gap is still
significantly larger at these fields.

The magnetic field dependence of the minigap and the emerging zero-bias
conductance peak can be best seen in Figure 5.12 a), where we plot the bias
traces averaged over the backgate voltage range of Figure 5.11, for a series of
magnetic fields. In addition, in Figure 5.12 b) we plot a single trace of the raw
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Figure 5.11. Sub-gap peaks evolution in magnetic field. a) to d) Conductance
as function of VBG and VSD at the indicated magnetic fields.

data (VBG =8 V) as a function of B, with an individual constant background
conductance subtracted for each VBG , to remove random conductance fluc-
tuations possibly due to flux vortices in the superconductor [163]. While the
former plot shows the zero-bias peak especially clearly, the latter shows the
splitting off of the sub-minigap resonances, a linear dependence of the position
with the magnetic field, and that they merge into a zero-bias peak that then
"sticks" to zero over a prolonged magnetic field. We have observed similar
characteristics, including ZBP at a finite magnetic field in the measurements
of all other contact pairs, and in other devices.

ZBP have gained a large interest in the search for topologically non-trivial,
Majorana-like subgap states, but have also been found in topologically triv-
ial phases [173, 174], for example, due to quantum interference in nanowires
with intrinsic spin-orbit interaction [175]. Since the resonances in our case
are essentially independent of the gate voltage, and the magnetic field is ap-
plied perpendicular to the electron motion, we propose a different mechanism,
namely ABSs forming in a slightly disordered 2D material near a supercon-
ducting contact.

Our semi-classical view is sketched in Figure 5.13. In the normal state of
a superconducting reservoir and at zero magnetic field, a single electron wave
forms a loop enclosing a finite area due to a series of scattering events near
the contact and normal reflections (NR) at the contact, as in Figure 5.13
a). On these loops, the partial electron waves can interfere constructively
or destructively, depending on the path length L and the Fermi wavelengths
of the electrons. The distribution of path lengths Lj and the corresponding
areas Aj are determined by the disorder characteristics, like the mean free path
lmfp, and vary from contact to contact. If the reservoir is superconducting,
the reflection at the contact is replaced by AR for low energies, which results
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Figure 5.12. Evolution of the sub-gap peaks in magnetic field. a) Average
conductance over VBG =6.8-7.2 V as function of VSD at the indicated magnetic
fields. b) Conductance as function of B and VSD at VBG =8 V. White dashed
lines are a guide to the eye.

in a retro-reflected hole tracing back the original electron path [176]. For
low enough magnetic fields the semi-classical trajectories can be considered as
straight before a scattering occurs, which suggests that the cyclotron radius
rc = m∗vF

eB
is smaller than the mean free path lmfp, or B < m∗vF

elmfp
∼ 2T,

for µ ∼5000 cm2/Vs [149]. Over this range, we expect the trajectories to be
only weakly affected by the magnetic field, except for a phase gain due to the
enclosed area A. Similar as discussed in section 2.5.2, near a superconducting
contact [112], we obtain the condition for constructive interference on a given
path j as

2Lj
Ej

N

ℏvF
− 2 arccos E

j
N

∆ ± 4π ϕj

ϕ0
= N · 2π, (5.5)

where N ∈ Z, Ej
N is the resonance energy, ∆ the superconductor energy gap,

ϕj = Aj · B is the magnetic flux through the area of the loop, and ϕ0 = h/e
the single electron flux quantum.

The first term describes a phase gain due to the evolution along the trajec-
tory, the second term is the phase due to the two ARs, and the third term
accounts for the phase due to the vector potential of the magnetic field. This
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Figure 5.13. Semi-classical model of the quasiparticle trajectories. The
shaded area on the side represents the superconductor interface, the white the
semiconductor and the start scatterers randomly distributed around ℓmfp. a)
In the normal state of the superconductor and at B = 0, electrons are scattered
around the interface forming a loop of area A. b) In the superconductor limit a
AR hole traces back the original electron path. At small fields, the trajectories
are almost straight. The area A picks a flux ϕ. c) In the superconductor limit
with quasiparticles in skipping orbits due to strong magnetic fields.

last term can have either sign because the electron can traverse the loop in
either direction. A more precise description would take into account the av-
erage over an ensemble of possible loop trajectories, for which we expect a
distribution with the most probable loop length on the order of a few mean
free paths. However, we stress that our picture is that there is a distribution of
such trajectories with a maximum number for a given average area and path
length, which results in a conductance maximum at the bias and magnetic
field that corresponds to the most probable trajectory properties. In addition,
we only consider small energies EN << ∆, so that the second term can be
approximated as 2 arccosEN/∆ ≈ π − 2EN/∆, which results in

EN = 2π
F

(N + 1
2) ± 4πeA

hF
B, (5.6)

with the constant F := 2L
ℏvF

+ 2
∆ .

This equation explains several of our observations:
1) for B = 0, there are no resonances allowed, and the first ABSs occur for
N = −1 and N = 1, symmetrically around VSD = 0, which one might inter-
pret as a "minigap" at the characteristic energy ∆∗ = π/F .
2) we expect the resonance energy to change linearly with B, as found in the
experiments, with a slope given by the prefactor in equation 5.6. We can
extrapolate these resonances to obtain the characteristic field at which the
resonances merge to zero bias, Blow ∼ h

4eA
. Though we at least qualitatively

may understand the low field characteristics, this toy model does not account
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for the "sticking" of the resonance to zero bias. Our qualitative explanation for
this is that in this field, the cyclotron radius shrinks to the same order of mag-
nitude as the mean free path, so that the trajectories become curved. Once
rc < ℓmfp, the trajectories are not affected by disorder anymore, and we expect
electron and hole skipping orbits. Since the most probable and efficient emis-
sion angle is perpendicular to the contact surface, the electron and hole areas
enclose the same areas, but, while obtaining the same kinetic and AR phases,
they pick up the opposite flux because of the opposite quasiparticle charge
[177], so that the two fluxes cancel and resonance becomes field-independent.
Similar as discussed in section 2.5.2, a finite bias then suppresses the con-
ductance because of different paths at different energies in the bias window
average out to zero conductance. We believe that this qualitative picture of
skipping electron and hole orbits at a superconductor interface shows similar
characteristics to more elaborate theoretical predictions of zero-bias peaks in
a disk-shaped semiconducting region surrounded by a superconductor [178],
which can also occur with only small spin-orbit interaction.

5.2.5. Conclusion for device II
Improving the MoRe VIA fabrication resulted in devices with a lower contact
resistance and more uniform voltage drop at the leads. The latter is wit-
nessed by the doubling of the suppression in conductance, corresponding to
the quasiparticle tunneling through two consecutive N-S interfaces. In the gate
dependence we observe fluctuations in the conductance arising from coherent
quantum interference of the quasiparticle wavefunctions above the energy gap.
A doubling of the resonance frequency within the superconductor energy gap
is an indication of electron-hole transport mediated by AR at the supercon-
ducting contact. Moreover, we analyze sub-gap conductance peaks, which we
attribute to ABS between S and the surrounding disorder. We qualitatively
explain the behavior of these states in magnetic field by a semi-classical picture
of the quasiparticle trajectories.
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5.3. Outlook for MoRe VIAs to monolayer MoS2

We demonstrate that superconducting VIA contacts offer a promising platform
for implementing hybrid devices in the context of 2D semiconductors. We were
able to maintain pristine crystal with high electron mobility in chemical-free
interfaces to the superconductor material. The intrinsic superconductivity of
the leads presented clear effects on the device transport characteristics. Strong
indications of coherent transport were provided, with single particle resonances
above the superconducting energy gap, and Andreev bound state resonances at
energies below. Although the Josephson effect was not observed, we presume
that a reduction in the channel length could show coherent effects across the
entirety of the device.
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6 Quantum interference effects on S-InSe-S
devices

In this brief chapter, we discuss devices based in 2D InSe semiconductor.
Our interest in InSe lies in reported high mobility [REF] and low electron
effective mass. With CB minimum in the Γ point, no valley degree of freedom
or intrinsic spin-orbit interaction InSe has a simpler band structure compared
to MoS2, which could be seen as control experiments to compare to the MoS2
devices.

We demonstrate edge contacts as a potential architecture for contacting
InSe in hybrid devices. Afterwards, we apply the VIA architecture to InSe,
which yields results comparable to MoS2. However, the sub-gap features do
not match the proposed model, requiring further investigation.
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6.1. MoRe edge contacts to a few layer InSe

Edge contact technique is promising to avoid extensive modifications in the
band structure of 2D semiconductors caused by top contacted devices as only
the sharp end of the material is in contact with the metallic lead. Here we
demonstrate the fabrication of superconducting edge contacts to InSe and
characterize the electrical transport.

6.1.1. Fabrication

A 5 nm thick InSe flake is encapsulated in hBN by the dry transfer method.
A multilayer graphene at the bottom of the stack serves as backgate. The
top hBN thickness is estimated about 40 nm by AFM scans. An EBL step
defines regions in a PMMA resist which are etched using CHF3 plasma (pa-
rameters available in appendix E). Afterwards, 60 nm MoRe are sputtered into
the etched holes creating contacts to the InSe flake in a 300 nm channels. A
step AFM cleaning is performed to remove excess material resulting from sput-
tering. Ti-Au leads are deposited connecting to the MoRe electrodes. Figure
6.1 a) shows an optical image of the device surface before the Ti-Au leads were
deposited. The inset shows a schematic of the heterostructure vertical cross-
section. The sample was mounted to a dilution refrigerator and cooled down
to 60 mK. The measurements shown below were performed using standard
lock-in technique.
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Figure 6.1. MoRe edge contacts to InSe. a) Optical image of the sam-
ple surface. Inset shows a schematic of the vertical cross-section of the het-
erostructure. The scale bar is 10µm. b) Conductance as function of VSD at
VBG =17 V.
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6.1.2. Characterization
We measured the conductance as a function of the applied bias voltage VSD

for VBG =17 V, shown in Figure 6.1 b). Similar results as discussed in chapter
5 are observed, showing transport characteristics of a quasiparticle tunneling
through a single N-S interface.

The conductance as a function of VBG and VSD, plotted in Figure 6.2 a)
shows a tapered shape of the suppression in conductance. At VBG <13 V
the suppression has width VSD ≈1.5 mV, which decreases to VSD ≈1.2 mV at
maximum gate voltage. We tentatively attribute the tapered shape to a gate
dependent resistance of the InSe semiconductor, which has a similar value to
the resistance at the largest N-S interface below VBG =13 V. Above this value,
the main resistance is only the N-S interface bringing the suppression to the
expected value for ∆MoRe.

Figure 6.2. MoRe edge contacts to InSe a) Conductance as a function of
VBG and VSD. b) Conductance as function of B and voltage bias VSD at
VBG =15 V.

Also in Figure 6.2 a), for bias voltages above VSD =1.2 mV conductance
modulations are visible. Upon further inspection, we note that these modula-
tions are also present in the sub-gap region (not shown). In this case, they form
a "minigap", as discussed in chapter 5, around VSD =250µV. Additionally, two
CB resonances are seen at 10 V and 12 V backgate. The interpretation of these
modulations is similar to the discussion in chapter 5, where here the variation
in the position of the "minigap" can be thought of as a variations in the path
length distribution made by the charges in the semi-classical model. Unfortu-
nately, the sub-gap limit in this sample is too noisy to make any comparison
of the apparent cavity length. Figure 6.2 b) shows the conductance at a small
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VSD range as a function of magnetic field for VBG =15 V. Here the dark region
at zero bias marks the "minigap" at around VSD =250µV. Within the mea-
surement resolution, there seem to be no changes in bias of this feature. This
diverges from the splitting observed in chapter 5. Understanding this charac-
teristic in terms of the semiclassical ABS model (equation 5.6) would require
an extremely small magnetic field dependence which could be obtained by a
large path length and small loop areas, causing the second term of equation
5.6 to be negligible.

6.2. MoRe VIAS to few layers InSe

hBN

InSe

graphite
C1

30
0n

m

1.7μm

C3
C2

C4VIAs

a) b)

c) Au Au

t-hBN

MoRe

InSe
b-hBN

graphite

Figure 6.3. MoRe VIA contacts to InSe a) Optical lithography of the device
surface, indicating flakes. b) Zoom showing VIA contacts a schematic of the
distance between contacts. c) Schematic of the vertical cross-section of the
heterostructure.

In this section, we demonstrate the versatility of VIA contacts by applying
to a different 2D semiconductor, InSe. Although InSe has a different band
structure and crystal lattice we obtain qualitatively similar results to the MoS2
devices.

6.2.1. Fabrication
We fabricate an encapsulated multilayer (∼3L) InSe device with MoRe VIA
contacts. The hBN containing the MoRe VIAs belong to the same batch
as for device II, containing contacts spaced by 300 nm and 1.7µm spacing
between pairs, shown in Figure 6.3 b) and schematic cross section in c). All the
other fabrication parameters match device II. The contact yield is about 70%.
Two samples were produced with reproducible results. The measurements
presented here were performed at 60 mK.
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6.2.2. Superconducting gap spectroscopy
We measure the conductance of the device using standard lock-in technique,
with sinusoidal voltage modulation of frequency 77 Hz. The first observation is
that depending on the contact pairs chosen for measurements, the conductance
presents suppression starting at either VSD =1.2 mV (for contacts C1-C2 and
C2-C4) or VSD =2.4 mV (for contacts C1-C2), as shown in Figure 6.4 a) and b).
Which reproduce the characteristics of devices I and II in chapter 5 in a single
device. We also note that the conductance is always reduced once contact C2 is
in use. Our interpretation is that contact C2 has a lower interface transparency
compared to C1 and C4 and once it is in use in a two-terminal measurement,
most of the voltage drops happen at it dominating the transport features.
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V)

4 6 8 10
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0.0

2.5

5.0

V S
D
(m

V)
0 20 40

G12 (10−3 e2/h)
0 100 200

G14 (10−3 e2/h)

2Δ/e 4Δ/e

b)a)

Figure 6.4. Conductance as a function of VBG and VSD for a) contacts C1-C2
b) contacts C1-C4.

For all contact configurations, we observe conductance resonances. The
slope of the resonances here is steeper and the density of the lines is higher than
the MoS2 devices1. Also, the visibility here is more pronounced, ∆G/G ∼0.4
. While the slope is associated with the coupling to source and drain as
discussed in appendix C, the density of the resonances and the visibility are
given by the wavefunction interference with disorder in the 2DEG. Denser
resonance spacing results in a larger apparent cavity length, given by equation
5.4. This could suggest a larger spacing between scatterers or a longer ℓmfp
for the InSe device compared to MoS2. We understand the higher visibility of
the resonances as stronger localization of the quasiparticles in InSe, which is

1This comparison is only possible since the dielectric hBN flakes used in these heterostruc-
tures has a roughly similar thickness on the plate capacitor model.
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expected for m∗
InSe < m∗

MoS2 .

6.2.3. Sub-gap peaks and magnetic field dependence
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Figure 6.5. Sub-gap peaks for contacts C1-C2. Conductance as a function
of VBG and VSD at two different VBG ranges. a) Finite bias peaks from 6.4 V
to 6.6 V b) A zero bias peak extending from 7.6 to 7.8 V.

Now we focus on the sub-gap peaks for contacts C1-C4. The data for contact
pair C1-C2 can be found in appendix D.

Figure 6.5 shows the conductance for a lower bias range,|VSD| =2 mV as a
function of VBG at two backgate voltage ranges, from 6.4 V to 6.6 V and 7.6 V
to 7.8 V. For most of VBG we observe a "minigap" shown in Figure 6.5 a), with
finite bias peaks (FBP) and a suppression at zero bias. But for a few irregular
segments of VBG, e.g. 7.6 V to 7.8 V, we observe the formation of a single peak
at zero bias voltage (ZBP), as in 6.5 b). The same ZPB is also present at from
VBG =7 V to 7.1 V.

The difference between FBP and ZBP is more clear in Figure 6.6, where we
plot the average conductance for each VSD value over the VBG ranges in Figure
6.5. The FBP (blue curve) are located around VSD =20µV, accompanied by
side peaks at VSD =250µV. The ZBP is accompanied by a modulation at
VSD =1.5 mV.

The magnetic field evolution of these low bias peaks is shown in Figure 6.7
for a backgate voltage cross sections at VBG =6.55 V, representing a region of
FBP and VBG =7.05 V for a region of ZPB.

For the ZBP case, in Figure 6.7 b) we note a splitting into two peaks moving
to higher bias values as the magnetic field increases. For the FBP case, Figure
6.7 a), the peaks move only to higher bias values as the magnetic field increases.
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Figure 6.6. Average conductance as a function of VSD for the backgate ranges
indicated.

This is contrasting to the MoS2 data in chapter 5, where we observe a spitting
moving simultaneously to higher and lower bias values. Additionally, there
is no crossing at zero bias for finite magnetic fields as seen for device II in
chapter 5.

We sweep the magnetic field to negative values, to check for small offsets
that would push the crossing of the FBP to negative values. We did not
observe a crossing except for smearing at zero bias, which is hysteretic in the
sweep direction.

At B ∼2.5 T these peaks fade into the background conductance. The data
up to 9 T magnetic field and at a larger bias range is shown in appendix D.
For both cases, the slope in magnetic field is similar under the measurement
resolution of ∼64µV/T, correspondent to a Landé g-factor g ∼2.2.

The presence of FBP at zero magnetic field is clear in terms of equation
5.6 as discussed for device II. However, in our experiments, we only observe
an increase of the energy peaks in bias voltage as a function of magnetic
field, which contradicts the opposite of the field dependence. Additionally, the
presence of a ZBP can only be justified if the path length L increases such
that the minigap is smaller than our experiment resolution.
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Figure 6.7. Evolution of the low bias peaks in magnetic field. Conductance
as function of B and VSD for a) finite bias peaks at VBG =6.55 V b) zero bias
peaks at VBG =7.05 V. White dashed lines are guides to the eye.

6.3. Outlook

In conclusion, we successfully fabricated MoRe VIA contacts to a few layers
InSe and obtained similar results to MoS2. This demonstrates the versatility
of the contacting method. The sub-gap peaks and their evolution in field
is discussed in terms of the semi-classical picture provided in chapter 5, but
present a few divergences, that do not match the model.
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7 Conclusion and Outlook

The goal of this thesis was to develop and investigate the electronic trans-
port on planar superconductor-semiconductor hybrid devices, employing two-
dimensional semiconductors such as TMDCs and others.

The focus was a proximity region between superconducting leads connected
to a two-dimensional weak link. The main challenges were a reliable contacting
method that would provide low Schottky barrier and coherent electron trans-
port through the interface. Throughout the project, we investigate different
contacting techniques and materials to overcome Schottky barrier and opti-
mize the interface cleanliness between electrodes and semiconductors. Using
semimetallic bismuth, we were able to reproduce the low contact resistance
reported in a very recent publication, but employing such materials in combi-
nation with a superconducting film proved not straightforward. No effects of
superconductivity were observed suggesting the bismuth might not be suitable,
but not discarding the use of other semimetals.

The VIA contacting method using MoRe resulted in devices with excellent
electron mobilities and coherent tunneling of quasiparticles through the N-S
interfaces, which provides spectroscopy measurements of the superconduct-
ing gap. We also observe quantum interference phenomena rising from the
quasiparticle wavefunctions interaction with the disorder in the system. By
analyzing the properties of these interferences, we obtain indications of elec-
tron hole transport and formation of Andreev Bound states in the sub-gap
regime. A simple semi-classical model provides qualitative understanding of
the evolution of sub-gap states in magnetic field. These results show solid
steps towards Josephson physics in 2D materials.

Additionally, we aimed to develop reliable local field effect gating, useful
for probing and manipulating quasiparticle states. This was realized by intro-
ducing narrow constriction in monolayer MoS2. We demonstrate well-defined,
quantized steps in conductance. The identification of the conductance steps
showed to be more problematic than for example in high-mobility GaAs, be-
cause the 2D material adjacent to the QPC cannot be neglected and requires
a more in-depth analysis, which we discuss with a simple electrostatics model.
By studying the discrete energy levels we were to infer properties of the con-
fining potential. The magnetic field dependence suggested degeneracy of spin
rather than valley degree of freedom.
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7. Conclusion and Outlook

As an outlook, we expect 2D semiconductors to be a viable platform for
hybrid devices with exciting prospects of spin and valley degrees of freedom.
Further improvements in the channel length using the current MoRe VIA ar-
chitecture could lead to coherent effects connecting the two interfaces. The
established gate defined nanostructure could be used to probe the proximitized
region, providing insights of reflection coefficients at the N-S interfaces. Fu-
ture investigations should also focus on improving the interface transparency.
Although our results with Bi-Al devices were not promising there are other
semimetals that could be investigated, e.g. Sb or α-phase Sn. Although the
latter is known for being an unstable phase, it also possesses intrinsic super-
conductivity at low temperatures which is a considerable advantage. Once the
superconducting proximity effect is established in a considerable region, the
nanostructrures could be easily adapted to quantum dots and used in Cooper
pair splitting experiments. A planar gate tunable Josephson junction with
spin and valley degree of freedom and strong spin-orbit interaction could be
an exciting platform for quantum circuits as qubits or for the investigation of
exotic topological states.

80

7



Bibliography

[1] G. E. Moore, Electronics Magazine 38 (1965).

[2] G. E. Moore, IEEE Solid-State Circuits Society Newsletter 11, 36 (2006).

[3] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L.
O’Brien, Nature 464, 45 (2010).

[4] E. Pednault, J. A. Gunnels, G. Nannicini, L. Horesh, and R. Wisnieff, “Lever-
aging secondary storage to simulate deep 54-qubit sycamore circuits,” (2019),
arXiv:1910.09534 [quant-ph] .

[5] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin,
D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang,
L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan,
Science 370, 1460 (2020).

[6] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and
L. P. Kouwenhoven, Science 336, 1003 (2012).

[7] C. Beenakker, Annual Review of Condensed Matter Physics 4, 113 (2013).

[8] L. Fu and C. L. Kane, Phys. Rev. B 79, 161408 (2009).

[9] F. Ronetti, D. Loss, and J. Klinovaja, Phys. Rev. B 103, 235410 (2021).

[10] M. M. Leivo, J. P. Pekola, and D. V. Averin, Applied Physics Letters 68, 1996
(1996).

[11] A. Bordoloi, V. Zannier, L. Sorba, C. Schönenberger, and A. Baumgartner,
Nature 612, 454 (2022).

[12] T. W. Larsen, K. D. Petersson, F. Kuemmeth, T. S. Jespersen, P. Krogstrup,
J. Nygård, and C. M. Marcus, Phys. Rev. Lett. 115, 127001 (2015).

[13] E. Marchiori, L. Ceccarelli, N. Rossi, G. Romagnoli, J. Herrmann, J.-C. Besse,
S. Krinner, A. Wallraff, and M. Poggio, Applied Physics Letters 121 (2022),
10.1063/5.0103597.

[14] K.-Y. Kang, I. Song, Y. S. Ha, S.-K. Han, G. Y. Sung, I.-H. Song, and G. Park,
IEEE Transactions on Applied Superconductivity 9, 3074 (1999).

[15] L. Fritzsch, M. Schubert, G. Wende, and H.-G. Meyer, Applied Physics Letters
73, 1583 (1998).

81

http://dx.doi.org/10.1109/N-SSC.2006.4804410
http://dx.doi.org/ 10.1038/nature08812
http://arxiv.org/abs/1910.09534
http://dx.doi.org/10.1126/science.abe8770
http://dx.doi.org/10.1126/science.1222360
http://dx.doi.org/10.1146/annurev-conmatphys-030212-184337
http://dx.doi.org/10.1103/PhysRevB.79.161408
http://dx.doi.org/10.1103/PhysRevB.103.235410
http://dx.doi.org/10.1063/1.115651
http://dx.doi.org/10.1063/1.115651
http://dx.doi.org/10.1038/s41586-022-05436-z
http://dx.doi.org/ 10.1103/PhysRevLett.115.127001
http://dx.doi.org/10.1063/5.0103597
http://dx.doi.org/10.1063/5.0103597
http://dx.doi.org/10.1109/77.783678
http://dx.doi.org/ 10.1063/1.122211
http://dx.doi.org/ 10.1063/1.122211


Bibliography

[16] C. Ciaccia, R. Haller, A. C. C. Drachmann, C. Schrade, T. Lindemann, M. J.
Manfra, and C. Schönenberger, “Gate tunable josephson diode in proximitized
inas supercurrent interferometers,” (2023), arXiv:2304.00484 [cond-mat.mes-
hall] .

[17] C. Jünger, S. Lehmann, K. A. Dick, C. Thelander, C. Schönenberger, and
A. Baumgartner, “Intermediate states in andreev bound state fusion,” (2021),
arXiv:2111.00651 [cond-mat.mes-hall] .

[18] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos,
I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).

[19] M. Ashton, J. Paul, S. B. Sinnott, and R. G. Hennig, Phys. Rev. Lett. 118,
106101 (2017).

[20] M. C. Lemme, D. Akinwande, C. Huyghebaert, and C. Stampfer, Nature Com-
munications 13, 1392 (2022).

[21] D. Akinwande, C. Huyghebaert, C.-H. Wang, M. I. Serna, S. Goossens, L.-J.
Li, H.-S. P. Wong, and F. H. L. Koppens, Nature 573, 507 (2019).

[22] S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, Nature
Reviews Materials 2, 17033 (2017).

[23] A. L. R. Manesco and A. Pulkin, “Spatial separation of spin currents in tran-
sition metal dichalcogenides,” (2023), arXiv:2206.07333 [cond-mat.mes-hall]
.

[24] A. K. Geim and I. V. Grigorieva, Nature 499, 419 (2013).

[25] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and
P. Jarillo-Herrero, Nature 556, 43 (2018).

[26] D. I. Indolese, P. Karnatak, A. Kononov, R. Delagrange, R. Haller, L. Wang,
P. Makk, K. Watanabe, T. Taniguchi, and C. Schönenberger, Nano Letters
20, 7129 (2020).

[27] A. Kononov, M. Endres, G. Abulizi, K. Qu, J. Yan, D. G. Mandrus, K. Watan-
abe, T. Taniguchi, and C. Schönenberger, Journal of Applied Physics 129
(2021), 10.1063/5.0021350.

[28] F. Telesio, M. Carrega, G. Cappelli, A. Iorio, A. Crippa, E. Strambini, F. Gi-
azotto, M. Serrano-Ruiz, M. Peruzzini, and S. Heun, ACS Nano 16, 3538
(2022).

[29] D. J. Trainer, B. Wang, F. Bobba, N. Samuelson, X. Xi, J. Zasadzinski, J. Niem-
inen, A. Bansil, and M. Iavarone, ACS Nano 14, 2718 (2020).

[30] E. Mikheev, I. T. Rosen, and D. Goldhaber-Gordon, Science Advances 7,
eabi6520 (2021).

[31] H. van Houten and C. Beenakker, Physica B: Condensed Matter 175, 187
(1991).

82

http://arxiv.org/abs/2304.00484
http://arxiv.org/abs/2304.00484
http://arxiv.org/abs/2111.00651
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1103/PhysRevLett.118.106101
http://dx.doi.org/10.1103/PhysRevLett.118.106101
http://dx.doi.org/10.1038/s41467-022-29001-4
http://dx.doi.org/10.1038/s41467-022-29001-4
http://dx.doi.org/ 10.1038/s41586-019-1573-9
http://dx.doi.org/10.1038/natrevmats.2017.33
http://dx.doi.org/10.1038/natrevmats.2017.33
http://arxiv.org/abs/2206.07333
http://dx.doi.org/10.1038/nature12385
http://dx.doi.org/ 10.1038/nature26160
http://dx.doi.org/10.1021/acs.nanolett.0c02412
http://dx.doi.org/10.1021/acs.nanolett.0c02412
http://dx.doi.org/10.1063/5.0021350
http://dx.doi.org/10.1063/5.0021350
http://dx.doi.org/10.1021/acsnano.1c09315
http://dx.doi.org/10.1021/acsnano.1c09315
http://dx.doi.org/10.1021/acsnano.9b07475
http://dx.doi.org/10.1126/sciadv.abi6520
http://dx.doi.org/10.1126/sciadv.abi6520
http://dx.doi.org/https://doi.org/10.1016/0921-4526(91)90712-N
http://dx.doi.org/https://doi.org/10.1016/0921-4526(91)90712-N


Bibliography

[32] T. Ihn, Semiconductor Nanostructures: Quantum States and Electronic Trans-
port (Oxford University Press, Oxford, 2010).

[33] V. Umansky, R. de Picciotto, and M. Heiblum, Applied Physics Letters 71,
683 (1997).

[34] J. Shabani, M. Kjaergaard, H. J. Suominen, Y. Kim, F. Nichele, K. Pakrouski,
T. Stankevic, R. M. Lutchyn, P. Krogstrup, R. Feidenhans’l, S. Kraemer,
C. Nayak, M. Troyer, C. M. Marcus, and C. J. Palmstrøm, Phys. Rev. B
93, 155402 (2016).

[35] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nature
Nanotechnology 6, 147 (2011).

[36] Z. Wang and B. Mi, Environmental Science & Technology 51, 8229 (2017).

[37] Z. Wu, B. T. Zhou, X. Cai, P. Cheung, G.-B. Liu, M. Huang, J. Lin, T. Han,
L. An, Y. Wang, S. Xu, G. Long, C. Cheng, K. T. Law, F. Zhang, and N. Wang,
Nature Communications 10, 611 (2019).

[38] A. Kormányos, V. Zólyomi, N. D. Drummond, and G. Burkard, Phys. Rev. X
4, 011034 (2014).

[39] R. Pisoni, A. Kormányos, M. Brooks, Z. Lei, P. Back, M. Eich, H. Overweg,
Y. Lee, P. Rickhaus, K. Watanabe, T. Taniguchi, A. Imamoglu, G. Burkard,
T. Ihn, and K. Ensslin, Phys. Rev. Lett. 121, 247701 (2018).

[40] T. Y. T. Hung, K. Y. Camsari, S. Zhang, P. Upadhyaya, and Z. Chen, Science
Advances 5, eaau6478 (2019).

[41] S. Liu, Y. Liu, L. N. Holtzman, B. Li, M. Holbrook, J. Pack, T. Taniguchi,
K. Watanabe, C. R. Dean, A. Pasupathy, K. Barmak, D. A. Rhodes, and
J. Hone, “Two-step flux synthesis of ultrapure transition metal dichalco-
genides,” (2023), arXiv:2303.16290 [cond-mat.mtrl-sci] .

[42] J. G. Roch, G. Froehlicher, N. Leisgang, P. Makk, K. Watanabe, T. Taniguchi,
and R. J. Warburton, Nature Nanotechnology 14, 432 (2019).

[43] D. Costanzo, S. Jo, H. Berger, and A. F. Morpurgo, Nature Nanotechnology
11, 339 (2016).

[44] M.-H. Shang, H. Hou, J. Zheng, Z. Yang, J. Zhang, S. Wei, X. Duan, and
W. Yang, The Journal of Physical Chemistry Letters 9, 6032 (2018).

[45] C. Kong, Y.-X. Han, L. jie Hou, and P.-J. Yan, International Journal of Hy-
drogen Energy 47, 242 (2022).

[46] D. Liu, Y. Guo, L. Fang, and J. Robertson, Applied Physics Letters 103,
183113 (2013).

[47] A. K. Dash, H. Swaminathan, E. Berger, M. Mondal, T. Lehenkari, P. R.
Prasad, K. Watanabe, T. Taniguchi, H.-P. Komsa, and A. Singh, 2D Materials
10, 035002 (2023).

83

http://dx.doi.org/10.1063/1.119829
http://dx.doi.org/10.1063/1.119829
http://dx.doi.org/10.1103/PhysRevB.93.155402
http://dx.doi.org/10.1103/PhysRevB.93.155402
http://dx.doi.org/ 10.1038/nnano.2010.279
http://dx.doi.org/ 10.1038/nnano.2010.279
http://dx.doi.org/10.1021/acs.est.7b01466
http://dx.doi.org/ 10.1038/s41467-019-08629-9
http://dx.doi.org/10.1103/PhysRevX.4.011034
http://dx.doi.org/10.1103/PhysRevX.4.011034
http://dx.doi.org/ 10.1103/PhysRevLett.121.247701
http://dx.doi.org/ 10.1126/sciadv.aau6478
http://dx.doi.org/ 10.1126/sciadv.aau6478
http://arxiv.org/abs/2303.16290
http://dx.doi.org/ 10.1038/s41565-019-0397-y
http://dx.doi.org/ 10.1038/nnano.2015.314
http://dx.doi.org/ 10.1038/nnano.2015.314
http://dx.doi.org/10.1021/acs.jpclett.8b02591
http://dx.doi.org/https://doi.org/10.1016/j.ijhydene.2021.10.026
http://dx.doi.org/https://doi.org/10.1016/j.ijhydene.2021.10.026
http://dx.doi.org/ 10.1063/1.4824893
http://dx.doi.org/ 10.1063/1.4824893
http://dx.doi.org/ 10.1088/2053-1583/acc7b6
http://dx.doi.org/ 10.1088/2053-1583/acc7b6


Bibliography

[48] J. Hu, L. Yu, J. Deng, Y. Wang, K. Cheng, C. Ma, Q. Zhang, W. Wen, S. Yu,
Y. Pan, J. Yang, H. Ma, F. Qi, Y. Wang, Y. Zheng, M. Chen, R. Huang,
S. Zhang, Z. Zhao, J. Mao, X. Meng, Q. Ji, G. Hou, X. Han, X. Bao, Y. Wang,
and D. Deng, Nature Catalysis 4, 242 (2021).

[49] D. A. Bandurin, A. V. Tyurnina, G. L. Yu, A. Mishchenko, V. Zólyomi, S. V.
Morozov, R. K. Kumar, R. V. Gorbachev, Z. R. Kudrynskyi, S. Pezzini, Z. D.
Kovalyuk, U. Zeitler, K. S. Novoselov, A. Patanè, L. Eaves, I. V. Grigorieva,
V. I. Fal’ko, A. K. Geim, and Y. Cao, Nature Nanotechnology 12, 223 (2017).

[50] M. Wasala, H. I. Sirikumara, Y. Raj Sapkota, S. Hofer, D. Mazumdar,
T. Jayasekera, and S. Talapatra, J. Mater. Chem. C 5, 11214 (2017).

[51] J. Jiang, L. Xu, C. Qiu, and L.-M. Peng, Nature 616, 470 (2023).

[52] H. Cai, Y. Gu, Y.-C. Lin, Y. Yu, D. B. Geohegan, and K. Xiao, Applied
Physics Reviews 6 (2019), 10.1063/1.5123487.

[53] D. Shcherbakov, P. Stepanov, S. Memaran, Y. Wang, Y. Xin, J. Yang,
K. Wei, R. Baumbach, W. Zheng, K. Watanabe, T. Taniguchi, M. Bockrath,
D. Smirnov, T. Siegrist, W. Windl, L. Balicas, and C. N. Lau, Science Advances
7, eabe2892 (2021).

[54] M. Hamer, E. Tóvári, M. Zhu, M. D. Thompson, A. Mayorov, J. Prance, Y. Lee,
R. P. Haley, Z. R. Kudrynskyi, A. Patanè, D. Terry, Z. D. Kovalyuk, K. Ensslin,
A. V. Kretinin, A. Geim, and R. Gorbachev, Nano Letters 18, 3950 (2018).

[55] Y. Lee, R. Pisoni, H. Overweg, M. Eich, P. Rickhaus, A. Patanè, Z. R. Kudryn-
skyi, Z. D. Kovalyuk, R. Gorbachev, K. Watanabe, T. Taniguchi, T. Ihn, and
K. Ensslin, 2D Materials 5 (2018), 10.1088/2053-1583/aacb49.

[56] S. Tao, X. Zhang, J. Zhu, P. He, S. A. Yang, Y. Lu, and S.-H. Wei, Journal of
the American Chemical Society 144, 3949 (2022).

[57] J. Chen, Journal of Physics and Chemistry of Solids 125, 23 (2019).

[58] Y. Ma, Y. Dai, L. Yu, C. Niu, and B. Huang, New Journal of Physics 15,
073008 (2013).

[59] S. Sze and K. K.N., Physics of Semiconductor Devices (John Wiley and Sons,
Inc., 2006).

[60] Y. Wang and M. Chhowalla, Nature Reviews Physics 4, 101 (2022).

[61] S. McDonnell, C. Smyth, C. L. Hinkle, and R. M. Wallace, ACS Applied
Materials & Interfaces 8, 8289 (2016).

[62] C. M. Smyth, R. Addou, S. McDonnell, C. L. Hinkle, and R. M. Wallace, The
Journal of Physical Chemistry C 120, 14719 (2016).

[63] C. M. Smyth, R. Addou, C. L. Hinkle, and R. M. Wallace, The Journal of
Physical Chemistry C 123, 23919 (2019).

84

http://dx.doi.org/10.1038/s41929-021-00584-3
http://dx.doi.org/ 10.1038/nnano.2016.242
http://dx.doi.org/ 10.1039/C7TC02866K
http://dx.doi.org/ 10.1038/s41586-023-05819-w
http://dx.doi.org/10.1063/1.5123487
http://dx.doi.org/10.1063/1.5123487
http://dx.doi.org/10.1126/sciadv.abe2892
http://dx.doi.org/10.1126/sciadv.abe2892
http://dx.doi.org/ 10.1021/acs.nanolett.8b01376
http://dx.doi.org/10.1088/2053-1583/aacb49
http://dx.doi.org/10.1021/jacs.1c11953
http://dx.doi.org/10.1021/jacs.1c11953
http://dx.doi.org/https://doi.org/10.1016/j.jpcs.2018.09.039
http://dx.doi.org/ 10.1088/1367-2630/15/7/073008
http://dx.doi.org/ 10.1088/1367-2630/15/7/073008
https://onlinelibrary.wiley.com/doi/book/10.1002/0470068329
http://dx.doi.org/10.1038/s42254-021-00389-0
http://dx.doi.org/10.1021/acsami.6b00275
http://dx.doi.org/10.1021/acsami.6b00275
http://dx.doi.org/ 10.1021/acs.jpcc.6b04473
http://dx.doi.org/ 10.1021/acs.jpcc.6b04473
http://dx.doi.org/10.1021/acs.jpcc.9b04355
http://dx.doi.org/10.1021/acs.jpcc.9b04355


Bibliography

[64] M. Endres, A. Kononov, M. Stiefel, M. Wyss, H. S. Arachchige, J. Yan, D. Man-
drus, K. Watanabe, T. Taniguchi, and C. Schönenberger, Phys. Rev. Mater.
6, L081201 (2022).

[65] M. Bai, F. Yang, M. Luysberg, J. Feng, A. Bliesener, G. Lippertz, A. A. Taskin,
J. Mayer, and Y. Ando, Phys. Rev. Mater. 4, 094801 (2020).

[66] Y. Liu, J. Guo, E. Zhu, L. Liao, S.-J. Lee, M. Ding, I. Shakir, V. Gambin,
Y. Huang, and X. Duan, Nature 557, 696 (2018).

[67] Q. H. Thi, H. Kim, J. Zhao, and T. H. Ly, npj 2D Materials and Applications
2, 34 (2018).

[68] T. Y. Jeong, H. Kim, S.-J. Choi, K. Watanabe, T. Taniguchi, K. J. Yee, Y.-S.
Kim, and S. Jung, Nature Communications 10, 3825 (2019).

[69] C. Kim, I. Moon, D. Lee, M. S. Choi, F. Ahmed, S. Nam, Y. Cho, H.-J. Shin,
S. Park, and W. J. Yoo, ACS Nano 11, 1588 (2017).

[70] Q. Yue, J. Kang, Z. Shao, X. Zhang, S. Chang, G. Wang, S. Qin, and J. Li,
Physics Letters A 376, 1166 (2012).

[71] J. Pető, G. Dobrik, G. Kukucska, P. Vancsó, A. A. Koós, J. Koltai, P. Nemes-
Incze, C. Hwang, and L. Tapasztó, npj 2D Materials and Applications 3, 39
(2019).

[72] K. Gołasa, M. Grzeszczyk, J. Binder, R. Bożek, A. Wysmołek, and A. Babiński,
AIP Advances 5, 077120 (2015).

[73] C. Zhang, M.-Y. Li, J. Tersoff, Y. Han, Y. Su, L.-J. Li, D. A. Muller, and
C.-K. Shih, Nature Nanotechnology 13, 152 (2018).

[74] P.-C. Shen, C. Su, Y. Lin, A.-S. Chou, C.-C. Cheng, J.-H. Park, M.-H. Chiu, A.-
Y. Lu, H.-L. Tang, M. M. Tavakoli, G. Pitner, X. Ji, Z. Cai, N. Mao, J. Wang,
V. Tung, J. Li, J. Bokor, A. Zettl, C.-I. Wu, T. Palacios, L.-J. Li, and J. Kong,
Nature 593, 211 (2021).

[75] K. Sotthewes, R. van Bremen, E. Dollekamp, T. Boulogne, K. Nowakowski,
D. Kas, H. J. W. Zandvliet, and P. Bampoulis, J Phys Chem C Nanomater
Interfaces 123, 5411 (2019).

[76] Y. Liu, P. Stradins, and S.-H. Wei, Science Advances 2, e1600069 (2016).

[77] M. Farmanbar and G. Brocks, Phys. Rev. B 93, 085304 (2016).

[78] R. T. Tung, Phys. Rev. B 64, 205310 (2001).

[79] W. Li, X. Gong, Z. Yu, L. Ma, W. Sun, S. Gao, Ç. Köroğlu, W. Wang, L. Liu,
T. Li, H. Ning, D. Fan, Y. Xu, X. Tu, T. Xu, L. Sun, W. Wang, J. Lu, Z. Ni,
J. Li, X. Duan, P. Wang, Y. Nie, H. Qiu, Y. Shi, E. Pop, J. Wang, and
X. Wang, Nature 613, 274 (2023).

[80] D. Somvanshi, S. Kallatt, C. Venkatesh, S. Nair, G. Gupta, J. K. Anthony,
D. Karmakar, and K. Majumdar, Phys. Rev. B 96, 205423 (2017).

85

http://dx.doi.org/ 10.1103/PhysRevMaterials.6.L081201
http://dx.doi.org/ 10.1103/PhysRevMaterials.6.L081201
http://dx.doi.org/10.1103/PhysRevMaterials.4.094801
http://dx.doi.org/ 10.1038/s41586-018-0129-8
http://dx.doi.org/ 10.1038/s41699-018-0079-x
http://dx.doi.org/ 10.1038/s41699-018-0079-x
http://dx.doi.org/10.1038/s41467-019-11751-3
http://dx.doi.org/ 10.1021/acsnano.6b07159
http://dx.doi.org/https://doi.org/10.1016/j.physleta.2012.02.029
http://dx.doi.org/ 10.1038/s41699-019-0123-5
http://dx.doi.org/ 10.1038/s41699-019-0123-5
http://dx.doi.org/ 10.1063/1.4926670
http://dx.doi.org/10.1038/s41565-017-0022-x
http://dx.doi.org/10.1038/s41586-021-03472-9
http://dx.doi.org/10.1126/sciadv.1600069
http://dx.doi.org/10.1103/PhysRevB.93.085304
http://dx.doi.org/10.1103/PhysRevB.64.205310
http://dx.doi.org/10.1038/s41586-022-05431-4
http://dx.doi.org/10.1103/PhysRevB.96.205423


Bibliography

[81] C. D. English, G. Shine, V. E. Dorgan, K. C. Saraswat, and E. Pop, Nano
Letters 16, 3824 (2016).

[82] Q. Smets, B. Groven, M. Caymax, I. P. Radu, G. Arutchelvan, J. Jussot,
D. Verreck, I. Asselberghs, A. N. Mehta, A. Gaur, D. Lin, and S. E. Kazzi,
2019 IEEE International Electron Devices Meeting (IEDM) , 23.2.1 (2019).

[83] E. Ber, R. W. Grady, E. Pop, and E. Yalon, “Pinpointing the dominant
component of contact resistance to atomically thin semiconductors,” (2021),
arXiv:2110.02563 [physics.app-ph] .

[84] H. Liu, M. Si, Y. Deng, A. T. Neal, Y. Du, S. Najmaei, P. M. Ajayan, J. Lou,
and P. D. Ye, ACS Nano 8, 1031 (2014).

[85] J. Kang, W. Liu, D. Sarkar, D. Jena, and K. Banerjee, Phys. Rev. X 4, 031005
(2014).

[86] G. Arutchelvan, C. J. Lockhart de la Rosa, P. Matagne, S. Sutar, I. Radu,
C. Huyghebaert, S. De Gendt, and M. Heyns, Nanoscale 9, 10869 (2017).

[87] A. Szabo, A. Jain, M. Parzefall, L. Novotny, and M. Luisier, Nano Letters 19,
3641 (2019).

[88] Z. Cheng, J. Backman, H. Zhang, H. Abuzaid, G. Li, Y. Yu, L. Cao, A. V.
Davydov, M. Luisier, C. A. Richter, and A. D. Franklin, Advanced Materials
n/a, 2210916 (2023).

[89] M. Poljak, M. Matić, and A. Zeljko, IEEE Electron Device Letters 42, 1240
(2021).

[90] M. Brahma, M. L. Van de Put, E. Chen, M. V. Fischetti, and W. G. Van-
denberghe, in 2021 International Conference on Simulation of Semiconductor
Processes and Devices (SISPAD) (2021) pp. 175–179.

[91] A. Seredinski, E. G. Arnault, V. Z. Costa, L. Zhao, T. F. Q. Larson, K. Watan-
abe, T. Taniguchi, F. Amet, A. K. M. Newaz, and G. Finkelstein, AIP Advances
11, 045312 (2021).

[92] B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P.
Kouwenhoven, D. van der Marel, and C. T. Foxon, Phys. Rev. Lett. 60, 848
(1988).

[93] D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F.
Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones, Journal
of Physics C: Solid State Physics 21, L209 (1988).

[94] M. Büttiker, Phys. Rev. B 41, 7906 (1990).

[95] T. T. Heikkila, The Physics of Nanoelectronics: Transport and Fluctuation
Phenomena at Low Temperatures (Oxford University Press, 2013).

[96] S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge Studies in
Semiconductor Physics and Microelectronic Engineering (Cambridge University
Press, 1995).

86

http://dx.doi.org/ 10.1021/acs.nanolett.6b01309
http://dx.doi.org/ 10.1021/acs.nanolett.6b01309
http://arxiv.org/abs/2110.02563
http://dx.doi.org/10.1021/nn405916t
http://dx.doi.org/ 10.1103/PhysRevX.4.031005
http://dx.doi.org/ 10.1103/PhysRevX.4.031005
http://dx.doi.org/ 10.1039/C7NR02487H
http://dx.doi.org/ 10.1021/acs.nanolett.9b00678
http://dx.doi.org/ 10.1021/acs.nanolett.9b00678
http://dx.doi.org/ https://doi.org/10.1002/adma.202210916
http://dx.doi.org/ https://doi.org/10.1002/adma.202210916
http://dx.doi.org/10.1109/LED.2021.3087908
http://dx.doi.org/10.1109/LED.2021.3087908
http://dx.doi.org/10.1109/SISPAD54002.2021.9592589
http://dx.doi.org/10.1109/SISPAD54002.2021.9592589
http://dx.doi.org/10.1063/5.0045009
http://dx.doi.org/10.1063/5.0045009
http://dx.doi.org/10.1103/PhysRevLett.60.848
http://dx.doi.org/10.1103/PhysRevLett.60.848
http://dx.doi.org/ 10.1088/0022-3719/21/8/002
http://dx.doi.org/ 10.1088/0022-3719/21/8/002
http://dx.doi.org/10.1103/PhysRevB.41.7906
http://dx.doi.org/10.1017/CBO9780511805776


Bibliography

[97] A. Bordoloi, Spin Projection and Correlation Experiments in Nanoelectronic
Devices, Phd thesis, University of Basel, Basel (2021), https://edoc.unibas.
ch/84831/.

[98] H. Kamerlingh Onnes, Commun. Phys. Lab. Univ. Leiden , 120b,122b (1911).

[99] W. Meissner and R. Ochsenfeld, Naturwissenschaften 21, 787 (1933).

[100] F. London, H. London, and F. A. Lindemann, Proceedings of the Royal Society
of London. Series A - Mathematical and Physical Sciences 149, 71 (1935).

[101] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 106, 162 (1957).

[102] V. L. Ginzburg and L. D. Landau, “On the theory of superconductivity,” in
On Superconductivity and Superfluidity: A Scientific Autobiography (Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009) pp. 113–137.

[103] M. Tinkham, Introduction to Superconductivity, Dover Books on Physics Series
(Dover Publications, 2004).

[104] B. Josephson, Physics Letters 1, 251 (1962).

[105] P. W. Anderson and J. M. Rowell, Phys. Rev. Lett. 10, 230 (1963).

[106] R. Gross, A. Marx, and F. Deppe, Applied Superconductivity: Josephson Effect
and Superconducting Electronics, De Gruyter Textbook (De Gruyter, 2016).

[107] G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B 25, 4515
(1982).

[108] T. M. Klapwijk, Journal of Superconductivity 17, 593 (2004).

[109] V. Ambegaokar and A. Baratoff, Phys. Rev. Lett. 11, 104 (1963).

[110] P. F. Bagwell, Phys. Rev. B 46, 12573 (1992).

[111] C. Jünger, A. Baumgartner, R. Delagrange, D. Chevallier, S. Lehmann, M. Nils-
son, K. A. Dick, C. Thelander, and C. Schönenberger, Communications Physics
2, 76 (2019).

[112] B. J. van Wees, P. de Vries, P. Magnée, and T. M. Klapwijk, Phys. Rev. Lett.
69, 510 (1992).

[113] A. Kastalsky, A. W. Kleinsasser, L. H. Greene, R. Bhat, F. P. Milliken, and
J. P. Harbison, Phys. Rev. Lett. 67, 3026 (1991).

[114] M. Schechter, Y. Imry, and Y. Levinson, Phys. Rev. B 64, 224513 (2001).

[115] D. Indolese, Engineered graphene Josephson junctions probed by quantum in-
terference effects, Phd thesis, University of Basel, Basel (2021), https://edoc.
unibas.ch/81789/.

[116] Q. Zhao, S. Puebla, W. Zhang, T. Wang, R. Frisenda, and A. Castellanos-
Gomez, Advanced Photonics Research 1, 2000025 (2020).

87

https://edoc.unibas.ch/84831/
https://edoc.unibas.ch/84831/
http://dx.doi.org/10.1007/BF01504252
http://dx.doi.org/10.1098/rspa.1935.0048
http://dx.doi.org/10.1098/rspa.1935.0048
http://dx.doi.org/10.1103/PhysRev.106.162
http://dx.doi.org/10.1007/978-3-540-68008-6_4
https://books.google.ch/books?id=VpUk3NfwDIkC
http://dx.doi.org/https://doi.org/10.1016/0031-9163(62)91369-0
http://dx.doi.org/10.1103/PhysRevLett.10.230
https://books.google.ch/books?id=4SIzrgEACAAJ
https://books.google.ch/books?id=4SIzrgEACAAJ
http://dx.doi.org/10.1103/PhysRevB.25.4515
http://dx.doi.org/10.1103/PhysRevB.25.4515
http://dx.doi.org/10.1007/s10948-004-0773-0
http://dx.doi.org/10.1103/PhysRevLett.11.104
http://dx.doi.org/10.1103/PhysRevB.46.12573
http://dx.doi.org/ 10.1038/s42005-019-0162-4
http://dx.doi.org/ 10.1038/s42005-019-0162-4
http://dx.doi.org/10.1103/PhysRevLett.69.510
http://dx.doi.org/10.1103/PhysRevLett.69.510
http://dx.doi.org/10.1103/PhysRevLett.67.3026
http://dx.doi.org/10.1103/PhysRevB.64.224513
https://edoc.unibas.ch/81789/
https://edoc.unibas.ch/81789/
http://dx.doi.org/ https://doi.org/10.1002/adpr.202000025


Bibliography

[117] Y. Anzai, M. Yamamoto, S. Genchi, K. Watanabe, T. Taniguchi, S. Ichikawa,
Y. Fujiwara, and H. Tanaka, Applied Physics Express 12, 055007 (2019).

[118] A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J.
van der Zant, and G. A. Steele, 2D Materials 1, 011002 (2014).

[119] P. Kumar, K. S. Figueroa, A. C. Foucher, K. Jo, N. Acero, E. A. Stach, and
D. Jariwala, Journal of Vacuum Science & Technology A 39, 032201 (2021).

[120] X. Cui, G.-H. Lee, Y. D. Kim, G. Arefe, P. Y. Huang, C.-H. Lee, D. A. Ch-
enet, X. Zhang, L. Wang, F. Ye, F. Pizzocchero, B. S. Jessen, K. Watanabe,
T. Taniguchi, D. A. Muller, T. Low, P. Kim, and J. Hone, Nature Nanotech-
nology 10, 534 (2015).

[121] S. Davari, J. Stacy, A. Mercado, J. Tull, R. Basnet, K. Pandey, K. Watanabe,
T. Taniguchi, J. Hu, and H. Churchill, Phys. Rev. Appl. 13, 054058 (2020).

[122] S. Chen, J. Son, S. Huang, K. Watanabe, T. Taniguchi, R. Bashir, A. M. van der
Zande, and W. P. King, ACS Omega 6, 4013 (2021).

[123] M. Ramezani, Superconducting contacts and quantum interference phenomena
in monolayer semiconductor devices, Phd thesis, University of Basel, Basel
(2022), https://edoc.unibas.ch/90187/.

[124] L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi,
K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L.
Shepard, and C. R. Dean, Science 342, 614 (2013).

[125] H. Choi, B. H. Moon, J. H. Kim, S. J. Yun, G. H. Han, S.-g. Lee, H. Z. Gul,
and Y. H. Lee, ACS Nano 13, 13169 (2019).

[126] A. Jain, A. Szabo, M. Parzefall, E. Bonvin, T. Taniguchi, K. Watanabe,
P. Bharadwaj, M. Luisier, and L. Novotny, Nano Letters 19, 6914 (2019).

[127] R. Pisoni, Y. Lee, H. Overweg, M. Eich, P. Simonet, K. Watanabe,
T. Taniguchi, R. Gorbachev, T. Ihn, and K. Ensslin, Nano Letters 17, 5008
(2017).

[128] K. Marinov, A. Avsar, K. Watanabe, T. Taniguchi, and A. Kis, Nature Com-
munications 8, 1938 (2017).

[129] D. Van Tuan, B. Scharf, Z. Wang, J. Shan, K. F. Mak, I. Žutić, and H. Dery,
Phys. Rev. B 99, 085301 (2019).

[130] A. W. Tsen, B. Hunt, Y. D. Kim, Z. J. Yuan, S. Jia, R. J. Cava, J. Hone,
P. Kim, C. R. Dean, and A. N. Pasupathy, Nature Physics 12, 208 (2016).

[131] E. J. Telford, A. Benyamini, D. Rhodes, D. Wang, Y. Jung, A. Zangiabadi,
K. Watanabe, T. Taniguchi, S. Jia, K. Barmak, A. N. Pasupathy, C. R. Dean,
and J. Hone, Nano Letters 18, 1416 (2018).

[132] C. Reale, Acta Physica Academiae Scientiarum Hungaricae 37, 53 (1974).

88

http://dx.doi.org/ 10.7567/1882-0786/ab0e45
http://dx.doi.org/ 10.1088/2053-1583/1/1/011002
http://dx.doi.org/10.1116/6.0000874
http://dx.doi.org/10.1038/nnano.2015.70
http://dx.doi.org/10.1038/nnano.2015.70
http://dx.doi.org/ 10.1103/PhysRevApplied.13.054058
http://dx.doi.org/ 10.1021/acsomega.0c05934
https://edoc.unibas.ch/90187/
http://dx.doi.org/10.1126/science.1244358
http://dx.doi.org/10.1021/acsnano.9b05965
http://dx.doi.org/ 10.1021/acs.nanolett.9b02166
http://dx.doi.org/10.1021/acs.nanolett.7b02186
http://dx.doi.org/10.1021/acs.nanolett.7b02186
http://dx.doi.org/ 10.1038/s41467-017-02047-5
http://dx.doi.org/ 10.1038/s41467-017-02047-5
http://dx.doi.org/ 10.1103/PhysRevB.99.085301
http://dx.doi.org/10.1038/nphys3579
http://dx.doi.org/10.1021/acs.nanolett.7b05161
http://dx.doi.org/10.1007/BF03157926


Bibliography

[133] N. A. Court, A. J. Ferguson, and R. G. Clark, Superconductor Science and
Technology 21, 015013 (2007).

[134] H. K. Kundu, S. Biswas, N. Ofek, V. Umansky, and M. Heiblum, Nature
Physics 19, 515 (2023).

[135] M. A. Topinka, B. J. LeRoy, S. E. J. Shaw, E. J. Heller, R. M. Westervelt,
K. D. Maranowski, and A. C. Gossard, Science 289, 2323 (2000).

[136] T. Ihn, S. Gustavsson, U. Gasser, B. Küng, T. Müller, R. Schleser, M. Sigrist,
I. Shorubalko, R. Leturcq, and K. Ensslin, Solid State Communications 149,
1419 (2009).

[137] J. A. Folk, R. M. Potok, C. M. Marcus, and V. Umansky, Science 299, 679
(2003).

[138] S.-T. Lo, C.-H. Chen, J.-C. Fan, L. W. Smith, G. L. Creeth, C.-W. Chang,
M. Pepper, J. P. Griffiths, I. Farrer, H. E. Beere, G. A. C. Jones, D. A. Ritchie,
and T.-M. Chen, Nature Communications 8, 15997 (2017).

[139] J. Dubois, T. Jullien, F. Portier, P. Roche, A. Cavanna, Y. Jin, W. Wegscheider,
P. Roulleau, and D. C. Glattli, Nature 502, 659 (2013).

[140] M. Hashisaka, Y. Yamauchi, S. Nakamura, S. Kasai, K. Kobayashi, and
T. Ono, Journal of Physics: Conference Series 109, 012013 (2008).

[141] H. van Houten, L. W. Molenkamp, C. W. J. Beenakker, and C. T. Foxon,
Semiconductor Science and Technology 7, B215 (1992).

[142] C. Rossler, K.-D. Hof, S. Manus, S. Ludwig, J. P. Kotthaus, J. Simon, A. W.
Holleitner, D. Schuh, and W. Wegscheider, Applied Physics Letters 93 (2008),
10.1063/1.2970035.

[143] T.-M. Chen, M. Pepper, I. Farrer, D. A. Ritchie, and G. A. C. Jones, Applied
Physics Letters 103 (2013), 10.1063/1.4819489.

[144] P. Gallagher, M. Lee, J. R. Williams, and D. Goldhaber-Gordon, Nature
Physics 10, 748 (2014).

[145] Y. Takagaki and K. H. Ploog, Phys. Rev. B 60, 9750 (1999).

[146] K. Wang, K. De Greve, L. A. Jauregui, A. Sushko, A. High, Y. Zhou, G. Scuri,
T. Taniguchi, K. Watanabe, M. D. Lukin, H. Park, and P. Kim, Nature Nan-
otechnology 13, 128 (2018).

[147] K. Sakanashi, P. Krüger, K. Watanabe, T. Taniguchi, G.-H. Kim, D. K. Ferry,
J. P. Bird, and N. Aoki, Nano Letters 21, 7534 (2021).

[148] C. H. Sharma and M. Thalakulam, Scientific Reports 7, 735 (2017).

[149] M. Ramezani, I. C. Sampaio, K. Watanabe, T. Taniguchi, C. Schönenberger,
and A. Baumgartner, Nano Letters 21, 5614 (2021).

[150] A. Stern, T. Scaffidi, O. Reuven, C. Kumar, J. Birkbeck, and S. Ilani, Physical
Review Letters 129 (2022), 10.1103/physrevlett.129.157701.

89

http://dx.doi.org/10.1088/0953-2048/21/01/015013
http://dx.doi.org/10.1088/0953-2048/21/01/015013
http://dx.doi.org/ 10.1038/s41567-022-01899-z
http://dx.doi.org/ 10.1038/s41567-022-01899-z
http://dx.doi.org/ 10.1126/science.289.5488.2323
http://dx.doi.org/ https://doi.org/10.1016/j.ssc.2009.04.040
http://dx.doi.org/ https://doi.org/10.1016/j.ssc.2009.04.040
http://dx.doi.org/10.1126/science.1078419
http://dx.doi.org/10.1126/science.1078419
http://dx.doi.org/10.1038/ncomms15997
http://dx.doi.org/10.1038/nature12713
http://dx.doi.org/ 10.1088/1742-6596/109/1/012013
http://dx.doi.org/10.1088/0268-1242/7/3B/052
http://dx.doi.org/10.1063/1.2970035
http://dx.doi.org/10.1063/1.2970035
http://dx.doi.org/ 10.1063/1.4819489
http://dx.doi.org/ 10.1063/1.4819489
http://dx.doi.org/10.1038/nphys3049
http://dx.doi.org/10.1038/nphys3049
http://dx.doi.org/10.1103/PhysRevB.60.9750
http://dx.doi.org/ 10.1038/s41565-017-0030-x
http://dx.doi.org/ 10.1038/s41565-017-0030-x
http://dx.doi.org/10.1021/acs.nanolett.1c01828
http://dx.doi.org/10.1038/s41598-017-00857-7
http://dx.doi.org/ 10.1021/acs.nanolett.1c00615
http://dx.doi.org/ 10.1103/physrevlett.129.157701
http://dx.doi.org/ 10.1103/physrevlett.129.157701


Bibliography

[151] Y. V. Sharvin and Yu., Journal of Experimental and Theoretical Physics
(1965).

[152] F. Bauer, J. Heyder, E. Schubert, D. Borowsky, D. Taubert, B. Bruognolo,
D. Schuh, W. Wegscheider, J. von Delft, and S. Ludwig, Nature 501, 73
(2013).

[153] S. M. Cronenwett, H. J. Lynch, D. Goldhaber-Gordon, L. P. Kouwenhoven,
C. M. Marcus, K. Hirose, N. S. Wingreen, and V. Umansky, Phys. Rev. Lett.
88, 226805 (2002).

[154] A. C. Graham, K. J. Thomas, M. Pepper, N. R. Cooper, M. Y. Simmons, and
D. A. Ritchie, Phys. Rev. Lett. 91, 136404 (2003).

[155] A. C. Graham, M. Y. Simmons, D. A. Ritchie, and M. Pepper, Phys. Rev.
Lett. 100, 226804 (2008).

[156] L. Banszerus, B. Frohn, T. Fabian, S. Somanchi, A. Epping, M. Müller, D. Neu-
maier, K. Watanabe, T. Taniguchi, F. Libisch, B. Beschoten, F. Hassler, and
C. Stampfer, Phys. Rev. Lett. 124, 177701 (2020).

[157] L. Weidinger, C. Schmauder, D. H. Schimmel, and J. von Delft, Phys. Rev. B
98, 115112 (2018).

[158] S. Baer, C. Rössler, E. C. de Wiljes, P.-L. Ardelt, T. Ihn, K. Ensslin, C. Reichl,
and W. Wegscheider, Phys. Rev. B 89, 085424 (2014).

[159] V. Singh, B. H. Schneider, S. J. Bosman, E. P. J. Merkx, and G. A. Steele,
Applied Physics Letters 105, 222601 (2014).

[160] R. C. Dynes, V. Narayanamurti, and J. P. Garno, Phys. Rev. Lett. 41, 1509
(1978).

[161] S. Skalski, O. Betbeder-Matibet, and P. R. Weiss, Phys. Rev. 136, A1500
(1964).

[162] J. Gramich, A. Baumgartner, and C. Schönenberger, Applied Physics Letters
108, 172604 (2016).

[163] J. Gramich, A. Baumgartner, and C. Schönenberger, Phys. Rev. Lett. 115,
216801 (2015).

[164] Q.-f. Sun, J. Wang, and T.-h. Lin, Phys. Rev. B 59, 3831 (1999).

[165] S. Sundar, L. S. Sharath Chandra, V. K. Sharma, M. K. Chattopadhyay, and
S. B. Roy, AIP Conference Proceedings 1512, 1092 (2013).

[166] M. T. Allen, O. Shtanko, I. C. Fulga, J. I.-J. Wang, D. Nurgaliev, K. Watanabe,
T. Taniguchi, A. R. Akhmerov, P. Jarillo-Herrero, L. S. Levitov, and A. Yacoby,
Nano Letters 17, 7380 (2017).

[167] C. M. Moehle, P. K. Rout, N. A. Jainandunsing, D. Kuiri, C. T. Ke, D. Xiao,
C. Thomas, M. J. Manfra, M. P. Nowak, and S. Goswami, Nano Letters 22,
8601 (2022).

90

http://dx.doi.org/10.1038/nature12421
http://dx.doi.org/10.1038/nature12421
http://dx.doi.org/10.1103/PhysRevLett.88.226805
http://dx.doi.org/10.1103/PhysRevLett.88.226805
http://dx.doi.org/ 10.1103/PhysRevLett.91.136404
http://dx.doi.org/10.1103/PhysRevLett.100.226804
http://dx.doi.org/10.1103/PhysRevLett.100.226804
http://dx.doi.org/ 10.1103/PhysRevLett.124.177701
http://dx.doi.org/10.1103/PhysRevB.98.115112
http://dx.doi.org/10.1103/PhysRevB.98.115112
http://dx.doi.org/ 10.1103/PhysRevB.89.085424
http://dx.doi.org/10.1063/1.4903042
http://dx.doi.org/10.1103/PhysRevLett.41.1509
http://dx.doi.org/10.1103/PhysRevLett.41.1509
http://dx.doi.org/10.1103/PhysRev.136.A1500
http://dx.doi.org/10.1103/PhysRev.136.A1500
http://dx.doi.org/10.1063/1.4948352
http://dx.doi.org/10.1063/1.4948352
http://dx.doi.org/10.1103/PhysRevLett.115.216801
http://dx.doi.org/10.1103/PhysRevLett.115.216801
http://dx.doi.org/10.1103/PhysRevB.59.3831
http://dx.doi.org/10.1063/1.4791426
http://dx.doi.org/ 10.1021/acs.nanolett.7b03156
http://dx.doi.org/10.1021/acs.nanolett.2c03130
http://dx.doi.org/10.1021/acs.nanolett.2c03130


Bibliography

[168] J.-D. Pillet, C. H. L. Quay, P. Morfin, C. Bena, A. L. Yeyati, and P. Joyez,
Nature Physics 6, 965 (2010).

[169] J. Schindele, A. Baumgartner, R. Maurand, M. Weiss, and C. Schönenberger,
Phys. Rev. B 89, 045422 (2014).

[170] J. Gramich, A. Baumgartner, and C. Schönenberger, Phys. Rev. B 96, 195418
(2017).

[171] C. Beenakker, in Quantum Dots: a Doorway to Nanoscale Physics (Springer
Berlin Heidelberg, 2005) pp. 131–174.

[172] L. Banszerus, F. Libisch, A. Ceruti, S. Blien, K. Watanabe, T. Taniguchi, A. K.
Hüttel, B. Beschoten, F. Hassler, and C. Stampfer, “Minigap and andreev
bound states in ballistic graphene,” (2021), arXiv:2011.11471 [cond-mat.mes-
hall] .

[173] H. Pan and S. Das Sarma, Phys. Rev. Res. 2, 013377 (2020).

[174] H. Pan and S. Das Sarma, Phys. Rev. B 104, 054510 (2021).

[175] D. I. Pikulin, J. P. Dahlhaus, M. Wimmer, H. Schomerus, and C. W. J.
Beenakker, New Journal of Physics 14, 125011 (2012).

[176] M. Ben Shalom, M. J. Zhu, V. I. Fal’ko, A. Mishchenko, A. V. Kretinin, K. S.
Novoselov, C. R. Woods, K. Watanabe, T. Taniguchi, A. K. Geim, and J. R.
Prance, Nature Physics 12, 318 (2016).

[177] J. Cserti, P. Polinák, G. Palla, U. Zülicke, and C. J. Lambert, Phys. Rev. B
69, 134514 (2004).

[178] O. Dmytruk, D. Loss, and J. Klinovaja, Phys. Rev. B 102, 245431 (2020).

91

http://dx.doi.org/ 10.1038/nphys1811
http://dx.doi.org/10.1103/PhysRevB.89.045422
http://dx.doi.org/10.1103/PhysRevB.96.195418
http://dx.doi.org/10.1103/PhysRevB.96.195418
http://dx.doi.org/10.1007/11358817_4
http://arxiv.org/abs/2011.11471
http://arxiv.org/abs/2011.11471
http://dx.doi.org/10.1103/PhysRevResearch.2.013377
http://dx.doi.org/10.1103/PhysRevB.104.054510
http://dx.doi.org/10.1088/1367-2630/14/12/125011
http://dx.doi.org/ 10.1038/nphys3592
http://dx.doi.org/ 10.1103/PhysRevB.69.134514
http://dx.doi.org/ 10.1103/PhysRevB.69.134514
http://dx.doi.org/10.1103/PhysRevB.102.245431




A Additional data to QPC device

Additional QPC pinch-off curves

Here we provide additional DC conductance plots as a function of the splitgate
voltage for different two backgate voltages. In Figure A.1 a) the number
of plateaus at VBG =2.5 V is reduced to N =3. This is in agreement with
the inverse relation between the Fermi wavelength λF and the charge carrier
concentration. Additionally, we note that this curve does not present the 0.7
anomaly as it is the case for Figure A.1 b) at VBG =3.6 V.
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Figure A.1. Conductance as function of the splitgate voltage for a)
VBG =2.5 V and b) VBG =3.6 V.
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A. Additional data to QPC device

Landau fan diagram

Applying zero voltage to the splitgates we measure the conductance of the
device as a function of the backgate voltage VBG and magnetic field B for
a voltage bias VSD =8 mV, shown in Figure A.2 a). By fitting a polynomial
we extract the background curve, plotted in b). We obtain the two subbands
MoS2 Landau fan as reported by Ref. [39]. For VBG <3 V a single the lowest
subband is occupied generating the fan structure denoted by the green dotted
lines. The onset of the lowest subband can be estimated by extrapolating
these lines to B = 0. With that we obtain VBG ∼0.17 V. For VBG >3 V the
second subband contributes to transport. The onset is hard to determine by
extrapolation due to the broadening of the Landau fan lines. Here we observe
SdH oscillations down to B =5.5 T, which sets a lower bound for charge carrier
mobility as µSdH ≥1800 cm2/Vs in good agreement with the estimated field
effect mobility.
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Figure A.2. Raw conductance as a function of VBG and B with no influence
from the splitgate. b) Background subtraction reveals the Landau fan diagram
of monolayer MoS2 with two subband contributions.
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B Additional data to Device I

Shubnikov de Haas oscillations
In Figure B.1 a) we plot the two terminal conductance through terminals C1-
C2 as a function of VBG and B for VSD =8 mV. A third-order polynomial
background was extracted for each gate voltage to eliminate effects from the
classical Hall effect and CB effects. We observe well-developed Shubnikov de
Haas oscillations, suggesting a high MoS2 quality, with an onset at Bon < 4 T,
yielding an electron mobility µ ⩾2500 cm2/Vs.
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Figure B.1. a) Two-terminal conductance G12 = I1/VSD with VSD = 8 mV
applied to contact C2, plotted as a function of the magnetic field B and VBG at
60 mK. ns points out the gate voltage corresponding to the electron density at
which the higher spin–orbit subbands start to be populated. b) Three-terminal
dc conductance G24,21 = I2/V12 with an external bias VSD =10 mV applied
to C4, while the current I2 is measured at C2 and the voltage difference V12
between C1 and C2. In both maps, a third-order polynomial was subtracted
at each gate voltage to remove a smooth background.

The two-terminal magneto-conductance measurements suffer from large back-
ground resistances due to Schottky barriers, which we can partially circum-
navigate by performing a three-terminal experiment. In Figure Figure B.1 b),
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B. Additional data to Device I

we plot the dc conductance G24,21, as explained in the figure caption. This
technique removes the contact resistance at C4 so that the conductance reso-
nances due to the Landau levels can be measured more clearly. The results in
Figure B.1 b) show similar patterns as in better-suited Hall bar experiments,
exhibiting clear superposition patterns of the spin and valley split subbands,
indicated by dashed lines. We note that due to the less ideal contact geometry
of our devices, we cannot go to lower electron densities in these experiments,
because the current density passing near the remote contacts is very low. For
more information see Refs. [39, 149]

Extraction of superconductor energy gap as function of magnetic
field
In the main text of section 5.1 we show the dependende of the superconducting
MoRe energy gap as a function of B extracted by different methods. In Figure
fig:add:morefields we provide a few examples of the VBG ranges which were
average to plot Figure 5.3 a).
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Figure B.2. Conductance G24 as a function of VSD and VBG at a) B =0, b)
B =5 T, and c) B =9 T.

Figure B.3 shows the Coulomb resonance tips with which the blue rectangles
in Figure 5.3 b) were extracted.
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C Additional data to Device II

Magnetic field dependence of the superconducting energy gap
We measure the magnetic field dependence of the suppression in device II,
resultant of the quasiparticle tunneling through the N-S interfaces. Figure
C.1 a) show the conductance as functions of B and VSD at VBG =8 V. The
indicated cross sections are plotted in Figure C.1 b). The behavior is similar
to the observed in device I.
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Figure C.1. Magnetic field dependence of device II. a) Differential conduc-
tance as function of B and VSD at VBG =8 V. b) Cross section in VSD for the
magnetic fields indicated. Curves are displaced in y-axis.
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C. Additional data to Device II

About the resonance slopes in the gate-bias dependence
In this section, we investigate in some detail what the slope of the conductance
resonances should be when the differential conductance is plotted as a function
of the bias voltage, VSD and the backgate voltage, VBG.

If the electron density would be determined solely by VBG, we would expect
only resonances with a positive slope, i.e. each change in the source elec-
trochemical potential is compensated by a corresponding change in the gate
voltage to follow a constant electron density. This slope would be given by

s = dV
(res)

SD

dV
(res)

BG

= πℏ2c

pe2m∗ , (C.1)

where c = ϵϵ0/d is the geometrical capacitance per area formed by the backgate
and p = 2 the band degeneracy. However the actual values and the visible
negative sloped resonances do not match this picture.

We do not expect a significant capacitive coupling from the contacts to the
active region of the device, as we obtain very similar slopes and patterns in
long and short devices using other contact pairs. The average electrochemical
potential on the MoS2 must lies in between µS and µD. To exactly determine
its position we assume that in equilibrium

dn

dt
= rSin + rDin − rSout − rDout

!= 0 (C.2)

where rS,D are the rate of carrier coming from (or moving out) the source and
drain leads. We can write rS,D in terms of the transmission probabilities ΓS,D

by

fSDSΓS(1 − P )DN + fDDDΓD(1 − P )DN

− (1 − fS)DSΓSPDN − (1 − fD)DDΓDPDN
!= 0 (C.3)

with DS,D the quasiparticle density of states of the superconductor, DN the
density of states in the normal conductor, f the Fermi distribution and P the
occupation probability. In this picture we neglect Andreev reflection processes,
i.e. we assume a small transmission probability to the reservoirs. With that,
we can estimate the occupation probability P (E) as

P (E) = DS(E − µS)f(E − µS)ΓS +DS(E − µD)f(E − µD)ΓD

DS(E − µS)ΓS +DD(E − µD)ΓD
,

The electron density is given by the gate voltage, with only the conduction
band minimum Ecbm as a free parameter,

n =
∫ ∞

Ecbm

P (E)D2DdE = c

e
∆VBG,
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with D2D = p m∗

πℏ2 the density of states in the 2D semiconductor and ∆VBG the
gate voltage measured from the pinch-off voltage (here ∼ 0.2 V). With Ecbm

known, we can then calculate the electrical current

I =
∫ ∞

Ecbm

T (E)[f(E − µS) − f(E − µD)]dE,

with the transmission T (E) determined by the constructive interference in the
device, for which we simply take a periodic function in E.

These equations can be easily evaluated numerically. The corresponding
differential conductance G = dI/dVSD is plotted in Figure C.2, in a) for sym-
metric tunnel barriers, which results in the positive slopes following equation
C.1. The corresponding change in the conduction band minimum is plotted in
Figure b) and depends only on the gate voltage.

In contrast, by choosing asymmetric barriers or different background DoS,
we find a qualitatively very similar pattern as in our experiments in the main
text, namely an alternating visibility of the positive and negative slopes when
the bias is set below the ∆/e and 2∆/e, respectively, show in Figure C.2 c). To
compare with the experiment, we also plot the conductance normalized sepa-
rately for each bias voltage in Figure C.2 e). Again, we plot the corresponding
modulation of the conduction band minimum in Figure C.2 d), which now
depends on both, VSD and VBG.

The physical meaning can be understood easily by considering that a stronger
coupling to a reservoir gives a larger weight to the respective electrochemical
potential - reduced for energies in the BCS gaps.

For the main text, it is important to note that the spacing between the
resonances in gate voltage does not depend on the bias, which can be directly
seen in Figure C.2 f), since the number of resonances in the plotted gate voltage
range is the same for each bias.

C
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C. Additional data to Device II
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Figure C.2. From a), c) and e) Differential conductance as a function of bias
voltage and backgate voltage. a) Symmetric tunnel barrier and symmetric
bias c) Asymmetric barriers with different DoS at superconductors. e) Same
as c) with normalized conductance of each bias voltage. b) and d) are the
corresponding shifts in CB minimum for symmetric and asymmetric barriers,
respectively. f) Cross sections of the indicated bias voltage in c).
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D Additional data to MoRe InSe device

This section presents additional data plots to the MoRe VIA contacts to a few
layers InSe presented in section 6.2.

Figure D.1 shows plots of conductance as a function of B and VSD for a)
contacts C1-C2, where a suppression of ∆/e in bias is observed and b) for
contacts C1-C4, with a suppression of 2∆/e in bias. The general tendency of
the suppression is a decrease in bias voltage as the magnetic field increases.
Additionally, the sub-gap peaks can be followed as they increase in bias voltage.
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Figure D.1. a) Conductance as a function of B and VSD for contacts C1-C2.
b) Conductance as function of B and VSD for contacts C1-C4.
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E Fabrication Recipes

In the following we give the detailed fabrication recipes used during this
project.

Van der Waals heterostructure fabrication

Material sources
1. Graphite: HQ-graphene

2. hBN: T. Taniguchi et al., National Institute for Material Science, 1-1
Namiki, Tsukuba 305-0044, Japan

3. MoS2:SPI supplies, natural source (Australia and Canada)

4. InSe: grown by the Bridgman method. Credited to Dr. Zakhar Kudryn-
skyi and Prof. Dr. Amalia Patanè at the University of Nottingham.

5. Exfoliation tape: NITTO ELP-150P-LC

Reactive ion etching

CHF3/O2

1. CHF3/O2 (40 sccm/4 sccm); power 60 W; pressure 60 mTorr

2. Etching rates:
• hBN: 0.3-0.33 nm/s
• SiO2: ∼0.23 nm/s
• graphite: 0.07 nm/s

SF6/Ar/O2

1. SF6/Ar/O2 (20 sccm/5 sccm/4 sccm); power 50 W; pressure 25 mTorr

2. Etching rates:
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• hBN: >6.35 nm/s

• SiO2: ∼0.5 nm/s

3. After the SF6 etching a O2 plasma (E) was used to remove cross-linked
PMMA.

O2

1. O2 (20 sccm); power 60 W; pressure 40 mTorr

2. Etching rates:

• hBN: ∼0.33 nm/s

• PMMA: ∼1.66 nm/s

Electron beam lithography

PMMA mask for etching and contact deposition

1. Prebake at 180 ◦C for 3 min

2. PMMA 950K (AR-P 672.045 Allresist) solid content 4.5-5.5%

3. Spin coat at 4000 rpm for 40 s with ramp rate of 1000 rpm/s (≈ 450nm)

4. Postbake at 180 ◦C for 3 min

5. Exposure with e-beam (EHT=20 kV; dose≈400µC/cm2)

6. Development in cold (∼5 ◦C) IPA:H2O (7:3) for 60 s

7. Blow dry with N2

PMMA lift-off

1. Sample in Acetone (T=50 ◦C) for 30 min

2. Remove excess metal by Acetone flow created with a pipette

3. Transfer to IPA bath

4. Blow dry with N2
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Metal deposition

Fabrication of VIA contacts
• Clean Si substrate with acetone and IPA bath. O2 plasma for 1 min to

enhance adhesion and further clean surface.

• Exfoliate hBN and select flakes with proper thickness and area.

• PMMA mask contact areas by EBL (E)

• SF6 etching the whole hBN thickness. (E)

• Wash away resist in acetone followed by IPA bath.

• Second step of EBL defining areas slightly larger than the etched areas.

• Contact material evaporation:
– Sputter MoRe using a AJA ATC Orion.
– Ignite plasma (Ar 30 sccm, pressure 20 mT, power 50 W)
– Presputter for 1-2 min
– Single MoRe (1:1) target:

∗ power 100 W
∗ background pressure 2 mTorr
∗ Ar flow 30 sccm
∗ Sample rotation "on"
∗ height 40 cm
∗ rate 0.27 nm/s

– Lift off in acetone warm acetone bath.

Fabrication of Bi-Au/Al contacts
1. PMMA mask defined by EBL (E)

2. 30s O2 etching (E) to increase the adhesion

3. The metal was deposited using a Sharon e-beam evaporator

4. 5 nm of Ti or Cr was deposited as a sticking layer

5. Evaporate Au

6. Lift-off in Acetone (E)

E
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Fabrication of metal top gates
1. PMMA mask defined by EBL (E)

2. 30s O2 etching (E) to increase the adhesion

3. Deposite metal using e-beam evaporator

4. Pre-deposition of Ti to trap Oxygen and lower the chamber pressure

5. 5 nm of Ti as a sticking layer

6. Au deposition to desired thickness

7. Lift-off in Acetone (E)

PC mixture

1. rinse glass vial and magnetic stirring bar with chloroform

2. add 0.7 g of Poly(Bisphenol A carbonate)

3. add 20 ml of chloroform

4. stir over several hours at 40◦ C until Pc is completely dissolved

Assembly of viscoelastic stamp

1. Clean glass slides in a acetone followed by IPA bath.

2. Drop PC mixture in a glass slide and press it with a second slide, dis-
persing the liquid. In a rapid sliding movement, separate the two slides
remaining a thin PC film. Wait 5min for the film to dry.

3. Place 1mm square cubes of PMDS onto glass slide.

4. Place the PC film on the top of the PMDS cube with help of stick tape.
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