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1 Introduction

We live exciting times in which several quantum bit (qubit) hardware im-
plementations are in competition for a useful quantum computer. Among
other quantum technologies based on trapped ions, solid-state qubit plat-
forms based on semiconductor quantum dots and superconducting circuits
are the most promising contenders for building a scalable hardware plat-
form [1, 2].

In semiconductors, the charge or spin degree of freedom of a single
electron or hole in a quantum dot is used to form a qubit [3]. The ad-
vantages of these qubits include their small footprint, their potential for
fast gate operations and the well established fabrication techniques [3, 4].
In the past decades, some key experiments have showcased single qubit
rotations [5, 6] and two-qubit gate operations [7–9] of electron spins in
quantum dots. In a state of the art quantum processor based on spins in
semiconductors, up to six qubits can already be universally controlled [10],
illustrating the rapid development of the field. However, the used entan-
gling gates between semiconductor qubits are short range, limiting scaling
up towards larger quantum processors.

A solution for long range qubit entanglement can be obtained in the
scope of circuit quantum electrodynamics (QED) [11, 12]. This approach
has been very fruitful for the superconducting qubits, where it enabled
building of large processors with hundreds of qubits [13]. Combining cir-
cuit QED with semiconductor qubits can make use of the advantages
of both qubit hardware platforms. But implementing circuit QED tech-
niques with semiconductor qubits is challenging, because of the small elec-
tric and magnetic dipole moments of a single electron (or hole) [14, 15].

Nonetheless, early experiments demonstrated a dipolar coupling be-
tween the charge [16–20] or spin [21] of a single electron and the microwave
field of a superconducting coplanar waveguide resonator. Recently, cir-
cuit QED experiments with quantum dots have made a leap and the strong

1



1. Introduction

coupling regime between a single microwave photon and a charge qubit
was demonstrated [22–24]. Shortly after, similar results were achieved
between a single photon and a spin qubit by making use of the magnetic-
field gradient of a micromagnet [25, 26] or of the exchange interaction of
electrons in a triple quantum dot [27]. In the strong coupling regime, the
coupling term is larger than the damping of the individual elements, i.e.,
the qubit and photon are able to coherently exchange information [12].
Strong coupling therefore constitutes a first step towards implementing a
quantum bus enabling entanglement of distant quantum objects [28].

Attempts of implementing entangling gates between distant semicon-
ductor qubits based on circuit QED have resulted in coherent interactions
between distant charge and distant spin qubits, both in the resonant and
virtual-photon mediated regimes [29–31]. However, the demonstration of
an entangling gate between distant semiconductor qubits remains an open
challenge, because the coupling strengths of the involved systems are still
relatively small compared to the decoherence rates of the qubits. In past
experiments that realized distant spin-spin coupling mediated by the mi-
crowave field of a superconducting resonator [30, 31], the spin-photon cou-
pling was based on micromagnets resulting in relatively low spin-photon
coupling strengths. Moreover, micromagnets complicate scalability be-
cause they limit the tunability of the spin-orbit interaction strength and
the Landé g-factors.

In this thesis, we attempt to address both the coupling strength between
semiconductor qubits and resonator, as well as the scalability of spin-based
qubits.

First, the coupling strength fundamentally scales proportionally to the
vacuum electric-field fluctuations of the resonator, in turn given by the
square root of its impedance [12]. This observation is the main moti-
vation to develop a circuit QED infrastructure based on high-impedance
resonators [32], and is therefore one of the main focus points of this thesis.
To this end, we engineer a well-characterized circuit QED platform that is
compatible with various types of nanowire-based semiconducting qubits
incorporating magnetic field resilient, high impedance NbTiN supercon-
ducting thin-film resonators.

Second, the coupling of spin qubits to superconducting resonators re-
lies on a hybridization of spin and charge degree of freedom [21, 33, 34].
Therefore, a systematic understanding of the coherence of a charge qubit
as well as its coupling to the resonator are essential. Here, we explore how

2

1



1.1. Outline of this thesis

the coherence time and the charge-photon coupling strength of a GaAs
double-quantum dot (DQD) coupled to a high-impedance resonator [35]
can be enhanced by engineering the electro-static potential of the DQD.

Third, we address the scalability challenge imposed by the micromag-
nets by making use of the intrinsic spin-orbit interaction naturally present
in semiconductor nanowires.

1.1. Outline of this thesis

The thesis begins in Chapter 2 with an introduction to the fundamental
aspects of the various types of high-impedance resonators [32, 36, 37]
and the three different material systems used to implement DQDs in
this thesis, namely a two-dimensional electron gas in GaAs [38], a Ge/Si
core/shell nanowire [39] and an InAs nanowire with a crystal-phase de-
fined DQD [40].

In Chapter 3, we discuss the design considerations when implementing
high-impedance, half-wave resonators with semiconductor nanowires and
elaborate on the experimental setup.

Superconducting resonators are susceptible to two-level fluctuators that
are predominantly present at substrate interfaces and in lossy dielec-
trics [41], but well-established fabrication protocols of semiconductor nano-
wires rely on these oxides [21, 42–46]. We therefore investigate the quality
of high-impedance NbTiN resonators fabricated in various dielectric con-
figurations and report the results in Chapter 4.

In Chapter 5, we describe experiments performed with a DQD in GaAs
coupled to high-impedance resonators [35] based on arrays of Joseph-
son junctions (JJs) [37] or superconducting quantum interference devices
(SQUIDs) [36]. We achieve record high charge qubit coherence times and
charge-qubit resonator coupling strengths.

After having demonstrated these results that focused on charge qubits
with the magnetic field vulnerable resonators, we switch to the integration
of magnetic-field resilient, high-impedance NbTiN resonators with DQDs
in nanowires with strong spin-orbit interaction. In Chapter 6, we utilise a
Ge/Si core/shell nanowire [39] and use the high-impedance resonator for
detecting charging and discharging of single holes from the DQD. Thus,
we extend charge-sensing protocols in this material system [43, 44, 47, 48]
to a regime of low hole occupancy where no current through the DQD can
be measured.

1
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1. Introduction

Chapter 7 and Chapter 8 focus on the integration of crystal-phase de-
fined DQDs in zincblende InAs nanowires with strong spin-orbit inter-
action [49] with the magnetic field resilient high-impedance resonators.
In Chapter 7, we first explore the charge qubit-photon coupling in the
dispersive regime, while in Chapter 8, we make use of the magnetic-field
resilience of the resonator by turning on a large magnetic-field. This en-
ables us to operate the DQD as a singlet-triplet qubit, and to measure
the coupling to a resonator mode in the single-photon limit.

We draw a conclusion of our results in Chapter 9 where we also provide
an outlook. Detailed fabrication protocols are given in Appendix A and
additional information for the individual chapters is found in the further
appendices.

4
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2 Combining superconducting resonators
with semiconductor quantum dots

2.1. Light-matter interaction

This chapter aims on laying the basis for the work presented in later
chapters. First, the theoretical framework of dipolar coupling between
a quantum light-field and a quantum bit (qubit) is introduced in Sec-
tion 2.1.1. The consecutive sections introduce the host systems of the
light field and the qubit: Section 2.2 explains the working principle of
the various types of superconducting resonators hosting single microwave
photons that were used in this work, and in Section 2.3 the qubit host,
namely semiconductor double-quantum dots (DQDs) are treated.

2.1.1. Quantum Rabi and Jaynes-Cummings model
The Rabi model describes the dipolar interaction between a two-level
system (TLS) and a classical radiation field mode [50]. In its quantized
version, it is called quantum Rabi model (QRM) and described by the
QRM Hamiltonian [51]

HR = ℏωr
(
â†â+ 1

2

)
︸ ︷︷ ︸

bosonic mode

+ ℏωq2 σ̂z︸ ︷︷ ︸
qubit

− d⃗ · E⃗σ̂x
(
â+ â†)︸ ︷︷ ︸

dipolar interaction

(2.1)

As indicated by the brackets, the Hamiltonian consists of three parts. The
first part describes a single, quantized bosonic mode with eigenfrequency
ωr whose annihilation and creation operators are â and â†. In this thesis,
the bosonic mode is realized by superconducting resonators as described
in section 2.2. The second part, describes a TLS (qubit) with transition
frequency ωq which is described as a fermionic spin by the Pauli opera-
tors σ̂x,y,z. In the work presented in this thesis, qubits are realized by

5



2. Combining superconducting resonators with semiconductor quantum
dots

semiconductor DQDs which are discussed in detail in section 2.3. Finally,
the last term describes the dipolar interaction between the bosonic mode
and the qubit. E⃗(â+ â†) are the vacuum electric-field fluctuations of the
bosonic mode and d⃗ is the transition dipole moment of the qubit. The
strength of the dipolar interaction is usually characterized by the coupling
strength g = d⃗ · E⃗/ℏ.

By expressing the dipolar coupling in terms of fermionic ladder opera-
tors as σ̂x = (σ̂+ + σ̂−)/2, the dipolar energy takes the form

Hint = ℏg

σ̂−â
† + σ̂+â︸ ︷︷ ︸

resonant

+ σ̂+â
† + σ̂−â︸ ︷︷ ︸

anti-resonant

 . (2.2)

Assuming that the transition frequency of the qubit is similar to the
bosonic transition frequency, ωq ≈ ωr, the resonant terms, proportional
to σ̂−â

† and σ̂+â, correspond to transitions of states with small energy
difference ℏ |ωr − ωq|. The anti-resonant terms, proportional to σ̂+â

†

and σ̂−â, correspond to transitions of states with large energy difference
ℏ |ωr + ωq|. If the coupling strength is much smaller than the involved
transition frequencies, g ≪ ωr, ωq, the mixing of the states with large
energy difference is small and the anti-resonant terms can be neglected.
This procedure is called rotating-wave approximation and results in the
Jaynes-Cummings (JC) Hamiltonian [52]

HJC = ℏωr
(
â†â+ 1

2

)
+ ℏωq2 σ̂z + ℏg

(
σ̂−â

† + σ̂+â
)
. (2.3)

Exact diagonalization of the JC Hamiltonian yields the ground state |↓, 0⟩
and the dressed states [12, 53]

|+, n⟩ = cos θn |↑, n⟩ + sin θn |↓, n+ 1⟩ (2.4)
|−, n⟩ = − sin θn |↑, n⟩ + cos θn |↓, n+ 1⟩ (2.5)

with corresponding eigenenergies

E↓,0 = ℏωr − ωq
2 (2.6)

E±,n = (n+ 1)ℏωr ± ℏ
2
√

4g2(n+ 1) + (ωr − ωq)2 (2.7)

6

2



2.2. Photons in superconducting resonators

In these equations, the argument of the trigonometric function is the
mixing angle

θn = 1
2 tan−1

(
2g

√
n+ 1

ωq − ωr

)
. (2.8)

The low-energy excitations with n = 0 are plotted in Fig. 2.1a). In the
experiments described below, we probe the transitions from the ground
state to the dressed states involving one photonic excitation. In this case,
n = 0 and the transition frequencies as plotted in Fig. 2.1b) are given by

ωt = (E±,0 − E↓,0)/ℏ. (2.9)

0 ħωr 2ħωr

ħωq

0

ħωr

2ħωr

E

2ħg
E+, 0

E−, 0

E↓ , 0

a)

0 ωr 2ωr

ωq

0

ωr

2ωr

ω
t

2g

ωq

ωr

b)

Figure 2.1. Jaynes-Cummings excitations. a) Lowest energy levels
according to Eq. (2.6) and Eq. (2.7) with n = 0. b) Transition frequencies
given by the difference of the energy levels according to Eq. (2.9). Here,
a blue color corresponds to an excitation of the resonator and a red color
to a qubit excitation.

2.2. Photons in superconducting resonators

In this thesis, photon cavities are realized by high-impedance supercon-
ducting resonators whose quantum-mechanical description is elaborated in

2
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2. Combining superconducting resonators with semiconductor quantum
dots

C
Q Φ

L
V

I

Figure 2.2. Schematic representation of an LC oscillator. The
capacitor with capacitance C hosts a charge Q and the inductor with
inductance L is threaded by a flux Φ. I denotes the current through the
capacitor and V the voltage over the circuit. Q, Phi, I and V are time-
dependent quantities.

this section. Section 2.2.1 contains the quantum-mechanical description of
an LC circuit and Section 2.2.2 introduces the meaning of the resonator
impedance. Then in the following Section 2.2.3 and Section 2.2.4, we
elaborate the working principles of the various types of superconducting
resonators used throughout this thesis and how they can be mapped onto
the LC circuit. Finally Section 2.2.6 discusses the resonance lineshape of
the resonators.

2.2.1. LC harmonic oscillator

By connecting a capacitor C and an inductor L in a loop configuration as
depicted in Fig. 2.2, the most fundamental resonant circuit is created. A
current I passing through the inductor L creates a flux Φ = LI and leads
to a voltage drop V = −Lİ. This voltage drops over the parallel capacitor
creating a charge Q = CV whose derivative is the current I = Q̇. The
total energy in the circuit can be separated into a inductive energy EL =
Φ2/2L and a charging energy EC = Q2/2C. We write the Hamiltonian
of the system

H = EL + EC = Φ2

2L + Q2

2C (2.10)

and, in analogy to a harmonic pendulum, identify Φ and Q as canonical
variables as Q̇ = ∂H/∂Φ and Φ̇ = −∂H/∂Q. We can therefore introduce
the quantum mechanical operators Φ̂ and Q̂ satisfying the commutation

8
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2.2. Photons in superconducting resonators

relation [Φ̂, Q̂] = iℏ. Introducing the annihilation operator

â = 1√
2ℏ

(√
C

L
Φ̂ − i

√
L

C
Q̂

)
, (2.11)

and its hermitian adjoint â† yields the quantum mechanical Hamiltonian
of the circuit

Ĥ = ℏωr
(
â†â+ 1

2

)
. (2.12)

The Hamiltonian represents the harmonic oscillator with resonance fre-
quency ωr = 1/

√
LC. The photon number operator is given by â†â.

Therefore, excitations of the circuit are photons of frequency ωr.

2.2.2. Resonator impedance
As discussed in section 2.1.1, the light-matter coupling is proportional
to both the electric dipole moment of the qubit and the strength of the
electric-field fluctuations of the cavity. The typically very small electric
dipole of a quantum system therefore calls for maximizing the strength of
the vacuum electric field fluctuations, i.e. the vacuum voltage fluctuations
on the resonator in the GHz domain. The vacuum voltage fluctuations
can be expressed as [12]

δV̂ =
√

⟨V 2⟩ =
√
ℏωr

√
L

C
. (2.13)

Thus, to enhance the coupling between a dipole moment and a resonator
with fixed frequency ωr, the impedance Z =

√
L/C has to be increased [32,

34]. Resonators with large impedance were realized in several ways in the
scope of this thesis. In section 2.2.3 we discuss how Josephson junc-
tions (JJs) and superconducting quantum interference devices (SQUIDs)
form ciruciut-elements of high-impedance resonators. Section 2.2.4 treats
transmission line resonators and in particular how to make use of the large
kinetic inductance of NbTiN to form a high-impedance resonator.

2.2.3. Josephson-junction and SQUID array resonator
The impedance of a resonator can be made large by exploiting a superin-
ductor based on JJs [37] or SQUIDs [54, 55]. We have incorporated both

2
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2. Combining superconducting resonators with semiconductor quantum
dots

of theses types of resonators in the experiments described in Chapter 5.
The aim of this subsection is providing a fundamental understanding of
the microwave properties of JJs and of SQUIDs based on the more lengthy
discussion given in the references [56–58].

Josephson effect

Ψ1

Ψ2 = Ψ1e
iφ

φ EJ

a) b)

Figure 2.3. Schematic of a Josephson junction. a) Two supercon-
ductors (blue) with condensates Ψ1 and Ψ2 are tunnel coupled to each
other v ia a thin barrier (black). b) Circuit representation of a JJ with
phase drop φ and Josephson energy EJ .

The most important macroscopic manifestation of the quantum coher-
ence of a superconductor is the Josephson effect which is highly important
for precision metrology [59, 60] and forms the basis of superconducting
quantum computers [61]. The Josephson effect occurs when two supercon-
ductors are connected by a tunnel junction as schematically depicted in
Fig. 2.3 allowing them to exchange Cooper pairs with each other. Joseph-
son predicted the effect in 1962 and it was experimentally verified shortly
after by Anderson and Rowell [62, 63].

A superconducting condensate is described by its wave function

Ψ = √
ncpeiϕ , (2.14)

where ncp is the density of Cooper pairs. The superconducting wavefunc-
tion satisfies the Schrödinger equation

iℏ∂Ψ
∂t

= ĤΨ = EΨ , (2.15)

with E as the ground state energy. Considering two superconductors with
condensates Ψ1 = √

ncp,1eiϕ1 and Ψ2 = √
ncp,2eiϕ2 being coupled to each

10
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2.2. Photons in superconducting resonators

other, the Schrödinger equation reads

iℏ ∂
∂t

(
Ψ1
Ψ2

)
= Ĥ

(
Ψ1
Ψ2

)
=
(
E1 T
T ⋆ E2

)(
Ψ1
Ψ2

)
, (2.16)

where E1 and E2 are the ground state energies of the uncoupled con-
densates and T is (without loss of generality) the real tunneling ampli-
tude between the superconductors. For two identical superconductors,
the ground state energies are identical except for an applied potential V
between them. In that case, the energy difference between Cooper pairs
on either side of the junction is E1 − E2 = 2eV .

The current I through the junction is given by tunneling of Cooper
pairs as the derivative of the Cooper pair density as

I = 2e∂ncp,1

∂t
= −2e∂ncp,2

∂t
, (2.17)

where e is the elementary charge. By using the complex expressions for
the two condensates and Eq. (2.16), we find the dc Josephson effect

I = 4eT
ℏ

√
ncp,1ncp,2 sinφ = Ic sinφ , (2.18)

where the maximal value of the non-dissipative current Ic is called the
Josephson critical current and φ = ϕ2 − ϕ1 is the superconducting phase
difference.

The Josephson effect arises by considering the evolution of φ which
evolves in time as

∂φ

∂t
= E1 − E2

ℏ
= 2e

ℏ
V . (2.19)

Inserting Eq. (2.19) in Eq. (2.18) results in the Josephson relation for the
current

I(t) = Ic sin
(2e

ℏ
V t
)

. (2.20)

A relation between the voltage and the current across the junction is
found by combining equations (2.18) and (2.19) to be

V = h

4eπIc

1
cosφİ (2.21)
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dots

Φ
φ2

I

I

φ1

Figure 2.4. Schematic representation of a SQUID. The SQUID
is threaded by a flux Φ, while a current I is passed through the device
resulting in phase drops across the JJs φ1 and φ2.

This leads to the definition of the specific Josephson inductance close to
equilibrium, where φ ≈ 0,

LJJ = V

İ

∣∣∣
φ≈0

= h

4eπIc
(2.22)

Typical critical currents on the order of 100 nA lead to specific inductances
of a few pH making it possible to fabricate very compact inductors based
on JJs.

Superconducting quantum interference device

A SQUID consists of two JJs in a loop enclosing a magnetic flux Φ as
depicted schematically in Fig. 2.4. Analogously to the Aharonov-Bohm
effect for electrons, the flux is quantized by the superconducting flux quan-
tum h/2e as

φ1 − φ2 = 2π Φ
h/2e mod 2π, (2.23)

where we assumed that the loop does not contribute any inductance ex-
cept of the Josephson inductances. Using the IV-characteristic of a JJ,
Eq. (2.21), and the Josephson effect, Eq. (2.20), we find

I = Ic1 sinφ1 + Ic2 sinφ2 = Ic1 sin
(
α+ 2πeΦ

h

)
Ic2 sin

(
α− 2πeΦ

h

)
,

(2.24)
with an effective phase drop α across the SQUID. When the two junctions
support the same critical current, Ic1 = Ic2 = Ic, the equation simplifies
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2.2. Photons in superconducting resonators

a) b)

Figure 2.5. LC circuit representation a) Representation of a JJ b)
Representation of a SQUID.

to
I = 2Ic cos

(2πeΦ
h

)
sinα, (2.25)

which is the analogy of the Josephson effect for a single junction with a
modified critical current

ISQUID
c = 2Ic

∣∣∣cos
(
π

2eΦ
h

)∣∣∣ . (2.26)

In analogy to the JJ, this leads to the definition of the inductance of a
single SQUID

LSQUID = 1
2LJJ

∣∣∣cos
(
π

2eΦ
h

)∣∣∣ (2.27)

which is half of the inductance of a single junction for an external flux
Φ ≈ 0 and can be reduced further by applying an external flux Φ.

Circuit representation of Josephson-junction and SQUID array

In the experiments, presented in Chapter 5, two types of resonators are im-
plemented. They consist of linear arrays of JJs and/or SQUIDs connected
in series with each other [23, 36, 37, 54]. The aim of this subsection is to
provide an understanding of the behavior of JJ-arrays and SQUID-arrays
in a regime of low photon excitations.

Close to equilibrium with currents well below the critical current of
the JJ, a linear approximation of the inductance can be assumed and it is
then given by Eq. (2.22). When realizing a JJ as a circuit element, a stray
capacitance between the superconducting leads of the JJ such as to the
ground is formed. Therefore, the single JJ has to be treated as a parallel

2
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1 2 3

Figure 2.6. Resonance dip of a SQUID-array resonator. Plot
showing the reflection amplitude |S11| as a function of probe frequency
ωp and externally applied flux. The SQUID-array resonance is clearly
visible as a dip and and its resonance frequency changes as a function of
applied flux.

LC circuit as depicted in Fig. 2.5. Similarly, a single SQUID forms an LC
circuit with a flux-tunable inductor.

A linear array of N JJs or SQUIDs can be treated as N coupled LC
harmonic oscillators. The array, hence hosts N normal modes with ef-
fective mode inductances Lk and mode capacitances Ck [36, 64]. In the
experiments presented below, we restrict ourselves to microwave excita-
tions close to the fundamental frequency ω0 = 1/

√
L0C0. This allows us

to quantize the circuit as described in section 2.2.1. Restricting the exci-
tation to a few photons being distributed across the array, in return justi-
fies the treatment of the Josephson elements as linear inductors. Fig. 2.6
shows the resonance dip of a SQUID-array resonator probed in reflection.
Its resonance frequency is changing as a function of externally applied
flux, illustrating the flux-tunable inductance of the SQUID.
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a w
a

ϵr

l

Figure 2.7. Schematic of transmission line resonator. The
schematic shows a half-wave coplanar transmission line resonator with
length l, center conductor width w and gap width a on a substrate with
a relative permittivity ϵr.

2.2.4. Transmission line resonator

The experiments being described in Chapters 4, 6, 7 and 8 rely on coplanar
waveguide (CPW) transmission line resonators based on NbTiN. A CPW
consist of a center conductor with width w separated from the ground
plane located in the same plane by a distance a as depicted in Fig. 2.7. By
interrupting the center conductor on either side, a resonator of length l is
formed. For a CPW resonator, the relevant wavelengths of the microwave
signals are comparable to the resonator length. Therefore, in order to
describe a CPW resonator in terms of a lumped element description, the
resonator has to be subdivided into N segments as depicted in Fig. 2.8.
Each segment of length ∆x = l/N has a finite capacitance to ground ∆xCl
and series inductance ∆xLl where we have introduced the line capacitance
Cl and line inductance Ll. For a perfect transmission line, the number N
tends to infinity. The description in terms of lumped elements allows us
once again to find the N normal modes and, when restricting ourselves to
the fundamental mode, to quantize the circuit as described in section 2.2.1.
The resonance frequency is thereby given by

ω
λ/2
0 = 1

2l
√
LlCl

, (2.28)

if both ends of the resonator have the same boundary condition, either
a short to ground or an open end, a half-wave resonator is formed. For
a CPW, analytic equations for the geometric contributions to the line

2
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l

∆xCl

∆xLl

∆xCl

∆xLl

∆xCl ∆xCl

∆xLl

∆xCl

∆xLl

Figure 2.8. Lumped element representation of a transmission
line resonator. The transmission line is subdivided into N sections of
length ∆x = l/N . Each segment has an inductance ∆xLl and a capaci-
tance ∆xCl.

capacitance Cgeo
l and line inductance Lgeo

l can be found in Ref. [65] to be

Cgeo
l = 2ϵ0 (1 + ϵr)

K[k]
K[

√
1 − k2]

, Lgeo
l = µ0

4
K[k]

K[
√

1 − k2]
. (2.29)

ϵ0 describes the vacuum permitivity, ϵr is the relative permitivity of the
substrate and µ0 is the vacuum permeability. K(k) denotes the complete
elliptic integral of the first kind of the ratio of center conductor width and
distance to the ground plane k = w/(w+ 2a). A simple approximation of
the complete elliptic integral of the first kind is given by [66]

K[k]
K[

√
1 − k2]

=

{
π

ln
[

2(1+ 4√1−k2)/(1− 4√1−k2)
] , if 0 ≤ k ≤ 0.707

1
π

ln
[
2(1 +

√
k)/(1 −

√
k))
]

, if 0.707 < k ≤ 1.
(2.30)

2.2.5. Kinetic inductance
Another contribution to the inductance of a coplanar waveguide resonator
lies in the inertial mass of mobile charge carriers in the superconductor.
This so called kinetic inductance Lkin has to be added to the geomet-
rical inductance and can be much larger than latter, hence enhancing
the impedance of the resonator. The kinetic inductance is calculated by
equating the total kinetic energy density of the Cooper pairs 2mv2ncp/2
with an equivalent inductive energy density Lkini

2
sc/2. Here 2mv2 is the

kinetic energy of a single Cooper pair, ncp is the Cooper pair density and
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2.2. Photons in superconducting resonators

isc describes the supercurrent density. Using BCS theory, the sheet kinetic
inductance at zero temperature is found to be [56]

Lsq
kin(0) = Rsqh

2π2∆0
, (2.31)

where h is the Planck constant, Rsq denotes the normal state sheet resis-
tance and ∆0 is the superconducting gap at zero temperature.

The temperature dependence of the kinetic inductance Lkin is found
using Mattis-Bardeen formula in the low frequency limit, ℏω < kBT [56],
where kB is the Boltzmann constant. ω denotes the probe frequency and
T the temperature. From this formula, the kinetic inductance per square
is found to be [68]

Lsq
kin(T ) = Rsqh

2π2∆
1

tanh
(

∆
2kBT

) . (2.32)

Here, the superconducting gap depends on temperature ∆ = ∆(T ). NbTiN
is a highly resistive metal which, when being cooled to a temperature
T < Tc, forms a superconductor in the dirty limit, i.e., a mean free path
shorter than coherence length, in the local regime, i.e., with the penetra-
tion length larger than coherence length [67]. The superconducting gap

1

0
0

1T/Tc

∆
(T

)/
∆

0

Figure 2.9. Temperature dependence of the superconducting
gap of NbTiN. Squares represent experimentally determined values and
the curve is derived from Bardeen–Cooper–Schrieffer (BCS) theory. Fig-
ure adapted from [67].
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2. Combining superconducting resonators with semiconductor quantum
dots

at zero temperature of NbTiN is ∆(0) = 1.86kBTc [67]. With increasing
temperature, the superconducting gap ∆(T ) decreases monotonically un-
til vanishing at T = Tc [56, 68]. This behavior as predicted in BCS theory
in the weak coupling limit and is depicted in Fig. 2.9.

2.2.6. Resonance lineshapes
As we showed in section 2.2.1, an LC resonator is characterized by its res-
onance frequency ω0 = 1/

√
LC. However, any physical system is prone

to loss resulting in a resonance broadening in the frequency domain due
to Heisenberg uncertainty principle. Here, first we briefly mention the
different origins of losses that yield resonance broadening. Then we dis-
cuss the lineshapes of a notch-type and of a transmission-type half-wave
resonator.

Origins of loss

The widely used Q factor is a measure of the total loss of a resonator and
defined as

Qtot = 1
2π

energy lost per cycle
energy stored . (2.33)

It is directly related to the linewidth κtot = ωr
Qtot

of the resonator. In order
to probe the resonance in a measurement, the resonator has to be coupled
to a microwave feedline giving rise to photon loss of rate κc. Other, in
general unwanted, loss channels are usually referred to by the decay rate
κi. To highlight that losses of the resonator are not only of internal origin,
but originate, e.g., from unwanted coupling to dc lines, in this thesis we
use the nomenclature κi = κloss.

In the scope of high impedance resonators coupled to semiconductor
devices, the loss is given by the sum rule

κloss = κrad + κTLS + κQP + κresidual, (2.34)

where all the terms in the sum are further elaborated below. κrad de-
scribes the losses attributed to the coupling between the resonator and
the DC bias lines needed for operating the semiconductor device open-
ing a photon leakage pathway [21, 69]. In Chapter 3, we describe our
approach on designing the microwave environment of the resonator look-
ing for a trade-off between minimizing κrad and device intricacy. κTLS
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2.2. Photons in superconducting resonators

characterizes losses due to an interaction of the resonator with impurity
TLSs in the dielectric, relevant in the limit of low-photon numbers, in
which quantum devices are operated. Chapter 4 focuses on selecting an
ideal dielectric environment for our hybrid devices. κQP describes addi-
tional losses originating from quasiparticles at finite temperatures and/or
magnetic-fields [32, 70]. Further losses might originate from coupling to
phonons [71] or the vacuum. Theses losses and any other loss sources are
usually negligible and therefore summed up to κresidual.

Reflection, notch and transmission port resonators

In this work, the coupling between the used resonator and the feedline
has been realized in three different fashions. The corresponding circuits
are schematically depicted in Fig. 2.10a), d) and g) where the resistor
in parallel with the LC-oscillator accounts for losses. There is plenty of
literature discussing the complex reflection and transmission of either of
these circuits [72–78]. Especially Ref. [78] has to be highlighted as a thor-
ough summary providing on top a github repository that enables fitting
any of the mentioned resonator types, including asymmetries [78]. This
framework was extensively used throughout this work. Either realization
of feedline to resonator coupling has its own advantages and disadvantages
which become apparent when considering their complex reflection S11 and
transmission S21. These are depicted in Fig. 2.10 for varying κloss. The
middle row of the figure shows the absolute value of the scattering coef-
ficient for either configuration and the lowest row shows the out-of phase
component (Q) versus in-phase component (I). The different resonance
shapes are further detailed below.

Reflection port The feedline coupling of choice for most applications
is the reflection port coupling in which a single feedline is coupled ca-
pacitively to the resonator at its open end as schematically depicted in
Fig. 2.10a). In this case a reflection coefficient is measured which is given
by

Srefl
11 (ω) = κc − κloss + 2i(ω − ωr)

κtot − 2i(ω − ωr)
. (2.35)

For the reflection port a large signal in the amplitude is only visible, if
κc ≈ κloss, see Fig. 2.10b). On the other hand, the phase signal increases
monotonically when increasing the coupling strength (see excursion in

2
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Figure 2.10. Resonance lineshapes. The columns correspond to the
circuits depicted in the uppermost row. Middel row: Signal reflection or
transmission amplitude (depending on the typical measurement setup) for
different types of resonator - feedline coupling. For each trace κc = 0.1ωr
is fixed. κloss is varied as indicated in the legend. Lowest row: out-of phase
component Q versus in-phase component I of the resonance excursion
corresponding to the above panel.
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2.2. Photons in superconducting resonators

the I-Q plane in Fig. 2.10c). In the limit of strong overcoupling κc ≫
κloss, a 2π rotation is realized, which reflects in a large phase signal in a
measurement. A reflection port resonator is used in Chapter 5.

Notch port In a notch-type, colloquially called ’hanger’, configuration,
the resonator is located in the vicinity of a non-interrupted feedline cou-
pling either capacitively or inductively, see schematic in Fig. 2.10d). In the
notch-port configuration, the transmission through the feedline is given
by

Snotch
21 (ω) = 1 − κce

iΦFano/κtot

1 + 2i(ω − ωr)/κtot
, (2.36)

where we introduced the asymmetry phase factor ΦFano acoounting for
a finite asymmetry as a function of frequency due to interferences of the
resonator with standing waves in the feedline [77, 78]. These standing
waves originate from reflections due to impedance missmathches. For the
plots in this section, we set ΦFano = 0 which correspond to the ideal case
in the absence of any reflections.

In contrast to the reflection-port resonator, the maximum acquired
phase asymptotically approaches π rather than 2π and therefore the phase
signal in a measurement is smaller by a factor of 2. However, Snotch

21
exhibits an increasing depth of the resonance dip as κc increases (see
Fig. 2.10e)). This corresponds to an increasingly larger excursion in the
I-Q plane (see Fig. 2.10f)). Therefore, the notch-type resonator is advan-
tageous compared to the reflection port resonator, if κc > κi. Another ad-
vantage of the notch-port configuration is that due to the non-interrupted
ground plane, several frequency-multiplexed resonators can be coupled to
the same feedline. Notch-port resonators are used in Chapters 4, 6 and 7.

Transmission port Finally, a transmission-type resonator is capacitively
coupled to the open ends of two feedlines as shown in Fig. 2.10g). The
total transmission from one feedline to the other is measured and is given
by

Strans
21 (ω) = κc/κtot

1 + 2i(ω − ωr)/κtot
. (2.37)

In contrast to the reflection-port and the notch-port resonator, a transmission-
port resonator results in a suppression of the signal everywhere except on
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0D

Figure 2.11. Material dimensions. The dimensionality of the system
is reduced if the electron confinement in a particular direction is smaller
than the Fermi wavelength λF . In this case, the motion of the electrons
(indicated by arrows) is limited. Figure adapted from Ref. [79].

resonance (compare Fig. 2.10h)). Therefore, the transmission-port res-
onator is highly preferable compared to the other two types when oper-
ating in the strongly overcoupled regime κc ≫ κloss, because read-out is
typically performed on resonance where the signal is fully suppressed in
any other configuration. The excursion in the I-Q plane behaves simi-
lar to the notch-port resonator asymptotically reaching a total phase of
π as plotted in Fig.2.10i). Another advantage of the transmission port
resonator is that it enables a fully symmetrical design. A disadvantage
of the transmission-port resonator is that without setup calibration, only
the width of the resonance can be measured because the baseline is miss-
ing. When analyzing the lineshape this implies that only κtot = κc +κloss
can be measured, but not the individual components, while in the other
two cases, both κc and κloss can be inferred from the resonance trace. A
transmission port resonator is used in Chapter 8.

2.3. Double quantum dots

In a bulk metal or semiconductor, electrons can move freely in all three
spatial dimensions. However, if the spatial extent of the structure is lim-
ited, an electron is confined in that particular dimension as schematically
shown in Fig. 2.11. The case in which all three spatial dimensions are
limited so that quantum confinement or Coulomb interaction effects be-
come relevant [80, 81] is of particular interest; a so-called quantum dot is
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2.3. Double quantum dots

formed. In a quantum dot, electrons are only allowed to occupy discrete
energy levels and they are therefore often referred to as artificial atoms.
In this thesis, we focus on coupled quantum dots, i.e. with a finite wave
function overlap, forming a so-called DQD. In analogy to atoms forming
a molecule, a DQD can be considered to be an artificial molecule, which
is used as a qubit in this thesis.

2.3.1. Material platforms
Throughout this thesis, we have realized DQDs in three different material
platforms. These material systems provide confinement in one, two or all
three spatial dimensions and shall be introduced hereafter.

2D electron gas in GaAs

a)
E

AlGaAs GaAs

valence

conduction

2DEG

z

EF

0

b)

+

+
+

+

+
+
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AlxGa1-xAs
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GaAs

Si δ-donor
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Figure 2.12. 2DEG in heterostructure. a) GaAs/ AlxGa1 − xAs
layer sequence with a two-dimensional electron gas (2DEG) at the inter-
face. Figure adapted from [35].

The device substrate used in the experiments presented in Chapter 5
is GaAs/AlxGa1 − xAs as depicted in Fig. 2.12a). The used wafer was
grown by Christian Reichl in the group of Werner Wegscheider at ETH
Zurich. The substrate consists of a commercial GaAs wafer on top of
which a 500 nm thick GaAs substrate layer is grown by molecular beam
epitaxy. 40 nm of AlxGa1 − xAs spacer separate the GaAs substrate from
a δ-donor layer of silicon dopants. On top of the δ-donor layer, another
45 nm of AlxGa1 − xAs spacer layer and a 5 nm cap layer of GaAs are
grown. Fig. 2.12b) shows the resulting spatial variation of the conduction
and valence band edges. The difference in the staggered band gaps of
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Figure 2.13. Schematic of Ge/Si core shell nanowire. a) Cross
section of a Ge/Si core/shell nanowire. b) band structure alignment of a
Ge/Si core/shell nanowire as a function of radial position r =

√
x2 + y2.

Figure adapted from [82–84].

GaAs and AlxGa1 − xAs together with the positive charges introduced by
the δ-dopant layer, yield a band bending as depicted in the figure. The
resulting conduction band lies below the Fermi energy only in a small
region at the interface between the GaAs and the AlGaAs approximately
90 nm below the surface. Therefore, the heterostructure hosts a 2DEG at
this position.

In order to form a DQD, the electrons therefore have to be confined in
the remaining two dimensions. This is realized by using depletion gates on
top of the heterostructure surface, separated by ∼90 nm from the 2DEG.

1D Ge/Si core/shell nanowires

In Chapter 6, we couple a superconducting resonator to a 1D Ge/Si
core/shell nanowire, the latter of which was grown by Ang Li in the group
of Erik Bakkers at Eindhoven University of Technology. Fig. 2.13a) shows
a schematic cross section of the nanowire. Its Ge core is encapsulated by
a Si shell forming a mono-crystalline system [85]. This material alignment
results in a staggered type 2 band gap between Si and Ge as shown for the
radial direction of the nanowire in Fig. 2.13b). Because the Fermi level
gets pinned in the valence band, free holes accumulate in the core of the
nanowire even in the absence of doping and gating [39, 83].

The formed one-dimensional hole gas (1DHG) has several properties
that make it an exciting test bed for the implementation of spin-based
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quantum computers. Firstly, Ge/Si core/shell nanowires can be grown
with low defect densities [85] which allows a high degree of control of the
electrostatic environment of the 1DHG. Secondly, Ge and Si are group IV
materials possessing a low degree of nuclear spins which reduces hyperfine
interaction and can result in long spin coherence times. The hyperfine
interaction is further reduced, because holes posses a p-type wavefunction
featuring a very small overlap between the hole wavefunction and the
wavefunction of the remaining nuclear spins. Thirdly, Ge/Si core shell
nanowires have a large, direct Rashba spin-orbit interaction (DRSOI) [86]
which has enabled very fast Rabi oscillations [46] based on electric-dipole
spin resonance (EDSR) [87, 88]. Moreover, the Rabi frequency is electric-
field tunable [87, 89] which makes it possible to switch the qubit between
an idle state and an operating state by applying a local gate potential.
Fourthly, not only the strength of the EDSR, but also the Landé g-factor
is electric-field tunable [86, 90] enabling an all-electric spin qubit control.
Lastly, the heavy-hole light-hole mixing in the valence band of Ge is rich
in physics and yet quite unexplored [86, 91].

In order to form a DQD in the 1DHG, the wire is deposited on top of a
linear array of bottom gates [42, 92] where positive gate potentials confine
the holes in longitudinal direction.

0D crystal-phase defined dots in InAs

In Chapters 7 and 8, we couple a superconducting resonator to a DQD de-
fined by crystal phase engineering of an InAs nanowire. The used nanowire
was grown by Sebastian Lehmann in the groups of Kimberly Dick The-
lander and Claes Thelander at Lund University. The growth conditions
determine whether the nanowire crystal forms a wurtzite or a zincblende
phase [94]. This is utilized by changing the growth parameters during the
growth so that the crystal-phase of specific wire sections can be deter-
ministically varied [40]. Fig. 2.14 shows the formation of a DQD by using
this so-called crystal-phase engineering. Because of the larger band gap
of the wurtzite crystal-phase compared to the zincblende crystal-phase,
the three short wurtzite segments form tunnel barriers for electrons in the
conduction band and hence a DQD within the zincblende crystal-phase
is formed. In other words, by stacking the different crystal phases, 0D
quantum dots are formed without the need of any gates. Only plunger
gates are required in order to change the quantum dot’s electrochemical
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a) b)

dot 2

Figure 2.14. Crystal-phase defined DQD in InAs a) upper panel:
Schematic of the nanowire showing zincblende segments and the wurtzite
barriers. Lower pannel: Corresponding conduction band edge energy.
The conduction band edge of wurtzite InAs is higher by approximately
100 meV. The crystal phase therefore defines two quantum dots in the
zincblende segments as indicated in the upper panel. Figure adapted
from [45, 93] b) Transmission electron micrograph of two nanowires. In
the upper one, the zincblende segments (black) and the wurtzite barriers
(gray) are clearly visible. The image was taken by Sebastian Lehmann.

potential. Single electron transport through similar structures forming
a single quantum dot [93] and DQDs [45, 95] has been demonstrated.
The quantum dots are formed in the zincblende InAs segments and hence
experience a large spin-orbit interaction [49, 96], which will be used in
Chapter 8 to mediate a coupling between a spin qubit and a supercon-
ducting resonator.

2.3.2. Charge-stability diagram

In the DQD considered in this thesis, the Coulomb energy is the domi-
nating energy scale. At low temperatures, Coulomb repulsion yields fully
occupied dot states with energies lower than the electro-chemical potential
of the source and drain and entirely empty states with energies larger than
the source and drain potential. In a typical experiment, a negligible bias
between source and drain is applied, eVsd ≪ kBT . Loading and unloading
of an electron or hole in a quantum dot by means of a tunneling process
is then only possible, if the energy level of the quantum dot is aligned
with the electro-chemical potential of the drain (Fig. 2.15a)), the source
(Fig. 2.15b)) or an energy level of the second quantum dot (Fig. 2.15c)).
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Figure 2.15. Schematic charge-stability diagram. a) Energy levels
of a DQD where the right dot level is aligned with the electrochemical
potential µD of the drain. b) Level diagram where the left dot level is
aligned with the source potential µS . c) Level diagram where both dot
levels are aligned with each other and with source and drain potentials
µS = µD. Sequential tunneling from source to drain is only possible
in case c), but back-and-forth tunneling is possible in all three cases.
d) Color coded charge-stability diagram where the colors correspond to
the resonance conditions in a), b) and c). The charge configurations are
indicated in the brackets. Figure adapted from [23].

The difference of the energy levels between quantum dots, as indicated
in Fig. 2.15b) is called detuning ϵ. If the levels are not aligned, the charge
in either quantum dot remains constant.

Experimentally, the electro-chemical potentials of the quantum dots are
individually shifted by changing the voltages VL and VR on the plunger
gates. This results in the charge-stability diagram in the shape of a
hexagon as depicted in Fig. 2.15d), where lines indicate the configura-
tions where tunneling is possible while in the rest of the diagram the
DQD is Coulomb-blockaded and has a fixed charge [97]. A dashed line in
Fig. 2.15d) shows a direction along which only the detuning of the dots is

2

27



2. Combining superconducting resonators with semiconductor quantum
dots

0.57 0.58 0.59
VL (V)

0.46

0.48

0.50

0.52

V R
 (V

)

|S21|
0.50 0.75 1.00

Figure 2.16. Measured charge-stability diagram of a crystal-phase
defined DQD in InAs. Resonance conditions as shown in Fig. 2.15 are
detected by sensing a superconducting resonator that is coupled to the
DQD. The figure shows the transmission amplitude |S21| at the resonator
frequency as a function of the plunger gate voltages.

changed. The slanting of the honeycomb pattern with respect to the volt-
age axes is a consequence of the finite cross capacitance between the right
dot and the left gate and vice versa. Filled and empty circles indicate the
triple points at which the electro-chemical potential of source and drain
is aligned with the energy levels of both quantum dots. When measuring
the source-drain current, the triple points are the only configurations at
which sequential tunneling results in a direct transport.

In our experiments, we typically measure the charge-stability diagram
by probing the response of a resonator, capacitively coupled to one of
the two quantum dots, close to its resonance frequency. Fig. 2.16 shows
the response |S21| of a notch-type resonator coupled to a DQD. The
figure clearly exhibits the honeycomb pattern of the charge-stability dia-
gram. Noteworthy is that not only the triple points are visible; all three
resonance conditions as depicted in Fig. 2.15 result in a measurable res-
onator response, because of the dipolar coupling between the resonator
and the tunneling charge. The charge-stability diagram can also be ana-
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lyzed quantitatively [97] for extracting the relevant system capacitances.
The way this is done throughout this thesis is described in Section D.1 in
the appendix.

2.3.3. Charge and spin qubits
The structure of the charge-stability diagram is explained electrostatically
using a capacitance model. However, for understanding the resonator
response, a capacitance model is not sufficient and a Hamiltonian model
has to be considered. When doing so, because electrons (or holes) posses a
spin character, the spin-degree of freedom is relevant at non-zero magnetic
fields. The spin degree of freedom is of special interest, because it can be
employed as as a spin qubit [5, 6, 98].

This sub-section aims on explaining how a DQD in the presence of spin-
orbit interaction can be operated as a charge or a spin qubit. Describing
the DQD as a qubit implies that when coupled to a microwave photon
in a resonator, the Rabi and JC model can be applied as described in
section 2.1.1 explaining the measured resonator response.

Because pairs of electrons progressively occupy the spin degenerate
quantum dot levels, a DQD can have either a spin 1/2 or a spin 0 char-
acter with behaviour mimicking a single electron or two electrons [99]. In
the following, we therefore refer to the single electron model as odd parity
and to the two electron model as even parity.

We first consider the energy levels of a single electron shared among
the two dots of a DQD in the presence of a magnetic field and spin-orbit
interaction. A different behavior is expected in the case of two electrons
shared among the two quantum dots which is explained thereafter.

Odd parity

If the electrons in the DQD have a total spin of 1/2, they can be mod-
elled by one spin-degenerate electron. This electron can reside either
on the left dot or on the right dot [100]. Therefore, a suitable basis is
{|L ↓⟩ , |L ↑⟩ , |R ↓⟩ , |R ↑⟩}, where L/R denotes whether the charge resides
in the left dot or on the right dot, respectively and ↓/↑ denotes whether
the spin is aligned parallel or anti-parallel with the magnetic field B.

The Hamiltonian describing the electron can be decomposed into three
parts as

Hodd = H0
odd + HZ

odd + Hsoi
odd (2.38)
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Figure 2.17. Energy levels of a single electron in a DQD. The
energy levels are shown as a function of detuning ϵ and subfigures differ
only in the choice of the magnetic field B and spin-flipping tunneling
amplitude tSO as indicated. In all figures, gL = gR. The tick on the
x-axis indicates zero detuning. The color encodes the squared amplitude
of the corresponding eigenstate as indicated in the figure.

The first part of the Hamiltonian describes the spin-independent charge
which can be written using the the charge Pauli matrices τ̂x,y,z as

H0
odd = ℏϵ

2 τ̂z + ℏtcτ̂x. (2.39)

Here, the diagonal terms are proportional to the detuning ℏϵ = ER −EL
which is the difference between the electro-static potential of the electron
residing in the right and left dot, respectively. The off-diagonal terms
are given by ℏtc which is the spin-conserving tunneling amplitude. In the
absence of a magnetic-field and spin-orbit interaction, Hodd = H0

odd is the
full Hamiltonian. The resulting energy levels are plotted in Fig. 2.17a).
As visible in the figure, at ϵ = 0, the spin-degenerate charge states hy-
bridize. At this charge degeneracy, the eigenstates of the system are given
by the the anti-symmetric (bonding) and symmetric (anti-bonding) super-
position states, |±c⟩ = (|R ↕⟩ ± |L ↕⟩)/

√
2.
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In the presence of a magnetic-field, the second part of the Hamiltonian
comes into effect. This term describes the Zeeman energy of the electron
and is given by

HZ
odd = 1

2gL,RµBBσ̂z, (2.40)

where gL and gR are the site-dependent Landé g-factors, µB is the Bohr
magnetron and σ̂x,y,z are the spin Pauli matrices. The Zeeman energy
lifts the spin degeneracy and hence four spin-polarized levels are observed
as shown in Fig. 2.17b). The curvature of the levels is not influenced by
the Zeeman term and is still governed by the spin-conserving tunneling.
Fig. 2.17b) shows the levels in the situation where the Zeeman energy
exceeds the spin-conserving tunneling, gµBB > ℏtc. In this situation, in
the absence of spin-orbit interaction, tSO = 0, two spin-polarized levels
cross without coupling to each other (see figure).

The crossing between the spin-polarized levels is lifted in the presence of
a spin-orbit field that creates a coherent mixing between the two different
spin-states. The spin-orbit interaction results in a spin-flipping tunneling
amplitude tSO entering the third part of the Hamiltonian as [101]

HSO
odd = ℏtSOτ̂yσ̂y (2.41)

As depicted in Fig. 2.17c), the spin-flip tunneling amplitude results in an
avoided crossing of the levels corresponding to |L ↑⟩ and |R ↓⟩ and of the
levels corresponding to |R ↑⟩ and |L ↓⟩. As is apparent upon comparing
Fig. 2.17b) and Fig. 2.17c), the ground state energy level remains mostly
unaffected by this anti-crossing.

Even parity

If the total spin of the DQD is even, the DQD can be modelled by con-
sidering only two electrons. The spins of two electrons form singlets and
triplets [3] which behave qualitatively very differently when working at
non-zero magnetic fields. In the even parity, the basis is chosen to be
{S1,1 ,T−

1,1, T 0
1,1, T+

1,1, S2,0, T−
2,0, T 0

2,0, T+
2,0
}

, where the charge configura-
tion is indicated by the tuple of integers. The spin states are given as
singlet

S = 1√
2

(|↑↓⟩ − |↓↑⟩) (2.42)
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Figure 2.18. Energy levels of two electrons in a DQD. The energy
levels are shown as a function of detuning ϵ and subfigures differ only in
the choice of the magnetic field B and spin-flipping tunneling amplitude
tSO as indicated. In all figures, gL = gR. The color encodes the squared
amplitude of the corresponding eigenstate as indicated in the figure.

and triplets

T− = |↓↓⟩ , T 0 = 1√
2

(|↑↓⟩ + |↓↑⟩) , T+ = |↑↑⟩ (2.43)

Similar to the odd parity, the system Hamiltonian can be decomposed in
three parts as

Heven = H0
even + HZ

even + Hsoi
even. (2.44)
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The first part of the Hamiltonian describes the electrostatic-potential, the
singlet-triplet splitting and spin-conserving tunneling. It is given by

H0
even =ℏϵ

|S20⟩ ⟨S20| +
∑
i∈[0±]

|T i20⟩ ⟨T i20|

 (2.45)

+ ∆ST
∑
i∈[0±]

|T i20⟩ ⟨T i20|

+ ℏtSc |S20⟩ ⟨S11| + ℏtTc
∑
i∈[0,±]

|T i20⟩ ⟨T i11| + h.c.,

where once again ϵ = (ER −EL)/ℏ is the detuning and ∆ST is the single
dot singlet-triplet splitting separating the T2,0 states from the S2,0 state.
The spin conserving inter-dot tunneling amplitudes are denoted ℏtSc and
ℏtTc for the singlet and triplet states. In the absence of a magnetic field
and spin-orbit coupling, the total Hamiltonian is given as Heven = H0

even.
The levels corresponding to this situation are plotted in Fig. 2.18a). The
ground state always has a singlet character and at charge degeneracy
(ϵ = 0) an anti-crossing between the levels, corresponding to the S2,0
and S1,1 states can be seen. The hybridized singlet levels are separated
by 2ℏtSc (see arrow in figure). At zero detuning, the triplet states T1,1
with the electrons spread among the two dots have zero energy and the
triplet states T2,0, where two electrons reside in the same dot, have energy
∆ST (off-scale in the figure). For increased detuning, the energy of the T2,0
decreases while the energy of the T1,1 states remains constants. Therefore,
they anti-cross at large positive detuning with a level separation of 2ℏtTc .

In the presence of a magnetic field B, the degeneracy between the triplet
levels is lifted by the Zeeman energy which is included by the Zeeman term
in the Hamiltonian

HZ
even = µBB

∑
±

(
±gL + gR

2 |T±
11⟩ ⟨T±

11| ± gL |T±
20⟩ ⟨T±

20|
)
. (2.46)

Here, gR and gL denote the Landé g-factors of the right and left dot,
respectively. Fig. 2.18b) shows the level structure for the situation where
gµBB > ℏtSc with g = gR = gL in the absence of spin-orbit interaction
(tSO = 0). The spin polarized triplet states are spin-split from the spin-
zero triplet state by gµBB. From the figure, it becomes clear that for
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negative ϵ, the ground state of the system is not any longer given by the
singlet state, but by T−

1,1. However at large, positive detuning the ground
state is S2,0. Therefore, at an intermediately large ϵ > 0, these two states
cross without influencing each other.

Let us now consider non-zero spin-orbit coupling. Spin-orbit coupling
results in spin-flipping tunnel transitions tSO > 0 coupling the S2,0 and
the T1,1 states. This is described by the third part of the Hamiltonian

HSO
even = ℏtSO

∑
i∈[0,±]

(
|S20⟩ ⟨T i11| + |S11⟩ ⟨T i20|

)
+ h.c., (2.47)

Fig. 2.18c) shows the level diagram with the same parameters as in Fig. 2.18b),
but with tSO > 0. As becomes apparent from the figure, the effect of the
spin-orbit coupling on the ground state is an avoided crossing between
S2,0 and T1,1. Instead of crossing, S2,0 and T−

1,1 anti-cross and the levels
of the fully hybridized states are separated by 2ℏtSO.

The double-dot two-level system

At low temperatures, the DQD remains in the ground state, except if
it is excited by, for instance, a microwave tone. Because higher energy
excitations are irrelevant at low temperatures, close to an avoided crossing,
the Hilbert space can be collapsed to the two-level subspace including only
the two coupled states. This allows us to describe the DQD system as
a qubit. The spin or charge nature of this qubit is determined by the
character of the tunnel-coupled states. Considering the case in which the
ground state is tunnel coupled by a tunnel rate t with a second state
with opposite charge configuration, these two states differ solely by their
charge configuration such as |R⟩ and |L⟩ in the odd-parity case, or S2,0
and S1,1 in the even-parity case. Hence, a charge qubit is realized. When
considering two tunnel-coupled states with differing spin character, a spin
qubit is realized. This is the case for instance for the avoided crossing
between S2,0 and T−

1,1 due to spin-orbit interaction.
In the following, we label these two states with |g⟩ and |e⟩. In the

two-level subspace, the Hamiltonian reads

Hq = ℏ
2 (ϵτ̂z + 2tτ̂x) , (2.48)
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Figure 2.19. Charge qubit dispersion. The graph shows the result
of a two-tone spectroscopy experiment of a GaAs DQD strongly coupled
to a microwave resonator. The resonator response S21 is acquired at
the resonator frequency ωr/2π = 6.2581 GHz while a second tone with
frequency ω2 is applied. We plot |S21| as a function of ω2 and detuning ϵ.
A change in |S21| is measured whenever the ω2 is resonant with the qubit
transition frequency ωq. The white, dashed line is a fit to the transition
frequency ωq =

√
|2t|2 + ϵ2, where t > 0 is a fit parameter. A second fit

parameter is the lever arm α that converts the applied voltage V to the
detuning as ϵ = α (V − V0) with an offset voltage V0.

where ϵ is detuning of the uncoupled states. Furthermore, τ̂x,z are the
Pauli matrices in the basis of the two coupled states with opposite charge
character. Diagonalization of the Hamiltonian gives

H′
q = ℏωq

2 σ̂z, (2.49)

where ℏωq = ℏ
√

|2t|2 + ϵ2 is the energy separation between the hybridized
states and σ̂z is the Pauli operator in the eigenstate basis. The eigen-
states of the diagonalized Hamiltonian are the bonding and anti-bonding
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states [23, 102]

|g⟩ =
{

sin ϑ
2 |0⟩ − cos ϑ2 |1⟩ , if ϑ > 0

cos ϑ2 |0⟩ − sin ϑ
2 |1⟩ , if ϑ < 0

, (2.50)

|e⟩ =
{

cos ϑ2 |0⟩ + sin ϑ
2 |1⟩ , if ϑ > 0

sin ϑ
2 |0⟩ + cos ϑ2 |0⟩ , if ϑ < 0

(2.51)

and ϑ = arctan (|2t|/ϵ) ∈ [−π/2, π/2] is called mixing angle.
To demonstrate that the DQD can indeed be treated as a qubit, Fig. 2.19

shows the dispersion of a DQD qubit at zero magnetic field (charge qubit)
in GaAs. The data is acquired by two-tone spectroscopy of the DQD [22,
35]: The response of a resonator coupled to the qubit is measured while a
second microwave tone with frequency ω2 is used to drive the qubit. On
resonance, the qubit population changes and hence does the signal S21 at
the resonator frequency. The white, dashed line is a fit of the data to the
transition frequency ωq(ϵ).
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3 Designing high-impedance microwave
circuits

As discussed in the previous chapter, using high-impedance resonators
enhances the resonator vacuum fluctuations and therefore the coupling of
the resonator to electric dipoles. However, a large impedance does come
at a cost and several challenges have to be addressed. One considera-
tion is the choice of the dielectric environment of the superconducting
resonator which will be discussed in Chapter 4. Detailed fabrication steps
are listed in Appendix A. This chapter describes the design considerations
that are taken into account when building an architecture combining half-
wave resonators based on thin-film NbTiN with semiconductor nanowires.
Moreover, in Section 3.5, we describe the cryogenic setup in which the ex-
periments are performed.

3.1. Spurious modes

When modeling coplanar waveguide resonators, it is assumed that the
ground plane itself is well grounded everywhere and that the back propa-
gating currents travel only very close to the resonator [65, 103]. However,
when both the center conductor and the ground plane consist of a material
with large kinetic inductance, the ground plane itself has a non-negligible
impedance which becomes problematic when constrictions are present,
and if insufficient grounding to the environment is provided.

Figure 3.1 shows the transmission through a transmission type res-
onator with a resonance frequency of 4.33 GHz. Its resonance is clearly
visible as a sharp peak in the transmission. However, a second, broader
spurious peak, close to the resonance frequency is also visible. This peak is
partly overlapping with the resonator resonance and might therefore inter-
fere with measurements. In order to investigate the origin of this spurious
mode, the experiment is repeated several times with increasing number of
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Figure 3.1. Spurious mode. Transmission amplitude |S21| through
a NbTiN transmission-type resonator showing resonator resonance and
spurious mode (see main text). The difference between the curves lies in
the number of wire bonds connecting the ground plane and the printed
circuit board (PCB) as indicated by the arrow. Data is offset vertically.

bond wires between the ground plane and the PCB. As a consequence, the
spurious mode shifts to higher frequencies (see Fig. 3.1). We suspect this
mode originates from the parallel-plate capacitor formed by the ground
plane and the copper, separated by ∼500 µm of silicon. Using a parallel-
plate capacitor model, we estimate a capacitance Cspurious ≈ 200 pF for
th 2.5 mm×4.5 mm chip. Combining this capacitance with the measured
resonance frequency ωspurious/2π = 4.5 GHz allows us to estimate an in-
ductance of Lspurious ≈ 500 pH. Given the sheet kinetic inductance of
the used film of ∼30 pH/sq, Lspurious corresponds to approximately 20
squares which are realistically given by the geometry of the patterned
ground plane.

After having identified the origin of the spurious mode, we avoid similar
modes in the experiments presented in the chapters 4, 6, 7 and 8 by
drilling holes in the copper holder forming the back plate of the parallel
plate capacitor and thereby reducing Cspurious substantially.

3.2. Losses through the dc lines connected to the device

To electrostatically control a double-quantum dot (DQD), dc gate lines
are required. In a hybrid architecture, where a resonator is coupled to a
DQD, these unavoidably possess some stray capacitance to the resonator

38

3



3.3. Losses through the tap

and open a leakage pathway for the resonator. The leakage loss through
a dc gate line can be approximated by [104, 105]

κg = 2
π
ω3
rZgZrC

2
g , (3.1)

where ωr and Zr are the resonance frequency and impedance of the res-
onator, Zg is the impedance of the dc line, and Cg is the resonator-to-
gate capacitance. Indeed, early measurements show significant microwave
leakage through the dc lines [21] and the issue has been addressed by im-
plementing superconducting, on-chip low-pass filters [106] whose perfor-
mance in a high-impedance architecture was investigated rigorously [105].
In the architectures being discussed in the references [105, 106], the DQD
is formed by accumulation and depletion gates on top of a two-dimensional
electron gas (2DEG). This architecture unavoidably results in a large
resonator-to-gate capacitance Cg and therefore, the authors decided to
decrease leakage by lowering the effective gate impedance Zg by incor-
porating low-pass filters. However, when incorporating one-dimensional
nanowires and zero-dimensional crystal-phase defined quantum dots, the
resonator-to-gate capacitance can be designed substantially smaller. This
alleviates the leakage as κg ∝ C2

g and hence makes the on-chip low-pass
filtering dispensable. Not fabricating the low-pass filters drastically sim-
plifies the device architecture and reduces the footprint. Nevertheless,
since κg ∝ Zr, it is evident that the high impedance resonator does lead
to a larger leakage term, but not to an extent limiting application of the
resonator.

3.3. Losses through the tap

When coupling a resonator to a DQD, it is desirable to be able to apply
a dc voltage to the resonator being capacitively coupled to one of the
two quantum dots. This on the one hand reduces the overall number
of required gate lines needed to control the DQD potentials. On the
other hand, it minimizes the resonator-to-gate capacitance Cg and hence,
according to Eq. (3.1), ensures a sufficient resonator quality factor. Dc
biasing the resonator can be realized by connecting a tap to the position
of its voltage node. For a half-wave resonator, this means connecting a dc
tap to the middle of the center conductor [17, 21, 107]. However, the dc
tap itself in general has a non-negligible inductance and capacitance that
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Figure 3.2. Half-wave resonator with dc tap. The figure shows
a half-wave resonator probed in transmission from port 1 to port 2 with
coupling capacitors Cin. Additionally to the mode of our interest, λ/2, the
resonator hosts a ζ/4 mode due to the dc biasing tap (see main text for
details). The color gradient, corresponding to the two modes, represents
the voltage amplitude along the resonator. For clarity the ζ/4 mode is
only plotted on side of the resonator. Figure adapted from Ref. [105].

can change the resonator excitation spectrum [105] and therefore requires
careful engineering of the tap.

Fig. 3.2 shows a simplified schematic of a half-wave resonator including
the dc tap connected to the middle of its center conductor. The resonance
mode that we aim on coupling to a DQD is the half-wave mode λ/2. At
the positions of the coupling capacitors Cin, this mode has voltage anti-
nodes which oscillate out of phase. The voltage node of the λ/2 mode
is positioned at the middle of the center conductor. Because a dc tap is
connected to the middle of the center conductor, a second mode, labelled
ζ/4 forms [105]. It extends into the tap of finite inductance and therefore
has a lower resonance frequency than the λ/2 mode. Because the ζ/4
mode is connected to an ohmic line at its current anti-node, it has a low
quality factor compared to the λ/2 mode. Therefore, engineering of the
combined system aims on decoupling the two modes from each other as
much as possible, preventing loss from the λ/2 mode through the tap.
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Similarly to the λ/2 mode, the voltage anti-nodes of the ζ/4 mode are
located at the coupling capacitors of the resonator. However, in contrast
to the λ/2 mode, the voltage amplitudes at the two ends oscillate in phase.
The leakage from the first mode to the second mode is given by their
wavefunction overlap. Therefore, if the device is fully symmetric, their
different symmetries result in a cancellation of the contributions from the
left and right arm of the resonator due to destructive interference. This
prevents a coupling between the two modes and hence ensures the high
quality of the λ/2 resonance.

3.3.1. QUCS simulations

We confirm this symmetry argument by simulating a transmission-type
resonator using a quite universal circuit simulator (QUCS) [108]. Fig-
ure 3.3 shows two simulated circuits with realistic parameters correspond-
ing to a NbTiN resonator, where the tap is represented by a lumped el-
ement inductor. The circuits are shown in Fig. 3.3a) and Fig. 3.3b) and
differ only by the positioning of the tap: In Fig. 3.3a), the tap is posi-
tioned in the middle of the center conductor yielding a fully symmetric
device, while in Fig. 3.3b), the device is highly asymmetric, as indicated
by the lengths of the resonator segments in the blue and red box respec-
tively. Figure 3.3c) shows the simulated transmission using either struc-
ture where the broad ζ/4 mode and much sharper λ/2 mode are visible.
Additionally, at ∼ 12 GHz a higher order excitation of the ζ/4 mode, is
present.

Figure 3.3d) shows a zoom onto the λ/2 resonance. As expected in
the fully symmetric case, the transmission on resonance is one, indicating
that the resonance broadening is only determined by the coupling via
the coupling capacitors, according to Eq. (2.37). By fitting a Lorentzian,
we extract the resonance frequency ω0,sym = 5.761 GHz and linewidth
κsym = 1.089 MHz. We repeat the same analysis in the asymmetric case,
and find that the asymmetry enables a finite hybridization of the λ/2 mode
with the ζ/4 mode and shifts the resonance peak by 23 MHz. Moreover,
we find that in the asymmetric case, the peak amplitude does not reach
one, reflecting a finite loss through the tap. From a Lorentzian fit, we
extract κasym = 1.863 MHz. Because no other loss sources are included
in the simulation, the difference in the line widths κtap = κasym − κsym =
0.773 ± 0.001 MHz is fully determined by the losses of the λ/2 resonance
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Figure 3.3. QUCS simulations of dc tap. a) Simulation schematic of
a resonator probed in transmission with a dc tap simulated as a lumped-
element inductor and connected to the middle of the center conductor. b)
Same as a, but the tap is not connected to the middle of the center con-
ductor (see colored boxes). c) Simulated transmission amplitude |S21|qucs.
d) Zoom of the λ/2 resonance. Dots are simulated data while the solid
line is a Lorentzian fit. A frequency shift and a linewidth broadening
are observed for the asymmetric setup compared to the symmetric one.
The color code in c) and d) correspond to the boxes’ color in a) and b).
Inductances and capacitances indicated in the figure are normalized per
unit length.
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through the tap.
We note that despite the very large asymmetry in the circuit, the loss

rate through the tap κtap is relatively small, κtap < 1 MHz. We attribute
this to the large detuning between the ζ/4 mode and the λ/2 mode of
more than 3 GHz.

3.3.2. Sonnet simulations

In the QUCS simulations presented in Section 3.3.1, we simulate the res-
onator tap by a single lumped element inductor. In a realistic device, such
an inductor is realized by a meandered line of the high kinetic-inductance
material NbTiN. To simulate a realistic device, we use Sonnet, a finite-
element electromagnetic solver, which allows us to take into account the
kinetic inductance of the material while performing a electromagnetic sim-
ulation. In Fig. 3.4 a-c), we plot the simulated current densities at sev-
eral frequencies corresponding to the mode spectrum of the resonator.
We identify the ζ/4 (see Fig. 3.4a)), the λ/2 mode (see Fig. 3.4b)) and
higher order nζ/4 modes, where n is an odd integer (see Fig. 3.4c) for
the 3ζ/4 mode). The transmission as a function of frequency is plotted in
Fig. 3.4d), where we indicate the peaks corresponding to either resonance
mode.

Figure 3.4d) shows the simulated transmission through the resonator
as a function of frequency. During the simulation, the kinetic inductance
and the coplanar waveguide capacitance and inductance are chosen to
match the line capacitance and inductance that are used in the simulations
described in Section 3.3.1. Nonetheless, we observe that the resonance
frequencies of the nζ/4 resonance modes are reduced drastically compared
to the QUCS simulation results. This is explained by the fact that in the
QUCS simulations, the meandered inductor is approximated by a purely
inductive lumped element. In reality however, the inductor posses a non-
negligible spurious capacitance lowering the resonances frequencies of the
nζ/4. Additionally, we note that the resonance frequency of the λ/2
mode is higher compared to the results of analytical equations and of the
QUCS simulations. We attribute this to the gaps in the ground plane
due to the tap and feedlines which effectively reduce the total capacitance
of the resonator. Moreover, we note that despite the smaller detuning
between the λ/2 resonance and the 3ζ/4 resonance of less than 1 GHz,
the transmission on resonance of the λ/2 resonator is 0 dB. This signifies
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Figure 3.4. Sonnet simulation of dc tap. Simulated current density
a) at ∼ 2.1 GHz showing the ζ/4 mode, b) at ∼ 6.7 GHz showing λ/2
mode and c) at ∼ 7.6 GHz showing 3ζ/4 mode. d) Simulated transmission
amplitude |S21| as function of probe frequency ωp. For the simulations,
a sheet kinetic inductance of 80 pH per square is used. In the simulated
current densities, a red color corresponds to a large current density in
arbitrary units.

44

3



3.4. Designing the coupling capacitor

that no loss through the tap is observed, once again reflecting the fully
symmetric resonator design.

3.4. Designing the coupling capacitor

|  
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200 μm

Figure 3.5. Design of coupling capacitor. a) Simulated current
density distribution. A red color corresponds to a high current density. b)
Simulated resonance curve (blue dots) and fit to Eq. (2.36) (orange curve).
From the fit, we extract fc = 3.500491 ± 0.00002 GHz, Qc = 3500 ± 200,
ΦFano = 0.28 ± 0.02. c) Measured resonance curve at a base temperature
of 20 mK and fit. From the fit, we extract fc = 3.40734 ± 0.00002 GHz,
Qc = 2490 ± 20, Qloss = 16500 ± 1200 and ΦFano = −1.042 ± 0.003.

In the previous Section 3.3.2, we showed how Sonnet can be used to
engineer the dc tap of a half-wave resonator. Sonnet also proves extremely
useful for engineering the coupling between the resonator and a feedline,
which we briefly demonstrate here for a notch-type half-wave resonator.

Firstly, the feedline dimensions (center conductor width and gap to
ground plane) are designed and adjusted to match 50 W taking into ac-
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count the previously determined kinetic induction of the superconducting
film according to the equations quoted in Section 2.2.4. A 5 µm wide
NbTiN strip, which is connected to the ground plane, is located between
the feedline and the resonator. This design of the coupling capacitor
ensures a high symmetry of the resonator and hence suppresses losses
through the dc tap as explained in Section 3.3.1. Moreover, simulations
show that compared to a disconnected ground plane, this design results
in a more homogeneous current density distribution in the ground plane
for frequencies close to the resonance frequency.

We simulate several coupling capacitor designs. The simulation results
are shown in the appendix in Section B.1.

Fig. 3.5a) shows the simulated current density of a resonator design
at 3.5 GHz. One can clearly see the half-wave mode on the resonator
center conductor. We simulate the complex transmission, S21, through
the feedline as a function of frequency, and fit the resonance curve in the
complex plane [78] from which we extract the resonance linewidth κ and
resonance frequency ωr. As opposed to Because no other sources of loss
are included in the simulations, the loss is purely due to the coupling to
the feedline, κc = κ and we find the coupling Q factor Qc = ωr/κc.

To verify the simulation results, we fabricate a test resonator based on
this design and probe it in a dilution refrigerator at 20 mK. For compari-
son, the simulation results are shown in Fig. 3.5b) and the measurement
results are shown in Fig. 3.5c). We find both fr and Qc to be similar
between the simulation and the measurement results (see figure caption).
The small deviations in the resonance frequency can be explained by an
inhomogeneous film thickness across the wafer. This inhomogeneity re-
sults in slightly different film properties on the test chip from which the
kinetic inductance was deduced and the chip from which the resonator was
fabricated. Therefore, the kinetic inductance and hence the resonance fre-
quency differ slightly. Compared to the simulations, in the measurements
we observe a larger absolute asymmetry factor ΦFano which originates
from interference with a broad resonance and hence points towards a
small standing wave background in the setup.

The various fabrication steps that are required to fabricate the NbTiN
resonators are partly executed at the Paul Scherrer Institute and partly
at the University of Basel. The detailed fabrication protocol can be found
in Section A.2 in the appendix.
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3.5. Cryogenic microwave setup

In order to perform measurements, all samples presented in this thesis are
mounted on a PCB with direct current (DC) and/or radio frequency (RF)
connectors.

The chip on the PCB is shielded from environmental radiation by a
copper box with box mode resonance frequencies well above the frequen-
cies of our interest. The PCB is then connected to the base temperature
stage of a dilution refrigerator. The experiments described in Chapter 4,
Chapter 6, Chapter 7 and Chapter 8 were performed in an Oxford Triton
dilution refrigerator with a bottom-loader system. This cryostat makes
use of the phase transition between a concentrated phase of He3 and a
diluted phase of He3 in He4. By driving the He3 from the He3-rich to the
He3-poor phase, the heat attributed to this phase transition is absorbed.
This process takes place in a so-called mixing chamber which is thermally
anchored to a plate which, as a consequence, is cooled to a few tens of
millikelvin. In order to isolate the mixing chamber plate from the envi-
ronment, the cryostat has several other temperature stages. All stages
are shown in the photograph in. Fig. 3.6.

Figure 3.7 shows schematically the electronics used in the experiments
on the different temperature stages. The room temperature measure-
ment setup consists of DC and alternating current (AC) electronics. The
DC electronics for operating the DQD DC voltages are generated by a
digital-to-analog converter (DAC). The DC signal is low-pass filtered us-
ing a filter box at room temperature and by using a second low-pass filter
stage at the mixing chamber plate. DC currents are measured using an
current to voltage (I/V)-converter and a voltage meter. Alternatively,
the low-frequency conductance through the DQD is measured using the
I/V-converter combined with a lock-in amplifier.

On the AC side, first a coherent microwave signal is generated by a
VNA. The signal is then attenuated at every temperature stage in or-
der to reach microwave powers with on average less than one photon in
the resonator [109]. In Fig. 3.7, the sample is illustrated exemplary as
a transmission-type resonator coupled to a DQD, corresponding to the
experiments described in Chapter 8. The out coming signal passes two
isolators, isolating the sample from back action noise from the cryogenic
HEMT amplifier which amplifies the signal at 4 K. At room temperature,
the signal is further amplified using two additional HEMT amplifiers and
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Figure 3.6. Photograph of cryogenic setup. The dilution refriger-
ator of the type Triton (Oxford instruments) with indicated temperature
stages.
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Figure 3.7. Cryogenic and room-temperature equipment. A co-
herent microwave signal is generated by a vector network analyzer (VNA).
In order to suppress thermal radiation, the signal is attenuated at every
temperature stage of the cryostat. After passing the resonator, it is am-
plified by a cryogenic high electron mobility transistor (HEMT) amplifier
and two room-temperature HEMT amplifiers before being detected by the
VNA.
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3. Designing high-impedance microwave circuits

then detected by the VNA.
Three superconducting Helmholtz coils are mounted at the 4 K plate

forming a 3D vector magnet providing uniform magnetic fields at the
sample position in any spatial direction.

The experiments described in Chapter 5 were performed in a different
dilution refrigerator at ETH Zurich. In these experiments, the signal
is first amplified by a Josephson parametric amplifier (JPA) and then
down-converted before being acquired using an analog-to-digital converter
(ADC) acquisition card. The schematic setup for this experiment is shown
in Fig. B.2 in the appendix.
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4 The effect of dielectrics on the quality
of high-impedance resonators

After having laid-out the considerations taking place when designing mag-
netic-field resilient, high-impedance, superconducting half-wave resona-
tors based on NbTiN in Chapter 3, we develop a fabrication protocol
aiming on very large internal quality factors in the single-photon limit
and at elevated magnetic fields. The developed protocol, which can be
found in Section A.2 in the appendix, reliably results in high-impedance
resonators with unloaded quality factors Qloss > 105 when resonators are
fabricated on top of intrinsic silicon.

However, nanowire device fabrication is well established using wafers
with thermally grown silicon oxide [110–112]. Therefore, additionally to
testing the resonator performance on top of intrinsic silicon, we fabricate
and test resonators on top of silicon oxide. Moreover, we examine the
resonator performance when aluminum oxide is deposited on top of the
wafer, covering the resonator which further simplifies the fabriaction of
nanowire devices.

This chapter is a submitted paper [113].
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Performance of high impedance resonators in dirty
dielectric environments

J. H. Ungerer,1,2 D. Sarmah,1 A. Kononov,1 J. Ridderbos,1 R. Haller,1
L. Y. Cheung1 and C. Schönenberger1,2

1Department of Physics, University of Basel, Klingelbergstrasse 82 CH-4056,
Switzerland
2Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 82 CH-4056,
Switzerland

Abstract

High-impedance resonators are a promising contender for realizing long-
distance entangling gates between spin qubits. As a material system for
the qubits, semiconductor nanowires with strong spin-orbit interaction
are often employed, working towards large-scale spin-qubit quantum pro-
cessor. Inherently, the fabrication of nanowire based qubits relies on the
use of gate dielectrics which are detrimental to the quality of the res-
onator. Here, we investigate loss mechanisms of high-impedance NbTiN
resonators in the vicinity of a variety of several commonly used dielectrics
and benchmark their performance in elevated magnetic fields and at ele-
vated temperatures. We find that the internal quality factors are indeed
limited by the coupling between the resonator and two-level systems of the
oxides. We show, that even for the most perfect dielectric configuration
for the integration of nanowire devices, where the resonator is sandwiched
between SiO2 and Al2O3, which is the least ideal configuration for the
resonator, the internal quality factor well exceeds 103. This allows to in-
tegrate high-impedance resonators using established fabrication protocols
of semiconductor nanowires while maintaining a high quality factor, thus
paving the way for large-scale quantum computers.

4.1. Introduction

High impedance resonators have recently attracted a lot of attention be-
cause their large vacuum voltage fluctuations enable strong interactions
with a weak electric dipole moment [12, 32]. Superconducting resonator
have realized important breakthroughs such as a coherent coupling be-
tween a single photon and a single charge [22, 35] on a double-quantum
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dot (DQD). In addition, spin-photon coupling [27, 33, 34], distant, res-
onant charge-to-charge [29] coupling, and spin-to-spin [30] coupling have
been demonstrated. Moreover, implementation of high-impedance res-
onators enabled coherent, virtual-photon mediated charge-to-charge [29]
and spin-to-spin [31] coupling, and rapid-gate based spin readout [114].

Investigations of high-impedance resonators have so far focused on real-
izing the highest quality resonators possible [32, 70, 115, 116] by removing
dielectrics that cause loss in the low-photon limit [41]. However, spin qubit
quality factors in hybrid devices incorporating a resonator are on the or-
der of 103 [30, 31, 33, 34]. And after coupling the resonator to a device,
its coherence is not limited by dielectric loss, but by photon leakage to
the leads [105, 117] typically limiting their Q factors to ∼ 103, too. This
implies that the antecedent optimization of the dielectric environment is
unnecessary in any real world device, as long as dielectric losses have a
negligible impact on the Q factor. This would then allow one to use estab-
lished fabrication recipes that employ an arbitrary gate dielectric aiming
on electrostatic stability of quantum dot devices.

To showcase this, we investigate high-impedance NbTiN resonators in a
variety of dielectric configurations that are commonly used when fabricat-
ing double-quantum dots based on semiconductor nanowires [21, 42, 43,
45, 46]. We demonstrate that despite a reduction of the resonator quality
factors due to the additional dielectrics, their quality is sufficient even in
a dielectric configuration ideal for nanowire integration.

We describe the crucial parameters during sputtering of the material
and investigate the dominant resonator loss mechanism. A crucial crite-
rion for resonators aiming on coupling to spin qubits is their magnetic-field
resilience and recently, the community has started to operate spin qubits
at elevated temperatures [118–120]. Using these arguments as a motiva-
tion, we characterize the resonator performance in large magnetic fields
up to 5 T and at elevated temperatures.

4.2. Experimental setup

We fabricated a total of 16 NbTiN coplanar waveguide resonators with
an impedance of Z =

√
L/C ∼ 2 kΩ distributed on four different chips

with dielectric configurations depicted in the dashed, colored boxes in
Fig. 4.1a). The sample preparation is described in section 4.3. Each chip
hosts a feedline with four notch-type, half-wave resonators as shown in
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Figure 4.1. Device Overview. a) Side-view schematics of four different
dielectric configurations that were investigated. The color of the dashed
boxes corresponds to their respective configurations throughout the paper.
The right part of each schematic illustrates how a nanowire device can be
realized, given the dielectric configuration on its left. b) Top-view design
of the four half-wave resonators, capacitively coupled to a much wider 50 Ω
matched feedline. c) Amplitude and IQ-excursion of exemplary resonance.
The orange line is a fit to the data.

Fig. 4.1b). From left to right, the different wrapping of the feedline results
in coupling quality factors between Qc ≈ 103 and Qc ≈ 105 enabling us
to investigate the film properties accurately for a large range of internal
quality factors Qi. Resonance frequencies are in the range between fr ∼
4.2 GHz and fr ∼ 5.6 GHz.

For illustrative purposes, in Fig. 4.1a), we not only show the four differ-
ent dielectric configurations in colored, dashed boxes, but also the corre-
sponding dielectric configuration of a nanowire device. Case I - NbTiN on
Si - is the most ideal configuration for the resonator. Fabricating bottom-
gate based devices [46, 92] directly on top of intrinsic silicon comes with
the problem of gate leakage, because of the small gate pitch. Moreover,
on the surface of the intrinsic silicon, a native silicon oxide forms un-
der ambient conditions which might result in a poor electrostatic device
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stability. Therefore, fabrication of nanowire devices on top of intrinsic sil-
icon involves sandwiching the bottom gates with two oxide layers grown
by atomic-layer deposition (ALD). To maintain a pure dielectric environ-
ment of the resonator, the oxide has to be wet-etched or the ALD-layers
have to be deposited locally by a lift-off process [121]. Wet-etching of
the oxide might lead to unwanted surface-chemistry on the surface of the
NbTiN [122]. And, since ALD growth is a conformal processes, the lift-off
process might result in irregular, rough edges around the desired struc-
tures that may protrude significantly out of plane with respect to the
substrate (red crosses in schematic). These edges in turn, may lead to
step coverage issues on subsequent metal layers.

The local deposition of oxides for nanowire device integration is allevi-
ated if the whole chip, including the resonator, can be covered with an
ALD-grown oxide. We investigate this in case II - Al2O3 on NbTiN on Si.

For device integration, it is desirable to work with electrostatically silent
oxides. Therefore, nanowire devices are commonly fabricated on top of
thermally grown silicon oxide. We therefore investigate the performance
of resonators on top of silicon oxide in case III - NbTiN on SiO2 on Si. In
this case bottom-gate based nanowire devices only require one local oxide
deposition step as indicated in the schematic. Additionally, the remaining
local oxide deposition is alleviated in case IV - Al2O3 on NbTiN on SiO2
on Si.

The color codes as introduced in Fig. 4.1a) are used throughout the rest
of this chapter and denote the dielectric configuration.

4.3. Sample preparation

Since this work aims to investigate resonator losses due to the choice of
the dielectric configuration, the intrinsic Q of the resonators must not be
limited by the NbTiN film quality. Here we summarize the steps taken to
optimize the fabrication of the used films.

1. As a substrate, we select two undoped Si wafers with a resistivity
larger than 10 kΩcm; one with only a layer of native SiO2 and the other
with ∼100 nm of thermally grown SiO2.

2. In order to minimize the impurity density at the metal-substrate
interface, the wafer with only native oxide undergoes the following etch-
ing steps: (i) a Piranha etch to oxidise the top ∼10 nm that may contain
contamination, (ii) an HF bath to remove this oxide layer, and (iii) a
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second Piranha etch, followed by (iv) a second HF bath seconds before
loading the wafer into the sputtering chamber. The second wafer hosts
∼100 nm of thermally grown SiO2. In order to remove organic residues
but keeping the oxide layer intact, we consecutively use ultrasonic clean-
ing of the wafer in an aqueous solution of tripotassium orthophosphat 1,
distilled water, acetone and isopropanol before loading the wafer into the
sputtering chamber.

3. The vacuum quality in the sputtering chamber plays a vital role.
We perform Ti pre-sputtering, resulting in a significant reduction of the
chamber base pressure.

4. We pre-sputter the NbTi target to remove the top, potentially con-
taminated or oxidised layer [123].

5. The sputtering rate has to be maximized by choosing an ideal set
of sputtering parameters. See Appendix C.1 for details. Because the
impingement rates of oxygen and water decreases with increasing growth
rates, higher sputtering rates result in a purer film and accordingly lower
loss tangents of the resonators 2.

6. We perform sputtering as close as possible to stoichiometry of
NbTiN [124]. See Appendix C.1 for details.

7. The resonators are dry-etched using argon/chlorine, offering a higher
selectivity against silicon etching compared to the more widely used flu-
orine based etching recipes [123, 125]. This makes it easier to prevent
over-etching.

8. After fabrication, each film is characterized in dc measurements
by measuring the critical temperature T dc

c and the sheet resistance Rsq,dc

close to T dc
c using etched reference structures. This allows us to determine

the sheet kinetic inductance as [56]

Lsq,dc
kin = Rsq,dch

2π2∆ , (4.1)

where ∆ is the superconducting gap and ∆(T = 0) = 1.86kBTc [67], the
superconducting gap of Nb. Table 4.1 shows the values obtained from dc
measurements, T dc

c and Rdc
sq for the two films. From these, according to

Equation (4.1), we deduce the sheet kinetic inductance Lsq,dc
k , which is

also given in Table 4.1.
1The used solution has the brand name deconex® 12 BASIC 2% solution.
2Discussion with Mihai Gabureac
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The resonance frequency is then designed using analytical equations of
coplanar waveguide resonators [65] and the coupling quality factor is es-
timated by simulating the structure using the electromagnetic simulation
software Sonnet.

4.4. Determining loss due to two-level fluctuators
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Q
i

Si+NbTiN
Si+NbTiN+Al2O3

SiO2+NbTiN
SiO2+NbTiN+Al2O3

Figure 4.2. Power dependence. Internal quality factor Qi as a func-
tion of average photon number ⟨nph⟩ in the resonator. The solid lines are
fits to Eq. (4.4), assuming two level fluctuators as the dominating leak-
age mechanism at low photon numbers. The color encodes the dielectric
configuration according to Figure 4.1a). Different symbols correspond to
different resonators.

294.76926ptTo benchmark the performance of the resonators in the dif-
ferent dielectric configurations, we probe each notch-type half-wave res-
onator by measuring the transmission S21 through the feedline at the base
temperature of a dilution refrigerator Tbase ≈ 30 mK. Figure 4.1c) shows
an exemplary resonance which is described by [73, 77]

S21 = 1 − Qle
iΦ

Qc cos(Φ)(1 + 2iQl(ω/ωr − 1)) . (4.2)

Here Ql = 1/(Q−1
i + Q−1

c ) is the loaded quality factor and Φ describes
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film A: Si substrate film B: SiO2 substrate
NbTiN NbTiN+Al2O3 NbTiN NbTiN+Al2O3

Rsq,dc (Ω) 260 ± 20 430 ± 40
T dc
c (K) 5.8 ± 0.1 6.6 ± 0.3
Lsq,dc

k (pH) 56 ± 5 85 ± 9
Lsq,rf

k (pH) 79 ± 14 61 ± 9
D (cm2/s) 0.27 ± 0.08 0.32 ± 0.33
QTLS (103) 151 ± 20 22.9 ± 2.4 4.8 ± 0.8 4.6 ± 0, 4
Qother (106) 1.9 ± 2.6 0.63 ± 0.34 - -
nc 1.226 ± 1.254 0.32 ± 0.34 0.01 ± 0.01 0.37 ± 0.02
β 0.54 ± 0.232 0.46 ± 0.15 0.12 ± 0.02 0.13 ± 0.02

Table 4.1. Resonator properties. Extracted parameters for the two
films with varying dielectric configurations. The sheet resistance Rsq,dc

and critical temperature T dc
c are obtained from a dc measurement, from

which the dc sheet kinetic inductance Lsq,dc
k is determined (see Eq. 4.1).

The rf sheet kinetic inductance Lsq,rf
k is independently inferred from the 8

measured resonance frequencies of either film, where the error represents
the root variance. The diffusion constant D is as well a weighted average
of all resonators of either film (see main text). QTLS, Qother, nc and β
are fit parameters of Eq. (4.4). Their values represent a weighted average
over the data sets of 4 resonators of either dielectric configuration with
weights proportional to the inverse of the error bar of the fit, resulting in
a maximum weight, if Qc ∼ Qi. The color code corresponds to Fig. 4.1a)

a small resonance asymmetry due to interference with a standing-wave
background [77].

We identify 4 resonances on every investigated chip and assign every
measured resonance frequency fr to a physical resonator. Using the phys-
ical dimensions of the resonator for calculating its geometric inductance
and capacitance [65], we deduce its kinetic inductance from the measured
resonance frequency. Thereby, we use the center conductor width which
we measure for every resonator by means of scanning electron microscopy
after having performed the experiments presented in this work. The so
obtained averaged square kinetic inductance Lsq,rf

k is also given in Ta-
ble 4.1 where the error bar represents the root variance. We find that the
values of Lsq,dc

k and Lsq,rf
k are compatible with each other for either film.
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Figure 4.3. Temperature dependence of resonator properties.
a) Internal quality factor Qi as a function of temperature. b) Relative
frequency shift δfr = (fr(T ) − fr(0)) as a function of temperature. The
inset is a zoom in onto the peak that is observed at ∼ 0.5 K. In all
sub-figures, the color encodes the dielectric configuration according to
Figure 4.1a) and legend in Figure 4.2. The data was accquiered at an
average photon number of ∼ 104.

The differences in Rsq,dc and T dc
c between the two films such as the

large variance of Lsq,rf
k is attributed to the small film thickness giving rise

to a large effect of film thickness inhomogeneities.
In order to quantify the loss due to two-level systems (TLS) residing in

the differing dielectric structures, we measure a resonance trace for every
resonator in every dielectric configuration and extract Qi as a function of
power applied on the feedline by fitting equation (4.2) in a circular fit [78].
Figure 4.2 shows the fitted internal quality factor Qi for two resonators
of each configuration. We convert the applied power Pin on the feedline
to an average photon number in the resonator using[116]

⟨nph⟩ = Qc
ωr

(
Qi

Qi +Qc

)
Pin

ℏωr
, (4.3)

where Qi, Qc and ωr are extracted from fitting the resonance curve. TLS
residing in the oxides close to the resonator give rise to a power dependent
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dielectric loss which is usually modeled by [126–133]

1
Qi

= 1
QTLS

tanh
( ℏωr

2kBT

)(
1 + ⟨nph⟩

nc

)β + 1
Qother

. (4.4)

In the low power limit, and at low temperatures, Qi is approximately
given by QTLS due to TLS. When increasing ⟨nph⟩ above a critical value
nc, Qi increases with a characteristic scaling β until eventually saturating
at Qother. We fit Equation (4.4) to the data (solid lines in Fig. 4.2) and
extract QTLS, Qother, nc and β as fit parameters. The weighted average
of these fit parameters for each film are specified in Table 4.1.

We find that Eq. (4.4) fits well to our data in all four dielectric config-
urations implying that in the limit of low photon numbers, all resonators
are limited by their coupling to TLS. However, the quantitative behavior
for the different dielectric configurations differs by a lot. Let us first con-
sider the low-photon limit in Fig. 4.2. At low photon numbers, the internal
quality factor is determined by the coupling to TLS, Qi(n = 0) ∼ QTLS.

In case I - NbTiN on Si, Qi saturates at the largest value as the number
of photons in the resonator approaches zero. This implies a low abundance
of TLS at the interface between the intrinsic silicon and the NbTiN. In
case II - Al2O3 on NbTiN on Si, Qi saturates at values approximately
an order of magnitude lower which we attribute to the larger abundance
of TLS stemming from the ALD-grown oxide on top of the metal. For
case III - NbTiN on SiO2 - and for case IV - Al2O3 on NbTiN on SiO2,
the saturation of Qi in the low-photon limit happens another order of
magnitude lower than for case II. We attribute this decrease to the larger
participation ratio of the interfaces below the center conductor compared
to the ones above it due to the larger dielectric constant of silicon as
compared to the vacuum dielectric constant. The larger importance of the
oxides below the center conductor is confirmed by the negligible difference
of QTLS in case III and case IV (with additional oxide on top of the
resonator).

In all cases, once the average number of photons ⟨nph⟩ exceeds a critical
value nc, Qi increases, because the TLS are increasingly saturated and no
longer open a photon leakage path [126, 128, 129, 134].

In the high power limit in case I and case II, all TLS saturate, and Qi
asymptotically approaches Qother which originates from a power indepen-
dent source of loss. The origin of Qother potentially lies in the interaction
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with phonons or quasiparticles. In case III and case IV, Qi does not
saturate even at photon numbers on the order of 107 underlining the im-
portance of losses due to TLS in these cases.

Despite the TLS being the dominant source of loss for these resonators,
we highlight that QTLS well exceeds 103 even for the configuration where
the resonator is sandwiched between SiO2 and Al2O3. This result is a
central point of this chapter as it allows for easier integration of semi-
conductor nanowires into a resonator architecture maintaining a good
resonator quality. Moreover, we stress that QTLS is larger by almost an
order of magnitude when oxides are only grown on top of the metal and
not below.

4.5. Resonator stability at elevated temperatures and
fields

After having determined the quality of the resonators in each dielectric
configuration, quantified by QTLS, we aim on benchmarking the resonator
stability at elevated temperatures and magnetic fields in regimes relevant
for spin-qubit operation.

Figure 4.3a) shows Qi as a function of temperature for all dielectric
configurations where the color code corresponds to the one introduced in
Fig. 4.1a). For all curves, we measure an increase in Qi for increasing
temperature peaking at ∼ 0.8 K. We attribute this increase in the quality
factor to an increasing saturation of the TLS with temperature. When the
temperature exceeds ∼ 1 K, a decline in Qi is observed which is attributed
to an increasing quasiparticle population because of the closing of the
superconducting gap [32, 135].

Simultaneously to measuring the quality factor, we also measure the
shift in resonance frequency δfr and plot it in Fig. 4.3b). We find that
δfr peaks at a temperature T0 ∼ 0.5 K (see inset of figure), whith the effect
being most pronounced for the resonators fabricated on top of SiO2 (blue
points in Fig. 4.3). Moreover, the positive frequency shift at increased
temperature exceeds the positive frequency shift in the case of TLS sat-
uration due to a large photon population (see Fig. C.2 in the appendix).
This effect can be understood by noting that the latter only saturates
TLS in a narrow band around the resonance frequency ωr while the ele-
vated temperature saturates TLS in a much wider frequency range [128].
The temperature of maximum positive frequency shift corresponds to a
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Figure 4.4. Magnetic field dependence a) Internal quality factor
Qi as a function of in-plane field amplitude B∥. A dip is observed at a
field amplitude of B = Bs = hfr/2µB ≈ 150 mT, depending on the exact
resonance frequency fr. b) Internal quality factor Qi as a function of
out-of plane field. The field B is applied with an angle of 49◦ with respect
to the substrate and the perpendicular component B⊥ is indicated. Once
again a dip is observed around B = hfr/2µB , being less pronounced for
the resonator fabricated on intrinsic silicon. c) Relative frequency shift
δfr = fr(B⊥) − fr(0) as a function of out-of plane field component B⊥.
The solid lines are fits to equation (4.5). In all sub-figures, the color
encodes the dielectric configuration according to Figure 4.1a).
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frequency of ωthermal/2π = kBT0/h ∼ 10 GHz. As ωthermal > ωr, sat-
uration of TLS in this frequency range explains the postitive resonance
frequency shift due to the dispersive interaction between resonator and
TLS. For larger temperature the resonance frequency starts to decrease
due to the closing of the superconducting gap ∆ resulting in a larger ki-
netic inductance according to Equation (4.1), explaining the decrease of
δfr.

In order to benchmark the stability of the NbTiN resonators in an ex-
ternal magnetic field, we plot Qi as a function of in-plane field B∥ in
Fig. 4.4a) and as a function of out-of plane field B⊥ in Fig. 4.4b). During
the latter measurement, the magnetic field B was applied with an angle of
49◦ with respect to the sample plane as indicated by the second longitudi-
nal axis in Fig. 4.4b). In both cases, we observe a dip in Qi at an absolute
field strength Bs ≈ 150 mT corresponding to the Zeeman-splitting of a
spin 1/2 particle with a Landé g-factor of 2, Bs = hfr/2µB . The dip is
therefore attributed to a resonant interaction with paramagnetic impuri-
ties in the substrate [32]. Remarkably, this dip is much less pronounced
for the resonator fabricated without any additional oxides, indicating that
the paramagnetic impurities mainly reside within the oxides. Besides this
dip, for the in-plane field, no noteworthy decline in Qi is observed up to
the very largest applied field strengths of 5 T, confirming a magnetic-field
resilience for in-plane fields. This is expected because the penetration
depth λ ∼ 260 nm [67] is much larger than the thickness of the NbTiN
film (∼ 10 nm). Out-of-plane, Qi declines monotonously for increasing
field-strengths which we attribute to the increasing quasiparticle density
in the film. However, Qi remains larger than 103 up to B⊥ ∼ 100 mT
for all dielectric configurations, once again confirming their suitability for
spin qubit integration.

Finally, Fig. 4.4c) shows the resonance frequency versus out-of plane
field. The data is well fitted by

δfr
fr(0) = − π

48
De2

ℏkBTc
w2B2

⊥ (4.5)

which is deduced from BCS theory [32, 56]. Here, the width w of every
resonator center conductor is measured by electron beam microscopy. The
average width is w = 390±120 nm where the error bar is the root variance.
D denotes the diffusion constant which is a fit parameter.
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The weighted average of the fitted diffusion constants are given in Ta-
ble 4.1. We note that the diffusion constants of the two investigated films
are similar and slightly lower than the one in Reference [32].

4.6. Conclusions

We have investigated superconducting, high-impedance resonators based
on NbTiN in four different dielectric configurations. The largest internal
quality factor in the low-photon limit is found for the resonator fabricated
on intrinsic silicon. Nevertheless, all other dielectric configurations result
in internal quality factors > 103, sufficient for resonator integration in
the context of spin qubits. Moreover, we benchmark the resonator perfor-
mance at elevated temperatures and magnetic-field strengths. Since the
resonators are compatible with existing fabrication protocols, our results
allow for straightforward integration of these types of resonators with spin
qubits defined in semiconductor nanowires.
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5 Charge noise protection and ultrastrong
coupling

In the previous Chapter 4, we have laid the basis of magnetic-field resilient,
high-impedance resonators aiming on the spin degree of freedom. These
resonators will be coupled to nanowire double-quantum dots (DQDs) in
chapters 6, 7 and 8.

Let us now first take a step back and consider a charge qubit defined
in a GaAs-two-dimensional electron gas (2DEG) and coupled to a high-
impedance superconducting quantum interference device (SQUID)-array
resonator. While the SQUID-array is not magnetic-field resilient its res-
onance frequency can be varied by applying a small external flux as dis-
cussed in Section 2.2.3 enabling us to measure resonant interactions be-
tween the resonator and the charge qubit always close to the charge qubit
sweet spot.

In the following, we demonstrate a tuning protocol enabling us to
achieve record high semiconductor charge qubit coherence times. In addi-
tion, making use of the large impedance of the Josephson junction (JJ)-
resonator, the same protocol in the opposite limit results in a very large
coupling strength, reaching the so-called ultra-strong coupling regime
where the dipolar interaction strength is non-negligible compared to the
bare resonator frequency and bare charge qubit frequency.

The experiments presented in this chapter were performed by J.H. Un-
gerer, Pasquale Scarlino, D.J. van Woerkom and Marco Mancini in the
laboratory of Andreas Wallraff [136] at ETH Zurich. As part of J.H.
Ungerer’s PhD at University of Basel, the data analysis and publication
process was carried out by J.H. Ungerer and Pasquale Scarlino in collab-
oration with the co-authors. This chapter is published [137] in Physical
Review X 12, 031004 (2022).
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Abstract

Semiconductor quantum dots in which electrons or holes are isolated via
electrostatic potentials generated by surface gates, are promising building
blocks for semiconductor-based quantum technology. Here, we investi-
gate DQD charge qubits in GaAs capacitively coupled to high-impedance
SQUID array and Josephson junction array resonators. We tune the
strength of the electric-dipole interaction between the qubit and the res-
onator in-situ using surface gates. We characterize the qubit-resonator
coupling strength, the qubit decoherence and the detuning noise affecting
the charge qubit for different electrostatic DQD configurations. We find
that all quantities to be systematically tunable over more than one order of
magnitude, resulting in reproducible decoherence rates Γ2/2π < 5 MHz in
the limit of high inter-dot capacitance. In the opposite limit, by reducing
the inter-dot capacitance, we increase the DQD electric-dipole strength,
and therefore its coupling to the resonator. Employing a Josephson junc-
tion array resonator with an impedance of ∼ 4 kΩ and a resonance fre-
quency of ωr/2π ∼ 5.6 GHz, we observe a coupling strength of g/2π ∼ 630
MHz, demonstrating the possibility to operate electrons hosted in a semi-
conductor DQD in the ultrastrong coupling regime (USC). The presented
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results are essential for further increasing the coherence of quantum dot
based qubits and investigating USC physics in semiconducting QDs.

5.1. Introduction

The semiconductor material platform [3, 138] promises scalable realiza-
tions of quantum bits (qubits) with long coherence time, fast operation,
and a wide range of tunability [139]. Electrons and holes are confined on
small islands, called quantum dots, defined by electrostatic gates fabri-
cated on top of semiconducting host materials [3, 97, 140]. quantum dot
devices can be studied directly in transport or remotely by a nearby charge
detector, such as a quantum point contact or another quantum dot [3].
Recently, semiconducting quantum dots have also been successfully em-
bedded in circuit quantum electrodynamics (QED) architectures, enabling
the study of double [17, 21] and triple quantum dots [27] via their electric
dipolar interaction with a microwave resonator. Strong coupling between
resonator microwave photons and charge [22, 24, 35] and spin [26, 27, 33]
degrees of freedom in the quantum dots has been achieved. Although the
spin degree of freedom is of particular interest for quantum information
applications, charge noise in the host substrate remains a major limita-
tion [141, 142]. Even operation of the quantum devices at sweet spots
– configurations in the parameter space where critical system properties
are minimally affected by noise in the control parameters [143–148] – can
only mitigate its effects to a limited extent. Therefore, understanding
and improving the coherence and control of the charge degree of freedom
in semiconductor systems is of special interest also for future spin qubit
applications. In fact, all recent successful circuit QED implementations
of spins of electrons confined in quantum dots [26, 27, 33] rely on cou-
pling the spin to the electric field of microwave photons via a controlled
hybridization of the spin and orbital degrees of freedom, in effect allowing
the spin qubit to acquire an electric-dipole moment. The strength of this
dipole coupling can be tuned by controlling the spin-orbit degree of hy-
bridization. This allows to find a compromise between a charge qubit with
a short coherence but large coupling to cavity photons and the more pro-
tected pure spin qubit with small or negligible coupling to cavity photons
[149].

In this work, we describe a strategy to systematically tune the DQD
electric-dipole strength which controls the coupling rate between the DQD
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charge system and a superconducting microwave resonator. The approach
is based on altering the magnitude of the DQD inter-dot capacitance while
maintaining the inter-dot tunneling rate close to the resonator frequency.
We explore different configurations of the DQD confinement potential
created by the surface metallic depletion gates, and demonstrate how to
efficiently asses the magnitude of the DQD dipole strength in a given
configuration. As we will explain in section 5.2, increasing the inter-dot
capacitance lowers the electric-dipole strength of the DQD.

In this chapter, we present experiments on two distinct devices [re-
ported in Fig. 5.1(a, c, d, e) and (b, e, f, g), respectively] with which we
explore a range of the DQD electric-dipole strength and analyze the DQD
decoherence, sensitivity to charge noise, and coupling to the resonator.

In a set of experiments performed with the first device, we systemat-
ically decrease the DQD electric-dipole strength by exploring regimes in
which the inter-dot mutual capacitance Cm becomes the dominant con-
tribution to the DQD capacitance. In all of these DQD configurations,
the DQD-cavity system is in the strong coupling regime, namely in a
configuration where the coupling strength between the radiation and the
quantum two-level system (g) exceeds the total decoherence of the coupled
systems.

In the first device [see Fig. 5.1(a, c, d, e)], the DQD is coupled to a
SQUID array resonator. We systematically decrease the DQD electric-
dipole strength by exploring regimes with increasing inter-dot mutual
capacitance Cm. This allows us to generate a high degree of resilience
against charge noise. We make extensive use of the frequency tunabil-
ity of the SQUID-array resonator [see Fig. 5.1(a,d)]. We reproducibly
achieve a decoherence rate of only a few MHz for DQD charge qubits in
GaAs/AlGaAs operated in the tens of electrons regime [150], which sub-
stantially increases the visibility of the vacuum Rabi mode splitting for
a DQD-resonator hybrid device, essential for spectroscopic characteriza-
tion of the coherent electron-photon hybridization. Furthermore, we show
that the reduced sensitivity to charge noise also considerably increases the
qubit coherence even at finite DQD detuning.

In the second device a DQD is coupled to a Josephson junction array
resonator [see Fig. 5.1(b, e, f, g)]. We explore the same tuning strategy
of the DQD confinement potential as used in the first device, but aim-
ing for maximizing the DQD electric-dipole strength. We increase the
coupling rate of the DQD to the microwave resonator and approach the
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Ultra Strong Coupling (USC) regime [151–153]. The USC is a config-
uration where the vacuum Rabi frequency (g) becomes an appreciable
fraction of the uncoupled eigenfrequencies of the system (ωr, ωq), fre-
quently characterized by the ratio g/ωr ≥ 0.1. In contrast to standard
cavity-QED scenarios, in the USC regime the routinely invoked rotating-
wave approximation is no longer applicable, and the anti-resonant terms
become significant [152, 153]. Given the small electric-dipole moment
and high decoherence rates, reaching the USC regime with a semiconduc-
tor DQD system is more demanding than with superconducting qubits.
Here, we demonstrate that careful design and tuning of the DQD con-
finement potential and using a junction array resonator with a charac-
teristic impedance of ∼ 4 kΩ allows us to reach a coupling strength of
g/2π ∼ 600 − 650 MHz at a resonator frequency of ωr/2π ∼ 5.6 GHz.

The chapter is structured as follows: In Sec. 5.2, we discuss the DQD
charge qubit and derive its sensitivity to applied voltages and charge fluc-
tuations, which is central to the understanding of the experiments pre-
sented in later sections. In Sec. 5.3, we present measurements aimed at
maximizing the coherence of semiconductor charge qubits. In Sec. 5.4, we
demonstrate that we can reach ultra-strong coupling to a superconducting
resonator in a device with an identical quantum dot design. We conclude
with Sec. 5.5 where we give an outlook towards future research enabled by
our results. Technical details, derivations, and supporting measurements
are discussed in Appendix D.

5.2. Double quantum dot charge qubit

In this work, we consider a DQD charge qubit [97] coupled to a microwave
resonator. We investigate its coherence properties and coupling strength
when systematically varying the electrostatic properties of the dots. The
qubit is modeled with a Hamiltonian characterized by two parameters, the
detuning between the two dots ϵ and the tunneling amplitude tc coupling
them:

Hq = ℏ
(
ϵ

2σz + tcσx

)
≡ 1

2ℏωqσ · (cosφ, 0, sinφ) . (5.1)

Here, we introduced the mixing angle through tanφ = ϵ/2tc, the qubit
energy ωq =

√
ϵ2 + (2tc)2 and the vector of Pauli matrices σ. The Hamil-

tonian is written in the basis of position states |l⟩ and |r⟩, which differ
in their charge configuration by a single electron transferred across the
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Figure 5.1. Simplified circuit diagram and micrographs of the devices.
(a) [(b)] False-colored SEM micrograph of a section of the SQUID [Joseph-
son-junction] array resonator indicated by the light [dark] orange rectangle
in panel (c) [(f)]. Josephson junctions in the array are highlighted in red.
(c) False-colored optical micrograph of the measured device described in
Sec.II, with a SQUID array resonator (red), ground plane (light grey), fine
(light grey) and coarse (gold) gates defining the DQD. (d) [(g)] Schematic
of the device and control line indicating a simplified circuit diagram of the
SQUID [Josephson-junction] array resonator (red), drive line (green), the
DQD (cyan) and an external coil (black). CRPG,2, CRPG,1, CΣ,2, CΣ,1
and Cm are the capacitance between the QD2 [QD1] and the resonator,
total capacitance of QD2 [QD1] and inter-dot capacitance, respectively.
(e) Scanning electron micrograph of the areas indicated by yellow rect-
angles in panels (c) and (f) showing the DQD fine gates (light grey) on
the GaAs mesa (dark grey). The plunger gate galvanically connected to
the resonator is highlighted in red. (f) False-colored optical micrograph
of the measured device described in Sec.III, showing the substrate (dark
blue), the superconducting structures including the Al fine gate forming
the DQD (light blue), the Josephson-junction array (red) and the mi-
crowave feedline (green).
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double dot. The finite overlap of these position states results in the
tunneling amplitude tc, and their energy difference defines the detuning
ℏϵ = Er − El.

The DQD is defined through electrostatic gates controlled via applied
voltages. Its states can be characterised by the number of charges in each
dot. We define a vector of charges q = −e (n1, n2)T and gate voltages
v. The latter leads to induced gate charges on each dot through qG =
−e (nG,1, nG,2)T = −e CGv, with the gate capacitance matrix CG and
the electron charge e (for details see Appendix D.3). For a given charge-
voltage configuration, the electrostatic energy of the DQD results to[3]

E(n1, n2,v) = 1
2(q − qG)T ·C−1

D · (q − qG) . (5.2)

Here, we introduced the DQD capacitance matrix

CD =
(

C1 −Cm
−Cm C2

)
, (5.3)

with the total capacitance of the k-th dot Ck and the mutual inter-dot
capacitance Cm. In particular, the mutual capacitance Cm is a parameter
which is experimentally tuneable through modifications of the shape and
distance of the two dots.

The detuning ℏϵ in the Hamiltonian is defined as the energy difference
between two states whose charge configuration differs by a single charge
either on the left or right dot. We can thus write

ℏϵ =E(n1, n2,v) − E(n1 − 1, n2 + 1,v)
=EC,1(2n1 − 2nG,1 − 1) − EC,2(2n2 − 2nG,2 + 1)

+ 2EC,m(n2 − nG,2 − n1 + nG,1 + 1) , (5.4)

where we defined the charging energies EC,1/2 = e2C2/1/[2(C1C2 − C2
m)]

and EC,m = e2Cm/[2(C1C2 − C2
m)]. To elucidate the effect of variations

and fluctuations in gate voltages δVG on the Hamiltonian parameters, we
define the induced variation in gate charge as δqG = δVG(CG,1, CG,2)T .
From Eq. (5.4), we then find the change in ℏϵ to be

ℏδϵ =2δVG [CG,1(EC,1 − EC,m) − CG,2(EC,2 − EC,m)] /e

≈ e δVG

CΣ + Cm
(CG,1 − CG,2) , (5.5)

74

5



5.2. Double quantum dot charge qubit

where in the last step, we assumed equal quantum dots with CΣ,1 =
CΣ,2 = CΣ. The generalization of Eq. (5.5) to the case of dissimilar
quantum dots is given in Appendix D.1.

We will show that qubit electrical sensitivity, expressed in Eq. (5.5),
appears as an essential parameter for both qubit-resonator coupling and
coherence. Let us, therefore, analyze Eq. (5.5) in more detail. It states
that the sensitivity to a given gate voltage is larger, if the two dots are
coupled to it differently, CG,1 ̸= CG,2, and is smaller, if the dot mutual
capacitance Cm grows. The more tightly the two dots are coupled, the
less differently they respond to a voltage change on a gate and the smaller
is the DQD effective dipole strength. This finding is a central point of
this chapter.

On the first look, Eq. (5.5) suggest a reduction in electrical sensitivity
by 1/(CΣ + Cm). However, the reduction is stronger, due to a sum rule
that the capacitances need to satisfy. To see that, we write a single dot
total capacitance as

CΣ = Cm + Cgnd +
∑

g

Cg = Cm + Cout , (5.6)

where we define its capacitance to ground as Cgnd, and to each gate as
Cg. We also use Cout, the capacitance to the outside world, as the total
capacitance to everything else except of the other single dot. With this
notation, we write the variation of ℏϵ due to an applied voltage δVG as

ℏδϵ = e δVG
CG,1 − CG,2

Cout

CΣ − Cm
CΣ + Cm

. (5.7)

Here, we interpret the last term as the renormalization factor for the
dipolar energy of the system (see Appendix D.2)

η = CΣ − Cm
CΣ + Cm

= 1 − Cm/CΣ

1 + Cm/CΣ
. (5.8)

If the dots have non-equal total capacitance (CΣ,1 ̸= CΣ,2), an additional
contribution appears in Eq. (5.7). However, the definition of the factor η
given in Eq. (5.8) remains the same, see App. D.3 for details. In the rest
of the chapter, we refer to η as dipole strength for brevity. The quantities
defining the dipole strength as given in Eq. (5.8) can be directly read off
the standard charging diagram of the double dot as illustrated in Fig. 5.2
and Fig. D.2 in the appendix.

5

75



5. Charge noise protection and ultrastrong coupling

Note that here we are not considering the concomitant change in tun-
neling amplitude tc when changing the electrostatic confinement of the
dot. This is because the lever arm for changing the tunneling amplitude
tc in GaAs quantum dots similar to the one considered here is typically
at least one order of magnitude smaller than for changes in ϵ [154]. Fur-
thermore, in the experiments presented here, through independent tuning
of the T and CP gate voltages [see Fig. 5.1(e)], we take care to keep tc
around 4.5 − 5.5 GHz in all measurements (see Table D.1). In this way,
we can specifically investigate changes in the DQD coherence properties
and coupling strength when tuning mainly the inter-dot capacitance Cm
and, therefore, only the dipole strength η.

Equations (5.7) and (5.8) allow a straightforward derivation of the in-
teraction between the charge qubit and the resonator by replacing the
voltage fluctuations δVG by the voltage vacuum fluctuations of a super-
conducting resonator of frequency ωr = 1/

√
LrCr, given by its capacitance

Cr and inductance Lr:

δVG =
√

ℏωr
2Cr

(a+ a†). (5.9)

a is the annihilation operator of the resonator quantized electromagnetic
field. The strength of the resulting qubit-resonator interaction Hq−r =
(1/2)gσz(a + a†) can be parameterized using the resonator impedance
Zr =

√
Lr/Cr as

g = ωr

√
2e2

ℏ
Zr × η

CG,1 − CG,2

Cout
, (5.10)

separating the contributions from the resonator and the DQD charge
qubit. Since instrumental constraints limit the resonator frequency, the
crucial resonator parameter when aiming at maximizing the coupling
strength is its impedance Zr. The dot properties and system geometry
enter through the second term.

Equation (5.5) also encodes the qubit coupling to electrical noise. To
describe electrical noise, we consider uncontrolled fluctuations of voltage
VG, causing random fluctuations of the qubit energy and thus decoher-
ence. The latter is a complex process, depending on the details of the
time correlations in these fluctuations. After analyzing most typical sce-
narios [155], here we restrict ourselves to dephasing due to singular noise
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Figure 5.2. DQD charge stability diagrams. (a) A schematic of a DQD
charge stability diagram for a configuration with a large mutual capaci-
tance Cm, resulting in η ∼ 0.10. The black areas (lines) represent inter-dot
(QDi-leadi) charge degeneracy regions. The dipole strength η is deter-
mined directly from the charge stability diagrams. ∆Vm and ∆Vg are the
voltage distance between the two triple points and QD-lead energy de-
generacies, respectively. (b) Same as (a), but for smaller Cm, resulting in
η ∼ 0.70. (c-f) measured DQD charge stability diagrams obtained for four
different DQD configurations in correspondence of four distinct values of
Cm [decreasing from panel (c) to (f)]. Each charge stability diagram is
measured by monitoring the change in the phase ∆ϕ of the resonator re-
flectance in response to the DQD gate voltages. The axes scales of the
LSG and RSG gate voltages are kept the same in the four panels for ease
of comparison.

with a 1/f -type spectral function S(ω) = A/|ω|, ωir < ω < ωc, linearly
coupled to the qubit. The low- and high-frequency cutoffs ωir and ωc
are typically defined through experimental timescales. In the quasi-static
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approximation, where the noise is considered static in each individual run
of the experiment, this leads to decay of the qubit off-diagonal density
matrix element with a Gaussian form [155] as

ln c1/f
lin (τ) ≡ −τ2

(
∂ωq
∂ϵ

)2
σ2
ϵ (5.11)

≡ −(Γφτ)2. (5.12)

Here, τ denotes the evolution time, and c(τ) is the decay envelope. In-
troducing the pure dephasing time Γφ, the expression can be written as
a function of a dimensionless parameter Γφτ . Additionally, the noise pa-
rameter σϵ ∝ ∂ϵ/∂VG, given by Eq. (5.5), isolates the effects that are in
our focus. Finally, the noise of semiconducting charge qubits is most prob-
ably not dominated by fluctuating voltages of the gates, but fluctuating
charges of impurities. We show in Appendix D.3 that there is a relation
analogous to Eq. (5.7) describing detuning response to charge impurity
fluctuations.

The dipole strength as defined in Eq. (5.8) is experimentally easily ac-
cessible and provides useful qualitative predictions. Indeed, from Eq. (5.10)
we see that the coupling to the resonator theoretically scales proportion-
ally to η. Maximizing the coupling therefore calls for maximizing η, i.e.
minimizing the mutual capacitance of the two dots. If the coherence of
the DQD charge system is limited by electric noise-induced dephasing,
the coherence time 1/Γ2 ∼ 1/Γϕ is, according to Eq. (5.12), expected to
scale as 1/η, since Eqs. (5.7) and (5.8) give ∂ϵ/∂VG ∼ η. Therefore, a
maximally coherent charge qubit requires minimizing η. The scaling 1/η
is a consequence of the singular noise resulting in a Gaussian decay form.
Other relevant decay channels, like relaxation and non-singular noise, will
lead to a scaling of the coherence time as ∝ 1/η2 [155]. We thus expect
that depending on the details of the dominant noise source in the ex-
periments, the qubit coupling quality factor Q = g/Γ2 is either constant
as a function of η (for singular noise dominating dephasing) or can be
∝ 1/η (for regular dephasing noise or if relaxation dominates). The latter
situation would allow one to optimize Q by tuning the mutual dot capac-
itance. In the following Sec. 5.3, we investigate which specific scenario is
realized in our system. We find that the charge-photon coupling strength
g and decoherence rate Γ2 are both in-situ tunable over an order of mag-
nitude, while Q remains approximately constant. Minimizing the dipole

78

5



5.3. Increasing charge qubit coherence

strength, we achieve a Γ2/2π < 5 MHz. In section 5.4, aiming at maximiz-
ing the charge-photon coupling strength g, we employ a resonator with
an even larger impedance. Making use of both terms in equation (5.10),
we achieve a charge-photon coupling strength g/2π ∼ 630 MHz for a fun-
damental mode resonator frequency of ωr/2π ∼ 5.6 GHz.

5.3. Increasing charge qubit coherence

In this section, we describe experiments performed on the first device
where we investigate a GaAs DQD charge qubit strongly coupled to a
SQUID array resonator [see Fig. 5.1(a, c, d, e)] [35, 150]. We characterize
the qubit coherence properties and its coupling strength g to the resonator.
Aiming to reduce decoherence of the qubit, we in-situ explore different
electrostatic confinement potentials of the DQD in the few-electron regime
(∼ 10 − 20) obtained by tuning the voltages applied to the electrostatic
gates defining the DQD [see Fig. 5.1(e)]. Each configuration leads to a
different strength of the effective dipole interaction between DQD and
resonator, characterized by a different dipole strength η as defined in
Eq. (5.8).

We use a GaAs/AlGaAs heterostructure with a 2DEG ∼ 90 nm below
the surface. Depletion gates are used to define the DQD electrostatic
potential. The right dot plunger gate is galvanically connected to the
resonator [see Figs. 5.1(c, e)]. We measure the resonator response in re-
flection via the drive line [indicated in green in Fig. 5.1(c)] in a heterodyne
detection scheme by monitoring the amplitude (|S11|) and phase difference
(∆ϕ = Arg[S11]) of the reflected signal [11]. An additional spectroscopy
tone can be applied through the same line. The second DQD in the de-
vice [Fig. 5.1(c)] is tuned deeply into Coulomb blockade and does not
participate in the reported experiment.

The impedance of the employed SQUID array resonator (see Fig. 5.1(a)
and Fig. 5.1(c)) is estimated to be ZSq

r =
√
LSq/CSq ∼ 1 kΩ. Similar high

impedance resonators have been previously shown to enable the strong
coupling regime between a DQD and microwave photons [35]. A magnetic
flux, applied via a superconducting coil mounted on the sample box, is
used to tune the resonator in the frequency range ωr/2π ∼ [4.2, 5.7] GHz
(see Tab. D.1). The internal resonator dissipation κint and coupling to the
microwave feedline κext change with the resonator frequency, as shown in
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1.0 0.6 1.0 0.4 1.0 0.2a) b) c)

d) e) f)

q

Figure 5.3. The dependence of the coupling strength g and DQD co-
herence rates ΓR and Γ2 for DQD configurations with dipole strengths
η = 0.42, 0.17, 0.10. (a-c) Resonator reflectance amplitude |S11| versus
DQD detuning ϵ for three representative values of the dipole strength
η ∼ 0.42 ± 0.08 (blue), η ∼ 0.17 ± 0.08 (green) and η ∼ 0.10 ± 0.07 (red)
[corresponding to the DQD charge stability diagrams in Fig. 5.2(c), (b)
and (a), respectively]. (d) Resonator amplitude response |S11| (dots) vs.
probe frequency ωp/2π at ϵ = 0 [see black arrow in the panels (a-c)],
displaying well-resolved vacuum Rabi mode splittings. The solid line is a
fit to the sum of two Lorentzian lines. The quoted ΓR is computed as an
average of the two linewidths. (e) Squared qubit linewidth δν2

q (dots) vs.
spectroscopy drive power Ps, measured via two-tones spectroscopy [35].
The dashed lines are linear fits. The zero-power linewidths Γ2 are given
in the panel. (f) Qubit linewidth δνq (dots) vs. dωq/dϵ extracted from
two-tones spectroscopy [35]. The dashed lines are linear fits. Their slopes
define σϵ according to Eq. (5.12).
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Fig. D.3(c) in the appendix1.
The DQD response to the gate voltages is characterized by charge sta-

bility diagrams [97] which we measure by recording the amplitude and
phase response of the reflectance of the resonator [17]. From those dia-
grams, we extract the charging energies and capacitances of the DQD. In
Figs. 5.2(c-f), we present four typical examples of DQD charge stability
diagrams realized within the same device by in-situ tuning the voltages
on the four gates defining the DQD [Fig. 5.1(e)]. The differences between
the four configurations lie mainly in different voltages applied to the gates
T and CG [cf. Fig. 5.1(e)] which control the inter-dot tunnel barrier, and
are listed in Table D.2 in Appendix D.1. For ease of comparison, the axes
scales are identical for the four panels of Fig. 5.2. We want to highlight
that these four different configurations present similar inter-dot tunneling
amplitudes tc despite the different gate voltage values (see Table D.1 in
the appendix.

Comparing the four DQD configurations shown in Figs. 5.2(c-f), we
notice that the average spacing between the DQD triple points [97] [max-
imal in Fig. 5.2(c)] decreases relative to the spacing between two consec-
utive QD-reservoirs charge transitions [dashed lines in Fig. 5.2(c-f)]. This
variation can be interpreted as a change in the contribution of the inter-
dot coupling capacitance (Cm) to the total capacitance of the individual
quantum dots (C1 and C2) [97]. This translates into the dipole strength
η, Eq. (5.8), covering the interval [0.1, 0.7] in our experiments. Both
Cm/CΣ and the dipole strength η can be determined from the charge sta-
bility diagrams by considering the arrows indicated in the schematics in
Figs. 5.2(a,b). The red arrow represents the distance of two adjacent DQD
triple points and the blue arrow connects two consecutive electron tran-
sitions with the leads. As derived in Appendix D.1, in the simplified case
of symmetric quantum dots, CΣ,1 = CΣ,2 = CΣ, and neglecting gate-cross
capacitances, one finds Cm/CΣ = ∆Vm/(∆Vg − ∆Vm) and η = 1 − 2∆Vm

∆Vg
.

∆Vm (∆Vg) represents the length of the red (blue) arrow in Figs. 5.2(a,b).
Furthermore, we emphasize that this striking change of the DQD inter-
dot capacitance is obtained while keeping the inter-dot tunneling rate in
the range 4 GHz < 2tc/2π < 6 GHz. The ability to control tc and η inde-
pendently allows us to probe the interaction with the resonator in both

1The total dissipation of the SQUID array resonator is not constant as a function
of the resonator frequency due to the presence of standing waves in its microwave
feedline.
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resonant and dispersive regimes.
In total, we study eleven different DQD configurations from which

we extract the parameters summarized in Tab. D.1. For three of these
configurations, we present in Fig. 5.3 the hybridized qubit-resonator en-
ergy spectrum [see Fig. 5.3(a-d)], a measurement of the intrinsic DQD
charge qubit linewidth [see Fig. 5.3(e)], and a measurement of the root-
mean-square amplitude of the detuning noise σϵ defined in Eq. (5.12) [see
Fig. 5.3(f)]. The data plotted in Fig. 5.3 (d) and 5.3 (e) were taken at
charge degeneracy (ϵ = 0).

In Fig. 5.3(a-c), we show three examples of hybridized spectra in the
strong coupling regime for different dipole strengths. The DQD stability
diagrams of the three configurations in Fig. 5.3(a,b,c) are shown in panels
(e,d,c) of Fig. 5.2, respectively, in corresponding colors. We tune the
DQD gate voltages and the SQUID array resonance frequency to reach the
resonance condition ωq = ωr at approximately zero detuning ϵ. Varying
the DQD detuning, we observe the characteristic shifts in the dispersive
regime and clear indications of an avoided crossing [22, 35] at resonance.
We analyze the hybridized spectrum and extract the coupling strength g,
resonator resonance frequency ωr, and DQD tunneling amplitude tc by
fitting the observed resonances to the spectrum extracted from the system
Hamiltonian (see Appendix D.5 for details). The Hamiltonian spectrum
is plotted by dashed lines in Figs. 5.3(a-c).

When comparing these three configurations, we take note of a corre-
lation between the coupling strength g and the visibility of the reflected
signal (Rabi modes splitting) around the avoided crossing. Fig. 5.3(d)
shows the linecuts at the resonance [detuning indicated by black arrows
in Figs. 5.3(a-c)] visualizing the correlation between the coupling strength
and the visibility of the Rabi modes splitting. Furthermore, increasing
η, we observe a distinct increase of the linewidth of the Rabi modes
[ΓR ∼ (κext + κint)/2 + Γ2], extracted by fitting the data to a sum of
two Lorentzian lines [see solid line in Fig. 5.3(d)], and a clear reduction in
the depth of the two Lorentzian [compare the y-axis for the three panels
of Fig. 5.3(d)]. This suggests that the dipole strength also has a strong
influence on the system decoherence.

We investigate in more detail the correlations between the measured
dipole strength η and the observed coherence of the charge qubit. Using
two-tone spectroscopy [35, 156], we measure the intrinsic qubit linewidth
at charge degeneracy (ϵ = 0) and its sensitivity to the noise of the detun-
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ing parameter induced by the charge noise of the DQD electromagnetic
environment2. Measuring the power dependence of the qubit linewidth,
we extract the zero power linewidth (PS → 0) [see Fig. 5.3(e)] from which
we determine the intrinsic DQD charge decoherence rate Γ2 [35, 156]. In
this experiment, we reached a DQD linewidth as low as 4.5 ± 0.2 MHz
for a configuration with η = 0.10 ± 0.07. In contrast, by in-situ tuning
to a configuration with η = 0.71 ± 0.03, the DQD charge qubit linewidth
increases by a factor of eight.

At ϵ = 0, the charge qubit is in first-order insensitive to charge noise
since ∂ωq/∂ϵ = 0. Measuring the dependence of the qubit linewidth
against the detuning ϵ, we extract the detuning noise σϵ according to
Eq. 5.12 [see Fig. 5.3(f) and Fig. 5.4(c) and also Refs. [148, 150]]. The
extraction of σϵ in two-tone spectroscopy was performed at a larger res-
onator read-out power explaining the lower error bars on the extracted
linewidths and the higher value of qubit linewidth at ϵ = 0 compared to
Fig. 5.3(e). We notice that σϵ clearly decreases for lower η.

The measurements presented in Fig. 5.3 indicate that increasing the
capacitance ratio Cm/CΣ reduces the resonator-DQD coupling strength g
[Fig. 5.3(d)], the qubit decoherence Γ2 ≡ δν(PS → 0) [Fig. 5.3(e)], and
the sensitivity of the qubit energy to detuning noise [Fig. 5.3(f)] [157].
The reduced sensitivity of the DQD to charge noise is engineered through
a large mutual capacitance of strongly coupled QDs.

We summarize results of similar measurements for all eleven investi-
gated DQD configurations in Fig. 5.4. In order to systematically compare
the coupling strength g of the different configurations, we normalize it to3

ḡ⊥ = g (ωr = 2tc = 2π · 5 GHz) = g2tc
ωr

5 GHz
ωr/2π

. (5.13)

The normalization aims to systematically account for the small differences
2These measurements are implemented by changing the resonator frequency for per-

forming these experiments in the dispersive regime, ensuring a negligible contri-
bution of the Purcell induced decay (Γpurcell/2π < 0.05 MHz). Also, we drive
the resonator weakly so that its population is on average < 1 photon. The re-
flected signal is then amplified via a Josephson parametric amplifier with a gain
of ∼ 18 dB.

3From unpublished data, reported in Fig. D.6(a) in the appendix, which will be the
topic of another manuscript, we observe an unexpected linear dependence of the
coupling strength g on the resonator frequency ωr(= ωq) measured at the sweet
spot, ϵ = 0. We take this into account by defining the normalized coupling ḡ⊥,
instead of the expected ḡ

′
⊥ ∝ √

ωr dependence.
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Figure 5.4. Coupling strength and decoherence parameters extracted for
eleven DQD gate bias voltage configurations. (a) Normalized coupling ḡ⊥
[see Eq. (5.13)] of the DQD charge qubit to the resonator vs. the dipole
strength η. (b) Qubit linewidth Γ2 vs. η. The linewidth is extracted as in
Fig. 5.3(e). (c) Effective detuning noise of the DQD charge qubit σϵ vs. η,
obtained as in Fig. 5.3(f). For two configurations in correspondence with
η = 0.123 and 0.709, we could not extract σϵ due to either spurious reso-
nances and enhanced sensitivity to detuning noise, respectively. (d) DQD
linewidth Γ2 vs. the normalized coupling. The data in (a)-(d) were fitted
to a linear model plotted as dashed lines and the fit parameters are stated
in the panels. The dark [light] blue area represents the one-[two-]sigma
confidence interval. (e) The quality factor ḡ⊥/Γ2 vs. η. (f) Visibility of the
vacuum Rabi modes (at resonance) (1 − |S11|) = 2κext/(κext +κint + 2Γ2)
vs. η. The insert shows an example of a vacuum Rabi mode splitting with
the black arrow indicating the visibility of a Rabi mode at the resonance.
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in the resonator frequency/inductance and in DQD tunneling amplitude
tc [35] at which the experiments were performed (see Table D.1 and Ap-
pendix D.7). The normalized coupling strength ranges from 41.6 MHz to
250.6 MHz. The dependence of the normalized coupling ḡ⊥ on η agrees
with the linear relation [see Fig. 5.4(a)] derived as Eq. (5.10).

A similar dependence on η is also observed for the DQD decoherence Γ2
[Fig. 5.4(b)] and detuning noise σϵ [Fig. 5.4(c)], as modeled by Eq. (5.12).
In order to display the linear relation between coupling strength ḡ⊥ and
DQD decoherence Γ2, we plot both quantities in Fig. 5.4(d). The scat-
tered (Γ2, ḡ⊥) data lies within the 3σ confidence interval of the linear fit.
The proportionality relation is additionally highlighted by inspecting the
quality factor of the resonator-qubit hybrid system Q = ḡ⊥/Γ2 [158]. In
Fig. 5.4(e), we observe that Q does not show a strong dependence on the
dipole strength η, but it is scattered around a mean value of 9.7 with a
standard deviation of 2.2, indicating that the coherence of the system is
likely dominated by dephasing due to singular charge noise (see Sec.I).

For a circuit QED architecture realized with semiconductor QDs and
superconducting resonators, the strong coupling regime has been reached
only recently [22, 35]. Intrinsic limitations are the high decoherence rate of
the orbital-charge degree of freedom and the small electric-dipole moment
of electrons confined in QDs. The high qubit decoherence implies low vis-
ibility of the vacuum Rabi mode splitting, even if the strong coupling is
reached [35]. In Appendix D.5.4, we derive an expression for the visibility
of the vacuum-Rabi mode splitting for a single port resonator coupled to
a DQD and tested in reflection. In the case of a DQD and resonator being
tuned into resonance, we find (1 − |S11|) = 2κext/(κext + κint + 2Γ2). The
estimated visibility is plotted in Fig. 5.4(f) for the different DQD configu-
rations explored in this study. When tuning the DQD into a configuration
where the inter-dot capacitance is the dominant contribution (η → 0), the
Rabi mode splitting visibility is considerably increased despite a reduc-
tion in the coupling strength. Furthermore, it is instructive to consider
the system cooperativity, defined as C = ḡ2

⊥/[Γ2(κext + κint)], represent-
ing a dimensionless measure of the light/matter interaction strength in
our hybrid system. As reported in Appendix D.6 [see Fig. D.5(a)], we
have achieved C > 100 by making use of the described tuning strategy
for the DQD electric dipolar energy. It represents the highest cooperativ-
ity reported so far for hybrid QD-resonator systems (see Ref.[158] for a
comparison), even when comparing to hybrid spin-photon systems.
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Summarizing this section, we have realized a DQD coupled to a SQUID
array resonator. We observed a striking and clear dependence of the DQD-
resonator coupling strength, DQD charge decoherence rate, and DQD
detuning noise on the dipole strength, parametrized by η, as defined in
Eq. 5.8. The characterization of different DQD configurations, realized by
changing in-situ the voltages applied to the DQD depletion gates over an
extensive voltage range, demonstrates the possibility to reduce the charge
qubit decoherence rate down to less than 5 MHz, thanks to the reduced
DQD electric-dipole strength. The improved charge coherence allows to
considerably increase the visibility of the charge qubit-resonator Rabi vac-
uum mode splitting at small coupling strengths (see Appendix D.5).

5.4. Ultrastrong coupling with a junction array resonator

In Sec. 5.3, we have investigated the possibility to in-situ tune the DQD
dipolar coupling energy. We have explored the trade-off between the
qubit-resonator coupling and the DQD charge decoherence rate. In this
section, we show that the same strategy allows us to approach the ul-
trastrong coupling regime. With this goal in mind, we have realized a
second device. The DQD of the second device is similar to the first, but
the SQUID array resonator is replaced by a more compact Josephson-
junction (JJ) array resonator [37]. Replacing SQUIDs with single Joseph-
son junctions in the array makes the resonator fixed in frequency, reducing
the flexibility on tuning parameters. On the other hand, as illustrated in
Fig. 5.1(b) and explained in Appendix D.4, the change reduces the dimen-
sions of the array unit. We thus achieve overall a higher total Josephson
inductance with a shorter array: the length of the JJ resonator is ∼ 70 µm,
instead of ∼ 250 µm for the SQUID array [compare Fig. 5.1(a,b) and
Fig. 5.1(c,f)]. The JJ array resonator has a lower stray capacitance to
ground CJJ

gnd ∼ 5 fF, with a total inductance of LJJ
tot ∼ 100 nH and, in

turn, a resonator impedance ZJJ
r ∼ 4 kΩ. Parameters of the SQUID and

JJ arrays are compared in Tab. D.3.
Aiming at realizing the USC regime with semiconductor quantum dots,

we investigate a DQD configuration corresponding to the largest dipole
strength that we were able to achieve (η ≈ 0.72). As discussed in Sec. 5.3,
we detect the amplitude and phase of the signal reflected off the resonator.
We configure the DQD tunneling amplitude close to 2tc ∼ ωr and change
the DQD detuning. Upon bringing the qubit energy into resonance with
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Figure 5.5. Investigation of a bias configuration approaching the ultra-
strong coupling regime for a DQD coupled to a JJ array resonator. (a)
Charge stability diagram of the DQD measured by monitoring the change
in resonator reflectance amplitude |S11| for the extracted dipole strength
η = 0.72 ± 0.08. (b) Resonator amplitude response |S11| taken by vary-
ing the DQD detuning ϵ along the grey line indicated in panle (a) by
applying appropriately chosen voltages to the two side gates. Red (blue)
line represents a fit to the Rabi (JC) model (see Appendix D.5). (c)
Measured resonator reflectance |S11| (dots) vs. probe frequency ωp ex-
trated at resonance for ϵ/2π = 0.15 GHz (black arrows in panel (b)),
displaying a vacuum Rabi mode splitting. The orange line represents a
fit to a Rabi master equation model. The JJ array resonator losses are
κint/2π = 19.5 ± 0.1 MHz and κext/2π = 5.7 ± 0.1 MHz.
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the resonator, ωq ∼ ωr, a clear avoided crossing is observed in the res-
onator reflectance [see Fig. 5.5(b), and Fig. D.9(b)]. It is a sign of reaching
the strong coupling regime.

The data are in excellent agreement with the spectrum of the hybridized
system numerically calculated using g, ωr and tc as adjustable parame-
ters. We fit a Rabi (red solid line) and a Jaynes–Cummings (blue dashed
line) model and present the results in Fig. 5.5(b). We extract a coupling
strength gR/2π ∼ 620 ± 2 MHz (gJC/2π ∼ 637 ± 2 MHz) from which we
can estimate gR,JC/ωr ∼ 0.11 ± 0.01, reaching the ultrastrong coupling
regime [151–153]. The discrepancy between the values obtained from the
Rabi and JC fits can be explained by the onset of the USC regime as
the rotating-wave approximation starts to break down4. The resonator
reflectance |S11| vs. probe frequency ωp at the DQD-resonator detuning
value indicated by the black arrow in Fig. 5.5(b) (resonant condition) is
shown in Fig. 5.5(c). By fitting a master equation model [see solid orange
line in Fig. 5.5(c)] to the measured |S11|, we extract a DQD decoherence of
Γ2/2π ∼ 149±2 MHz and a Rabi mode splitting of 2g/2π ∼ 1258±3 MHz.
Resolving the two dips of the vacuum Rabi mode splitting indicates that
the system is still in the strong coupling regime despite the extra deco-
herence introduced by the large DQD electric-dipole strength.

5.5. Conclusions

We have realized two hybrid devices with which we have studied charge
configurations at the two extremes of the explored tunable DQD electric-
dipole strength. We have demonstrated the systematic control of the DQD
electric-dipole strength, allowing us to explore a broad range of different
regimes in the same device. In particular, we have demonstrated that it
is possible to decrease the electric dipolar coupling energy of the DQD by
tuning it into a configuration in which the inter-dot mutual capacitance
Cm becomes the dominant contribution of the total DQD capacitance.
In such a configuration, the small dipole strength (η → 0) reduces both
the DQD coupling to the resonator and its decoherence rate, down to
g/2π ∼ 40 MHz and Γ2/2π < 5 MHz, respectively.

4Fig. D.7 in Appendix D.8 reports the same analysis performed on a second DQD
configuration characterized by η ∼ 0.5. There we obtain comparable results from
fits to the Rabi and JC models.
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We have made use of the DQD dipole strength control reported here to
reduce the decoherence rate of DQD devices used in some of our previ-
ous works. It has led to the observation of a DQD qubit linewidth down
to Γ2/2π ∼ 3 MHz in a similar device [150, 159]. These decoherence
rates are well below values reported typically for semiconductor charge
qubits, usually observed to be above hundreds of MHz or even up to
several GHz [35, 143, 160]. The possibility to achieve these remarkably
low decoherence rates for a DQD charge qubit enabled the realization of
time-resolved dispersive read-out [150], and distant qubit-qubit interac-
tion mediated by virtual microwave photons [29, 159].

Here, we have provided a detailed explanation and a method to engineer
low charge decoherence by modifying the contribution of the inter-dot
capacitance Cm to the total QD capacitance, which we can easily assess
and tune by exploring the DQD stability diagram. Furthermore, this
work sheds new light on the puzzling observation reported by different
experiments on QD-resonator hybrid system [150, 161] which reported
that g and Γ2 can vary considerably within the same device configured in
different regions of the DQD charge stability diagrams.

In addition, we show that by using the same tuning strategy of the
DQD confinement potential, but striving to maximize the DQD electric
dipolar coupling energy, we can considerably increase the DQD-resonator
coupling strength. This is achieved by configuring the DQD gates voltages
to minimize the inter-dot capacitance Cm. To further increase the cou-
pling strength, we implemented a more compact Josephson-junction (JJ)
array resonator with reduced stray capacitance with respect to a SQUID
array resonator. This results in a ZJJ

r ∼ 4 kΩ resonator impedance. The
JJ array resonator enabled a maximum coupling of g/2π ∼ 630 MHz for a
fundamental mode resonator frequency of ωr/2π ∼ 5.6 GHz. In this way,
we realize the Ultra Strong Coupling regime between electrons hosted in
a semiconductor DQD and a microwave resonator. By increasing the res-
onator impedance even further and by defining DQDs in shallower 2DEGs,
or in semiconductor nanowires and Si-CMOS devices, where a higher gate
lever-arm (up to 0.75 in [162]) has been demonstrated for QDs, it may
well be possible to achieve g/ωr ∼ 0.4 − 0.5. This could enable more ad-
vanced investigations of the effects of the breakdown of the rotating-wave
approximation in this class of light-matter hybrid devices [151–153].

Recent experiments with holes confined in 2D-Ge heterostructures have
reported effective charge/gate noise lower by a factor of 2-4 with respect
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to Si and GaAs 2DEG systems [163], estimated by recording the current
fluctuations of a charge detector over long waiting times. Applying the
dipole strength tuning strategy described in this chapter to holes confined
in QDs defined in 2D-Ge systems may enact a substantial improvement
in the coherence properties of the charge degree of freedom. This could
enable a more clear study of the ultrastrong coupling physics in the η → 1
limit and the potential to extend the coherence for a DQD charge/spin
qubit in the η → 0 limit even further.

Understanding and improving the coherence and control of the elec-
tron/hole charge degree of freedom in semiconductor systems is of para-
mount importance also for future spin qubit applications, especially for
systems where the spin is strongly hybridized with the orbital degree via
a large real [46] or artificial spin-orbit field [164], enabling the coupling
with microwave photons. We anticipate that these findings will be of
great significance for state-of-the-art charge and/or spin qubits as well as
any hybrid QD-cavity designs, which are currently all limited by electrical
noise.

We acknowledge Christian Andersen, Mihai Gabureac, Theo Walter,
Johannes Heinsoo, for the useful discussion and thank Christina Reis-
sel for proof-reading. This work was supported by the Swiss National
Science Foundation through the National Center of Competence in Re-
search (NCCR) Quantum Science and Technology, the project Elements
for Quantum Information Processing with Semiconductor/Superconductor
Hybrids (EQUIPS) and by ETH Zurich.

90

5



6 Charge-sensing of a GeSi nanowire
double quantum dot

In the previous Chapter 5 we demonstrated how the potential landscape
of a double-quantum dot (DQD) can be engineered, while realizing record
large charge qubit coherence times and charge qubit-photon coupling
strengths. We now turn towards coupling magnetic-field resilient NbTiN
resonators to nanowire DQDs.

The realization of high quality, magnetic-field resilient resonators has
already been addressed in Chapter 4, and in this chapter we discuss how
a high-impedance NbTiN resonator is used in order to detect the charge
configuration of a DQD, eventually being able to detect the last hole in
one of the quantum dots.

This chapter is a submitted paper [165].
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Abstract

Spin qubits in germanium are a promising contender for scalable quantum
computers. Reading out of the spin and charge configuration of quantum
dots formed in Ge/Si core/shell nanowires is typically performed by mea-
suring the current through the nanowire. Here, we demonstrate a more
versatile approach on investigating the charge configuration of these quan-
tum dots. We employ a high-impedance, magnetic-field resilient super-
conducting resonator based on NbTiN and couple it to a double quantum
dot in a Ge/Si nanowire. This allows us to dispersively detect charging
effects, even in the regime where the nanowire is fully pinched off and no
direct current is present. Furthermore, by increasing the electro-chemical
potential far beyond the nanowire pinch-off, we observe indications for
depleting the last hole in the quantum dot by using the second quantum
dot as a charge sensor.

6.1. Introduction

The interest in group-IV semiconductor spin qubits is large because of
their small footprint, a low concentration of nuclear spins and the available
knowledge about their production in semi-conductor industry [1, 138, 139,
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Figure 6.1. Device overview. a) Schematic of hybrid resonator archi-
tecture. NbTiN is shown in dark blue, the Si substrate is shown white.
The feedline on the left is used for reading out the notch-type coplanar-
waveguide half-wave resonator which is dc biased at its voltage node in
the center. Additional dc lines are used for sending current through
the nanowire and applying gate voltages on all bottom gates. b) False-
colored scanning electron micrograph of the Ge/Si nanowire lying on top
of bottom-gates covered with HfO2 of a similar device. The gate colored
red is connected to the resonator. c) Transmission (phase and magnitude)
through the feedline as a function of frequency close to the resonator fre-
quency. The solid blue curve indicates a fit from which we extract the
resonance frequency and estimate the quality factor (see main text).

166, 167]. By integrating on-chip superconducting resonators, strong spin-
photon coupling has been demonstrated for spins of confined electrons
in a Si two-dimensional electron gas [25, 26]. Hole spins may offer the
additional advantages of improved relaxation and decoherence times as
they lack a valley degeneracy and exhibit a reduced wave-function overlap
with nuclear spins [168, 169]. In particular, holes in one-dimensional Si or
Ge nanowires [85, 170, 171] are of a special interest, because they posses
strong spin-orbit interaction [86, 172, 173]. Strong spin-orbit interaction
potentially simplifies qubit control and coupling to resonators by electric-
dipole spin resonance (EDSR) [87, 90]. It thereby releases the need of
implementing micromagnets and hence facilitates scaling-up.
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6.2. Device description

Recently, the coherent manipulation of a hole-spin qubit in a gate-
defined double quantum dot in a Ge/Si core/shell nanowire has been
demonstrated [46]. However, in these experiments both the charge and the
spin-state of the double quantum dot were determined by direct current
measurements. This technique limits the capability of determining the
total number of holes present in the nanowire. Furthermore, it requires
long integration times and severely limits the maximum cycle length in
pulsed-gate experiments.

Rather than measuring the current through the Ge/Si core/shell nanowire
DQD, pioneering works have employed another quantum dot to determine
changes in the charge-occupancy of the DQD and to perform spin read-
out [43, 47].

A different approach for measuring the DQD is realized by probing a
resonator coupled to the source contact of the DQD [174–176]. This ap-
proach is further simplified by connecting the resonator to a plunger gate,
performing gate-dispersive sensing [177]. This technique has enabled mea-
surements of the relaxation and dephasing times of hole spins in a Ge/Si
core/shell nanowire DQD using a lumped-element resonator [44]. First at-
tempts of coupling Ge/Si nanowires to on-chip superconducting resonators
were based on low-impedance resonators with a weak charge-photon cou-
pling and in a regime of many holes present in the nanowire [48].

In this work, we extend the existing measurements by coupling one of
the two quantum dots to a high-impedance superconducting resonator,
see Fig. 6.1. The used coupling scheme allows us to detect charging in
the other dot by means of capacitive charge sensing [178–181]. We map
the charge-stability diagram using both, direct current measurements and
resonator spectroscopy. Furthermore, we gate the nanowire to a regime
of low hole occupancy where no direct current through the nanowire can
be observed (pinch-off). In this regime, the resonator spectroscopy signal
reveals the presence of several more holes in the investigated dot. Finally,
by further increasing the gate voltages, we find indications of the depletion
of the last hole from the investigated dot.

6.2. Device description

An overview of the device under investigation is shown in Fig. 6.1a) and b).
The device consists of a hybrid resonator-nanowire architecture. A notch-
type half-wave (λ/2) resonator with a central frequency f0 ≈ 3.1 GHz is
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defined in a NbTiN film of thickness ∼ 10 nm, center conductor width of
∼ 370 nm and a distance between center conductor and ground plane of
∼ 35 µm. The resonator is capacitively coupled at a voltage anti-node to
a feedline which is used for resonator readout. At the middle of the center
conductor (voltage node), the resonator is dc biased. In front of the dc bias
pad, a meandered inductor ensures sufficient frequency detuning between
the λ/2 mode and a second, quarter-wave mode that forms due to the
T-shaped section of the resonator. Thereby, microwave-leakage through
the dc bias line is reduced [105]. The resonator’s second voltage anti-node
is galvanically connected to one out of five bottom gates. The bottom
gates are fabricated by Ti/Pd sandwiched by ALD-grown HfO2 and have
a width of approximately 25 nm. The gate pitch is 50 nm. On top of
the bottom gates a Ge/Si core/shell nanowire is deterministically placed
using a micromanipulator, see Fig. 6.1 b). All presented measurements
are performed in a dilution refrigerator at a base temperature of 35 mK.

The transmission S21 through the feedline in proximity to the notch-
type resonator as a function of frequency f is given by [72, 78]

S21(f) = aeiαe−2πifτ
[

1 − eiΦ/ (1 +Qc/Qloss)
1 + 2i (f/fr − 1) / (1/Qc + 1/Qloss)

]
, (6.1)

where a, α and τ account for the microwave propagation through the
wiring in the cryostat and the resonance is described by its resonance
frequency f0, the coupling quality factor Qc and the loss quality factor
Qloss. The term eiΦ accounts for the Fano shape of the observed reso-
nance arising from impedance mismatches in the feedline coupled to the
resonator [77].

We identify the resonance of the superconducting resonator at around
3.1 GHz by considering its temperature dependence. The measured trans-
mission (phase and magnitude) through the feedline around resonance is
shown on Fig. 6.1c). The signal is superimposed on a large standing-wave
background (see Fig. E.1 in the appendix.) which we attribute to an
impedance mismatch between the feedline and the 50-Ohm environment
of the cryostat. Despite the large fluctuations in the transmission mag-
nitude, we are able to fit the phase of the transmission (solid, blue curve
in Fig. 6.1c) and extract the resonance frequency f0 = 3.111 GHz, and
estimate the Q factors Qc ≈ 600 and Qloss ≈ 600. The uncertainity in
these values originates from the large standing wave background.
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We perform a finite-element simulation of the resonator using Sonnet
and recover the resonance frequency of the central mode of the resonator
half-wave mode when taking into account a sheet kinetic inductance of
70 pH/□. Together with the stray line capacitance of 75 pF/m, this corre-
sponds to a resonator impedance of 1.6 kΩ, much larger than the standard
50 Ω, hence improving the coupling strength between resonator and double
quantum dot [12, 32]. We attribute the rather low Qloss to microwave leak-
age from the resonator to the dc lines via capacitive coupling through the
set of bottom gates [106]. Indeed, using Sonnet, we estimate the mutual
capacitance between two neighbouring bottom gates to be Cgg ≈ 800 aF.
In future works, the mutual capacitance can likely be decreased with an
optimised gate geometry and the resulting microwave leakage might be
further reduced via improved filtering of the dc lines [105, 117].

6.3. Charge sensing

Due to the Fermi level pinning stemming from the staggered Si/Ge band-
gap alignment, the Ge/Si core/shell nanowire is a hole conductor. There-
fore, by applying positive gate voltages, we define the barrier potentials
on the gates g1, g3 and g5. This gives rise to the confinement potential
of two quantum dots whose electrochemical potentials are tuned by the
gates g2 and g4 [92].

In the following, we investigate two different confinement configura-
tions. The first configuration is schematically depicted in Figure 6.2a).
Here, two fairly symmetric quantum dots, the left and right dots, dot L
and dot R, are formed between the gates g1 and g3 and between the gates
g3 and g5. In this configuration, each dot couples to its respective neigh-
bors as shown on the sketch in Figure 6.2a). In Figure 6.2b), we plot a
measurement of the direct current through the nanowire Isd as a function
of the voltages on gates g2 and g4. Because of Coulomb blockade, we
measure a finite current through the nanowire only at the triple points
at which the electrostatic potential of both dots is aligned with the elec-
trostatic potential of the leads. By connecting the triple points (dashed
white lines in Figure 6.2b)), we find the charge-stability diagram in the
shape of a honeycomb pattern [97].

Simultaneous to measuring the current through the nanowire, we send
a microwave signal through the feedline at a frequency close to the res-
onance frequency f0. We perform dispersive gate sensing by measuring
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6. Charge-sensing of a GeSi nanowire double quantum dot

(a)

(d)

(b) (c)

(e) (f)

Figure 6.2. Charge sensing. a) Schematic of the gate-defined double
quantum dot and the relevant tunnel couplings between dots and leads.
b) Logarithmic current, Isd, through the nanowire exhibiting the position
of triple points. Here, the bias voltage is Vsd = 400 µV and the values
of the other gate voltages are Vg1 = 3.2 V, Vg3 = 1.175 V, Vg5 = 9.0 V c)
Phase difference, ∆φ of the resonator spectroscopy acquired at the same
time as b). Tunnel couplings depicted in a) cause a phase shift of the
resonator when any potentials of the system are aligned, as indicated by
the colored double arrows corresponding to the tunnel transitions in a).
d) Schematic of double quantum dot for a more isolated configuration. e)
and f) correspond to b) and c) for the configuration depicted in d). Solid,
green lines in f) indicate discharging lines of dot L. Here, the values of the
other gate voltages are Vg1 = 3.2 V, Vg3 = 1.15 V and Vg5 = 9.0 V. The
bias voltage is Vsd = 4 mV and therefore bias triangles appear larger in
e) compared to b). The microwave power at the input of the feedline is
∼ −60 dBm for both measurements.
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Figure 6.3. Nanowire pinch-off. top panel: Map of dc current through
the nanowire as a function of gate voltages Vg2 and Vg4, eventually van-
ishing completely above Vg2 ≈ 3 V as the nanowire is pinched off. The
positions at which dot 1 is resonant with the lead are highlighted with
white, dashed lines. bottom panel: Simultaneously measured resonator
spectroscopy, ∂φ/∂Vg4. The resonator spectroscopy shows the same res-
onance conditions as in the top panel (green, dashed lines). However,
additional transitions are observed (green, solid lines). Gate jumps are
marked with vertical, black, solid lines. In this measurement, the other
gate voltages are Vg1 = 3.2 V,Vg3 = 1.1 V and Vg5 = 9.0 V and the bias
voltage is Vsd = 2 mV and the readout frequency is fro = 3.1259 GHz.

the phase change of the transmitted signal and plot it in Figure 6.2c) as a
function of gate voltages. As the resonator is capacitively coupled to the
quantum dots via one of the plunger gates, it is sensitive to their effective
admittance [17, 107, 182]. Therefore, by sending a signal through the
feedline at a frequency close to the resonator frequency, changes in the
transmission amplitude and phase can be detected when the quantum dot
admittance changes. Indeed, we note that in the plotted phase response,
one can clearly identify the honeycomb pattern of the charge-stability di-
agram. Whenever the electrochemical potential between a dot and its
respective lead, or between the two dots, is aligned, a shift in the phase
response is observed. The charge-stability diagram that we gain from both
dc and rf measurements are well described by a capacitance model [97].
By considering the change of the number of electrons when changing the
gate potentials and using the source-drain bias triangles as an absolute
energy scale, we fit the data according to the recipe described in Appendix
A of Ref. [137]. We extract the capacitances that are specified in Tab. 6.1.
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Figure 6.4. Indications of last hole depletion. Resonator spectroscopy,
∂φ/∂Vg4 as a function of gate voltages, Vg2, Vg4. Resonances correspond
to dot-lead transition and characteristic discontinuities correspond to hole
discharging from the dot. For gate voltages, Vg2 > 4.9 V, no further
regular discontinuities are observed. Instead, random jumps dominate
the signal indicating that the last hole has been depleted. For the green
discharging lines, the corresponding numbers of holes is indicated with a
green number. Data repetition due to gate switchers has been omitted in
the graph. Here, the other gate voltages are Vg1 = 3.2 V, Vg3 = 1.1 V and
Vg5 = 9.0 V. The source drain bias voltage is Vsd = 2 mV and the readout
frequency is fro = 3.1259 GHz.
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2a,b,c) 2d,e,f)
Cg2,dL (aF) 3.4 ± 0.4 5.4 ± 0.8
Cg4,dL (aF) 0.2 ± 0.4 0.8 ± 0.7
CΣ,L(aF) 51 ± 19 15 ± 7
Cg2,dR (aF) 0.4 ± 0.4 0.1 ± 0.6
Cg4,dR (aF) 4.1 ± 0.5 4.1 ± 0.5
CΣ,R (aF) 57 ± 20 20 ± 12
CM (aF) 17 ± 8 8 ± 5

Table 6.1. Gate-to-dot capacitances, where Cgi,dj is the capacitance
between gate gi and dot j (i ∈ {2, 4} and j ∈ {L,R}. CΣ,j denotes the
total capacitance of dot j and CM is the dot’s mutual capacitance.

After, having demonstrated the possibility of detecting the charge-
stability diagram by means of resonator spectroscopy, we tune the double
quantum dot system into the configuration which is schematically depicted
in Figure 6.2f). The main difference to the previous configuration relies
in the larger voltage on the gate g2, while the barrier gate voltages Vg1
and Vg3 are not changed significantly. This corresponds to a geometrically
smaller dot L with a lower number of holes. Hence, the tunneling rate tL
between the source and dot L, as well as the inter-dot tunneling rate tM
are reduced. In this configuration, it is therefore not possible to measure
these transitions using resonator spectroscopy. However, the remaining
tunnel rate tR is, in first order, not affected, enabling us to use the dot R
as a sensor for tracking Coulomb resonances of dot L [178–181]. When we
progressively deplete dot L, the tunneling rate between the sensor dot and
the drain always remains similar to the resonator frequency. This allows
us us to track discharging lines of dot L despite the fact that the tunneling
involving dot L happens at much lower frequencies and can therefore not
directly be detected by dispersive resonator sensing.

Figure 6.2d) shows the current through the nanowire in this configura-
tion. Although the bias voltage is by an order of magnitude larger, the
amplitude in Fig. 6.2d) stays relatively constant compared to the one in
Figure 6.2b) as the tunnel couplings are suppressed. Nonetheless, we are
still able to identify the locations of the triple points in the conductance
measurement and calculate the capacitances as given in Table 6.1. Com-
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6. Charge-sensing of a GeSi nanowire double quantum dot

parison of the conductance with the phase response in Figure 6.2e) shows
that the transmission through the feedline clearly exhibits a change in
phase whenever the electrochemical potential of the sensor R is resonant
with the one in the drain. We note characteristic jumps in the observed
resonances. These jumps correspond to discharging of a hole in the dot
L. Therefore, by interconnecting jumps (green lines in Figure 6.2f)), we
determine the Coulomb resonances of the dot L.

While staying in the same configuration, the top panel of Figure 6.3
shows the current through the nanowire in a large range of Vg2. Coulomb
resonances of the dot L that are observable in the current are highlighted
by dashed, green lines. We note that when considering only the cur-
rent, the largest gate voltage, at which a Coulomb resonance of dot L is
observed, is Vg2 ⪅ 3 V. On the other hand, when examining the simulta-
neously measured resonator response in the bottom panel of Figure 6.3,
we identify several sloped lines that correspond to the sensor being in res-
onance with the drain. Here, for better visibility, we plot the derivative
of the phase response with respect to the gate voltage Vg4. These sloped
lines have kinks upon removing a hole from dot L because of the dots
mutual capacitance. Therefore, by interconnecting the kinks, a Coulomb
resonance of dot L is found. We identify several more Coulomb resonances
of the dot L than in the dc measurement. Note that the observed Coulomb
resonances have a finite slope of m = ∆Vg4/∆Vg2 ≈ −18 because of a fi-
nite capacitance between gate g4 and dot L. Inadvertent charge switching
events occurring during this measurement can be rather easily identified
because they happen suddenly, at a time scale smaller than the acquisition
time of a single data point. Such a single event appears as a (vertical)
jump in gate voltage shifting the data along the entire axis, which we
refer to as a gate jump from here on. Some of these gate jumps are in-
dicated by vertical, black lines in the figures (e.g. around Vg2 ≈ 2.2 V
in Fig. 6.3). Even for gate voltages Vg2 much larger than the nanowire
pinch-off at 3 V, several Coulomb resonances are found which cannot be
identified when only considering the current through the nanowire. We
note that in the lower panel of Fig 6.3, several horizontal features without
any kinks are visible. These are interpreted to originate from impurities
coupling to the resonator, independent of the quantum dots.

Finally, with the goal in mind to deplete the last hole from dot L, we
tune the gates into a third configuration in which we increase Vg1 from
3.1 V to 5.8 V. In this configuration, the nanowire is fully pinched-off and
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a direct current cannot be measured. In Figure 6.4, we plot the derivative
of the phase on the resonator signal with respect to the gate voltages Vg2
and Vg4. Once again, we identify resonances corresponding to tunnelling
between dot R and the drain. When connecting the characteristic shifts
of these resonances, we obtain the parallel discharging lines (solid, black
lines in Figure 6.4) of the dot L with a slope of m = ∆Vg4/∆Vg2 = −4.8.
The smaller slope as compared to Fig. 6.3 corresponds to a larger relative
effect of gate g4 compared to gate g2 which makes sense as the large gate
voltage of g2 pushes the dot away. The transition to smaller slopes is also
clearly visible in Fig. 6.3 for voltages Vg2 ≳ 3.4 V where the current is
already suppressed.

Since we work with larger gate voltages and thus a decreasing number of
charges present in the wire, there is less screening and the wire becomes
less stable, suffering from several gate jumps. These gate jumps result
in shifts along the Vg2-axis towards less positive voltages. In order to
focus on the physics that corresponds to discharging of the dot L, those
shifts are removed in Figure 6.4 where the removed regions are also clearly
marked. For completeness, the full data set can be found in Fig. E.2 in
the appendix. In Figure 6.4, we observe a total of four sloped, parallel
lines; each corresponding to discharging of a single hole from the dot L.
The penultimate charging line is observed at Vg2 = 4.2 V (bottom axis)
indicating the 2 to 1 hole transition in dot L, while the last charging
line is found at Vg2 = 4.90 V, showing the position of the 1 to 0 hole
transition. We note that even after subtracting the additional voltage
range, because of shifts along the Vg2-axis due to gate jumps, the effective
voltage distance between these two lines is ∆Vg2 ≈ 370 mV, much larger
than the distance between any two previous discharging lines.

For voltages larger than Vg2 = 4.80 V, beyond the last observed dis-
charging line, the amount of gate jumps increases drastically. They ran-
domly shift the observed resonances in the gate-gate map and yield ver-
tical disruptions of dot-lead resonances, even within a single vertical gate
sweep (fast scan axis). We therefore conclude that they correspond to
the random charging and discharging of unwanted charge traps in prox-
imity to the nanowire. The absence of any further dot discharging lines
appearing with a slope can give some confidence that indeed, the last hole
was depleted from the left dot. We speculate that after depletion of the
last hole from the dot, the sensor is more susceptible to unwanted charge
traps as the screening by dot L vanishes. Hence, the increase of random
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gate jumps is consistent with the interpretation that the discharging line
at Vg2 = 4.80 V may correspond to discharging of the last hole.

6.4. Conclusions

We demonstrate charge sensing of a Ge/Si core/shell nanowire double
quantum dot by using a superconducting, high-impedance, on-chip NbTiN
resonator. Using bottom gates, we are able to define a double quantum dot
in the nanowire and consistently map the characteristic charge-stability
diagram by both direct current measurements and resonator spectroscopy.
By changing the electrostatic potentials on the gates, we tune the double
quantum dot into a regime of a more isolated dot and a second, sensor
dot which together with the resonator, we employ as a charge sensor of
the first dot. By increasing the gate voltages, we consecutively deplete
holes from the dot. We find that even in the regime where no current
through the nanowire could be detected, because it is pinched-off, the
sensor reveals several more hole discharging events while increasing the
gate voltages. Finally, we find indications of the depletion of the last hole
from the nanowire. Our measurements confirm that observing only the
direct current through these type of nanowires is not a sufficient crite-
rion for counting the absolute number of holes present in a quantum dot
in Ge/Si core/shell nanowires. The circuit-quantum electrodynamics ar-
chitecture presented in this manuscript lies the foundations for realizing
coherent charge-photon and spin-photon coupling based on semiconductor
nanowires. We expect that a reduction of the gate-gate and resonator-
feedline capacitances will result in resonator quality factors by an order of
magnitude larger. Frequent gate jumps inhibited using the device as a spin
qubit. However, the charge stability of the system might be improved in
the future by working on the quality of the oxides and nanowires. Because
similar nanwowires have been employed as spin qubits [46], we anticipate
that the improvements on the resonator in combination with a more sta-
ble nanowire device will enable strong charge photon and hole-spin photon
coupling in Ge/Si core/shell nanowires.
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7 Dispersive interaction between a
crystal-phase defined double quantum
dot and a microwave photon

In the previous chapter, we have investigated how a superconducting res-
onator coupled to a double-quantum dot (DQD) in a Ge/Si core/shell
nanowire can be used to detect the charge configuration inside the nanowire.
However, the device which was presented, showed many gate-jumps in-
hibiting us from realizing a spin qubit. We now turn towards a DQD
realization in another material system, namely a crystal-phase defined
DQD in an InAs nanowire as was discussed in Section 2.3.1.

The pre-defined barriers of the crystal-phase engineered DQD allow us
to reduce the number of gates used for operating the DQD. Because no
gates are needed for electrostatically defining the DQD, photon losses of
the resonator through the gate lines can be reduced as the resonator-
to-gate capacitance can be designed to be much lower compared to im-
plementations of DQDs in Ge/Si core/shell nanowires or DQDs in two-
dimensional materials.

Because operating a spin quantum bit (qubit) in this structure is highly
dependent on the properties of the charge qubit, in this Chapter, we
investigate how the charge qubit decoherence rate γ and charge qubit
photon coupling-strength g0 depend on the inter-dot tunneling tc. We do
so while keeping the capacitances of the DQD approximately constant.
This is complementary to Chapter 5 where we investigated how γ and
g0 depend on the capacitance configuration of the DQD while keeping tc
approximately constant.

This chapter is the result of a close collaboration with Alessia Pally and
some of the data is also presented in her thesis [183].
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7.1. Device description

200 µm

resonator

dc bias

feedline
nanowire

200 nm

VL
VR

VM

res.
gnd

Figure 7.1. Device image. A notch-type half-wave resonator with a
narrow center conductor is formed from thin NbTiN (blue). The resonator
can be direct current (DC)-biased via a dc bias pad that is separated from
the center conductor by a meandered inductor. The feedline on the left
side of the figure is used for resonator readout. On the right-hand side the
nanowire device is fabricated. The inset shows a false-colored scanning-
electron micrograph. The zincblende segments of the nanowire are colored
in green and the wurtzite barriers are colored in red. The lead contact
labelled with ‘res.’ is connected to the resonator. The other lead is hard-
grounded.

Figure 7.1 shows the device that is being measured and analyzed, which
is fabricated in a collaboration with Alessia Pally. Because we are inter-
ested in measuring both the total quality factor of the resonator coupled to
the DQD and the coupling to the feedline, a notch-type, high-impedance
resonator is fabricated from a thin film of NbTiN on top of intrinsic sili-
con, and the resonator corresponds to the design presented in Figure 3.5
in Section 3.4. The DQD is formed by a zincblende InAs nanowire where
the dc part of the device is fabricated in a designated area of the resonator
chip as shown in the inset of Figure 7.1. In the nanowire, a DQD is formed
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in the zincblende segments (green) separated with wurtzite tunnel barriers
(red).

The resonator is coupled to the DQD via its right voltage anti-node,
which is contacted to the source contact of the nanowire. The second
nanowire lead is hard grounded to the ground plane and the electrochem-
ical potentials of the quantum dots is varied by applying voltages to the
side gates labelled with VL and VR in the figure. The voltage VM on the
side gate in the middle is not used and left close to zero for the mea-
surements presented here. A 20 nm thick atomic-layer deposition (ALD)-
grown hafnium oxide layer is located underneath the nanowire device,
ensuring electrical isolation of the gates.

7.2. Device characterization
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Figure 7.2. Bare resonator. Transmission |S21| through the feedline
as a function of probe frequency ωp, exhibiting the resonance of the notch-
type resonator. The solid line is the amplitude of a circular fit [78].

Before characterizing the combined device, we first identify the res-
onance of the resonator at ω0

r/2π = 3.543 GHz and extract the external

7
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quality factorQc = 1290±40 and loss quality factorQloss = 2319±200 (see
Fig. 7.2). Compared to the test device without a nanowire (see Fig. 3.5),
we notice that Qc is similar, while Qloss is reduced by an order of magni-
tude. We attribute this expected drop in Qloss to the loss through the ca-
pacitive coupling between the resonator and the gate lines [21, 105, 117].
Nevertheless, Qloss is still similar to similar resonator devices [22, 117],
despite our larger impedance and our lack of on-chip gate filtering. We
explain this by the limited number of gates required to operate the crystal-
phase defined DQD, leading to a reduced resonator to gate capacitance.
To characterize the coupled device, we measure the dc current through
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 (V
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 (V
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|S21| (a.u.)
b)

10−1 100 101 0.5 1.0

Figure 7.3. Comparison between transport and resonator re-
sponse. a) current Isd through the DQD at a bias voltage of Vsd = 100 µV
showing bias-triangles. b) Transmission through the feedline |S21| at the
resonator frequency. The two measurements were performed simultane-
ously.

the nanowire at a fixed bias voltage as a function of the plunger gate volt-
ages VL and VR. Simultaneously, we measure the transmission through
the feedline at the resonance frequency. The results of the current and
resonator spectroscopy are shown in Figure 7.3. In the measured current
in Figure 7.3a), we can clearly identify bias triangles, where their size is
proportional to the difference in the electro-chemical potentials of source
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7.3. From double-dot to single dot

and drain, i.e., the applied bias. Therefore, when states are within this
energy window, electrons can sequentially tunnel through the DQD [97].
Regular bias triangles are therefore a distinct signature of a well-defined
DQD in the presence of a finite source drain bias voltage.

The resonator response is shown in Figure 7.3b). We note that the mea-
sured response of the resonator corresponds to the same charge-stability
diagram as the measured current, but that the resonator is sensitive to
different features than the current: While a current is measured domi-
nantly at the bias triangles, the resonator senses dispersively whenever
quantum dot states are resonant, either with each other or with a lead.
This is a direct consequence of the dipolar coupling between the resonator
and the tunneling charge in the DQD [17].

In addition, we also measure distinct features dispersing with the gate
voltages that are not related to the charge-stability diagram. They present
themselves as almost vertical lines indicated by white arrows in Fig-
ure 7.3b). Because they do not interact with the features corresponding
to the DQD but still couple to the resonator, we attribute these lines to
impurities in the substrate spatially separated from the DQD.

7.3. From double-dot to single dot

Identifying the correspondence between the dc transport and the disper-
sive response of the resonator, allows us to switch the bias voltage to zero
and to focus purely on the resonator response. This is particularly use-
ful as it allows investigation of the DQD also in configurations where no
current to the leads can be measured. Figure 7.4 shows a high-resolution
charge-stability diagram measured in a larger gate range. We note that
while increasing the gate voltage VR, we observe an evolution from a
DQD (see Figure 7.4b) with clearly identifiable triple points, to a single
Coulomb-blockaded quantum dot (see Figure 7.4c). Operating at more
positive gate voltages implies that the dots are populated with more elec-
trons occupying increasingly high energy states. For these higher energy
states, the effective tunnel barrier due to the crystal phase is lower, re-
sulting in a larger tunnel rate tc. In the top right of Figure 7.4 an almost
complete wave function overlap is realized and hence signatures of a single
dot are measured [45, 184]. So the data presented in Figure 7.4 clearly
demonstrates that it is possible to change the inter-dot tunnel rate tc of
the DQD by changing the gate voltages.

7
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Figure 7.4. Charge-stability from DQD to single dot. a) Trans-
mission |S21| through the feedline at the resonator frequency as a function
of plunger gate voltages VL and VR. b) Zoom in the DQD regime. c) Zoom
in the single dot regime. The position of b) and c) are indicated in a) by
white rectangles. Here, it is VM = Vsd = 0 V.

7.4. Resonator response versus tunnel rate.

The data presented in Figure 7.4 clearly demonstrates the ability to
change the inter-dot tunnel rate tc of the DQD by changing the dot oc-
cupancies. We will use the dispersive resonator response to investigate
the dependence of the dipolar interaction strength g0, and the charge
qubit linewidth γ on tc. To gain a deeper understanding of the inter-
dependencies of these variables we investigate five different inter-dot tran-
sitions, each with a different tc. For each transition we measure according
to the following protocol consisting of 5 steps:

(1) To quantitatively analyze the dispersive response of the resonator,
we first measure a small charge-stability diagram similar to the one shown
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7.4. Resonator response versus tunnel rate.
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Figure 7.5. Large dispersive shift. a) Transmission |S21| through
the feedline as function of detuning ϵ and probe frequency ωp, showing a
dispersive shift of the resonator and corresponding resonator broadening.
b) Linecuts through a) at fixed ϵ as indicated by the bars in a). Solid
lines are amplitude of a circular fit of S21(ω). c) Extracted resonance
frequency ωr of the dressed resonator. d) Extracted linewidth δω of the
dressed resonator. Solid lines in c) and d) are fits to Equation (7.1) and
Equation (7.2).
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in Figure 7.4b).
(2) We then focus on one specific inter-dot transition. From the charge-

stability diagram, we extract the system’s capacitances according to the
recipe described in Section D.1 [97, 137]. To calibrate the required energy
scale for every investigated inter-dot transition, we apply a finite bias and
measure a bias triangle similar to the one shown in Figure F.1 in the
appendix. The bias voltage acts as an absolute energy scale and therefore
from the size of the measured bias triangle, the conversion from gate
voltages to detuning ϵ is realized (lever arm calibration). All extracted
capacitances for the five different investigated inter-dot transitions are
found in Table F.1 in the appendix.

(4) Then, at zero bias, we measure the resonator response along the
detuning line ϵ of the specific inter-dot transition. Exemplary, this line is
indicated for one inter-dot transition in Figure 7.3b).

(5) Finally, using the calibrated lever arm, we plot the resonator re-
sponse as function of frequency and detuning ϵ in Figure 7.5a).

The resonator response shown in Figure 7.5a) exhibits two effects which
become obvious when considering the two linecuts shown in Figure 7.5b):
First, the resonance frequency of the dressed resonator decreases as the
difference between the charge transition frequency ωq =

√
|2tc|2 + ϵ2 and

the bare resonator frequency ω0
r decreases for decreasing |ϵ|. Second, the

linewidth of the dressed resonator increases for decreasing |ϵ|. We quantify
this by performing a circular fit [78] at every value of ϵ (solid lines in
Figure 7.5b), extracting the dressed resonator frequency and linewidth as
a function of detuning, and plotting it in Figure 7.5c) and d).

The combined system of a single microwave photon in the resonator and
a charge qubit in the DQD is described by the Jaynes-Cummings model
which is introduced in Section 2.1.1. In the dispersive case, when the bare
qubit frequency is larger than the resonance frequency of the resoantor,
the transition frequency from the ground state to the dressed resonator
state is given by [12]

ωr = ω0
r − 1

2
√

4g2 + (ω0
r − ωq)2,. (7.1)

where g = g0 · 2t/ωq(ϵ) is the effective charge-photon coupling strength
accounting for the finit mixing angle at positive detuning. Furthermore,
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7.4. Resonator response versus tunnel rate.
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Figure 7.6. Dispersive coupling versus tunnel rate. a) Dipolar
coupling g between the charge qubit and resonator mode versus DQD
tunnel rate tc. The red, solid line indicates the resonator frequency ω0

r .
b) Charge qubit linewidth γ as a function of tunnel rate tc. The black,
solid line is a fit to γ = mγ · t with mγ = 0.34 ± 0.03

the linewidth of the dressed resonator state is given by [12]

δω = |⟨ψ−|g, 1⟩|2 κ+ |⟨ψ−|e, 0⟩|2 2γ (7.2)
= cos2 (θ)κ+ sin2 (θ) 2γ,

where κ is the decay rate of the resonator, γ is the bare qubit linewidth and
θ = 1

2 arctan
(

2g
ωq−ω0

r

)
[12]. We use Equation (7.1) to fit the extracted

frequencies of the dressed resonator, which is shown as a solid line in
Figure 7.5c). We keep the calibrated gate lever arm fixed in the fitting
procedure, and extract the bare charge qubit-photon coupling strength g0
and the inter-dot tunnel rate tc as fit parameters.

Next, using the extracted values of g0 and tc, we fit Equation (7.2) to
the dressed resonator linewidths. From the fit, we extract the bare qubit
linewidth γ. The result of the analysis on the five analyzed inter-dot
transitions is shown in Figure 7.6. Figure 7.6a) shows the charge-photon
coupling strength at zero detuning g0 versus the charge tunneling rate tc,
where we observe no clear trend.

For the configuration corresponding to very large tc (blue data point
in Figure 7.6a)), no broadening of the dressed resonator is measured and
therefore, γ cannot be determined for this specific point. Figure 7.6b)
shows the fitted values of γ versus tc for all other investigated DQD con-
figurations. We find that γ is proportional to tc (see figure caption), which

7
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implies that the qubit Q factor Q ≡ 2tc/γ ∼ 6 is constant and indepen-
dent of tc. We note that similar or even smaller values have been obtained
for other realizations of charge qubits in nanowires [48, 185] and specu-
late that the proximity of the DQD to the nanowire surface could lead to
large charge noise yielding charge qubit decoherence and hence a small Q
factor.

7.5. Bloch-Siegert shift in the strong dispersive regime
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Figure 7.7. Comparison between Jaynes-Cummings model and
Bloch-Siegert model. Coupling strength g0 versus tunnel rate tc ex-
tracted using a Jaynes-Cummings model (black points) and a model in-
cluding the Bloch-Siegert shift (blue points). Data points with the same
symbols correspond to the same configuration.

In the previous section, we have found strong dispersive resonance fre-
quency shifts due to the dipolar interaction between the resonator and the
charge qubit in the DQD and analyzed this interaction in the scope of a
Jaynes-Cummings model (JCM). However, we note that in the very open
regime, the extracted tunnel rates 2tc and hence qubit transition frequen-
cies are much larger than the resonator resonance frequency ω0

r . In this
strong dispersive regime, the counter rotating terms that were neglected
in the rotating-wave approximation in Section 2.1.1 matter, and now the
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7.6. Entering the resonant regime
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Figure 7.8. Charge-qubit crosses resonator. Transmission |S21|
through the feedline as function of probe frequency ωp and detuning ϵ.
When the qubit frequency is similar to the resonator resonance frequency,
the dressesd resonator state broadens significantly and eventually fully
vanishes.

dressed resonator frequency can be written as [2, 186]

ωr = ω0
r −
(

g2

ωq − ω0
r

+ g2

ωq + ωr

)
, (7.3)

where the term proportional to g2/(ωq −ω0
r) is called Lamb shift and the

term proportional to g2/(ωq −ω0
r) is called Bloch-Siegert shift. We repeat

the analysis presented in the previous section while using Equation (7.3)
instead of (7.1) and compare the results of the two analyses in Figure 7.7.

We note that while for low tunnel rates the results of the two analyses
are similar, for large tc, increasingly large differences in tc are obtained
while the obtained values of g0 remain similar.

7.6. Entering the resonant regime

After having characterized the dispersive resonator-charge qubit regime,
we find a configuration of gate voltages in which the charge qubit tun-
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nel rate is smaller than the resonator frequency, 2tc ⪅ ω0
r . In this con-

figuration and by tuning ϵ, the charge qubit transition frequency ωq =√
|2t|2 + ϵ2 can become equal to the resonator frequency, thus entering

the resonant regime. Figure 7.8 shows the resonator spectroscopy as a
function of detuning ϵ in this regime. Because the charge qubit linewidth
(γ ∼ 1 GHz) is much larger than resonator linewidth (κ/2 ∼ 10 MHz), the
dressed resonator broadens significantly when ωq approaches ω0

r . For low
ϵ, the dressed resonator broadening is so large that no distinct resonance
curve can be measured anymore.

7.7. Conclusions and Outlook

We have demonstrated for the first time a dipolar interaction between a
high-impedance resonator and a charge qubit defined in a crystal-phase
engineered nanowire. We find large dispersive signals and measure the
dipolar interaction strength g0 between a charge-qubit and a resonator
mode in the single photon regime by fitting the dispersive shift using a
Jaynes-Cummings Hamiltonian. We measure charge-photon couplings as
high as g0 = 150 ± 30 MHz.

These large coupling strengths are confirmed by considering not only
the Lamb shift but also by using a more complete model that includes
the Bloch-Siegert shift, which is relevant when the qubit-resonator inter-
actions are in the strong dispersive regime.

Considering the broadening of the dressed resonator, we also extract
the charge-qubit linewidth γ. By varying the number of electrons in the
DQD, we change the charge tunnel rate between the quantum dots tc
while keeping the DQD capacitances approximately constant. While no
clear dependence of g0 on tc is observed, we find that the qubit linewidth
γ is proportional to the tunnel rate tc and measure a qubit quality factor
∼ 6.

When working close to the resonant regime 2tc ≲ ω0
r , the dressed res-

onator linewidth broadens substantially, eventually smearing out com-
pletely. In the same device presented in this chapter, attempts were made
to measure the qubit parameters as a function of magnetic field. How-
ever, because of gate jumps, we are unable to perform measurements over
time scales longer than a few hours which is essential for performing mea-
surements at elevated magnetic-field strengths due to the slow nature of
ramping up and down a large magnet. We attribute the large number of
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gate jumps to the ALD-grown oxide which is located in direct vicinity to
the nanowire and we therefore change the experiments in two aspects.

Firstly, we increase the coupling between the resonator and the feedline
substantially, aiming on a strongly over-coupled resonator. Increasing
the external coupling to the resonator ensures a better matching between
the qubit linewidth and the resonator decay rate. To do so, we employ a
resonator probed in transmission which has two advantages compared to a
notch-type resonator. The first advantage is that despite aiming on large
κc, the resonator can be designed fully symmetric ensuring low photon
loss through the dc tap (see Section 3.3). The second advantage is that,
as we read-out the resonator at its resonance frequency, the signal to noise
ratio is substantially higher (see Section 2.2.6).

Secondly, we fabricate the next resonator generation on top of a wafer
covered with 100 nm of silicon dioxide. The silicon dioxide is an es-
tablished substrate material for operating the crystal-phase engineered
DQDs [45, 93]. And, as demonstrated in Chapter 4, NbTiN resonators
fabricated on top of silicon dioxide still show internal quality factors
Qloss > 103. Therefore the oxide does not limit the resonator quality,
because of the intentionally large coupling to the feedline. A device in-
corporating these improvements is discussed in Chapter 8.
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8 Strong coupling between a single
photon and a singlet-triplet qubit

In the experiments described in Chapter 6 and in Chapter 7, the res-
onator had been fabricated on top of intrinsic silicon aiming on large in-
ternal quality factors. This made it necessary to cover the intrinsic silicon
substrate below the nanowire device with atomic-layer deposition (ALD)-
grown hafnium oxide. The resulting devices showed many gate jumps on
the time scale of several minutes which inhibited operation as a spin quan-
tum bit (qubit); stability on much longer timescales is required because
of the involvement of an external magnetic field which can only be varied
slowly.

However as demonstrated in Chapter 4, magnetic-field resilient, high-
impedance resonators based on NbTiN can also be fabricated on a wafer
covered with the much more ‘silent’ thermally grown silicon oxide, while
maintaining internal quality factors Qloss > 103. We connect these res-
onators to the side-gate of a crystal-phase defined double-quantum dot
(DQD) in a zincblende InAs nanowire, resulting in fewer gate jumps, al-
lowing us to investigate the resonator-qubit coupling at elevated magnetic
field strengths. Because of the large spin-orbit interaction present in the
nanowire, at magnetic fields B > 500 mT, a spin-orbit qubit is formed
whose linewidth and coupling to the resonator is investigated both in the
dispersive and resonant regime.

This chapter is a submitted paper [187]. It is the result of a collabora-
tion with Alessia Pally and can therefore also be found in her thesis [183].
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Abstract

Tremendous progress in few-qubit quantum processing has been achieved
lately using superconducting resonators coupled to gate voltage defined
quantum dots. While the strong coupling regime has been demonstrated
recently for odd charge parity flopping mode spin qubits, first attempts to-
wards coupling a resonator to even charge parity singlet-triplet spin qubits
have resulted only in weak spin-photon coupling strengths. Here, we inte-
grate a zincblende InAs nanowire double quantum dot with strong spin-
orbit interaction in a magnetic-field resilient, high-quality resonator. In
contrast to conventional strategies, the quantum confinement is achieved
using deterministically grown wurtzite tunnel barriers without resorting
to electrical gating. Our experiments on even charge parity states and at
large magnetic fields, allow us to identify the relevant spin states and to
measure the spin decoherence rates and spin-photon coupling strengths.
Most importantly, at a specific magnetic field, we find an anti-crossing be-
tween the resonator mode in the single photon limit and a singlet-triplet
qubit with an electron spin-photon coupling strength of g = 114±9 MHz,
reaching the strong coupling regime in which the coherent coupling ex-
ceeds the combined qubit and resonator linewidth.
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8. Strong coupling between a single photon and a singlet-triplet qubit

8.1. Introduction

Spin qubits in semiconductors are promising candidates for scalable quan-
tum information processing due to long coherence times and fast manip-
ulation [1, 3, 138, 139]. For the qubit readout, circuit quantum electrody-
namics based on superconducting resonators[188], allows a direct and fast
measurement of qubit states and their dynamics [21]. Recently, resonators
were used to achieve charge-photon [22, 35], spin-photon [27, 33, 34] as
well as coherent coupling of distant charge [29] and spin qubits [30, 31],
enabling coherent information exchange between distant qubits. However,
the small electric and magnetic moments of individual electrons require
complicated device architectures such as micromagnets, and a large num-
ber of surface gates that render scaling up to more complex architectures
challenging. These approaches typically achieve a relatively weak elec-
tron spin-photon coupling on the order of ∼ 10 − 30 MHz. In addition
to single electron spin-qubits, also spin qubits based on two electrons in
a double quantum dot (DQD), e.g. in a singlet-triplet qubit have been
demonstrated [5]. Spin qubits based on two electrons typically offer a
large hybridization of the spin and charge degree of freedom compared
to single-electron spin qubits in principle allowing even stronger coupling
strengths. So far, however, the experimentally achieved coupling strengths
in such systems [189, 190] remained well below the strong coupling limit
in which the coherent coupling rate exceeds both, the cavity mode decay
rate and the qubit linewidth.

Here, we demonstrate that the strong coupling regime between a singlet-
triplet qubit and a superconducting resonator can be reached. We achieve
this strong coupling by carefully designing the resonator and by using a
DQD defined by in-situ grown tunnel barriers in a semiconductor with a
large spin-orbit interaction. The tunnel barriers consist of InAs segments
in the wurtzite crytsal-phase with an atomically sharp interface to the
zincblende bulk of the nanowire (NW) [40]. We make use of the large
spin-orbit interaction in these wires [49] to define a singlet-triplet qubit
at a finite magnetic field in which the T+

1,1 and S2,0 states hybridize,
forming a quantum two-level system. For the qubit spectroscopy, we use
a magnetic-field resilient resonator based on NbTiN that can be operated
in magnetic fields exceeding 2 T [32, 113]. At B ∼ 1.7 T, the singlet-
triplet qubit hybridizes with the resonator with a record-high electron
spin-photon coupling strength reaching the strong coupling limit.
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8.2. Device characterization

The resonator-qubit system is shown in Figure 8.1a), including a false-
colored SEM-image of the crystal-phase defined NW DQD. The DQD
is hosted in the 280 nm and 380 nm long zincblende segments (green),
separated by 30 nm long wurtzite (red) tunnel barriers with a conduc-
tion band offset of ∼100 meV [93], as illustrated in Fig. 8.1(b). A high-
impedance, half-wave coplanar-waveguide resonator is capacitively cou-
pled to the DQD at its voltage anti-node via a sidegate. In addition,
the same sidegate can be used to tune the DQD charge states using a dc
voltage (VR) applied at the resonator voltage node. The DQD state is
probed by reading out the resonator rf-transmission. We extract the bare
resonance frequency of the resonator ωr/2π = 5.25308 ± 0.00003 GHz and
the bare decay rate κ/2π = 34.4 MHz. The resonator design and fitting
are described in detail in Section G.1 in the appendix.

In the following, we prepare the DQD in an even charge configuration
in the many-electron regime (see appendix, Section G.2), described by
a two-electron Hamiltonian given in the Section G.4 in the appendix.
Figure 8.1(c) shows the eigenvalues of this Hamiltonian as a function
of external magnetic field B at a fixed DQD detuning. At zero magnetic
field, the detuning renders the singlet S2,0 the ground state, for which both
electrons reside in the same dot. Without spin-rotating tunneling, this,
and the S1,1 state, with the electrons distributed to different dots, form
a charge qubit [191]. The subscripts describe the dot electron occupation
of the left and right dot respectively. By applying an external magnetic
field, the Zeeman effect can lower the energy of the triplet T+

1,1 state, that
becomes the ground state for sufficient high magnetic fields. However, the
intrinsic spin-orbit interaction hybridizes the S2,0 and T+

1,1 states, with the
two new eigenstates of the avoided crossing forming a singlet-triplet qubit
shown schematically in Figs. 8.1(a) and (b).

Fig. 8.2(a) shows the charge stability diagram of the DQD detected as
a shift in the transmission phase φ of the resonator, plotted as a function
of the two gate voltages VL and VR at a fixed probe frequency of 5.253
GHz, close to resonance. We observe a slanted honeycomb pattern, in
which the inter-dot transition lines exhibit a negative slope due to the
specific gate geometry (see Fig. 8.1(a)), which results in the right gate (VR)
coupling stronger to both dots than the left (VL). Using a capacitance
model [97, 137], we extract the gate-to-dot capacitances CR2 = 2.5 ±

8
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Figure 8.1. Coupled resonator-qubit system (a) False colored SEM-
image of the device. The NW (green) is divided into two segments by
an in-situ grown tunnel barrier (red), thus forming the DQD system.
The NW ends are contacted by two Ti/Au contacts (S,D) and the NW
segements can be electrically tuned by two Ti/Au sidegates SGR (purple)
and SGL (yellow). A high-impedance, half-wave resonator is connected to
SGR. Top gates (orange) are kept at a constant voltage of −0.05 V. The
magnetic field is applied in-plane at an angle of ∼ 60◦ to the NW. The
arrows illustrate an even charge configuration with the two degenerate
DQD states T+

1,1 and S2,0. (b) Schematic of the crystal-phase defined
DQD. The conduction band of wurzite and zincblende are offset by ∼ 100
meV, resulting in a tunnel barrier between the zincblende segments. The
intrinsic spin-orbit interaction enables spin-rotating tunneling between
these segments. (c) Energy levels of an even charge configuration as a
function of magnetic field B at a fixed positive detuning ϵ between the
dot levels. At finite magnetic fields, T+

1,1 (blue) hybridizes with S2,0 (red)
defining a singlet-triplet qubit with an energy splitting given by the spin-
orbit interaction strength ∆SO.
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Figure 8.2. Dispersive sensing of the DQD at B = 0. (a) Charge
stability diagram of the device, in which the resonator phase φ is measured
as a function of the SG voltages VR and VL. The negative slopes of the
interdot transitions are due to the strong cross-capacitance of the larger
gate SGR. A zoom on the interdot transition pointed out by the red
rectangle is shown in (b). (c) Resonator transmission amplitude |S21|
versus probe frequency ωp and detuning ϵ along the white line in (b).
At the charge degeneracy point of the DQD, we find a dispersive shift of
χ = 6.9 MHz with respect to the bare resonance frequency. The black line
is a fit to the data.
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0.4 aF, CL2 = 1.65 ± 0.08 aF, CR1 = 10.1 ± 0.6 aF and CL1 = 2.0 ± 0.2 aF.
In Fig. 8.2(c) we show the resonator response while varying the probe

frequency ωp and changing the detuning ϵ along the white line in Fig. 8.2(b).
An electron can now reside on either of the two tunnel-coupled dots thus
forming a charge qubit. At the inter-dot transition (IDT), close to charge
degeneracy, the electrical dipole moment of the charge qubit interacts
with the resonator, resulting in a dispersive shift of the latter’s resonance
frequency. By fitting the parameters of a Jaynes-Cummings Hamilto-
nian (see Section G.3 in the appendix) to this particular IDT, we ex-
tract the dispersive shift χ0 = 4.6 MHz, an inter-dot tunnel coupling
tc = 6.9±0.1 GHz, charge-photon coupling gc = 235±3 MHz, and charge
qubit linewidth γ = 7.9 ± 0.6 GHz.

8.3. Strong spin-photon coupling

When investigating the magnetic-field dependence of IDTs similar to the
one shown in Fig. 8.2(b), we observe two qualitatively different behaviors
which we identify as even and odd charge parity configuration as described
in Section G.2 in the appendix. In the following, we investigate one single
IDT with an even charge parity.

As illustrated in Fig. 8.1(c), the DQD can be operated as a singlet-
triplet qubit when placed into a magnetic field. The qubit frequency ωq =
∆SO/ℏ can be brought into resonance with the cavity frequency ωr at B ≈
1.7 T, as discussed in more detail below. At the resonance condition (ωq ∼
ωr), an anti-symmetric (bonding) and a symmetric (anti-bonding) qubit-
photon superposition are formed. Consistently, at a field of B ≈ 1.7 T,
we observe an anti-crossing between the resonator and the singlet-triplet
qubit. Figure 8.3(a) shows the anti-crossing as a function of the detuning
ϵ at constant magnetic field B = 1.67 T, from which we extract the reso-
nance frequency ωΨ± and linewidth δω by fitting a Lorentzian (amplitude
and phase) to each trace of fixed ϵ. Then, we simultaneously fit the transi-
tion frequencies (dashed, white curves in Fig. 8.3(a)) and linewidths (solid,
black curve in Fig. 8.3(b)) to the Jaynes-Cummings model as described
in Section G.3 in the appendix. This allows us to extract a spin-photon
coupling gϵ/2π = 75 ± 4 MHz, qubit linewidth γϵ/2π = 135 ± 30 MHz
and tunnel rate tϵ = 1.10 ± 0.05 GHz for Figs. 8.3(a,b). We note that the
observed anti-crossing occurs at a finite detuning ϵ′ ∼ 4.8 GHz and hence
DQD polarization, which reduces the resonator-qubit coupling strength
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Figure 8.3. Strong spin-photon coupling. (a) Anti-crossing of the
resonator and the qubit found when plotting the resonator transmission
amplitude |S21| as a function of detuning ϵ and probe frequency ωp at
a magnetic field B = 1.67 T. The dashed white curves are fits to a
Jaynes-Cummings model (Eq. (G.3) in Section G.3 in the appendix). (b)
Dressed resonator linewidth δω extracted from Fig. 8.3(a) with a fit to the
Jaynes-Cummings model (Eq. (G.5) in Section G.3 in the appendix). (c)
Anti-crossing of the resonator and the singlet-triplet qubit measured by
varying the magnetic field B and the probe frequency ωp, the constant de-
tuning of ∼ 1.65 GHz. (d) Dressed resonator linewidth δω extracted from
Fig. 8.3(c), analogous to Fig. 8.3(b). The red points were excluded from
the fit, as they present a superposition of the hybridized qubit-photon
state. Based on the dilution refrigerator attenuation, we estimate the av-
erage number of photons in the resonator during this measurement to be
< 0.2 [192, 193].
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8. Strong coupling between a single photon and a singlet-triplet qubit

as gϵ = g0 sin θ, with sin θ = 2tϵ/
√

(2t)2 + ϵ′2, where θ is the mixing
angle [17, 21, 188]. After correcting for this mixing angle we obtain a
spin-photon coupling strength g0/2π = 178 ± 6MHz.

In Fig. 8.3(c), we show the same anti-crossing as a function of B at
a fixed detuning of ∼ 1.65 GHz. To extract the spin-photon coupling
strength and qubit linewidth from this second measurement, we char-
acterize the effective qubit transition frequency around the minimum
t0 = t(B0) by ωq(B) =

√
(2t0)2 + (αB(B −B0))2, where we introduce

the heuristic scaling factor αB . With this additional free parameter,
we fit the Jaynes-Cummings model (dashed, white curves in Fig. 3(c)
and solid, black curve in Fig. 3(d)) and extract a spin-photon coupling
strength of gB/2π = 114±9 MHz and linewidth γB/2π = 190±24 MHz for
Fig. 8.3(c,d). The larger value of the coupling strength in the magnetic-
field sweep compared to the detuning sweep is attributed to the smaller
mixing angle and reflected by the larger splitting at the anti-crossing in
Figure 8.3(c) compared to Figure 8.3(a).

These extracted coupling strengths demonstrate that the strong cou-
pling limit between a superconducting resonator and a singlet-triplet qubit
can be reached: In the strong coupling regime, a single photon coher-
ently hybridizes with a two-level system. This limit is reached if the vac-
uum Rabi 2g splitting exceeds the linewidth γ + κ/2 of the hybridized
bonding and anti-bonding states [2]. For our device we find a ratio
2gϵ/(γϵ + κ/2) = 1.0 ± 0.2 for the detuning sweep (Fig 8.3(a,b)) and
2gB/(γB + κ/2) = 1.1 ± 0.2 for the magnetic field sweep (Fig. 8.3(c,d))
reaching the strong coupling regime in both cases. After accounting for the
mixing angle and using the larger extracted linewidth γ ≡ max(γB , γϵ) =
γB , we find 2g0/(γ + κ/2) = 1.7 ± 0.2¸ , now very clearly in the strong cou-
pling regime.

8.4. Magnetospectroscopy

To further characterize the spin-orbit eigenstates and and to indepen-
dently verify the character of the singlet-triplet qubit, we now study the
magnetic field evolution of the IDT from 0 T up to 2 T. As described in
Section G.1 in the appendix, we measure the resonator shift χ as a func-
tion of the detuning ϵ and the magnetic field, as plotted in Fig. 8.4(a).
A finite χ ̸= 0 occurs at the IDT when tunneling between the dots is
allowed and hence if the DQD obtains a non-zero dipole moment. As
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Figure 8.4. Magnetospectroscopy of the singlet-triplet qubit. a)
Dispersive shift χ as a function of the magnetic field B and detuning ϵ.
The white dashed line is a fit of the effective two-electron Hamiltonian
(Eq. (G.4)) to the data. b) Extracted tunnel rate 2t/2π (black), qubit-
photon coupling times hundred 100 · g0/2π (cyan) and qubit linewidth
γ/2π (purple). The bare resonator frequency is indicated by the dashed
black line. (c) Two-electron energy level diagrams at various magnetic
fields with the corresponding field strength indicated in (a) and (b) by
the given symbols. A constant offset of 20 GHz and 30 GHz was added
to the energy levels at 1.65 T and 2.0 T, respectively. We estimate the
average photon number in these experiments as ∼ 1 [192, 193].
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8. Strong coupling between a single photon and a singlet-triplet qubit

described in the Section G.4 in the appendix, we model the DQD by an
effective two electron Hamiltonian which allows us to fit the gate volt-
age and field dependence of the IDT (white dashed line in Fig. G.3(a)).
We find that the magneto-dispersion of the IDT is well fitted using the
following fit parameters namely the spin-conserving singlet and triplet
tunnel rates tSc /2π ≈ 29 GHz, and tTc /2π ≈ 37 GHz, the singlet-triplet
coupling rate tSO/2π ≈ 5 GHz, the electron g-factors of the right and left
dots, gR ≈ 1.8 and gL ≈ 2.8, as well as the singlet-triplet energy splitting
∆ST/2π ≈ 79 GHz. These fit parameters are consistent with parame-
ters obtained previously in this material system [49, 111, 194–196]. We
note, however, that the fit is under-determined and therefore, it does not
provide accurate numbers. Nonetheless, the model gives a qualitative,
physical understanding of the system and allows us to establish which
DQD levels interact with the resonator.

We can gain additional independent information on the system by also
using the other IDT characteristics. Especially, the resonator provides an
absolute energy scale allowing for a quantitative analysis of the interaction
between the DQD and the resonator [197] complementing the preceding
DQD Hamiltonian fit. As described in Section G.3 in the appendix, by
fitting a Jaynes-Cummings model to both the resonator shift χ and the
dressed resonator linewidth δω simultaneously, we extract the resonator
decay κ as well as the qubit tunnel amplitude t, the qubit linewidth γ,
and the qubit-photon coupling strength g as a function of B, which we
plot in Figure 8.4(b).

Using the fits to both the 2-electron Hamiltonian model and the Jaynes-
Cummings model in the 2-level approximation, allows to directly identify
several regimes, in each of which the qubit has a different spin-character.
Fig. 8.4(c) shows the corresponding DQD level structure based on the fit
parameters as a function of ϵ for different magnetic field.

At a low magnetic fields around B = 0.1 T, the triplet states (blue
curves) are Zeeman split and the ground-state curvature is dominated by
the anti-crossing between S1,1 and S2,0 (red curves). We find a singlet
charge qubit in the weak coupling limit, i.e. for which the linewidth
exceeds the charge-photon coupling by a factor of hundred. The formation
of a double-dip structure in χ(ϵ) between B ∼ 0.03 T and B ∼ 0.3 T is
explained by an interaction between the three states S2,0, S1,1 and T+

1,1 as
described in the supplementary material. Traces of χ(ϵ) with a double-dip
structure cannot be described by the Jaynes-Cummings Hamiltonian and
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are therefore not analysed quantitatively.
As B is increased, the triplet state T+

1,1 becomes the ground state for
ϵ < 0 as shown in the second panel of Fig. 8.4(c) for B = 0.7 T. The
spin-orbit interaction couples the singlet and triplet states, leading to an
anti-crossing between S2,0 and T+

1,1. A singlet-triplet qubit is created with
ωq = ∆SO = 2tSO [101, 198]. In this regime, at larger B, the resonance
condition between S2,0 and T+

1,1 occurs at larger ϵ, because the energy of
the bare T+

1,1 state decreases with larger B and the energy of S2,0 decreases
with larger ϵ. Therefore, the IDT is observed at larger ϵ for increasing B.

Consistent with the interpretation of the formation of a singlet-triplet
qubit, we measure an approximately constant tunneling rate t between
B ∼ 0.5 T and B ∼ 1.1 T. In this regime, we extract the average spin-
orbit tunneling to be t̄so = 4.0 ± 0.3 GHz. At B ≈ 1.3 T, χ becomes posi-
tive. This is interpreted as a drop of the tunnel rate below the resonator
frequency, 2t < ω0

r . This decline in t is not captured by our simplified
Hamiltonian model and we speculate that changes in the orbital structure
of a many-electron DQD could be the reason.

At a magnetic field of B ≈ 1.7 T, the resonator shift χ becomes positive
again and we observe a resonant interaction between the resonator and the
singlet-triplet qubit leading to the anti-crossing as discussed in Section 8.3.
As seen in the level structure in Fig. 8.4(c) at B = 1.65 T, because the
IDT happens at elevated magnetic-field strength and detuning, the triplet
state T+

2,0 becomes relevant. This results in a level repulsion between T+
2,0

and T+
1,1 and hence leads to a reduced splitting between the S2,0 level and

the T+
1,1 states. In Fig. 8.4(c), this is illustrated by the smaller level gap

(black arrow) compared to the one at B = 0.7 T.
The level structure at very large magnetic fields is plotted exemplarity

for B ≈ 2 T in the right panel of Fig. 8.4(c). In this regime, the ground-
state of the DQD at the IDT is formed by a superposition of the T+

2,0 and
the T+

1,1 states. Comparing this very-large magnetic-field regime with the
lower field regimes, we find that the curve of Fig. 8.4(a) turns back towards
lower ϵ for increasing B. This situation can be understood easily by noting
that the spin-polarized triplets T+

2,0 and T+
1,1 form a charge qubit similar to

the singlets at low field. While the transition is increasingly dominated by
the triplet-charge qubit for increasing B, |χ| becomes smaller at the IDT,
because the anti-crossing between the triplet states T−

2,0 and T−
1,1 happens

at much larger frequencies 2tTc ≫ 2tSO. Hence, the triplet charge qubit
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has a larger frequency detuning from the resonator frequency than the
singlet-triplet qubit, leading to a smaller resonator shift.

This large number of detailed findings justify the use and the parameters
of the two-electron Hamiltonian introduced above, which, in turn, directly
allows us to identify the singlet-triplet spin qubit, for which we find the
strong coupling limit to the electromagnetic cavity. We note that the
qubit linewidth γ and qubit-photon coupling strength are both related to
the qubit rate as discussed in the supplementary material. An intuitive
explanation is that the tunnel rate in our experiments increases as the
qubit becomes more charge like and hence is more susceptible to charge
noise. Another possible explanation is that the qubit linewidth is limited
by qubit relaxation which scales proportional to the tunnel rate to the
contacts.

8.5. Conclusion and Outlook

In summary, we demonstrate a semiconductor nanowire DQD device with
crystal-phase defined tunnel barriers that can be operated as different
types of qubits, coupled to a high-impedance, high magnetic field resilient
electromagnetic resonator. As the main result, we find a singlet-triplet
qubit for which we extract the relevant qubit parameters, especially a
record high electron spin-photon coupling of g/2π = 114 MHz in the single
photon limit, thus reaching the strong coupling regime 2g ≥ γ + κ/2.

Our experiments demonstrate that deterministically grown tunnel bar-
riers allow for a reduced number of gate lines, and that, mediated by
intrinsic spin-orbit interaction, singlet-triplet qubits can reach the strong
coupling limit for low photon numbers, similar to flopping mode spin
qubits [199, 200]. This finding is potentially applicable to other promis-
ing platforms with strong spin-orbit interactions, like holes in Ge [198].
Technologically, the large electron spin-photon coupling found in our ex-
periments might become crucial for the implementation of two-qubit gates
between distant spin qubits a milestone on the way towards scalable quan-
tum computers. Moreover, our nanowire platform without depletion gates
results in a significantly reduced gate-induced photon-leakage in the ab-
sence of on-chip filtering [21, 105, 117]. An optimized gate design with res-
onators with larger impedance [137] therefore presents an ideal platform to
investigate new phenomena in the ultrastrong coupling regime [137, 153].
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9 Conclusions and Outlook

The goal of this thesis was improving the coupling strength between semi-
conductor quantum bits (qubits) and superconducting resonators, as well
as addressing the scalability challenge of spin-based qubits by exploiting
circuit quantum electrodynamics (QED) techniques. These goals were
addressed by integrating semiconductor double-quantum dots (DQDs) in
three material systems into high-impedance resonance circuits.

We demonstrated a systematic tuning strategy allowing to engineer
the dipolar interaction strength between a resonator and a DQD charge
qubit as well as the charge qubit coherence. This tuning-strategy is based
on in-situ engineering of the DQD capacitances by means of electro-static
gating, and allows us to reproducibly achieve record low decoherence rates
of Γ2 < 5 MHz for a DQD charge qubit in GaAs strongly coupled to a
SQUID-array resonator. Using the same tuning protocol and by integrat-
ing a Josephson junction-array resonator with an impedance of ∼ 4 kΩ,
we measured an avoided crossing corresponding to a dipolar interaction
strength gc ∼ 630 MHz. Together with the bare resonance frequencies
of the resonator and the qubit ωr ∼ ωq ∼ 5.6 GHz, this represents the
first demonstration of ultrastrong coupling (USC) between a DQD and
a microwave photon where the dipolar interaction strength constitutes a
non-negligible fraction of the bare transition frequencies.

These experiments form the basis of exploring the USC regime with
semiconductor DQDs where novel and unexpected physical phenomena
arise because of the breakdown of the rotating wave-approximation [153].

Turning towards spin qubits, we addressed the challenge imposed by
micromagnets which are used in state of the art hybrid circuit QED ar-
chitectures integrating spin qubits [25, 30, 31, 34]. Micromagnets inhibit
scaling up to the qubit numbers that are projected for a universal quantum
computer. This is, on the one hand, because the resulting spin-photon
coupling strengths are relatively weak and, on the other hand, because of
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a limited tunability of important qubit parameters such as the Landé g
factor.

Addressing these disadvantages, we have developed an architecture in-
corporating magnetic-field resilient, high-quality and high-impedance res-
onators based on NbTiN, coupled to semiconductor nanowires. The latter
are electrically tunable and posses a large spin-orbit interaction, thereby
solving the problems imposed by the micromagnets [87].

Based on this architecture, we extended pioneering charge-sensing pro-
tocols of DQDs in Ge/Si nanowires [43, 44, 47, 48] by coupling one of the
quantum dots to a high-impedance resonator. Reaching the last hole in
this system is of particular interest, because of the subband-population
dependent mixing of light and heavy holes [86, 91, 201]. In our experi-
ments, we find indications of the depletion of the last hole from an isolated
quantum dot in a Ge/Si core/shell nanowire and anticipate that similar
experiments will enable the investigation of the underlying mechanisms
of light-hole heavy-hole mixing.

These experiments on Ge/Si nanowires were performed in a dielectric
configuration aiming on an optimized resonator performance with the
drawback of non-ideal dielectrics in vicinity of the nanowire. The mea-
surements therefore exhibited an insufficient electrostatic stability of the
DQD for investigating spin properties. However, we discovered that our
NbTiN resonators can also be implemented in dielectric environments that
are ideally suited for the integration of semiconductor nanowires, without
a deleterious reduction of the resonator quality in the hybrid device.

Moreover, larger lever arms and therefore larger coupling strengths were
achieved by incorporating crystal-phase defined DQDs in InAs nanowires
in the circuit QED architecture. These advances enabled us to infer the
magneto-dispersion of a zincblende InAs DQD from its large dispersive
interaction with the resonator, which we modeled by accounting for two
electrons shared among the two dots in the presence of large spin-orbit in-
teraction. At a field strength of ∼ 1.7 T, we measured an avoided crossing
between the DQD qubit and the resonator mode in the single-photon limit.
This avoided crossing is consistent with the interpretation of strong cou-
pling between a singlet-triplet qubit and a single photon in the resonator,
mediated by the large spin-orbit interaction that is naturally present in
zincblende InAs nanowires.

These results constitute a coherent spin-photon interface without the
necessity of micromagnets. Furthermore, the spin-photon coupling strength

138

9



9.1. Outlook

of g/2π = 114 ± 9, extracted from the avoided crossing exceeds the spin-
photon coupling based on micromagnets by an order of magnitude setting
a record high electron spin-photon coupling strength. Therefore, our re-
sults can substantially contribute to scaling up spin-based quantum com-
puters by facilitating the realization of entangling gates between distant
spin qubits.

9.1. Outlook

The experiments presented in this thesis open up a number of possible
routes, both for progressing towards the realization of scalable spin-based
quantum computers and for fundamental research of light-matter interac-
tions.

In terms of realizing a scalable spin-based quantum computer, super-
conducting resonators can constitute the missing link between clusters of
qubits, especially if the interaction between the spin qubit and the res-
onator is based on intrinsic spin-orbit interaction rather than on micro-
magnets. Semiconductor nanowires naturally feature a large spin-orbit
interaction and are therefore a useful technology for proof-of-principle
experiments as demonstrated in this thesis. However, currently every
single nanowire is deposited deterministically by means of micromanip-
ulation. For creating a scalable platform, it is advantageous to use a
top-down approach instead. Hole spin qubits with intrinsic spin-orbit
interaction can be realized, for example, using silicon complementary
metal–oxide–semiconductor (CMOS) transistors [202, 203] or in planar
germanium [140, 198]. It is therefore highly desirable to couple spin qubits
in these structures to a superconducting resonator. Indeed, very recent
experiments demonstrated signatures of strong spin-photon coupling be-
tween a microwave photon and a hole in a CMOS transistor [199]. Demon-
strations of a coherent coupling between a singlet-triplet qubit and a single
microwave photon, as has been demonstrated in this thesis, are still to be
realized in these material systems. Whichever material platform succeeds,
the demonstration of an entangling gate between two distant spin qubits
based on spin-orbit interaction will contribute a crucial piece to the puzzle
of a scalable quantum computer.

In terms of fundamental understanding of light-matter interaction, it is
of high interest to increase the dipolar interaction strength even further
and to observe the breakdown of the rotating wave approximation [153].
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In contrast to superconducting qubits, the quantum-dot two-level system
features a very large anharmonicity allowing to perform analog quantum
simulations [204] of quantum impurity models with quantum dots in the
USC regime.

A tuning strategy for the qubit dipole moment has been presented in
this work and enhancing it by a factor of two would allow investigations
of the hybrid qubit-photon system deep in the USC regime. It turns out,
there are several possibilities for further enhancing the dipolar coupling
strength.

One way is increasing the lever arm of the resonator gate to the DQD,
which is possible utilizing the crystal-phase defined nanowire DQDs which
we have used in this thesis. Because no depletion or accumulation gates
are needed for defining the DQD in this material system, spurious capac-
itance that would reduce the lever arm is avoided. By depositing gates
on top of the nanowire rather than next to it, a substantial increase of
the lever arm and thereby the coupling strength compared to the work
presented in this thesis is expected.

Another possibility for increasing the coupling strength lies in connect-
ing either end of the half-wave resonator to one of the two plunger gates
of the DQD. Because the voltages on the two ends of the resonator os-
cillate out-of-phase, by doing so, a factor of two in the effective voltage
fluctuations and hence in the coupling strength can be gained [34].

The coupling strength can be increased even further by utilizing res-
onators with even larger impedance such as granular aluminum (grAl) [205]
resonators. When implementing these proposals, high-impedance res-
onators will enable the detection of novel phenomena due to the mixing
of light and matter to an extreme degree deep in the USC regime.

Having said that, I am optimistic that numerous insights and plenty
of intriguing results are ensued from the investigation of light-matter in-
teraction in solid-state systems based on high-impedance resonators and
eventually, they will contribute to the realization of a useful quantum
computer with so-far unknown potential for addressing urgent challenges
of humankind.
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A Fabrication protocols

This chapter provides detailed information about the fabrication of the
devices described throughout this thesis.

A.1. Fabrication of resonator devices with GaAs dots

The devices described in Chapter 5 were fabricated by Pasquale Scar-
lino. Detailed fabrication protocols can be found in the thesis of Anna
Stockklauser [35].

A.2. Fabrication of high-impedance NbTiN resonators

NbTiN resonators are described in Chapter 3, in Chapter 4, in Chapter 6,
in Chapter 7, and in Chapter 8.

While fabricating the high-impedance NbTiN resonators, a special at-
tention has to be given to the wafer processing before the sputtering of
the superconducting film (see Section A.2.2, and Section A.2.3) and to
the sputtering process itself (see section A.2.4). This section aims on pro-
viding a detailed description of every step involved in the fabrication of
these resonators enabling the reader to reproduce the results.

A.2.1. Wafer characteristics
- Substrate material: intrinsic silicon (resistivity: 10 kΩcm)

- Optional capping layer: 100 nm thermally grown silicon oxide

A.2.2. Cleaning of wafer with capping layer
- Sonication in an aquatic solution of tripotassium orthophosphate

(time: 5 min)
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A. Fabrication protocols

- Sonication in water (time: 5 min)

- Sonication in acetone (time: 5 min)

- Sonication in isopropanol (time: 5 min)

- Blow-drying with nitrogen

- Ozone plasma cleaning (time: 5 min)

A.2.3. Cleaning of wafer without capping layer
In advance at the facilities of Paul-Scherrer Institute

- Piranha etching (solution: H2SO4:H202 – 2:1, temperature: 90°C,
time: 10 min)

- Oxide removal: solution (10% HF in water, time: 1 min)

- Piranha etching: (solution: H2SO4:H202 – 2:1, temperature: 100°C,
time: 10 min)
After the second Piranha etching step, the wafer is left with a thin
layer of protecting oxide which is removed right before sputtering.

- Rinsing in water

- Vacuum sealing

Immediately before sputtering at University of Basel

- Oxide removal (solution: 10% HF in water, time: 1 min)

- Rinsing in water

- Blow-drying with nitrogen

A.2.4. Sputtering
- Loading of wafer and small wafer piece with PMMA mask which is

used for determining the thickness of the sputtered film

- Pre-sputtering of titanium (power: 50 W, time: 15 min, background
pressure: 4 mTorr , Ar flow: 50 sccm, sample shutter closed)

158

A



A.2. Fabrication of high-impedance NbTiN resonators

- Waiting 12 h to reach base pressure ≲ 10−9 mTorr

- Pre-sputtering of NbTi (power: 50 W, time: 5 min, background pres-
sure: 2 mTorr, Ar flow: 50 sccm, N2 flow: 3.5 sccm, sample shutter
closed)

- Sputtering of NbTi (power:250 W, time:45 s, background pressure:
2 mTorr, Ar flow: 50 sccm, N2 flow: 3.5 sccm, sample shutter open,
sample rotation)

A.2.5. Two-step e-beam lithography
The etch mask used for defining the high-impedance superconducting
resonators is created by means of electron beam lithography using a
30kVscanning electron microscope (SEM). In order to minimize the ef-
fects of beam-fluctuations during the lithography of the narrow center
conductor, the lithography is performed in two steps: In a first lithogra-
phy step, large structures such as bond pads and feedlines are patterned
using a low dose. The sample is then developed at room-temperature be-
fore being loaded to the SEM for a second time. A second exposure step
is performed with much larger charge doses minimizing the effect of beam
fluctuations and proximity exposure [206]. This ensures that the mask for
the narrow center conductor is well defined. The sample is then devel-
oped for a second time at a reduced temperature. While pattering, the
script Multisample is used which enables us to pattern several structures
in batches.

Sample preparation

- Cleaving of wafer to a a sizeable piece (∼ 1.5 cm×3 cm)

- Sonication in acetone (time: 5 min)

- Rinsing in isopropanol

- Blow-drying with nitrogen

- Spin coating (solution: 4.5% PMMA in anisole, rotation speed:
6000 rpm, time: 45 s)

- Baking (temperature: 180◦C, time: 5 min)

A
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A. Fabrication protocols

First e-beam step for large structures

- Exposure (dose: 300 µC, acceleration voltage: 30 kV)

- Warm development (solution: methylisobutylketon:isopropanol - 1:3,
temperature: 20◦C, time: 45 s)

- Rinsing (solution: isopropanol, temperature: 20◦C, time: 10 s)

- Blow-drying with nitrogen

Second e-beam step for narrow center conductor

- Exposure (dose: 2000 µC, acceleration voltage: 30 kV)

- Cold development (solution: methylisobutylketon:isopropanol - 1:3,
temperature: -20◦C, time: 30 s)

- Rinse (solution: isopropanol, temperature: -20◦C, time: 10 s)

- Blow-dry with nitrogen

A.2.6. Dry-etching

- Filling ICP-RIE plasma etcher chamber with argon (flow: 25 sccm)
and chlorine(flow: 40 sccm) until reaching 10−5 bar.

- Plasma (source power: 100 W, rf generator power: 125 W, time:
10 s)

A.2.7. Resist removal

- Sonication in N-ethyl pyrrolidone [207] (temperature: 80◦C, time:
60 min)

- Sonication in acetone (temperature: 50◦C, time: 20 min)

- Rinsing in isopropanol

- Oxygen plasma cleaning (power: 30 W, time: 1 min)
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A.3. Fabrication of nanowire devices

A.3. Fabrication of nanowire devices

After fabricating the NbTiN resonator, a nanowire device is fabricated in
a designated area of the chip at which the NbTiN has been etched away.

A.3.1. Fabrication of Ge/Si core/shell nanowire device
Narrow finger gates are fabricated by means of electron-beam lithography.
The finger gates are isolated by 20 nm of hafnium/aluminium oxide grown
by means of atomic layer deposition. The nanowire is then determinis-
tically placed using a micromanipulator. As a last step, the nanowire
is contacted using titanium/gold after removing the native silicon oxide
from the shell using hydrofluoric acid. Details are found in the theses of
Joost Ridderbos [208] and Florian Froning [84].

A.3.2. Fabrication of InAs nanowire device
Several nanowires are deterministically deposited using a micromanipula-
tor. A suitable nanowire is then chosen using electron-beam microscopy
and the position of the double-quantum dot (DQD) is identified on the
basis of GaSb markers that had previously been selectively grown on the
zincblende segments of the nanowire [45]. After having identified the po-
sition of the tunnel bariers, gold is deposited on top of the end of the
nanowire, clamping it and hence protecting it from moving in the con-
secutive wet-etching step. As a next step, the gallium antimony shell is
etched away using low-concentrated TMAH (C4H13NO). As a last step,
titanium/gold side gates are deposited in proximity to the nanowire and
the nanowire is contacted using titanium/gold after milling the indium ar-
senide oxide covering the nanowire using an argon plasma. Details about
the fabrication of InAs nanowire devices can be found in the thesis of
Alessia Pally.

A
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B Supplementary information: Designing
high-impedance microwave circuits

This chapter provides supplementary information corresponding to Chap-
ter 3 in the main text.

B.1. Designing the coupling capacitor

In section 3.4 in the main text, we describe how we use Sonnet for design-
ing the coupling between the feedline and a notch-type resonator.

Aiming for a resonance frequency of roughly 3.5 GHz and a total Q
factor on the order of Qtot ⪆ 103, Qc is desirable to be approximately
3,000. We perform a simulation study of different capacitor designs which
are shown in Figure B.1. For each of these coupling capacitor designs, we
simulate the transmission through the feedline as a function of frequency.
From the simulation, we find S21 as a function of frequency which is then
fitted to extract fr and Qc.

The capacitor designs between Figure B.1a) and Figure B.1c)) differ in
the width of the capacitor plate attached to the end of the resonator’s
center conductor. The length, l of the resonator center conductor that
is specified in the caption of Figure B.1 is slightly different to partly ad-
just for the frequency pull due to the different capacitor plates at the
center conductor ends. We notice that even the largest capacitor plate
(Figure B.1c)) results in a coupling Qc ≫ 10, 000. Further increasing
the capacitor size reduces the resonance frequency and hence the effective
impedance of the resonator. Therefore, the designs shown in Figure B.1d)
and Figure B.1e) do not rely on a capacitor plate at the end of the cen-
ter conductor and feature a large proximity to the feedline instead. In
this approach, the resonator frequency can be well determined by an ana-
lytic coplanar-waveguide model and is approximately independent of the
coupling capacitance. The capacitor in Figure B.1e) together with a res-
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B. Supplementary information: Designing high-impedance microwave
circuits

a) b) c)

d) e)

Figure B.1. Capacitor designs. The width of the feedline center
conductor is 110 µm in all figures. The width of the capacitor plate, w,
and the length, l, of the resonator center conductor is varied as specified in
each subcaption. The subcaption also indicates the simulated resonance
frequency fr and coupling Q factor Qc. a) l = 1.3 mm, w = 8.5 µm,
fr ≈ 2.8 GHz, Qc ≈ 20500 b) l = 1.1 mm, w = 20 µm, fr ≈ 3.0 GHz,
Qc ≈ 13500 c) l = 1.0 mm, w = 40 µm, fr ≈ 2.1 GHz, Qc ≈ 14500 d)
l = 1.3 mm, fr ≈ 3.5 GHz, Qc ≈ 12500 e) l = 1.3 mm, fr ≈ 3.5 GHz,
Qc ≈ 3500

onator length of 1.3 mm, results in a resonance frequency of 3.5 GHz and
a Qc ≈ 3, 500, hence perfectly matching our requirements.

B.2. Alternative measurement setup

The experiments presented in Chapter 5 were performed in a different di-
lution refrigerator using a modified setup compared to the one described
in Section 3.5 in the main text and we briefly explain the main differences.
The schematic setup can be seen in Figure B.2 and the largest difference
compared to the setup shown in Figure 3.7 in the main text lies in the
way the microwave tone is generated and analyzed. In this case, the mi-
crowave tone (radio frequency (RF)) is generated at room temperature by
a microwave generator instead of a vector network analyzer (VNA). Af-
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B.2. Alternative measurement setup

ter passing the sample, the microwave tone passes three circulators and is
then reflected by a Josephson parametric amplifier (JPA) providing quan-
tum limited amplification [23, 54, 209]. The JPA is driven by an external
pump tone which, upon reflection, is cancelled by an additional tone that
is split off the pump line and fed into the fourth port of the directional
coupler. Destructive interference between pump tone and cancellation
tone is achieved by tuning amplitude and phase of the cancellation tone
using a displacer board [23].

For signal acquisition, the signal is down-converted to an intermedi-
ate frequency (IF) by mixing the signal with a local oscillator (LO) de-
tuned from the RF signal tone. A phase-reference is gained by perform-
ing the same mixing with a reference tone which is split-off from the
RF input signal. After down-conversion, the signals are consecutively
amplified and low-pass filtered. Finally, they reach the analog-to-digital
converter (ADC) inputs of an Acqiris high-speed digitizer acquisition card
which performs digital down-conversion to zero frequency and the Q and
I quadratures are obtained. Combining them gives the complex transmis-
sion S = I + iQ[11, 23, 210].
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Figure B.2. Cryogenic and room-temperature equipment. A co-
herent microwave signal is generated by a microwave generator. After
passing the resonator, it is amplified by a JPA, a cryogenic high electron
mobility transistor (HEMT) amplifier and two room-temperature HEMT
amplifiers. It is then downconverted and detected using an ADC acquisi-
tion card. Figure adapted from [23].
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C Supplementary information: The effect
of dielectrics on the quality of
high-impedance resonators

This chapter provides supplementary information corresponding to Chap-
ter 4 in the main text.

C.1. Investigation of sputtering parameters

In this appendix, we give detaild background information about the choice
of sputtering paramters that are used while fabricating the resonators as
described in Section 4.3 in the main text.

In order to minimize the impurity density of the sputtered NbTiN film,
it is desirable to maximize the growth rate γ, because a shorter sputtering
time results in less gettered contaminants in the film. While sputtering,
the plasma power, P , the background pressure ρbg, the argon flow JAr and
the nitrogen flow JN2 can be controlled. In Figure C.1, we investigate the
dependence of the growth rate γ and the voltage between the plasma
source and the target Vdc on these parameters. The growth rate increases
as a function of P . Therefore, the power should be chosen as high as pos-
sible while maintaining a stable plasma which is the case in our chamber
for P ⪅ 250 W. As a function of JN2 , a maximum in the growth rate is
found, corresponding to the stoichiometric ratio [211] (see Figure C.1a)
and Figure Figure C.1b)). The position of the optimum depends on P
and ρbg. When increasing ρbg, γ decreases (see Figure C.1c)). Therefore,
the background pressure should be chosen as small as possible before the
plasma becomes unstable. In our sputtering chamber, this is the case for
ρbg ⪅ 2 mTorr. We choose P = 250 W, ρbg = 2 mTorr, JAr = 50 sccm,
JN2 = 3.5 sccm for the sputtering of both films.
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Figure C.1. Sputtering parameters. a) growth rate γ as function of
nitrogen flow JN2 at different back-ground pressures ρbg and plasma power
P . b) dc voltage Vdc between plasma source and target as function of QN2
for two valued of ρbg and P .A kink in the curve is obersed in all both a)
and b) at the same values of JN2 . This kink corresponds to sputtering at a
stoichiometric ratio. c) growth rate γ as a function of background pressure
ρbg showing a monotonous decay as lower ρbg correspond to larger mean-
free paths and therefore to a smaller scattering of the sputtered material.
d) dc voltage Vdc between the plasma source and the target as a function
of background pressure ρbg. When lowering ρbg < 2 mTorr, Vdc increases
drastically and the plasame becomes unstable. All traces were measured
at a fixed argon flow rate QAr = 50 sccm.
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C.2. Frequency shift in power dependence

C.2. Frequency shift in power dependence

In the inset of Figure 4.3b) in the main text, we observe a substantial
positive resonance frequency shift as a function of temperature with a
peak at approximately 0.5 K. We attribute this shift to a saturation of
TLS with a transition frequency of approximately 10 GHz dispersively
interacting with the resonator. Figure C.2 shows the resonance frequency
shift as a function of number of photons in the resonator. The observed
positive shift is smaller by an order of magnitude compared to Figure 4.3.

For very large drive powers with ⟨nph⟩ ⪆ 105, a negative relative fre-
quency shift is observed in Figure C.2. We attribute this negative shift to
the onset of the bifurcation of the resonator due to a finite non-linearity.
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Figure C.2. Relative frequency shift δfr = fr − fr(n → 0) as func-
tion of average number of photons in the resonator ⟨nph⟩. We do not
observe a noteworthy positive frequency shift, and therefore exclude a
simple saturation of two-level fluctuators as reason for the observed res-
onance frequency shifts as a function of temperature in Figure 4.3 in the
main text. For ⟨nph⟩ ⪆ 105, an increasingly negative relative frequency
shift is observed which we attribute to the finite non-linearity of the res-
onators.
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D Supplementary information: Charge
noise protection and ultrastrong
coupling

This chapter provides supplementary information corresponding to Chap-
ter 5 in the main text. Section D.1 provides the methodology of quanti-
tative charge-stability diagram analysis which was used in most chapters
of this thesis.

D.1. Determining the system capacitances

 

 

 

 

QD1
C1

QD2
C2

GL GR

VL VR

CL1 CR2

CL2 CR1

Cm

Figure D.1. Capacitance model of a double-quantum dot
(DQD). In the figure, all the capacitance parameters relevant for us
are indicated. Figure adapted from [97, 212].

The charge-stability diagram can be understood quantitatively by con-
sidering a capacitance model [97] as depicted in Figure D.1. This section
aims on providing simple expressions for determining the relevant capac-
itance parameters from the measured charge-stability diagram which are
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Figure D.2. An example of a DQD charge stability diagram. It shows
the phase response of the resonator reflectance while changing the voltage
of gates L R [see Fig. 5.1(e)]. The six voltage differences indicated allow
extraction of the QDs capacitances and the dipole strength η.

used throughout this thesis. Then, from the system capacitances, the
dipole strength which is used in Chapter 5 is calculated explicitly.

In the following, we describe how the set of capacitance parameters
CL,1, CR,1, C1, CL,2, CR,2, C2 and Cm corresponding to Figure D.1, are
determined from the DQD charge stability diagram. Here CL,i [CR,i] is
the capacitance between the left [right] side plunger gate and the ith dot
and Ci is the total capacitance of the ith dot. Cm describes the inter-dot
mutual capacitance.

Dashed lines labelled with ∆VL,i [∆VR,i] in the charge stability dia-
gram [191] in Figure D.2 represent the plunger gate voltage differences
between two consecutive sets of triple points for which the only difference
is that the effective charge of dot i changes by one electron charge e, while
the total electro-static energy remains constant. I.e. changing the left and
right gate potentials by ∆VL,1 and ∆VR,1 according to the figure brings
the charge configuration from (N,M) to (N ± 1,M), where N and M
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D.1. Determining the system capacitances

are integers. Changing the number of charges by one in dot 2 ((N,M)
to (N,M±)) is realized by adjusting the gate potentials by ∆VL,2 and
∆VR,2. Hence one finds the four equationsCL,1

CR,1
CL,2
CR,2

 =

 ∆VL,1 −∆VR,1 0 0
0 0 ∆VL,1 −∆VR,1

−∆VL,2 ∆VR,2 0 0
0 0 −∆VL,2 ∆VR,2


−1

·

e00
e

 (D.1)

The charging energy, can be rewritten as

En1,n2 (nG,i) = EC,1(n1 − nG,1)2 + EC,2(n2 − nG,2)2 + EC,m(n1 − nG,1)(n2 − nG,2),
(D.2)

where ni is the number of electrons in dot i. Here, we introduced nG,i
representing the effective number of electrons induced on dot i by the
voltages on the gates. A voltage change on the left (right) side gate,
denoted by ∆V L (∆V R), results in a change ∆nG,1 (∆nG,2) of nG,1 (nG,2)
according to (

∆nG,1
∆nG,2

)
= 1
e

(
CL,1 CR,1
CL,2 CR,2

)
·
(

∆V L

∆V R

)
. (D.3)

and the charging energy matrix is represented by(
EC,1 EC,m/2
EC,m/2 EC,2

)
= e2

2

(
C1 −Cm

−Cm C2

)−1

. (D.4)

Now we consider the solid black lines in Figure D.2 labelled with ∆V L
m

[∆V R
m ] that connect adjacent triple points which are split due to the mu-

tual inter-dot capacitance Cm. In the following, we use them to extract
Cm, C1 and C2. Because we conduct ourselves on relative occupancies,
without losing generality, we consider the triple point at the intersects of
the {(0,0), (0,1), (1,0)} charge stability regions. The electrostatic energy
at these triple point is given by

E0,0(n(1)
G,i) = E0,1(n(1)

G,i) = E1,0(n(1)
G,i). (D.5)

Similarly, the charging energy at the adjacent triple point corresponding
to the intersect of the {(1,1), (0,1), (1,0)} charge stability regions is given
by

E1,1(n(2)
G,i) = E0,1(n(2)

G,i) = E1,0(n(2)
G,i). (D.6)
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The voltage differences between these two triple points are denoted by
∆V L

m and ∆V R
m (lengths of solid black lines in Figure D.2). Plugging

these voltage differences into Eq. (D.3) as ∆V L = ∆V L
m and ∆V R = ∆V R

m ,
we calculate the difference of the effective electron numbers induced by
the gates ∆n(m)

G,1 and ∆n(m)
G,2 between the two triple points. In order to

calculate the three parameters Cm, C1 and C2, additionally to Eqs. (D.5)
and (D.6), we consider the following relation which allows to calibrate the
energy scale in the DQD stability diagram:

ℏϵ = E1,0 − E0,1 (D.7)

at a specific set of gate voltages. Throughout the experiments presented
in this thesis, the detuning ϵ is measured in three different ways:

1. By two-tone spectroscopy of a charge qubit (see Figure 2.19)

2. By measuring a bias triangle at a given source drain bias voltage
Vsd (see Figure F.1)

3. By measuring an anti-crossing of the resonator and a charge qubit
as a function of ϵ (see e.g. Fig. 5.3a-c))

We label the difference in the voltage on the left (right) gate correspond-
ing to ϵ extracted from any of these methods. By plugging these voltage
differences into Eq. (D.3) as V L = ∆V L

ϵ and V R = ∆V R
ϵ , we again convert

the voltage differences into differences in the effective number of electrons
induced by the gates which we call ∆n(ϵ)

G,1 and ∆n(ϵ)
G,2. Here, the super-

script (ϵ) highlights the correspondence to one specific set of ϵ, ∆V L
ϵ and

∆V R
ϵ .

Combining Eqs. (D.2), (D.5), (D.6) and (D.7), we find the charging
energies as

(
EC,1
EC,2
EC,m

)
=


∆n(m)

G,1 0
(

∆n(m)
G,2 − 1

)
/2

0 ∆n(m)
G,2

(
∆n(m)

G,1 − 1
)
/2

−2∆n(ϵ)
G,1 2∆n(δ)

G,2 ∆n(ϵ)
G,1 − ∆n(ϵ)

G,2


−1

·

( 0
0
ℏϵ

)
. (D.8)

From the charging energies, the capacitances C1, C2 and Cm can be de-
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duced from Eq. (D.4) as

Cm =
e2 (∆V L

ϵ ∆V R
m + ∆V L

m ∆V R
ϵ

)
ℏϵ (∆VL,1∆VR,2 − ∆VL,2∆VR,1) , (D.9)

C1 = e2(∆V L
ϵ ∆V R

m +∆V L
m∆V R

ϵ )(∆VL,1∆VR,2−∆V L
m∆VR,2−∆VL,2∆V R

m −∆VL,2∆VR,1)
ℏϵ(∆V L

m∆VR,1+∆VL,1∆V R
m )(∆VL,1∆VR,2−∆VL,2∆VR,1) ,

(D.10)

C2 = e2(∆V L
ϵ ∆V R

m +∆V L
m∆V R

ϵ )(∆VL,1∆VR,2−∆V L
m∆VR,1−∆VL,1∆V R

m −∆VL,2∆VR,1)
ℏϵ(∆V L

m∆VR,2+∆VL,2∆V R
m )(∆VL,1∆VR,2−∆VL,2∆VR,1) .

(D.11)

After having found these equations for the system capacitances, we cal-
culate the dipole strength is given according to Eq. (5.5) as

η = 1 − 2Cm/(C1 + C2)
1 + 2Cm/(C1 + C2) . (D.12)

When dividing the capacitances by each other, the terms involving the
lever arm calibration cancel. Hence, η can be determined directly from
the charge stability diagram without considering the energy calibration
step.

In the simplified case of identical dots, C1 = C2 = CΣ, with a symmetric
coupling to their respective gates, CL,1 = CR,2, and neglecting cross-gate
capacitances, CR,1 = CL,2 = 0, the expressions further simplify to

Cm

CΣ
= ∆Vm

∆Vg − ∆Vm
, (D.13)

η = 1 − 2∆Vm

∆Vg
, (D.14)

where ∆Vm/
√

2 ≡ ∆V L
m = ∆V R

m and ∆Vg/
√

2 ≡ ∆VL,1 = ∆VR,2.
The error bars assigned to the extracted capacitances and to η are

determined by attributing, in the above procedure, an uncertainty to the
positions of the four triple points in the stability diagram (see Fig. D.2).
The errors were then propagated to the final results in Eqs. (D.12), (D.9),
(D.10) and (D.11) using Gaussian error propagation.
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index CΣ,1 [fF] CΣ,2 [fF] Cm [fF] η g/2π [MHz] Γ2/2π [MHz] σϵ [µeV] ϵ/2π [MHz] ωr/2π [MHz]
1 0.561±0.034 0.634±0.071 0.488±0.041 0.101±0.064 41.63±0.06 4.5±0.2 0.171±0.006 5420.8±0.2 5437.0±0.1
2 0.433±0.037 0.474±0.061 0.358±0.041 0.117±0.088 54.9±0.1 4.8±0.2 0.113±0.009 5568.6±0.3 5575.6±0.14
3 0.599±0.056 0.565±0.034 0.473±0.038 0.103±0.065 48.8±0.2 4.5±0.2 0.107±0.007 5435.1±0.5 5578.6±0.11
4 0.554±0.068 0.41±0.075 0.364±0.060 0.204±0.105 75.7±0.2 5.5±0.2 0.250±0.008 5137.4±0.4 5117.6±0.14
5 0.656±0.065 0.70±0.053 0.506±0.052 0.123±0.079 56.4±0.5 6.7±0.2 - 5482±3 5578.4±0.4
6 0.611±0.053 0.54±0.058 0.443±0.046 0.168±0.071 86.3±0.2 7.2±0.2 0.120±0.007 5633.5±0.4 5649.0±0.2
7 0.265±0.045 0.31±0.051 0.191±0.034 0.184±0.092 87.2±0.4 6.5±0.8 0.34±0.007 5276±1 5283.7±0.6
8 0.333±0.031 0.27±0.041 0.250±0.026 0.172±0.078 111.1±0.3 9.6±0.3 0.273±0.005 5145±1 5180.3±0.2
9 0.136±0.045 0.32±0.037 0.058±0.017 0.419±0.073 153.6±1.9 28.3±1.2 0.42±0.02 4453±4 4440.9±0.3
10 0.330±0.050 0.20±0.023 0.048±0.007 0.709±0.031 260.5±3.5 36.8±0.9 - 4772.7±9 4745.5±0.9
11 0.412±0.029 0.20±0.050 0.257±0.029 0.273±0.076 65.9±0.7 8.5±1.1 0.328±0.005 4243±2 4271.6±0.2

Table D.1. Extracted parameters for the eleven DQD configurations
presented in Fig 5.4 in Sec. 5.3 of the main text.
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Figure D.3. Parameter comparison between the eleven configurations
analyzed in the main text. (a) DQD capacitances C1, C2 and Cm. (b)
Dipole strength η. (c) κext and κint, extracted by fitting the reflectance
of the bare SQUID array to a Lorentzian with the DQD deep in Coulomb
blockade. (d) Inter-dot tunneling rates ∆/h obtained from the JC model
[see dashed lines in Fig. 5.3(a-c)]. In (c) the data are ordered accord-
ing to the resonator frequency. In remaining panels, the x axis is the
configuration index.
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D.2. Considerations about definition of dipole strength η

index VCG (mV) VT (mV) VLSG (mV) VRSG (mV)
1 -823.00 -623.00 -881.32 -946.48
2 -823.00 -623.00 -883.236 -937.35
3 -823.00 -727.00 -884.445 -789.79
4 -823.00 -818.00 -691.47 -751.60
5 -847.00 -847.00 -671.525 -641.20
6 -882.00 -882.00 -602.14 -648.68
7 -936.00 -936.00 -795.71 -593.76
8 -982.00 -982.00 -576.544 -613.92
9 -1040.00 -1040.00 -473.037 -562.02
10 -1050.00 -1050.00 -496.28 -574.92
11 -1030.00 -1030.00 -525.56 -494.35

Table D.2. The DQD gate voltages for the eleven configurations inves-
tigated in Sec. 5.3 of the main text.

D.2. Considerations about the definition of the dipole
strength η

Here, we report some further considerations about the definition of the
dipole strength for a DQD, introduced in Eq. (5.8). First of all, η is
dimensionless and independent on scales, such as the dot size or material
constants. Second, since CΣ ≥ Cm ≥ 0, its value ranges between zero and
one. Third, we notice that zero mutal capacitance, Cm/CΣ → 0, gives
no suppression, η → 1, and maximal mutual coupling Cm/CΣ → 1 gives
perfect suppression η → 0. Here, it is useful to point out two possible
limiting scenarios of increasing the inter-dot coupling to Cm/CΣ → 1.
Among other options, one can take this limit with either CΣ or Cout
fixed. In the former, the numerator in Eq. (5.8) is decreasing, reflecting
the sum rule in Eq. (5.6). The numerator is constant in the latter, and its
only role is to render the dipole strength dimensionless and normalized
to one. Finally, and what we deem most important, the definition of η as
given in Eq. (5.8) is practical: the quantities defining η can be directly
read off the standard charging diagram of the double dot, as illustrated
in Fig. 5.2 and Fig. D.2.

For illustration, we make the analogy with the typical microscopic

D
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model used to describe the origin of the coupling of the DQD electrical
dipole moment e × d to the electrical field E generated by the resonator.
In this case, we can write the coupling term as

g = η × g0 ≡ η × e× d× E , (D.15)

where we identified the bare dipole energy of the DQD and resonator as
g0 = ed E = 2e

√
ℏωr
2Cr

CG,1−CG,2
Cout

, defined through bare quantities e, d and
E . Thus, Eq. (D.15) expresses the coupling strength as the dipole energy
arising from displacement of an electron by distance d in the electric field
E , modified by the dipole strength η ∈ ⟨0, 1⟩. Such a definition anticipates
the three different possible microscopic origins of the dipole strength for
the dipolar interaction: the dot background (core) electrons can partially
screen the electric field acting on the hopping (valence) electron (η × E);
screening effects can reduce the effective hopping charge (η × e); electro-
static tuning of the system may result in a configuration with reduced
effective inter-dot distance (η×d). Experimentally, we cannot distinguish
these scenarios. We refer to them collectively as renormalization of the
dipolar coupling energy. Eq. (5.10) defines the dipole coupling g using
more accessible parameters.

D.3. Detuning sensitivity to charge and voltage
fluctuations

This appendix shows how the DQD detuning energy responds to a change
in the electrostatic environment in correspondence with voltage or charge
fluctuations of a nearby impurity. Our goal is to shed light on Eq. (5.5),
especially in the case where the two dots have non-equal capacitance con-
tributions. The first line of Eq. (5.5) can be cast into

δϵ = eδVG
CG [dΣCΣ + dG(CΣ − Cm)]

C2
Σ(1 − d2

Σ/4) − C2
m

. (D.16)

We have introduced CG = (CG,1 +CG,2)/2 and CΣ = (C1 +C2)/2 for the
average capacitances, and dG = (CG,1−CG,2)/CG and dΣ = (C1−C2)/CΣ
for fractional differences. The formula further simplifies upon introducing
“polarizations” of the dot capacitances to the gate and to the outside of
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the DQD, Cout,d = Cd − Cm. Namely, we define the polarizations

PG = CG,1 − CG,2

CG,1 + CG,2
, Pout = Cout,1 − Cout,2

Cout,2 + Cout,2
. (D.17)

They relate to the fractional differences by PG = dG/2 and Pout =
dΣCΣ/2(CΣ − Cm) and they take values between -1 and 1. PG ≈ 1
corresponds to the magnitude of the left dot capacitance to the gate VG
being much larger than that of the right dot and analogously for Pout.
Since we aim at the leading order result, we neglect the d2

Σ/4 term in the
denominator of Eq. (D.16), being higher-order in the difference of the two
total capacitances. With that, and using the polarizations, the detuning
change is

δϵ = eδVG
CG,1 + CG,2

CΣ + Cm
(PG + Pout) (D.18)

, which is a generalization of the second line of Eq. (5.5): The differ-
ence of the two dots gives rise to an additional polarization, Pout. Using
Eq. (D.18) instead of Eq. (D.16), the expression in Eq. (5.7) would read

δϵ = eVG
CG,1 + CG,2

Cout
(PG + Pout) η , (D.19)

where Cout = CΣ − Cm and the last term is the dipole strength as given
in Eq. (5.8). In other words, our definition of η remains the same even if
the dots are not equal.

We now derive the detuning change with respect to a charge impurity
fluctuation. Concerning the electrostatic description, a charge impurity
is an object similar to a dot: its primary variable is the charge and the
voltage is a derived variable. Postponing the derivation and discussion of
a model containing charge impurities to a separate publication, we state
here only the result; the analog of Eq. (D.16) with changing impurity i
charge by δQi is

δϵ = e
δQi
Ci

Ci,1 + Ci,2
CΣ + Cm

(Pi + Pout) , (D.20)

where Ci,d is the capacitance between the impurity i and the dot d, the
polarization of these capacitances is Pi = (Ci,1 − Ci,2)/(Ci,1 + Ci,2), and
Ci is the impurity self-capacitance. We conclude that there is a complete
analogy between Eq. (D.18) and Eq. (D.20) upon interpreting δQi/Ci as
the equivalent voltage fluctuation.
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D.4. SQUID and junction array high impedance resonators

High impedance resonators represent a valuable tool to increase the vac-
uum voltage fluctuations to maximize the coupling strength with the two-
level electrical dipole moment. They allow to reach the strong coupling
regime for electrons confined in semiconductor DQDs [23]. For supercon-
ducting artificial atoms electrically coupled to the microwave radiation,
it has been recently demonstrated that high impedance resonators enable
reaching a much higher coupling strength , which brings the system in the
ultrastrong and deep strong coupling regimes [152, 153].

The SQUID and JJ array resonators, represented in Fig. D.4, are 1D
Josephson-junction metamaterials with a multimode spectrum [37]. The
choice of design parameters ensures that the array exhibits its fundamental
mode within the measurement bandwidth and well separated in frequency
from its second mode [37]. In Fig. D.4 (a) and (b) [(c) and (e)], we
report a micrograph of [a circuit model for] the SQUID and JJ array
resonators, respectively. The base unit of the SQUID [JJ] array resonator
is enclosed by the dashed red [blue] line in Fig. D.4(a), (c-d) [(b), (e-
f)]. The fabrication process of the SQUID array, based on the shadow
evaporation technique, generates the two small Josephson junctions in
parallel (the SQUID junctions, in red) that are in series with an extra
larger junction (in blue), of ∼ 11 times larger footprint, as we can see in
Fig. D.4(a).

We realized SQUID junctions with inductance LS ∼ 1.25 nH and ca-
pacitance CS ∼ 80 fF, while the large junctions have L⋆J ∼ 0.11 nH and
C⋆J ∼ 880 fF. Each section of the SQUID array contributes on aver-
age a stray capacitance to ground of C0 ∼ Cgnd/N = CJ

0 + CS
0 (see

table D.3), where CJ
0 ∼ 6CS0 is the average capacitance to ground of the

series junction. Therefore, the part of the base unit containing the extra
junction dominates the stray capacitance to the ground per section, but
adds a negligible contribution to the total array inductance. This limits
the impedance of the resonator array’s fundamental mode.

We model the arrays as distributed λ/4 resonators, being shunted to
ground on one end [see Fig. 5.1(c) and (d)]. The capacitance between the
array resonator and the right QD, the microwave feedline and the rest of
the DQD depletion gates are estimated to be CRPG ∼ 0.07 fF, Cc ∼ 3 fF
and Cg ∼ 1.5 fF, respectively.

As shown in Fig. D.4(f) and reported in Table D.3, we model each unit
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cell of the JJ array with a parallel circuit of an inductance LJ ∼ 1.5 nH
and a capacitance CJ ∼ 40 fF, connected in series with a capacitance
CJJ

0 to ground. For N = 70 junctions in series, we obtain a total ar-
ray resonator length of about 70µm, with an estimated total array in-
ductance of Ltot ∼ 102 nH and a total stray capacitance to ground of
Cgnd ∼ 4.9 fF. This allows to estimate a JJ array resonator impedance
ZrJJ ∼

√
Ltot/(Cgnd + Cc + Cg + CRPG) ∼ 3.8 kΩ , which is almost four

times higher than the SQUID array impedance and allows to increase
the coupling strength with the DQD electric-dipole moment of a factor√
ZJJ

r /ZSq
r ∼ 2.

SQUID Array Junction Array
Zr (kΩ) 1.1 3.8

ωr/2π (GHz) 6.2 (tunable) 5.665
κint/2π (MHz) Fig. D.3(c) 23.0
κext/2π (MHz) Fig. D.3(c) 4.0

N 34 72
ωp/2π (GHz) 16.6 16.1
Length (µm) 200 70
K00 (kHz) 5 60
Ltot (nH) 31 102
Cgnd (fF) 19 5
Cc (fF) 2.5 1.5
Cg (fF) 1.5 1.5

Table D.3. Comparison between SQUID and JJ array resonators.

D.5. Master equation - dissipative dynamics of DQD and
resonator

Here, we give a short introduction to the theoretical modeling of the
experimental data presented in Chapter 5. The model includes the DQD,
the resonator, and the microwave drive through a transition line. For
simplicity, we use the convention ℏ = 1 in this section. The dissipative
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Figure D.4. Comparison between a SQUID and a junction array res-
onator. (a) False-colored SEM micrograph of a section of a SQUID array.
The dashed red line encloses the unit cell of the SQUID array. (b) False-
colored SEM micrograph of a section of a Josephson junction array. The
dashed green line encloses the unit cell of the array, with a single 0.5×0.9
µm2 Josephson junction. (c) Schematic circuit for a λ/4 SQUID array
resonator. CD = Cc + CRPG + Cg represents the capacitive coupling be-
tween the resonator array and the microwave feedline, the DQD device,
and the rest of the DQD gates. The other end of the array is grounded.
(d) Circuit schematic of the unit cell of the SQUID array. LS and L⋆J
represent the inductance of each SQUID junctions (red) and of the ex-
tra Josephson junction (blue) connected in series, while CS (red) and C⋆J
(blue) represent their junction capacitance. C0 and C⋆0 are their respective
capacitance to the ground. (e) Schematic circuit for a λ/4 JJ array. (f)
Circuit schematic of the JJ array’s unit cell. LJ represents the Josephson
inductance, while CJ and C0 are the junction capacitance and the stray
capacitance to ground, respectively.

dynamics of the system are described by the master equation

ρ̇ = −i [H, ρ] +
∑
k

Lkρ , (D.21)

where H is the Hamiltonian of the system and Lkρ describe different
dissipative channels introduced in the following.
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D.5.1. Hamiltonian
The DQD is well described by the Hamiltonian

HDQD = ℏ
2 ϵσz + ℏtcσx = 1

2ℏωqσ̃z , (D.22)

with the Pauli matrices σ in the DQD position basis and σ̃ in its eigenbasis,
and where ϵ is the detuning and tc is the tunnel splitting between the two
dots. The DQD level splitting is ωq =

√
ϵ2 + (2tc)2. The resonator is

described by
Hres = ℏωra†a , (D.23)

with its resonance frequency ωr and the bosonic annihilation operator a.
The coupling between DQD and resonator corresponds to the quantum
dots dipole moment and the electric field of the harmonic oscillator mode,
so we write

HDQD-res = g0σz(a+ a†) (D.24)
= g0 (cosφσ̃z + sinφσ̃x) (a+ a†) ,

with the DQD mixing angle tanφ = ϵ/2tc. The total system Hamiltonian
is then

H = HDQD +Hres +HDQD-res . (D.25)

D.5.2. Dissipative processes
The quantum dot and resonator are unavoidably coupled to the environ-
ment, leading to energy loss and dephasing. For the resonator, incoherent
photon loss can be described in the master equation through a dissipative
term

Lresρ = κintD[a]ρ , (D.26)

with the internal photon loss rate κint. In practice, the resonator decay
consists of an internal component κint, resulting from coupling to the
intrinsic environment, and an external coupling rate, κext, resulting from
coupling to external modes, such as the transmission lines used for driving.
Here, the external coupling will be taken into account through the SLH
cascading of an external driving field, described in the next section, so
that we only include the intrinsic losses κint. For the DQD, we assume
a transversal decay channel, leading to energy relaxation at rate Γ1, as
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well as a pure dephasing process due to fluctuations in the level splitting,
leading to dephasing at rate Γ2 = 1

2 Γ1 + Γφ. The contributions to the
master equation due to the dissipative dynamics of the DQD are then
given by

LDQDρ = Γ1D[σ̃−]ρ+ 1
2ΓφD[σ̃z]ρ . (D.27)

D.5.3. SLH model - driven, dissipative dynamics of DQD and
resonator

We use the SLH cascaded quantum systems approach to model scattering
of microwave photons in the transmission line off the λ/4 resonator [29,
213, 214]. We cascade in a drive field for the resonator, which adds an
effective drive term to the Hamiltonian as

Hdrive = 1
2i

√
κext

(
α a† − α∗ a

)
, (D.28)

where we assumed a single-sided, λ/4-type cavity driven with a coherent
state of amplitude α. Here, we have additionally transformed the system
into the rotating frame at the drive frequency ωd of the coherent field
input α. The cascading also adds another dissipative part to the mas-
ter equation, which describes the decay of the resonator modes into the
transmission line, which is assumed to have a constant spectrum. This
term can be written as

LSLHρ = D[L̂]ρ (D.29)
with the decay operator

L̂ =
√
κext a+ α1 . (D.30)

Using this formalism, we can now calculate the amplitude β and photon
flux n of the field scattered off the resonator as

β = Tr
{
L̂ρ
}

, n = Tr
{
L̂†L̂ρ

}
(D.31)

where ρ is the solution of the total master equation, Eq. (D.21), now
also including the drive and decay term from the cascading procedure,
Eqs. (D.28) and (D.29). As equilibration of the field in the transmission
lines happens typically very fast, we can assume that scattering in exper-
iments happens in the steady-state of the system, so that we only need to
calculate the steady-state density matrix ρ̄ for all cases.
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D.5.4. Visibility of vacuum Rabi splitting
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Figure D.5. Extracted figures of merit of light-matter hybridization.
(a) System cooperativity C = ḡ2

⊥/(Γ2(κext + κint)). (b) Visibility of the
vacuum Rabi modes at resonance (1 − |S11|) = 2κext/(κext + κint + 2Γ2)
vs. the DQD-SQUID array coupling strength ḡ⊥.

In order to find analytical expressions for the scattered field in the spe-
cial case where DQD and resonator are tuned to resonance, we take the
analogy to the case of a two-level system embedded in a waveguide, c.f
the supplementary material of Ref. [215]. For exact resonance between
DQD and resonator, ωr = ωq = ω0, the eigenstates of the coupled system
are |±⟩ = 1√

2 (|0, e⟩ ± |1, g⟩). We are focussing on driving the transition
between the total system groundstate |0, g⟩ and one of the coupled eigen-
states |±⟩, analogous to the two-level system case. We diagonalise the
total Hamiltonian of the resonator plus the DQD, and consider the rele-
vant operators in the diagonal basis, when reduced to a subset of states,
i.e. the total system groundstate |0, g⟩ and either of the two maximally
mixed eigenstates |±⟩. For each of these transitions, we write the input-
output relations in the SLH formalism analogously to the case of a driven
two-level system to find the reflectance of the λ/4-type resonator in res-
onance with the DQD. For small drive amplitudes α far from saturation,
we find to lowest order in α

r± = β/α = 1 − 2κext

(κext + κint + 2Γ2 + 4i(ω0 − ωd ± 1
2g0))

, (D.32)

where ωd is the frequency of the drive field and g0 is the coupling strength
between resonator and DQD. As we assume perfect resonance between
DQD and resonator, the two expressions differ only in the position of

D

185



D. Supplementary information: Charge noise protection and ultrastrong
coupling

the resonance. For resonant driving of either transition, i.e when ωd =
ω0 ± 1

2g0, r± reduces to

r±,res = 1 − |S11| = 1 − 2κext

(κext + κint + Γ1 + 2Γφ)
= 1 − κext

2Γ2,±
. (D.33)

Thus, the depth of the reflection peak on resonance is given by the ratio
of the external coupling of the resonator to twice the total linewidth of
the DQD-resonator hybridised states, Γ2,± = 1

4 (κext + κint + Γ1 + 2Γφ),
analogous to the case of scattering off a two-level system [215]. A plot
of the visibility of the Rabi modes, extracted according to Eq. (D.33), is
reported as a function of η in Fig. 5.4(f) in the main text and as a function
of the renormalized coupling strength ḡ⊥ in Fig. D.5(b).

D.5.5. Fits
Peaks from experiments are fitted to the Hamiltonian level structure, i.e.
the position of levels in Eq (D.25). When fitting the full transmission
curve as function of frequency, the SLH model is used, where for simplicity
we set γ1 = 0, as only the total DQD linewidth is relevant for these fits.

D.6. System Cooperativity

A high-fidelity technology must exchange information with preserved co-
herence, i.e., demonstrate the so-called strong-coupling regime. This cri-
terium, which must be met for any useful quantum application, are char-
acterized by a coupling between two subsystems that is stronger than the
mean of the losses in both of them. Such, it is useful to introduce the
cooperativity, C = ḡ2

⊥/[Γ2(κext + κint)] to characterize the strength of
a light-matter interaction in our hybrid system and to compare to what
was already achieved for similar devices deployed in previous experiments
[158]. The strong coupling regime corresponds to a cooperativity which is
greater than unity. Thus, the coupling is strong in the sense that at res-
onance nearly every photon entering the cavity is coherently transferred
into the matter system.

In Fig. D.5(a), we report the system cooperativity extracted for the
eleven studied DQD configurations as a function of the dipole strength η.
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We notice how despite increasing η increases the DQD decoherence rate
Γ2 (see Fig. 5.4), the cooperativity overall increases with η. This is in
line with what is illustrated in the main part of the manuscript, where we
reported that ḡ⊥, Γ2 ∝ η, therefore C ∝ η. Making use of the described
tuning strategy for the DQD electric-dipole strength, we push the limits
for the cooperativity achieved for the semiconductor QD-resonator hybrid
device above 100, representing the current record of cooperativity for a
QD-resonator hybrid system. Furthermore, by adequately filtering the
DQD gate lines, it has been shown that it is possible to keep a resonator
linewidth < 1 MHz [105, 106], which, if implemented in our device, could
allow achieving a cooperativity of up to C ∼ 1500.

D.7. Renormalization of the coupling strengths (Eq. 5.13)

In the following, we describe the strategy used to renormalize the coupling
strengths extracted from the eleven studied DQD configurations in Sec. 5.3
[see Eq. (5.13)]. Renormalization of the coupling strengths is necessary
for comparison, because the hybridized spectra for the investigated DQD
configurations are taken at not exactly the same resonator frequency and
DQD tunneling amplitude (see Table D.1). The first term in Eq. (5.13),
2tc/ωr, originates from the mixing angle renormalization of the DQD
dipole strength [17] [see Eq. (5.1)]. In Fig. D.6(a), we report a study of
the coupling strength between a DQD and a resonator as a function of
the resonator frequency. The data originates from a similar device with a
nominally identical DQD coupled to a SQUID array resonator. The data
is acquired by spectroscopically measuring avoided crossings between the
resonator and the DQD charge qubit while keeping the DQD at its sweet
spot (ϵ = 0). The resonance frequency of the DQD charge qubit is changed
systematically by changing its inter-dot tunneling amplitude tc via the
voltages applied to the depletion gates, and the frequency tunability of
the SQUID array allows to bring the resonator into resonance with the
charge qubit.

The extracted evolution of the coupling rate g as a function of the
resonator frequency ωr ∼ ωq can be modeled accurately by a simple linear
dependence [see blue dotted line in Fig. D.6(a)]. Instead, considering that
Zr = 1/(ωrCr), from Eq. (5.10), g ∝

√
Zrωr ∝ √

ωr is expected assuming
a simùple lumped-element equivalent model of the resonator under the
condition that the tuning process of the inter-dot tunneling rate does
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neither appreciably modify the DQD electrical dipole moment nor its
capacitive coupling to the resonator gate (DQD lever-arm). The linear
scaling of g against ωr suggests that other mechanisms take place in either
the resonator impedance or the DQD electric-dipole moment during the
tuning procedures of the inter-dot tunneling and SQUID array resonance.
The change in tunnel rate or DQD shape could present a considerable
influence on the magnitude of the electrical dipole moment of the DQD
and thereby on the coupling strength. A complete understanding of these
mechanisms will require further investigations.

Fig. D.6(b) shows a comparison of the exctracted coupling strengths
corrected for the mixing angle g0 = g∆/ωr and with the normalized ḡ⊥ ∝
g0(5 GHz/ωr) and ḡ

′
⊥ ∝ g0

√
5 GHz/ωr. We notice that in our dataset,

the correction originating from the normalization choice does not exceed
10% of the bare extracted coupling rates.
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Figure D.6. (a) (Left axis) g/2π extracted by measuring a Rabi mode
splitting for the DQD qubit in resonance at ϵ = 0 with the SQUID array
fundamental mode, for different resonator frequency ωr. (Right axis)
system cooperativity, g2/(κΓ2), at different resonator frequency. During
these measurements, the DQD system is kept at the sweet spot ϵ = 0.
(b) Comparison of the exctracted coupling strengths corrected only for
the mixing angle g0 = g∆/ωr with normalized ḡ⊥ ∝ g0

5 GHz
ωr/2π and ḡ

′
⊥ ∝

g0

√
5 GHz
ωr/2π .
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D.8. Additional data

Here, we report some additional measurements and datasets which the
reader can find useful to better interpret the measurements reported in
the main text.

Figure D.7(a) reports a study of a DQD configuration, distinct from
the one reported in Fig. 5.5 in the main text. This new configuration
has been obtained by in-situ tuning the DQD dipole strength to η ∼ 0.5.
The red (blue) line in Fig. D.7(b) represents a fit to the data obtained
using the Rabi (JC) model from which we extract gR/2π = 350 ± 3 MHz
(gJC/2π = 351 ± 2 MHz). A fit of a master equation model [solid orange
line in Fig. D.7(c)] to the Rabi mode spectrum, obtained by changing the
probe frequency along the DQD detuning value indicated by the black
arrows in Fig. D.7(b), yields a splitting of g/2π ∼ 373.4 ± 0.3 MHz, with
a DQD charge decoherence of Γ2/2π ∼ 56.3 ± 0.2 MHz. For this DQD
electrostatic configuration, the system is in the strong coupling regime
(g > κ/2 + Γ2), but comes with gR,JC/ωr ∼ 0.062 which, despite being
very high for a DQD-resonator hybrid device, does not promote the system
in the USC regime.
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Figure D.7. Investigation of a configuration approaching the ultra-
strong coupling regime for a DQD with η ∼ 0.50 ± 0.14 coupled to a
JJ array. (a) Charge stability diagram of the DQD measured by monitor-
ing the change in resonator reflectance amplitude |S11| for the extracted
dipole strength η ∼ 0.50 ± 0.14. (b) Resonator amplitude response |S11|
taken by varying the DQD detuning ϵ along the grey line indicated in
panel (a) by applying properly chosen voltages to the two side gates. The
red (blue) lines are independent fits to the Rabi (JC) model (see Appendix
D.5).
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Figure D.8. Response of the SQUID array resonator reflectance ampli-
tude |S11| vs. DQD detuning ϵ in correspondence of three distinct dipole
strengths (a) η ∼ 0.42 ± 0.08 (blue), (b) η ∼ 0.17 ± 0.08 (green) and (c)
η ∼ 0.10 ± 0.07 (red) [the corresponding DQD charge stability diagrams
are reported in Fig. 5.2(e), (d) and (c)]. The three resonant spectrums are
obtained by tuning the SQUID array in resonance with the DQD charge
excitation frequency for ϵ = 0. Data already reported in Fig. 5.3(a-c).
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(b) η ∼ 0.72 ± 0.08. Data already reported in Fig. 5.5(b) and Fig. D.7(b).
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E Supplementary information:
Charge-sensing of a GeSi nanowire
double quantum dot

This chapter provides supplementary information corresponding to Chap-
ter 6 in the main text.

E.1. Additional data

In Figure 6.1 in the main text, we show the resonance curve of the res-
onator. When looking at a wider spectral range, which is shown in
Fig. E.1, it becomes apparent that the resonance is superimposed on a
large standing wave background. Nonetheless, the resonator can be iden-
tified by considering a temperature-dependence scan, because its reso-
nance frequency depends on the the large temperature-dependent kinetic
inductance. During the measurement of the data presented in Fig. 6.4
in the main text, several gate jumps occurred. These gate jumps results
shifts along the Vg2-axis. In order to focus on the relevant physics, we
have omitted those shifts in Fig. 6.4. Fig. E.2 shows the complete data
set where white annotations highlight which data was omitted in Fig. 6.4
(see caption of the figure).

193



E. Supplementary information: Charge-sensing of a GeSi nanowire
double quantum dot

3.08 3.10 3.12 3.14 3.16
frequency (GHz)

3 /4

/2

/4

0

/4

ph
as

e 
 (r

ad
.)

30

25

20

15

10

5

0

m
ag

ni
tu

de
 A

 (d
B)

Figure E.1. Transmission through the feedline in wide fre- quency range
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Figure E.2. Resonator response as a function of gate voltage Vg2 and
Vg4. This data set was used to create Fig. 6.4. The solid, white lines show
the positions of the gate jumps. In Fig. 6.4, the data between the white,
solid lines and the white, dashed lines, indicated by arrows, was omitted.
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F Supplementary information: Dispersive
interaction between a crystal-phase
defined double quantum dot and a
microwave photon

This chapter provides supplementary information corresponding to Chap-
ter 7 in the main text.

F.1. Bias triangle

Figure F.1 shows the measurement of the current through the DQD shown
in Figure 7.1 at a finite bias voltage of Vsd = 250 mV. A typical bias trian-
gle is observed [97]. From the bias triangle, the detuning ϵ corresponding
to the solid black line in the figure can be determined as ϵ = eVsd/ℏ.

F.2. Extracted capacitances of five inter-dot
configurations

label CL1 (aF) CR1 (aF) CL2 (aF) CR2 (aF) C1 (aF) C2 (aF) Cm (aF)
1 22 ± 2 3.3 ± 1.3 6.3 ± 1.5 12.8 ± 0.9 66 ± 16 53 ± 12 26 ± 9
2 22 ± 2 3.3 ± 1.4 5.7 ± 1.5 13.4 ± 0.9 102 ± 30 90 ± .30 30 ± 12
3 22 ± 1 2.8 ± 0.6 4.5 ± 1.2 12.3 ± 0.7 110 ± 30 100 ± 30 22 ± 8
4 22 ± 1 2.8 ± 0.5 2.9 ± 1.2 11.9 ± 0.7 110 ± 20 90 ± 12 22 ± 5
5 22 ± 1 2.7 ± 0.6 5.91.3 12.7 ± 0.8 84 ± 14 100 ± 20 10 ± 9

Table F.1. Extracted capacitances of the five different configurations.
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F. Supplementary information: Dispersive interaction between a
crystal-phase defined double quantum dot and a microwave photon
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Figure F.1. Lever arm calibration from bias triangle. Current
Isd through the double-quantum dot (DQD) as a function of plunger gate
voltages VL, VR at a bias voltage of Vsd = 250 mV. From the clearly visible
bias triangles, the detuning ℏϵ = eVsd can be read off (black line with error
bars).
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G Strong coupling between a single
photon and a singlet-triplet qubit

This is the appendix to Chapter 8.

G.1. Resonator characterization and analysis

The resonator is fabricated from a thin-film NbTiN, sputtered onto a
Si/SiO2 (500 µm/100 nm) substrate [113]. The large sheet kinetic induc-
tance of the NbTiN film of Lsq ≈ 90 pH together with the narrow center
conductor width of ∼ 380 nm, and the large distance to the ground plane
of ∼ 35 µm results in the impedance value of 2.1 kΩ. The resonator can
be dc biased using a bias line which contains a meandered inductor ensur-
ing sufficient frequency detuning between the half-wave resonance used
in the experiment and a second, low quality resonance mode at a lower
frequency that forms due to the finite inductance of the bias line [105]. An
optical microscopy image of a similar resonator is shown in Fig. G.1(a).
One of the two resonator voltage anti-nodes is galvanically connected to
gate SGR shown in Fig. 8.1(c) of the main text.

We measure the transmission S21(ω) of the resonator, to which we si-
multaneously fit the amplitude and phase of a Lorentzian:

|S21| (ω) = a0 ·
δω
2

((ω − ωr)2 + δ2
ω
4 )

, (G.1)

φ(ω) = − arctan
(
ω2 − ω2

r

δω
2 ω

)
+ φ0. (G.2)

From the fit (see Fig. G.1(b) in the extended data), we extract the res-
onator decay rate δω and resonance frequency ωr which we identify as the
bare resonator decay rate κ/2π = δω/2π = 34.4 ± 0.1 MHz and resonance
frequency ωr/2π = 5.25308 ± 0.00003 GHz, respectively. In addition, we
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Figure G.1. Resonator of a similar device. (a) Optical microscope
image of a similar device including the resonator. (b) Resonance curve
of the resonator in phase (blue) and magnitude (red), as well as a fit
to the data (black). (c) Same false-colored SEM image of the device
as in Fig. 8.1(a). Scanning electron micrograph of the resonator center
conductor of a similiar device
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G.2. Charge parity determination
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Figure G.2. Dispersive shift and dressed linewidth extraction.
Extracted dispersive shift χ (a) and dressed resonator linewidth δω (b) as
a function of detuning ϵ of the even configuration at 0.448 T.

extract the transmission amplitude a0 and phase offset φ0 to calibrate our
system. Gate voltages are converted to DQD detuning by using the lever
arm α ≈ 0.21 eV/V ≈ 51 THz/V extracted from the Jaynes-Cummings
fit to the anti-crossing shown in Fig. 8.3(a). This calibration allows us
to convert a measured complex transmission S21(ω) into a decay rate δω
and the frequency shift χ = ωr − ω0

r by numerically solving Eqs. (G.1)
and (G.2) which results in Fig. 8.4a) and Fig. G.2(a,b).

G.2. Charge parity determination

We measure the phase φ of the resonator transmission S21(ω) as a func-
tion of detuning ϵ and magnetic field B at a readout-frequency ωro/2π =
5.253 GHz close to the bare resonator frequency. A change in φ reflects
the dispersive interaction between the resonator and two anticrossing lev-
els of the DQD [17, 203]. Therefore, the non-zero phase response of the
resonator tracks the position of the IDT along the detuning axis. The
comparison of the magnetic field dependence of the position of the IDT
to a Hamiltonian model of the DQD systems allows one to determine the
charge parity [203, 216]. Figures G.3 (a) and (b) in the extended data
show two typical low field IDT characteristics.

For an odd number of electrons (Fig. G.3(b)), the DQD resonance gate
voltage VR, at which the IDT is observed, disperses linearly with magnetic
field starting from zero. This can be understood considering the Zeeman-
splitting of the unpaired electron energy levels and two non-equal Landé

G
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G. Strong coupling between a single photon and a singlet-triplet qubit

g-factors of the two dots. Fig. G.3(c) shows the energy level diagram of a
one-electron Hamiltonian including Zeeman-splitting with a g-factor dif-
ference of 1.0 and spin-orbit interaction tSO/2π = 5 GHz at a magnetic
field of B = 0.5 T (green, dashed line in Fig. G.3(b). The one-electron
Hamiltonian is explicitly discussed in the supplementary material. The
arrow points out the center of the IDT (largest curvature of the ground-
state [217]) which corresponds to the largest dipole moment of the DQD
and thus to the largest change in φ. This point shifts with B towards
increasingly negative values.

For an even number of electrons in the DQD at zero field (Fig. G.3(a),
a single dip in phase is observed, but at a low magnetic fields, B ≈ 60 mT,
a double dip structure emerges as a function of ϵ (see supplementary ma-
terial for details). This double-dip originates from an interaction between
S2,0, S1,1 and T+

1,1 as explained in detail in the supplementary material.
The dependence of the IDT on magnetic field for an even number of
electrons can be understood using an effective two electron Hamiltonian
including spin-orbit interaction as described in more detail in section G.4.
In Fig. G.3(c), we plot the energy levels at a magnetic field B = 0.15 T.
In contrast to the odd filling, starting at zero field, the arrow marking the
center of the IDT barely changes, consistent with our measurement. The
double dip vanishes when further increasing the magnetic field, because of
an increasing occupation of the polarized triplet states. Once the Zeeman
energy of the triplet state |T+

1,1⟩ becomes comparable to the singlet charge
tunneling tSc , the position of the IDT as a function of B disperses towards
larger ϵ [175, 216, 218]. This transition is marked by the white dashed
line at 0.2 T in G.3(a).

Based on the good qualitative agreement between our data and the
one electron and two electron Hamiltonian, respectively, we can clearly
identify the even and odd charge parities.

G.3. Jaynes-Cummings model

In the regime of only two DQD levels being relevant, we model the DQD
Hamiltonian as an effective two-level system (qubit) interacting with a
single photon in the resonator. The combined system is described by the
Jaynes-Cummings model [219]. In which, a single excitation from the
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G.4. Effective two-electron Hamiltonian model

ground state has the transition frequency [12]

ωψ± = ω0
r + ωq

2 ± 1
2
√

4g2 + (ω0
r − ωq)2, (G.3)

with the qubit frequency ωq =
√

(2t(B))2 + ϵ2 [191] and the effective
qubit-photon coupling strength g = g0 · 2t/ωq, where g0 is the bare qubit-
photon coupling accounting for the mixing angle [12, 35]. In the exper-
iments, we detect the transitions from the ground state to the predomi-
nantly photon-like dressed state |ψ−⟩. Its linewidth is given by

δω = |⟨ψ−|g, 1⟩|2 κ+ |⟨ψ−|e, 0⟩|2 2γ (G.4)
= cos2 (θ)κ+ sin2 (θ) 2γ, (G.5)

where θ = 1
2 tan−1

(
2g

ωq−ω0
r

)
[12].

In order to extract the qubit tunneling rate t, and linewidth γ as well
as qubit-photon coupling strength g, we simultaneously fit χ(ϵ) and δω(ϵ)
using Eq. (G.3) and Eq. (G.5). An exemplary fit is shown in Fig. G.3(e,f).

G.4. Effective two-electron Hamiltonian model

We model an effective two-electron Hamiltonian in the presence of spin-
orbit interaction and magnetic field. We write the Hamiltonian in the
basis of singlet and triplet states

{
|S1,1⟩ , |S2,0⟩ , |T±,0

1,1 ⟩ , |T±,0
2,0 ⟩

}
, with the

subscripts indicating the charge distribution in the DQD. The Hamilto-
nian reads

H = HS
0 + HT

0 + HZ + Hso, (G.6)

with the spin quantum-number conserving Hamiltonians
HS

0 /ℏ = −ϵ |S2,0⟩ ⟨S2,0| + t
S
c |S1,1⟩ ⟨S2,0| + h.c.,

HT
0 /ℏ = (∆ST − ϵ)

∑
±,0

|T ±,0
2,0 ⟩ ⟨T

±,0
2,0 | + t

T
c

∑
±,0

|T ±,0
1,1 ⟩ ⟨T

±,0
2,0 | + h.c.

Here, tS,Tc are the tunnel rates between the two singlets, and between the
two triplet states respectively, and ∆ST is the single dot singlet-triplet

G
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Figure G.3. Dispersive read-out at low magnetic field. Resonator
phase in dependence of the right gate voltage VR and magnetic field B for
even (a) and odd (b) occupation of the DQD. For the odd occupation the
IDT shifts to lower VR from B = 0. The IDT of the even occupation stays
nearly independent of magnetic field until around 0.2 T (white dashed
line), from where it starts moving to more positive VR. Energy level
diagram for the even (c) and odd (d) configuration at 0.15 T and 0.5 T
(green dashed line). The arrow marks the transition the resonator is
sensitive to, where the ground state energy level has maximum curvature.
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G.5. Hamiltonian in the odd charge parity

splitting that separates the T2,0 states from the S2,0 states. The Zeeman
Hamiltonian is given by

HZ/µB = B
∑

±

(
±gl + gr

2 |T±
1,1⟩ ⟨T±

1,1| ± gl |T±
2,0⟩ ⟨T±

2,0|
)
, (G.7)

where gl (gr) is the Landé g-factor of the left (right) dot. Because of
the large intrinsic spin-orbit interaction in the NW, we include the spin-
orbit Hamiltonian that couples the singlet and triplet states with opposite
charge configuration using the spin-orbit tunnel rate tSO as

HSO/ℏ = tSO

(
|T 0

1,1⟩ ⟨S2,0| +
∑

±

± |T±
1,1⟩ ⟨S2,0|

)
+ h.c.

G.5. Hamiltonian in the odd charge parity

In Section G.4, we elaborate on the Hamiltonian describing the double
quantum dot (DQD) for an even charge occupation. This section provides
the description for an odd number of electrons which is used in order to
obtain Fig. G.3(d). In this case, the total electron spin is 1/2 which can be
modelled by one electron with a half spin. This electron can reside either
on the left dot or on the right dot [191]. Therefore, a suitable basis is
{|L ↑⟩ , |L ↓⟩ , |R ↑⟩ , |R ↓⟩}, where L/R denotes whether the charge resides
in the left dot or on the right dot, and ↑/↓ denotes whether the spin is
aligned parallel or anti-parallel with the magnetic field B.

The Hamiltonian describing the electron can be decomposed into three
parts as

Hodd = H0
odd + HZ

odd + HSO
odd (G.8)

The first part of the Hamiltonian describes the spin-independent charge
which can be written using the the charge Pauli matrices τ̂x,y,z as

H0
odd = ℏϵ

2 τ̂z + ℏtcτ̂x. (G.9)

Here, the diagonal terms are proportional to the detuning ℏϵ = ER −EL
which is the difference between the electro-static potential of the electron
residing in the right and left dot. The off-diagonal terms are given by ℏtc,
which is the spin-conserving tunnel rate.
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G. Strong coupling between a single photon and a singlet-triplet qubit

In the presence of a magnetic-field, HZ
odd comes into effect. This term

describes the Zeeman energy of the electron and is given by

HZ
odd = 1

2gL,RµBBσ̂z, (G.10)

where gL and gR are the site-dependent Landé g-factors, µB is the Bohr
magneton and σ̂x,y,z are the spin Pauli matrices. The Zeeman energy lifts
the spin degeneracy and hence four spin-polarized levels are observed as
shown in Fig. G.3(d). As explained in the Section G.2, unequal g factors
gL ̸= gR result in a shift of the avoided level crossings originating from
spin-conserving tunneling. This results in a slope of the observed inter-
dot transition as a function of gate voltage (detuning) and field from zero
field onward.

Spin-orbit interaction results in a spin-rotating tunneling amplitude tSO
entering the third part of the Hamiltonian as [101]

HSO
odd = ℏtSOτ̂yσ̂y (G.11)

The spin-rotating tunneling amplitude results in a hybridization of the
levels |L ↑⟩ and |R ↓⟩ and of the levels |R ↑⟩ and |L ↓⟩.

G.6. Singlet-triplet hybridization at low fields

In the main text, we explained the double-dip structure in ξ as a function
of ϵ, which emerges at low field strength in Fig. 8.3(a) of the main text,
by a finite hybridization between the singlet and triplet states at these
field strengths. For making this feature more visible, Fig. G.4(a) shows
a cross section through Fig. 8.3(a) of the main text at a magnetic field
strength of 80 mT, which shows an asymmetry with respect to the de-
tuning. Figure G.4(b) shows the corresponding linewidth of the dressed
resonator. The level diagram for this situation is plotted in Fig. G.4(c)
and exhibits an anticrossing of the singlet charge states S1,1 and S2,0 (red)
close to zero detuning. At more negative detuning, the singlet S2,0 and
triplet T1,1 states hybridize, as illustrated by the color gradient. These
two different anti-crossing occuring at different detuning values, create an
asymmetric double-dip resonator response when plotted as function of the
detuning. The dip at more negative detuning is more pronounced due to
the level splitting being closer to the resonance frequency.
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G.6. Singlet-triplet hybridization at low fields
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Figure G.4. Linecut through Fig. 4(a) at B = 80 mT. (a) Disper-
sive shift χ as a function of detuning ϵ. The data exhibits an asymmetric
double-dip structure which is explained by the hybridization between the
triplet and singlet states concurrently with the hybridization of the singlet
charge qubit at different detuning values. (b) Linewidth δω (full width at
half maximum) extracted from the same trace. (c) Level structures using
the fit parameters from the fit in Fig. 4(a) in the main text. Spin-orbit
interaction couples S2,0 and T+

1,1. Because S1,1 anti-crosses with S2,0 due
to spin-conserving tunneling, S1,1 is dressed with S2,0 when resonant with
T+

1,1. It therefore exhibits a second anti-crossing explaining the asymmet-
ric lineshape obersved in (a) and in (b).
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G. Strong coupling between a single photon and a singlet-triplet qubit
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Figure G.5. Tunnel rate dependence of qubit linewidth and
coupling strength. (a) Qubit linewidth γ as a function of interdot
tunnel rate t. The color of the data points indicates the magnetic field
strength B. No clear dependence is observed. (b) Spin-photon coupling
strength g in dependence of the interdot tunnel rate t and magnetic-field
strength B. Two different linear scalings are found (see text).
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G.7. Linear dependence between tunnel rate and linewidth

G.7. Linear dependence between tunnel rate and linewidth

Figure G.5 shows the qubit linewidth γ and the qubit-photon coupling
strength g as a function of tunnel rate t and magnetic-field strength. The
figure shows the same data as presented in Fig. 8.3 in the main text,
plotting the extracted parameters one against another. We do not find a
clear dependence of the coupling strength g on the tunnel rate t. However,
the values of g saturate at ∼250 MHz. In contrast the qubit linewidth γ
saturates at low t and scales linearly as a function of tunnel rate for
rates 2t/2π ≳ 6 GHz. Two different linear dependencies are found for low
fields (B ∼ 0.25 T) where the singlet-triplet qubit acquires an increasing
character of a singlet charge qubit (S2,0 to S1,1) for increasing tunnel rates
and for large magnetic-fields where the singlet-triplet qubit acquires an
increasing character as a triplet charge qubit (T+

2,0 to T+
1,1).
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