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1 Theoretical Concepts

In this chapter, we describe the key phenomena investigated throughout this
thesis, namely superconductivity and the Josephson effect, emerging when two
superconductors are brought in close proximity.

1.1. Superconductivity

The phenomena of superconductivity manifests itself by the vanishing electri-
cal resistance for direct current (dc) and the expulsion of magnetic flux in mat-
ter. Superconductivity appears in certain materials we call superconductors
(e.g. Al, Pb, Nb, MoRe, NbTiN,. . . ), when cooled below their characteristic
critical temperature Tc. In 1911, H. Kamerlingh Onnes discovered super-
conductivity by the observation of an evanescent resistance in mercury below
Tc = 4.2 K [1]. The possibility to pass currents without dissipation enabled the
development of powerful electromagnets used in magnetic resonance imaging,
in particle accelerators or in cryogenic refrigerators for quantum research. Su-
perconductivity is a quantum-mechanical effect, which enlarges as the systems
size grows without physical limitation, meaning that the marcoscopic wave-
function describing superconductivity extends over the whole superconducting
system.

1.1.1. Cooper pairs
In 1957, Bardeen, Cooper and Schrieffer (BCS) introduced a microscopic the-
ory based on an effective attractive interaction between electrons to describe
superconductivity [2]. In conventional superconductors (e.g. Al, Ti, Pb,. . . )
this interaction can be described phenomenologically as follows: An electron
moving in a lattice provokes a force on the positively charged lattice-ions,
which leads them to be slightly displaced. As a consequence, an other electron
in the system is attracted to this increased positive charge density, which re-
sults in an effective attractive interaction between the electrons as illustrated

1



1. Theoretical Concepts

(a) (b)

Figure 1.1. Cooper pair formation. (a) An negatively charged electron
distorts the positively charged lattice-ions. (b) An other electron gets attracted
to the increased positive charge density, which leads to an effective attractive
interaction between the individual electrons.

in Fig. 1.1. Due to this phonon-mediated interaction, electrons of opposite
momentum and spin pair up, and form a so-called Cooper pair. These Cooper
pairs merge into a collective many-particle condensate wavefunction, which
maintains phase coherence over macroscopic distances [3].

1.1.2. Superconducting gap
In contrast to normal metals, in which the density of states continuously
evolves, there is an energy gap appearing for superconductors below Tc. The
BCS theory predicts that the density of states for the quasiparticle excitations
from the superconducting ground state obeys following relation [4]:

NS(E) = NF
|E|√

E2 −∆2
θ(|E| −∆), (1.1)

where the energy E is expressed with respect to the Fermi level EF of the
superconducting condensate, NF is the density of states at E = EF when
the system is in the normal state and θ is the Heaviside step function. The
superconducting gap ∆ defines the energy difference between the condensate
and the quasiparticle spectrum, which diverges close the gap edge as shown in
Fig. 1.2. In general, the energy gap is shrinking with increasing temperature
and vanished rapidly around Tc. For the limit T = 0 the superconducting gap
can be related to the critical temperature as ∆ = 1.764 · kTc, where k is the
Boltzmann constant. For Al with a Tc ≈ 1.2 K one obtains ∆Al ≈ 180 µeV
[5].

One finds that for T = 0 all quasiparticle states with negative energies
are filled, while for T > 0 the occupation distribution is given by the Fermi-
function. This means that beside Cooper pairs, there are always normal elec-
trons present in superconductors as described by the two-fluid model [3]. An
external time-varying electromagnetic field will act, on both the Cooper pairs
as well as on these normal electrons, where the latter leads to dissipation
due to impurity scattering. Consequently, the dissipationless character of su-
perconductors might be valid for dc currents, but dissipation will occur in
superconducting devices operating with alternating currents [6].

2
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FE
∆

SN
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SN

2∆

(a) (b)

Figure 1.2. Quasiparticle density of states NS(E) in superconductors. The
superconducting condensate (pink) is located at the Fermi level EF . (a) In the
ground state all quasiparticle states with negative energies are occupied. (b)
Within the superconducting gap there are no states available for quasiparticles
and their excitations (e.g. a single electron-hole pair) need to overcome the
energy 2∆.

1.1.3. Penetration depth and coherence length
The expulsion of magnetic field from the bulk of superconductors, i.e., the
Meissner effect [7], is caused by reactive circulating supercurrents which flow
on the surface. These currents exactly oppose the external magnetic field such
that magnetic field lines are excluded from the bulk of the superconductor.
Thus, for small magnetic fields superconductors are perfect diamagnets. The
penetration depth λp describes the length scale for the exponential decay of
the magnetic field. For Al the penetration depth reads λp ≈ 20 nm [8].
The coherence length ξ is another important length scale to describe su-

perconductors. It measures the distance for which the complex pseudowave
function as introduced in the Ginzburg-Landau theory [9], regains its bulk gap
value from a local region of suppressed superconductivity, occurring for exam-
ple when a superconductor is contacted by a normal metal. In a microscopic
picture, ξ can be interpreted as the averaged distance between the electrons of
a Cooper pair. The coherence length in a pure superconductor is given by [4]

ξ = ~vF
π∆ , (1.2)

where ~ is the reduced Planck constant and vF is the Fermi velocity. For
Al, where vF = 2 × 106 ms−1 and with the superconducting gap given in
Sec. 1.1.2, one finds ξ ≈ 2 µm. Note that the coherence length (counter-
intuitively) increases as the superconducting gap decreases, (e.g.,T → Tc). If
the superconductor is in the diffusive limit, which is the case when the elastic
scattering mean-free path lmfp � ξ, the coherence length reduces to

ξd =
√

~D
2∆ , (1.3)

1
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1. Theoretical Concepts

where D = vF lmfp/2 is the diffusion coefficient. The typical mean-free path
lmfp ≈ 100 nm in Al yields a reduced coherence length ξd ≈ 500 nm.

Ginzburg-Landau parameter

The ratio between the penetration depth and the coherence length defines the
Ginzburg-Landau parameter:

κ = λp
ξ
. (1.4)

It was found by Abrikosov in 1957 [10] that superconductors exposed to mag-
netic fields behave radically different depending on whether κ is smaller or
larger than 1/

√
2. Superconductors with κ < 1/

√
2 are classified as type I,

whereas for κ > 1/
√

2 they are assigned as type II.
For type I superconductors (e.g. Al, Ti, Pb,. . . ) the bulk is free from mag-

netic flux up to a critical magnetic field Bc. Similar to exceeding the critical
temperature, superconductivity fully breaks down for B > Bc. The critical
field for bulk Al reads Bc ≈ 10 mT.
In contrast, type II superconductors (e.g.MoRe, Nb, NbTiN,. . . ) exhibit

two phase-transitions: one at Bc1 and another at larger magnetic fields Bc2.
For B < Bc1, type II superconductors behave as perfect diamagnets similar to
the type I materials. However for Bc1 < B < Bc2 the bulk is penetrated by
units of flux corresponding to a single flux quantum:

Φ0 = h

2e = 2.068× 10−15 Wb, (1.5)

where h is the Planck constant, and e is the electron charge. These so-called
flux vortices are screened by local circulating supercurrents and are homo-
geneously distributed over the superconductor. The vortex density increases
with increasing field strength while superconductivity fully breaks down when
B > Bc2.

1.2. Josephson junctions

A Josephson junction (JJ) is defined as a weak link between two supercon-
ducting electrodes (S). These weak links can be formed by embedding a thin
insulating layer (I), a short normal-conducting region (N) or a constriction (c)
between two superconductors as illustrated in Fig. 1.3. All of these different
architectures allow the flow of a supercurrent across the junction, even though
the superconducting leads are actually interrupted or quenched. This miracu-
lous effect is named after its discoverer B. D. Josephson [11], who theoretically
predicted the phenomena in 1962.

4
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(a) (b) (c)

S SI N cS S S S

Figure 1.3. Three different types of Josephson junctions: (a) SIS-junction,
where often the intrinsic oxide layer of the material is used as a barrier, for ex-
ample Al and AlO2. (b) SNS-junctions can be formed by incorporating a short
normal metal or semiconductor section. (c) ScS-junctions are formed, when
the dimensions of the constrictions are much smaller the coherence length.

In this section, we describe the diverse and astonishing electrical properties
of JJs, which are the key for novel applications such as: parametric ampli-
fiers (SIS) [12, 13], single photon source (SIS) [14], microwave lasers
(SIS) [15], superconducting qubits (SIS) [16–18], tunable microwave
cavities (SIS) [19], voltage-standard devices (SIS) [20], magnetometers
(ScS) [21], microwave bolometers (SNS) [22, 23], to list just a few.

The dominant use of SIS-junctions in superconducting circuits is likely due
to their high reproducibility and low dissipation. On the other hand, SNS-
junctions consisting of semiconducting materials allow in-situ tuning of the
coupling strength between the superconducting leads by electric gate-fields
[24], whereas for ScS-junctions in break-junction configurations, highly trans-
parent single channel JJs can be achieved [25].

1.2.1. Josephson effect

In order to get an intuitive understanding for the electrical properties of JJs,
we will briefly follow a phenomenological approach [4]. We make use of the
fact that the quantum-mechanical behaviour of a superconducting system can
be treated as a complex wavefunction; one side of the junction is described
by ψ1 = √n1e

iϕ1 and the other side by ψ2 = √n2e
iϕ2 , where nk refers to

the density of Cooper pairs and ϕk is the phase argument. Note that both of
these variables are time-dependent. If the two wavefunctions overlap, and a
potential difference qV drops symmetrically across the junction. We can now
relate the two wavefunctions using the Schrödinger equation

i~∂ψ1

∂t
= qV

2 ψ1 −Kψ2, (1.6a)

i~∂ψ2

∂t
= −qV2 ψ2 −Kψ1, (1.6b)

where the constant K determines the coupling between the superconducting
electrodes. After substituting the definitions ψk, multiplying Eq. 1.6a by e−iϕ1

1
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1. Theoretical Concepts

and Eq. 1.6b by e−iϕ2 one obtains for the real part:

∂n1

∂t
= −2K

~
√
n1n2 sin(ϕ), (1.7a)

∂n2

∂t
= 2K

~
√
n1n2 sin(ϕ), (1.7b)

where ϕ = ϕ2 − ϕ1 is the phase difference across the junction. For the imagi-
nary part one obtains

∂ϕ1

∂t
= −qV2~ + K

~

√
n2

n1
cos(ϕ), (1.8a)

∂ϕ2

∂t
= qV

2~ + K

~

√
n1

n2
cos(ϕ). (1.8b)

DC Josephson effect

We observe from the real part (Eq. 1.7) that ∂n1/∂t = −∂n2/∂t and that the
prefactor for the sine-functions, lets call it K̃, is a constant. Since, in general,
current is proportional to the time derivative of the charge carrier density,
we can expect that there is flow of Cooper pairs across the junction and a
supercurrent is present. We can infer from Eq. 1.7 that this supercurrent will
have the form

Is(ϕ) = Ic sin(ϕ), (1.9)
which is known as the dc Josephson relation. Here, Ic is the so-called critical
current, which is proportional to K̃ and thus dependent on the properties of
the superconductor and the interplay between the wavefunctions.

This demonstrates, that even in the absence of a voltage bias (V = 0), there
is a phase-dependent supercurrent Is(ϕ) flowing across the junction. Once
the current through the junction exceeds the critical current, for instance by
current biasing the JJ with an external source, a voltage starts to appear.

AC Josephson effect

By subtracting Eq. 1.8a from Eq. 1.8b and assuming similar superconducting
leads such that n1 ≈ n2, we obtain

∂ϕ

∂t
= ∂

∂t
(ϕ2 − ϕ1) = qV

~
= 2eV

~
, (1.10)

known as the ac Josephson relation, where the latter form corresponds to
single Cooper pair transport (q = 2e).

We recognize from Eq. 1.10, that once there is a voltage present, the phase
evolves in time as ϕ = 2eV t/~. The inverse statement, that once the phase

6
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1.2. Josephson junctions

evolves, there will be a voltage drop also holds true. Combining the ac and dc
Josephson relation yields

Is = Ic sin(2πfJ · t), (1.11)

which describes the appearance of an alternating supercurrent with amplitude
Ic and frequency

fJ = 2eV
h
, (1.12)

with V the voltage between the superconducting leads. For example, when
V = 1 µV, the supercurrent will oscillate with fJ = 483.9 MHz. In general,
the frequency depends on the effective charge q∗ transferred across the junc-
tion (fJ = q∗V/h) and obviously on the voltage drop. Other than that, the
Josephson frequency is purely defined by fundamental constants via the elec-
tron charge e and the Planck constant h. The fact that JJs convert a constant
voltage bias to oscillating currents, makes these elements to highly non-linear
objects in superconducting circuits.
Although this simplified derivation for the Josephson effects might provide

a qualitative understanding in terms of overlapping wavefunctions, the de-
scription is not universal for all JJ flavors. The treatment above will exclu-
sively specify the electrical properties of SIS-junctions. In order to describe
SNS/ScS-junctions, a more elaborate approach is needed as will be discussed
in the following.

1.2.2. Andreev reflection
In 1964, A. F. Andreev theoretically investigated the scattering properties at
the interface between a superconductor (S) and a normal material (N) [26].
A conventional reflection at the interface would describe that an incident

electron with energy E located within the superconducting gap retro-reflects
again as an electron. This reflection of the electron is due to the absence of
accessible quasiparticle states within the gap. Such a process is depicted in
Fig. 1.4(a) and implies that there is no net-current across the interface.
However, what Andreev found is that normal currents in N can be converted

to supercurrents in S. The microscopic process explaining this phenomena in-
volves a so-called Andreev reflection, which is illustrated in Fig. 1.4(b): An
electron with energy E impinging the gap interface forms a Cooper pair by
recombination with a second electron at energy −E of opposite spin and mo-
mentum. At the same time, a hole retro-reflects such that charge and momen-
tum are conserved. The hole follows the trajectory of the incident electron
and posesses its opposite spin. Additionally, the wavefunction of the retro-
reflected hole picks up a phase ϕe→h(E,ϕk), which depends on the energy E
of the incident electron and on the phase argument ϕk of the superconducting
wavefunction.

1
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(a) (b)

SN

E

N S

e

SNN S

e
h

∆

∆−

∆

∆−

Figure 1.4. Reflection processes at an NS-interface. For electrons with
|E| < |∆| no quasiparticle states are available in the superconductor and the
impinging electron is reflected. (a) Normal reflection: The electron reflects
back to the normal metal region. (b) Andreev reflection: The incident electron
forms a Cooper pair in the superconductor by the retro-reflection of a hole in
the normal metal region and thus a net-current with 2e-granularity flows.

Superconducting proximity effect

Through time-reversal symmetry, the process sketched above is reversible: an
impinging hole and a retro-reflected electron therefore result in the absorption
of a Cooper pair in the normal contact. Consequently, Cooper pairs ‘leak’ into
the normal conductor in the form of electron-hole pairs which locally induce
superconductivity. This phenomenon is called the superconducting proximity
effect. The proximity depth in diffusive normal conducting systems is given
by the coherence length ξp =

√
~D/ (2πkT ), which for metals is typically on

the order of a few µm.

Finite interface transparency

It was shown by the theoretical work of Blonder, Tinkham and Klapwijk [27],
that the interface transparency determines the probability for Andreev reflec-
tions. For low transparencies most transfer attempts into the superconducting
gap will undergo normal scattering at the interface, resulting in a suppressed
conductance across the junction. However, when the normal lead energetically
aligns with the quasiparticle continuum, a normal current can flow and hence
the superconducting gap can be probed. Conversely, for maximally trans-
parent interfaces the probability for Andreev reflections reaches unity, which
results in a doubling of the conductance through the NS-junction for sub-gap
conditions when compared to the quasiparticle transport regime outside the
gap [28].

8
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1.2. Josephson junctions

1.2.3. Andreev bounds states
We will now consider the device architecture of a normal conducting region
embedded between two superconducting leads, thus forming an SNS-junction.
In this situation, a supercurrent across the junction is provided by consecutive
Andreev reflections at the NS-interfaces. The top part of Fig. 1.5(a) illustrates
the transfer of a Cooper pair from the left to the right lead. The Cooper
pair coming from the left is converted into a counter-propagating electron-
hole pair at the first interface that is recombined to a Cooper pair in the right
lead by a subsequent Andreev reflection at the second interface. The total
phase acquired in this transfer process reads

ϕtot = ϕh→e(E,ϕ1) + ϕL + ϕe→h(E,ϕ2). (1.13)

The first term refers to the phase pick-up at the left interface, the middle term
refers to the dynamic phase accumulation while traversing the normal region
of length L, and the last term refers to the phase pick-up at the right interface.
The interface phase pick-ups depend on the energy E of the coupling electron
as well as on the phase arguments of the superconducting wavefunctions, i.e.
ϕ1 for the left and ϕ2 for the right lead and can be determined by matching
the S-wavefunctions with the N-wavefunctions at the boundaries. Phase co-
herence across the junction is maintained, when ϕtot = 0,±2π,±4π, . . . . If
this condition is satisfied, a so-called Andreev bound state (ABS) is formed,
which is a discrete energy sub-gap state [29] that governs the Josephson cou-
pling across the junction [30]. Due to symmetry reasons, ABS always have a
partner that reflects the opposite transfer direction as depicted in Fig. 1.5(a).

Short junction limit

In the short junction limit, i.e., when the junction length is much smaller than
the proximity depth (L� ξp), the dynamic contribution to the phase can be
disregarded (ϕL = 0). Now, by solving the resonant condition for the phase,
one finds that an ABS-pair consists of states with energies [31]

E±n (ϕ) = ±∆
√

1− τn sin2(ϕ/2), (1.14)

where ∆ is the superconducting gap in the leads, ϕ = ϕ2 − ϕ1 is the phase
difference across the junction and τn is the transmission probability for a
specific transfer channels. The number of possible transfer channels depends
on material and the cross-sectional dimensions of the normal region. This
can lead to the formation of multiple ABS-pairs, which are enumerated by
the index n. One pair component has negative energy E−n and the other
has positive energy E+

n . In Fig. 1.5(b) the ABS spectrum of a JJ with three
possible channels of different transparencies is plotted. One recognizes that
the mode-specific spectral gap δEn = E+

n − E−n is 2π-periodic in phase. The

1
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∆
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h

Figure 1.5. Andreev bound state (ABS) formation in an SNS-junction. (a)
Schematic illustration of an ABS pair. Charge carriers undergo Andreev re-
flections at the NS-interfaces. If the total phase acquired within one full circle
is a multiple integer of 2π, an ABS is formed. The upper schematic sketches
the shuffling of a Cooper pair from the left to the right lead, whereas the lower
shows its electron-hole symmetric partner that shuffles a Cooper pair from
right to left. The two conditions have opposite energy E−n = −E+

n . (b) The
energy of an ABS depends on the phase difference ϕ = ϕ2 − ϕ1 across the
junction, the channel transparency τ and the current direction. Here the ABS
spectrum of short normal section (L � ξp) with three channels of different
transparency is plotted.

spectral gap becomes minimal at ϕ = ±π ± 3π, . . . (δEn(π) = 2∆
√

1− τn),
whereas it is maximally open for ϕ = 0, ±2π, . . . (δEn(0) = 2∆). In order
to drive an excitation across the spectral gap with a resonator operating at
3 GHz in a junction formed by Al leads with ∆ = 180 µeV =̂ 44 GHz, the
channel transparency needs to reach τ = 0.995, which is typically very hard
to reach.

Long junction limit

In the long junction limit (L ≥ ξp) the solutions for the ABS energies be-
come more complicated. Since the dynamic phase now needs to be considered,
the number of valid ABS solutions for each possible channel, grows as the
junction length increases. Additionally, the maximal energy gap of the collec-
tive ABS spectrum shrinks to a so-called minigap Eg < 2∆ [32]. For a long
diffusive junction the minigap reads Eg ≈ 3ET , where the Thouless energy
ET = ~D/L2 is the energy associated to the diffusion time though the normal
conducting section [33].

Population

In a semiconductor picture, the ABSs can viewed as energy levels which need to
be populated to activate them as supercurrent carriers. If we consider a short
JJ with only one channel, we will find four possible population configurations

10
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Figure 1.6. Single channel ABS populations. (a) Semiconductor picture.
(b) Excitation picture (+E+ compared to the semiconductor picture). (a)-(b)
The left state depicts the ground state |g〉 with even parity. The two middle
odd-parity states |o〉 are energetically degenerate and carry no net-current.
The right state illustrates the excited state |e〉 and has even parity.

as depicted in Fig. 1.6 (a). The population can be equivalently treated as a
spin-1/2 system, which is often referred to as the excitation picture as shown
in Fig. 1.6 (b).
The ground state |g〉 with energy E− < 0 and the exited state |e〉 with

energy E+ > 0 have the same parity implying that direct microwave induced
transitions can be accessed. However, direct transitions from |g〉 towards the
two odd-states |o〉 are prohibited due to their opposite parities. In order to
change the parity, the coupling to the quasiparticle continuum needs to be
involved. Note that the odd-states carry no effective net-current across the
junctio: In the one case there is no Cooper pair exchanged with the leads at
all, whereas in the other case there is Cooper pair transport of equal opposite
rate, averaging to a net zero supercurrent. Due to the degeneracy of the odd-
states, the four populations reduce to three detectable configurations, which
was impressively demonstrated in Refs. [25, 34]. If spin-orbit interaction is
considered, the above description gains additional complexity due to the lifting
of the odd-states as experimentally observed in InAs-nanowire JJs [35, 36].
If we neglect coupling to the environment, i.e., we assume there is no in-

teraction with a microwave field and no quasiparticle exchange, the system is
in equilibrium and the population configuration is limited to the ground and
excited state. Due to the fermionic character of the ABSs, the weights are
given by the Fermi-function F (E−) = 1 − F (E+). In the zero temperature
limit F (E−) = 1 and for increasing the electronic temperature T , the weights
will balance (F (E−) → 1/2), which is especially evident for ABS pairs close
to zero energy.

1

11



1. Theoretical Concepts

1.2.4. Current-phase relation
In Sec. 1.2.3 we have shown that ABSs are phase-dependent and carry super-
currents across the junction. Now the question arises how much supercurrent
they are actually able to provide. The answer to this can be found by making
use of the electrical power in the system [31], which for a single ABS (e.g. the
nth-ground state) can be expressed as

P = ∂E−n
∂t

= ∂E−n
∂ϕ

∂ϕ

∂t
= ∂E−n

∂ϕ

2eV
~

= I−n V. (1.15)

The time-derivative of the phase is given by the ac Josephson equation (Eq. 1.10)
with the charge of a Cooper pair. We can solve the last two terms of Eq. 1.15
for the current and obtain the supercurrent for an individual populated ABS:

I±n (ϕ) = 2e
~
∂E±n
∂ϕ

. (1.16)

Consequently, the supercurrent of a single ABS is 2π-periodic in phase. The
current is zero at the energy extrema that are located at ϕ = 0,±π,±2π, . . .
for a conventional junction.

The total supercurrent Is across the junction is the sum over all discrete
contributions, which are provided by populated ABSs. In thermal equilibrium,
the population of the ABS spectrum is given by the Fermi-function. For clarity,
we separate the contributions from the E−n -states and the E+

n -states and we
find

Is(ϕ) = 2e
~

[∑
n

∂E−n
∂ϕ

F (E−n ) +
∑
n

∂E+
n

∂ϕ
F (E+

n )

]
(1.17)

Since the ABS energies are symmetrically located around the Fermi energy or
by virtue the electron-hole symmetry we can state (I−n = −I+

n ), which reduces
the above equation to:

Is(ϕ) = 2e
~

[∑
n

∂E−n
∂ϕ

{
F (E−n )− F (E+

n )
}]

. (1.18)

The combination of the Fermi-functions can be rewritten as

F (E−n )− F (E+
n ) = 1− 2F (E+

n ) = 1− 2
eE

+
n /(kT ) + 1

= tanh
(
E+
n

2kT

)
. (1.19)

With this we can express the total phase-dependent supercurrent that is the
current-phase relation (CPR) as

Is(ϕ) = 2e
~

∑
n

∂E−n
∂ϕ

tanh
(
E+
n

2kT

)
. (1.20)
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π2π0
ϕ

0

cI

cI−

)
ϕ(

sI

π2π0
ϕ

0

cI

cI−

)
ϕ(

sI

99.= 0τ

= 0cT/T

= 0cT/T

3.= 0cT/T

9.= 0cT/T

01.= 0τ
2 nA.= 0cI

75.= 0τ
= 22nAcI

99.= 0τ
= 40nAcI

(a)

(b)

= 32nA)cI(

= 18 nA)cI(

= 40 nAcI

Figure 1.7. Current-phase relation of a single channel JJ in the short junction
limit at equilibrium conditions evaluated with Eq. 1.21 and a superconducting
gap ∆ = 180 µeV. (a) With increasing channel transparency τ , the CPR
evolves from a sinusoidal to a forward skewed sinusoidal lineshape and the
critical current Ic increases. Here, temperature broadening is neglected. (b)
With increasing the electronic temperature the CPR becomes sinusoidal, even
for highly transparent channels (τ = 0.99). The critical current values are
determined without considering the closing of the gap as the temperature
increases.

By substituting the ABS energy given in Eq. 1.14 and evaluating the phase
derivatives, one obtains [37]

Is(ϕ) = e∆
2~ sin(ϕ)

∑
n

τn√
1− τn sin2(ϕ/2)

tanh

(
∆
√

1− τn sin2(ϕ/2)
2kT

)
,

(1.21)
which characterizes the CPR for the short junction limit. In Fig. 1.7 the CPR
for a single channel with transparency τ is plotted for different transmissions in
(a) and different temperatures T in (b) by considering a superconducting gap
∆ = 180 µeV. The CPR is 2π-periodic and is sinusoidal when τ � 1 or when T
is close to Tc. It becomes forwards skewed at low T for high transmissions and
the critical current Ic defined as the maximal amplitude of the CPR increases.
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Ambegaokar-Baratoff relation

By taking the limit τn → 0 in Eq. 1.21 one obtains the Ambegaokar-Baratoff
relation [38] for the supercurrent

Is(ϕ) = π∆
2eRN

tanh
(

∆
2kBT

)
sin(ϕ) T→0= π∆

2eRN
sin(ϕ), (1.22)

the prefactor of the sin-function in the right term can be identified as the zero
temperature critical current, which is related to the normal-state conductance
via the Landauer formula GN = R−1

N = G0
∑

n
τn, where G0 = 2e2/h is

the conductance quantum. The formalism reflects the tunneling limit of the
ABS-picture governing the Josephson effect, and reproduces the dc Josephson
relation obtained for SIS-junctions (Eq. 1.9).

Diffusive short junction limit

Until now we have consider an ABS spectrum with discrete states. However,
when there are many possible ABSs leading to a dense spectrum we can rewrite
Eq. 1.21 in the integral form

Is(ϕ) = e∆
2~ sin(ϕ)

∫ 1

0
ρ(τ) τ√

1− τ sin2(ϕ/2)
tanh

(
∆
√

1− τ sin2(ϕ/2)
2kT

)
dτ,

(1.23)
where ρ(τ) is the distribution function for the transmission probabilities. In
the diffusive limit, the distribution of the transmission eigenvalues can be
calculated with random matrix theory [39, 40] and is found to be [41]

ρ(τ) = π~GN
2e2

1
τ
√

1− τ
, (1.24)

which is known as the Dorokhov distribution [42]. As a consequence, for a
diffusive system one expects channels with transparencies covering the full
interval τ = [0, 1] to appear, with increased densities for small and large trans-
mission probabilities [43]. This bimodal distribution is illustrated in Fig. 1.8
(a). In this limit, the minimal phase-dependent gap of the ABS spectrum is
given by the ABS-pair with largest transparency (τ → 1) and hence reads
δE = 2∆|cos(ϕ/2)|. The integral given in Eq. 1.23 with the distribution given
in Eq. 1.24 can be evaluated analytically for the zero temperature limit as [44]

Idiff.s (ϕ) = πGN∆
e

cos
(
ϕ

2

)
arctanh

[
sin
(
ϕ

2

)]
, (1.25)
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Figure 1.8. Diffusive junction model.(a) The Dorokhov distribution describes
a bimodal probability density for channels with transmission τ . The proba-
bility peaks for closed and open channels. The llustration is adapted from
Ref. [46]. (b) CPR of a short, diffusive junction as a function of temperature.
The supercurrent I0

c denotes to the critical current at zero temperature. A
temperature independent gap is assumed.

where GN is the normal-state conductance. This relation describes the CPR
of a short, diffusive junction at T = 0. The critical current in the zero tem-
perature limit can be obtained by finding the maximum of Eq. 1.25 [45]

Idiff.c ≈ 1.33 · π∆GN
2e , (1.26)

from which we can estimate a critical current of ∼ 380 nA for a normal-state
resistance of 1 kΩ and a superconducting gap of 180 µeV. The maximum su-
percurrent is found at ϕmax ≈ 0.627π, corresponding to a skewness parameter
S = (2ϕmax/π)− 1 ≈ 0.255. The temperature dependence of the CPR shown
in Fig. 1.8 (b) is obtained by numerically solving the integral in Eq. 1.23. Sim-
ilar to the single mode junction, the critical current and the skewness reduces
with increasing temperature.

1.2.5. Josephson inductance

By considering the time derivative of the CPR and making use of the ac
Josephson relation (Eq. 1.10)

∂Is
∂t

= ∂Is
∂ϕ

∂ϕ

∂t
= 2e

~
∂Is
∂ϕ

V, (1.27)

we observe that JJs effectively behave as inductors. We can identify the inverse
Josephson inductance to be [47]

LJ(ϕ)−1 = 2e
~
∂Is(ϕ)
∂ϕ

= 2π
Φ0

∂Is(ϕ)
∂ϕ

. (1.28)
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Figure 1.9. Josephson inductance. (a) Relation between the phase-
dependence of a single Andreev E−-state, the CPR (Is) and the inverse Joseph-
son inductance L−1

J . (b) L−1
J calculated by combining Eq. 1.28 and Eq. 1.21 for

a single channel JJ at T = 0 with different transparencies and ∆ = 180 µeV.

Since the supercurrent is proportional to the change of the ABS energy as a
function of phase, L−1

J measures the curvature of the ABS (it contains the
second derivative in the phase). The relation between these quantities is illus-
trated in Fig. 1.9 (a). The phase condition for L−1

J = 0 corresponds to maxima
in the supercurrent, which move towards ϕ = π/2 for lower transparencies
as seen in Fig. 1.9 (b) while simultaneously, the ratio |L−1

J (π)/L−1
J (0)| con-

verges to 1. Both of these observations correspond to an increasingly sinu-
soidal CPR. To get a feeling for the order of magnitude of this inductance,
we consider a sinusoidal CPR with a critical current of 100 nA, for which we
obtain LJ = ~/ [2eIc cos(ϕ)] = 3.3 nH at ϕ = 0.
Since in general, the inductance is a measure for how strongly an electric

component opposes time-varying currents, the Josephson inductance becomes
evident in ac circuits as we will be experimentally demonstrate in Ch. 5.

1.2.6. RCSJ-model

If the supplied current through a Josephson junction is larger than its criti-
cal current, a voltage drop occurs and the ac Josephson effects kicks-in. The
crossover from the zero resistance state to the voltage state, and the corre-
sponding electrical response can be described with the RCSJ (resistively can
capacitively shunted junction) model [48]. The RCSJ-model models a Joseph-
son junction as joined circuit elements consisting of an ideal JJ shunted by a
resistance R and a capacitance C, as depicted in Fig. 1.10(a)-(b). The resis-
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Figure 1.10. RSCJ-model and washboard potential. (a) Circuit symbol of a
Josephson junction. (b) In the RCSJ-model a Josephson junction is described
as an ideal Josephson element shunted by a resistor R and a capacitor C. (c)
The tilt of the washboard potential increases with current bias as illustrated
for different current regimes. The phase-particle (blue ball) starts to roll down
the potential once the bias current is larger than the critical current (I ≥ Ic).

tance R characterizes the ‘normal’ dissipation within the system, e.g., due to
quasiparticle tunnelling events or an ex-situ shunt resistor. In general, R is de-
pendent on the voltage V across the junction and suffers from thermal noise.
However, in the following we will consider R as the normal-state resistance
of the junction and treat it as a constant. The capacitance C on the other
hand reflects the geometric capacitance between the two electrodes, which is
especially prominent in tunnel junctions due to their relatively large geometry.

By assuming a sinusoidal CPR, and by expressing the three available parallel
paths for the current using the dc and ac Josephson relations, we obtain

I = Icsin(ϕ) + ~
2e ϕ̇/R+ C

~
2e ϕ̈, (1.29)

where I is the current bias on the system. The first term is the supercurrent
across the Josephson junction, the second term captures the current through
the resistor and the last term represents the current through the capacitance.
The phase difference ϕ in this differential equation can be interpreted in a
mechanical analogue as a damped motion of a particle with mass (~/(2e))2C
moving along the ϕ-axis in an effective potential

U(ϕ) = −~Ic
2e cos(ϕ)− ~I

2eϕ. (1.30)

which has a distinct washboard shape which gets more tilted for increasing
current bias as illustrated in Fig. 1.10(c). When I < Ic, the ‘phase particle’ is
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trapped in a minimum of the washboard potential, therefore ϕ is stationary
and hence the voltage drop is zero. If I > Ic the phase particle starts to slide
down the washboard and hence a voltage appears (ϕ̇ 6= 0 → V 6= 0). This
way, the RSCJ-model can produce the IV -characteristic of a JJ when C, R
and Ic are known. By considering the RCSJ-model as a parallel RLC-circuit
we obtain the plasma frequency ωp = 1/

√
LJ(ϕ = 0)C =

√
2eIc/(~C) and

find its quality factor

Qp = ωpRC = R
√

2eIcC/~. (1.31)

The quality factor corresponds to the number of phase oscillations the phase
particle undergoes before the amplitude decays by a factor1 1/e after it’s re-
leased into a washboard potential wall at zero-bias [4]. The inverse quality
factor can be considered as the ‘damping parameter’ and describes the per-
ceived ‘friction’ of the phase particle. Counter-intuitively the friction increases
as the resistance decreases.

Overdamped Junction

For Q < 1/2 the system is in the so-called overdamped regime. Once the
sourced current exceeds the critical current, the phase particle moves down
the potential but ‘sticks’ to the washboard potential. When further increasing
the current, the time averaged voltage over the junction continuously increases,
and slowly approaches the linear normal-state regime. When decreasing the
current from above its critical value to below, the phase particle always fol-
lows the current bias and is immediately trapped in the washboard potential.
The IV -characteristic is therefore non-hysteretic as seen in Fig 1.11(a). When
thermal noise is neglected the IV -curve follows

〈V 〉 = R
√
I2 − I2

c θ(|I| − Ic)sgn(I). (1.32)

It is worth mentioning that in a real experiment thermal noise2 is always
present and Ambegaokar and Halperin showed that in this case, the point
where the junction switches to the normal state smooths out and a residual
resistance remains even for I → 0. This zero bias R0 resistance can be related
to the normal-state resistance as [49]

R0 =
[
I0

( ~Ic
2ekT

)]−2
R, (1.33)

where I0 is the 0-order modified Bessel function. To illustrate this effect, if we
assume a JJ with a critical current Ic = 10 nA and an electronic temperature
T = 100 mK, one expects R0 ≈ 0.11R.
1Here e is the Euler’s number.
2This is an unavoidable source of disturbance, but one can optimize for it in an experi-
mental scenario.
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Figure 1.11. IV -curve of a Josephson junction: (a) in the overdamped
regime with and without thermal noise, (b) in the underdamped regime with
the up-sweep in blue and the down-sweep in red.

Underdamped junction

For Q > 1/2 the system is in the so-called underdamped regime. For an
ideal tunnel junction where the current bias is increased to above the critical
current, the voltage will jump discontinuously up to the energy gap voltage
Vg = 2∆/e . When further increasing the current, the linear normal-state
regime will be approached. Because the moment of inertia is large compared
to the damping, the phase particle will not be immediately retrapped after
reducing the current bias below Ic and one has to go below the so-called
retrapping current Ir ≈ 4Ic/(πQ) to return to the superconducting state,
resulting in hysteretic the IV -curve as shown in Fig. 1.11(b). Unavoidable
thermal fluctuations will cause premature switching from the zero- to the finite-
voltage state, making the identification of Ic non-trivial.
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2 Probing the Josephson effect

Let us consider a small piece of superconductor connected to four normal
metal leads. When measuring this device in a four-probe configuration below
Tc and Ic - both properties of the superconductor - we will measure a zero-
resistance state. Once the current is increased above Ic, superconductivity
will be quenched and one observes a finite-resistance state. The corresponding
IV -curve of this rather trivial device will be similar to the one of a Josephson
junction. This begs the question: how we can actually distinguish these two
cases from each other? Although the answer is simple - one needs to measure
the Josephson effect - the experimental realization is not trivial. In this thesis
we have made use of three different high-frequency techniques to probe the
Josephson effect in superconducting weak links, which will be briefly explained
in this chapter.

2.1. Shapiro steps

A very straightforward proof for the Josephson effect is provided by measuring
Shapiro steps. Shapiro steps emerge in the IV -curve of a JJ under influence of
an ac signal [50, 51]. One can describe this effect from two different points of
view: an analytical approach using the Josephson relations or by analyzing the
circuit defined by the RCSJ-model. We first consider the analytical derivation,
in which we consider a time-dependent voltage-bias across the JJ of the form

V (t) = Vdc + Vac cos(ωact), (2.1)

where Vdc is the dc bias voltage, Vac is the amplitude of the drive and ωac is
the angular frequency of the irradiation signal. By integrating the ac Joseph-
son relation using the voltage argument given in Eq. 2.1, the dynamics of the
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2. Probing the Josephson effect

superconducting phase difference are obtained

ϕ(t) = 2e
~

{
Vdct+ Vac

ωac
sin(ωact)

}
+ ϕ0. (2.2)

Inserting Eq. 2.2 into the dc Josephson relation yields

Is(t) = Ic sin
[2e
~

{
Vdct+ Vac

ωac
sin(ωact)

}
+ ϕ0

]
. (2.3)

The ‘sine of a sine’ term can be expressed as

sin {a+ b sin(x)} =
+∞∑

k=−∞

(−1)kJk(b) sin(a− kx), (2.4)

where Jk(b) is the kth-order Bessel function of the first kind with argument b.
With this, we obtain the expression for the time varying supercurrent [3]:

Is(t) = Ic

+∞∑
k=−∞

(−1)kJk
(2eVac

~ωac

)
sin
({2e

~
Vdc − kωac

}
t+ ϕ0

)
. (2.5)

From Eq. 2.5 it can be seen that the supercurrent becomes time-independent,
whenever 2e

~ Vdc = kωac holds. This means that for Vdc = k h
2efac, where fac is

the drive frequency, an averaged dc Josephson current appears, i.e. a Shapiro
step [52]. Because the spacing between the Shapiro steps is only dependent
on the frequency of the ac drive and fundamental constants, Shapiro steps are
used in metrology to define the voltage standard [20, 53].

The same conclusion can be obtained in an illustrative way by making use
of the RCSJ-model introduced in Sec. 1.2.6 and apply a combination of ac
and dc current bias of the form I = Idc + Iac sin(ωact). The dc current bias
Idc generates a constant tilt of the washboard potential, while the ac current
component Iac induces oscillations around the mean slope. The phase particle
stays confined in the potential as long as the maximal tilt is smaller then the
critical current (Idc + Iac < Ic), which implies a zero voltage state. When
Idc + Iac > Ic, the phase particle will slide down the potential. However, the
ac bias provides a subsequent upwards motion of the potential that recaptures
the phase particle. This scenario is depicted in Fig. 2.1(a). We can express the
phase velocity as

ϕ̇ = δϕ

T
= δϕ · fac, (2.6)

where δϕ describes the phase displacement. We expect a clear retrapping of
the phase, when δϕ is synchronized with the 2π-periodic washboard landscape.
Hence, the phase evolves periodically for δϕ = k ·2π, where k is the number of
potential wells that are overcome in one cycle of oscillation. Consequently, the
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Figure 2.1. Schematic representation for the emergence of Shapiro steps. (a)
The rf-drive generates an oscillating tilt of the washboard potential Idc ± Iac.
The phase particle evolves during the downwards motion of the potential and
gets retrapped by the upwards motion. The illustration depicts a phase ad-
vancement of δϕ = k · 2π with k = 2 that is responsible for the emergence of
the second Shapiro step. (b) The IV -curve of an underdamped junction irra-
diated with frequency fac. Due to the synchronization, Shapiro steps appear
at distinct voltage Vdc = k h

2efac. The width of the steps δIk depends on the
order as well as on the drive power and are described by Bessel functions. The
inset depicts the four lowest-order Bessel functions, in which the dashed line
refers to a specific drive amplitude. For this condition we find δIk > δIk+1.

phase velocity is clearly defined which results, via the ac Josephson relation,
in a dc voltage across the junction:

ϕ̇ = 2e
~
Vdc = k · 2πfac. (2.7)

Because the synchronization of the particle movement and oscillatory tilt of
the potential is possible for a range of dc current values, a voltage step at
Vdc = k h

2efac appears in the IV -curve as illustrated in Fig. 2.1(b). The width
of the voltage step is given by [24]

δIk = 2Ic
∣∣∣∣Jk(2eVac

hfac

)∣∣∣∣ . (2.8)

Since the Bessel functions exhibit their first maximum for increasing order at
larger argument, the Shapiro steps emerge hierarchically with the step k = 1
appearing before step k = 2 and so forth. For high rf-drive voltages Vac, the
Bessel functions become periodic and the amplitude slowly decays.
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2. Probing the Josephson effect

2.2. Josephson radiation

A more challenging technique to measure the Josephson effect is to detect
Josephson radiation. From the ac Josephson relation (Eq. 1.10) we recall that
a constant voltage bias across a Josephson junction yields an oscillating current
signal, which allows the interpretation of JJs as radiation emitters. The ra-
diative signal directly relates to the CPR, which in general can be represented
by a Fourier series [54]

Is(ϕ) =
∑
k

(−1)k−1Ak sin(kϕ), (2.9)

with k being the harmonic orders and Ak the corresponding amplitude. The
distribution of the amplitudes defines the shape of the CPR. For example, a
CPR changing from a sinusoidal to a forward sawtooth shape modifies the
amplitude ratios as Ak+1/Ak = 0→ k/(k+ 1). By inserting the ac Josephson
relation in Eq. 2.9 we obtain the time-dependent supercurrent

Is(t) =
∑
k=1

(−1)k−1Ak sin
(
k

2eV
~
t
)
. (2.10)

Hence the power spectral density (PSD), which is a measure for the frequency-
dependent radiation intensity, spikes at frequencies fdet = k 2e|V |

h
[55–58] with

the peak height given by the amplitude Ak. In the case of a sinusoidal CPR
(Ak = 0 for k > 1), the PSD for a given detection frequency fdet only enhances
at V = ± h

2efdet while in the presence of higher harmonics, the PSD peaks at
voltages V = ± h

2efdet,±
h
4efdet,±

h
6efdet, . . . as illustrated in Fig. 2.2(a).

In a microscopic description, the Josephson radiation can be described as in-
elastic Cooper pair tunnelling from one superconducting lead to the other [59].
The superconducting condensates on each side of the junction have a single-
valued energy, and under the influence of a voltage bias, the Cooper pair needs
to dispose of this additional energy when transferring to the other side. This
is done by emitting a photon to the environment as illustrated in Fig. 2.2(b)
where the energy of this photon equals the energy of the Cooper pair located
at a voltage difference V and hence reads hfJ = 2eV . The higher-order con-
tributions obtained for transparent junctions can be associated to correlations
between single Cooper pair tunnelling events. This correlation can be inter-
preted as an effective charge q∗ transferred in the tunnelling process. Conse-
quently, the energy of the emitted photon can be generalized to be hfJ = q∗V .
Due to the 2e granularity of the supercurrent in conventional JJs, the following
effective charges are possible: q∗ = 2e, 4e, 6e, . . . as depicted in Fig. 2.2(c).
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Figure 2.2. Josephson radiation. (a) Illustration of the expected positions of
the spikes in the power spectral density (PSD) occuring when the Josephson ra-
diation matches the detection frequency fdet = fJ = 2eV/h, 4eV/h, 6eV/h, . . . .
The peak height depends on the CPR skewness, higher order processes are in
general weaker and have a reduced slope compared to the 2e-emission. (b)
Inelastic single Cooper pair tunnelling event. The addition energy of the
Cooper pair E = 2eV is emitted to the environment with a photon of en-
ergy hfJ = 2eV . (c) Higher-order inelastic Cooper pair tunnelling event. Two
Cooper pairs with total addition energy E = 4eV tunnel coherently and emit
a photon of energy hfJ = 4eV to the environment.

2.3. rf SQUID

Until now we have considered the Josephson effect based on the concept of
the phase difference between two superconductors, but without considering
the tunability of this parameter. If a single Josephson junction is embedded in
superconducting loop, a so-called radio-frequency SuperconductingQUantum
InterferenceDevice (rf SQUID) is formed. In contrast to a dc SQUID in which
two JJs are incorporated, an rf SQUID can only be probed with alternating
currents.

2.3.1. Phase-biasing

For rf and dc SQUIDs, the phase difference ϕ across the junctions can be tuned
by applying magnetic flux through the loop. Here flux quantization is the key,
which dictates that the total magnetic flux through a bare superconducting
loop is quantized in integer units of the flux quantum to fulfill continuous
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nπ= 2totφΦ

ϕ

screeningϕ

Φ

Figure 2.3. Illustration of a superconducting loop penetrated by a magnetic
flux Φ. For a bare superconducting ring, the flux inside the loop is quantized
to integer multiples of the flux quantum. In the case of an rf SQUID, the
flux inside the loop adjusts the phase drop ϕ across the junction, while the
supercurrent inside the loop gives rise to an additional phase. In both cases
the total phase φtot acquired in the loop needs to be an integer multiple of 2π.

boundary conditions of the complex wavefunction [60, 61]. The total phase
pick-up in an rf SQUID reads

φtot = ϕ+ 2π
Φ0
LloopIs(ϕ)− 2π

Φ0
Φ != 2nπ, (2.11)

where the first term is the phase across the JJ, the middle term refers to
the screening field produced by the phase-dependent supercurrent Is(ϕ) flow-
ing inside the loop with inductance Lloop, and the last term evaluates the
gauge-invariant phase difference determined by the magnetic flux Φ trying to
penetrate the ring. It is important to note that the loop inductance consists of
a geometric contribution Lgeo and a material contribution LK arising from the
kinetic inductance of the superconductor, and hence leads to Lloop = Lgeo+Lk
[62]. The magnetic flux can be expressed as Φ = B · A, where A is the inner
area of the loop and B the external magnetic field perpendicular to the plane
of the SQUID. The sum of phases needs to be a multiple of 2π to fulfill the pe-
riodic boundary conditions in the superconducting wavefunction as illustrated
in Fig. 2.3. By setting n = 0 in Eq. 2.11 and by introducing the external phase
ϕext = 2π

Φ0
Φ we obtain [63]

ϕ = ϕext −
2π
Φ0
LloopIs(ϕ), (2.12)

which describes the phase across the junction while considering the screening
field. Since the screening field is determined by the supercurrent carried across
the JJ which, in turn, depends on ϕ, (i.e., the CPR), Eq. 2.12 is an expression
without closed-from solution – a so-called transcendental equation.

2.3.2. Screening effect
The non-linearity between the external phase ϕext and the internal phase ϕ is
known as the screening effect. We observe from Eq. 2.12 that the non-linearity
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Figure 2.4. Illustration of the screening effect. (a) The external phase as
a function of internal phase. For low critical currents the relation is nearly
linear, but becomes more and more non-linear for increasing Ic. For the chosen
loop inductance Lloop, the crossover to the hysteretic regime appears for Ic =
183 nA (pink). (b) The internal phase (across the junction) as function of
external phase. The relation is found by inverting the curve shown in (b). In
the hysteretic regime, the phase conditions ϕ = ±π,±3π, . . . are not accessible
and the value of the phase can take on two values depending on the sweep
direction: when sweeping from ϕext from left to right one stays on the blue
branch while one traverses the dashed branch upon reversing the direction.

becomes more and more pronounced for larger supercurrents and larger loop
inductances. The transcendental screening equation Eq. 2.11 can be solved ei-
ther graphically or numerically. In Ch.B.2 we present a routine to numerically
solve the screening formula. Here we briefly discuss the graphical solution by
considering a sinusoidal CPR of the form Is(ϕ) = Ic sin(ϕ). We can express
and plot the external phase as a function of internal phase ϕext(ϕ), which is
a sine-function imposed on a linear dependence as shown in Fig. 2.5(a). By
inverting the function around the mean slope one obtains ϕ(ϕext), which is
the desired quantity to extract the internal phase from experimental parame-
ters. This treatment is depicted in Fig. 2.5(b). The inverted function becomes
hysteretic when ∂ϕext/∂ϕ < 0. By evaluating this derivative with the CPR
given above, reorder the result and minimizing the cosine-term, we obtain the
threshold condition for entering the hysteretic regime

LloopIc >
Φ0

2π . (2.13)

Once the hysteretic regime is entered the phase ϕ can no longer be adjusted
arbitrarily. Especially, the phase biasing conditions ϕ = ±π,±3π,±5π, . . .
become inaccessible.
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2. Probing the Josephson effect

2.3.3. Inductive coupling to a resonator
Since in an rf SQUID configuration, the JJ is in parallel with a superconducting
lead, there is no way to measure the device with dc techniques. Therefore, one
generally couples the rf SQUID inductively to a resonant tank circuit [64]. As
we have seen in Sec. 1.2.5, the inductance of a JJ can be tuned with the phase
and phase-biasing the rf SQUID therefore results in a shift of the resonance
frequency of the coupled tank circuit. Moreover, the frequency broadening of
the resonance provides information on the dissipative mechanisms in the rf
SQUID.

Although reading out rf SQUIDs is more involved compared to dc SQUIDs,
it has the following advantages: i) only one Josephson junction needs to be
controlled, ii) the device can be galvanically isolated, iii) the system can be
probed fast and iv) is sensitive to fluctuations in the supercurrent.
Combining the sensitivity of high quality superconducting resonators with

rf SQUIDs forms the basis for flux qubits [65–67] and Andreev qubits [34, 36,
68, 69]. The previously mentioned hysteretic phase response of the rf SQUID
is the working principle of the flux qubit where the two internal phase values –
attributed to a supercurrent either working with or against the external field
– form the computational subspace. The working principle of an Andreev
qubit on the other hand, is based on the discreteness of the ABS energies. If
we consider a JJ with only one single transverse mode and neglect poisoning
events, which would introduce parity switches, the system is a pure 2-level
quantum object. The two states have distinct inductance values and hence
can be probed via the shift of the resonance frequency.

2.4. Detecting Majorana bound states

The measurement techniques presented above are applicable for detecting the
features of so-called Majorana modes, which are predicted to appear in topo-
logical Josephson junctions [70, 71]. These electronic states obey non-abelian
exchange statistics that could be used to realize a perturbation-protected
braiding-based quantum information processor [72], and therefore gained tre-
mendous attention in the field of mesoscopic physics. Similar to the Andreev
bound states (ABS), the Majorana bound states (MBS) energies depend on
the phase across the junction and on its transparency [73]

E±topo = ±
√
τ∆ cos(ϕ/2). (2.14)

The distinctive property for MBS, in contrast to ABS, is that the two states
of opposite energy have a different parity, allowing them to cross each other
at ϕ = π. In turn, this leads to a 4π-periodicity as seen from Eq. 2.14 where
the MBS undergoes a ground state transition at the crossing point. The de-
cay to this new ground state involves the exchange of a quasiparticle from
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Figure 2.5. Energy dispersion of Majorana modes as a function of phase ϕ
for different transparencies τ . Majorana bound states undergo a ground state
transition at ϕ = π. The relaxation requires the exchange of quasiparticle
due to the opposite parity of the states, as indicted by solid and dashed lines
respectively.

the continuum to induce a parity switch. The relaxation time of this process
γrel is determined by the dynamical coupling to the quasiparticle environment,
and therefore defines the lifetime of Majorana excitations [74]. Since the re-
laxation processes seemingly restore the 2π-periodicity, the detection of the
4π-periodicity in topological Josephson junctions requires out-of-equilibrium
rf measurements at frequencies faster than the equilibration time [75]. Note
that the 4π-periodicity adds an additional term to the generalized CPR Fourier
series

Itopo(ϕ) = Atopo sin(ϕ/2) +
∑
k

(−1)k−1Ak sin(kϕ), (2.15)

where Atopo refers to the supercurrent contribution emerging from MBS. In
the remainder of this section we will briefly sketch the features expected for
MBS in the previously explained measurement schemes.

Shapiro steps

Returning to the ac biased RCSJ picture as explained in Sec. 2.1, an added
4π-periodic contribution would introduce an even-odd effect in the washboard
potential, where subsequent potential wells have slightly different heights. It
is theoretically predicted (and is intuitive) that this leads to different trap-
ping properties for the phase particle, which manifests itself as an even-odd
dependence of the Shapiro step current-plateau sizes [76, 77]. The observation
of this topological feature in the Shapiro step pattern has been claimed for
different material platforms: Nb-InSb-Nb nanowire junctions exposed to in-
pane magnetic fields [78], Nb-Cd3As2-Nb nanowire junctions [79], V-Bi2Se3-V
3D-topological insulator junctions [80] and Nb-HgTe-Nb 2D/3D-topological
insulator junctions [81, 82].
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2. Probing the Josephson effect

In general, Shapiro step measurements involve the frequency mixing of the
Josephson radiation and the external drive signal, which leads to a complex
frequency-dependent electromagnetic environment that might depend on the
device architecture far beyond the junction itself. Furthermore, the evolv-
ing phase can introduce Landau-Zener transition, suffer from quantum tun-
nelling events, and thermal excitations. The requirement for observing the
4π-contribution is that the phase adjustment-time needs to be shorter than
the lifetime of the MBS, which demands high quality devices [83, 84]. In ad-
dittion, the fact that the resistance in the RCSJ-model depends on the phase,
the frequency and the voltage bias, makes it particularly tedious to deduce
topological features from Shapiro step measurements.

Radiation

Another possibility to probe the presence of Majoana states is provided by di-
rectly measuring the radiation signal of the junction. Due to the 4π-periodicity
it is predicted that the junction emits photons at half the frequency of the triv-
ial 2e-signal and is referred to the fractional ac Josephson effect [85, 86]. In
this case, the junction radiates at a frequency fJ = eV/h, in addition to the
conventional 2e, 4e, 6e . . . contributions. This implies a 1e-granularity of the
supercurrent across the junction: a feature which can be interpreted as sequen-
tial single electron tunnelling events. In a microscopic picture this process can
be understood as the Majorana state storing one electron on one side of the
junction, until another electron is transferred. This pair of electrons then re-
combines into a Cooper pair that will be absorbed in the condensate. Now,
the Majorana state is empty and capable of hosting a next single electron, and
the cycle repeats. The width of the radiation peak Γ is inversely proportional
to the lifetime of the MBS (Γ ∝ γ−1

rel ).
The signature of 1e-radiation has been claimed to be detected on a resistively

shunted HgTe junction using off-chip measurement techniques [57] and on an
InAs nanowire junction formed by locally removing the epitaxial Al shell. In
the later experiment, the radiation was measured by using an elegant on-chip
detection technique, incorporating a second Josephson element. The fractional
Josephson effect appeared after applying parallel magnetic fields on the order
of the expected phase transition point [87].
Although the detection of the fractional ac Josephson effect using radiation

is more direct compared to analysing Shapiro step patterns, the observed fea-
tures have still to be interpreted carefully. For example, the photonic interac-
tion with environmental cavity modes can lead to up- and down-conversion of
the radiation signal, which might interfere with the pure radiation signal. Fur-
thermore, the IV -characteristics and the radiation amplitude of JJs depends
on the surrounding impedance [59], which is in general frequency dependent
and might be modified by magnetic fields [58].

30

2



2.4. Detecting Majorana bound states

rf SQUID

The most diverse platform to probe Majorana states is likely provided by cou-
pling an rf SQUID consisting of a single mode topological Josephson junction
to a resonant tank circuit. This architecture allows to monitor the full com-
plex impedance of the circuit in real time and provides access to the random
telegraph signal of the Josephson current [88]. The resulting noise signal at the
phase condition ϕ = π should have a distinct character for topological junc-
tions when compared to trivial ones for two reasons. First of all, the MBSs in
topological junctions can only be populated in two configurations where both
carry a current of opposite direction. In a trivial, single mode junction, the
ABSs can be occupied in four different configurations, where none of them
carry a current (ϕ = π). Second, in topological Josephson junctions, direct
microwave induced transition are prohibited by parity, whereas in trivial junc-
tions some transitions are accessible with electromagnetic field. Consequently,
the internal dynamics between the two flavors should be distinct, which it
turn, results in a different in supercurrent fluctuation [89–91]. However, we
would like to stress that rf SQUIDs always suffer from small phase variations,
either coming directly from the coupling to the tank circuit, or from having
external sources that give rise to flux noise. Hence, for a highly transparent
ABS spectrum there will be similarly large current fluctuations as there would
be provided by MBS, due to the close overlap of the spectra apart from ϕ = π.
The dissipation1 of an rf SQUID consisting of a multichannel Bi nanowire em-
bedded in a W-ring has been measured by the coupling to a superconducting
resonator [92]. Although no shifts of the resonance frequency were observed,
the shape of the loss peak and its temperature evolution have been claimed to
be the signature of a topological Andreev level crossing. We are only aware of
this particular experiment declaring non-trivial phase-dependent supercurrent
fluctuations.
It is worth to mention that the observed feature is highly disputed in terms

of evidence for MBS. One major concern is the possible appearance of many
channels with occasionally near-unity transport probabilities, which can mimic
the features of MBS. We will show in Ch. 5 that we can quantitatively repro-
duce the shape and temperature evolution of the dissipation peak with a trivial
junction based on a short, diffusive graphene weak link.

1The fluctuation-dissipation term directly relates the supercurrent fluctuations to the
dissipation in the system.
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3 Device Fabrication and Design

In this chapter we describe the fabrication processes for realizing the Josephson
junctions that are investigated throughout this thesis and discuss the archi-
tecture of the resonant tank circuit for probing rf SQUIDs. In Sec. 3.1, we
will focus on tunnel junctions formed with the native oxide in-between two
overlapping Al regions. In Sec. 3.2 we direct our attention to Josephson junc-
tions based on nanowires. First, we describe the realization of Josephson junc-
tions by Cd3As2 nanowires, contacted with superconducting leads. Second, we
present the formation of a Josephson junction in InAs nanowires, where its Al
half-shell is locally removed to define the weak link. Additionally, the methods
used to manufacture the graphene rf SQUID discussed in Ch. 5, are explained
together with the fabrication and the design of the coupled superconducting
co-planar transmission line λ/4-resonator.

The title image presents a nanowire Josephson junction on top of a complex gate archi-
tecture embedded in a SQUID loop. The surrounding co-planar structures probes and
manipulates the junction. The Josephson effect emerged in the device was weak and
will not be discussed.

33



3. Device Fabrication and Design

3.1. SIS tunnel junctions

One way to from a Josephson junction (JJ) is provided by generating a super-
conductor-insulator-superconductor (SIS) stack, in which the insulating layer
is thin enough such that tunnelling between the superconducting leads is possi-
ble. An elegant method to realize this type of structure is achieved by making
use of the native oxide formed on the lead material. In the following, we de-
scribe the fabrication of double angle shadow evaporated Al/AlO2/Al tunnel
junctions, which due to their robustness and reproducibility are widely used
in Josephson circuits.

Shadow evaporation

Niemeyer and Dolan [93] developed the idea of an evaporation mask that is
suspended above the substrate, which can be used as a shadow mask. In our
case the mask consists of a thin suspended resist bridge, which is fabricated
with e-beam lithography (EBL) using two different resists on top of each other.
The bridge is evaporated under two accurately chosen angles to create an
overlap between the subsequent layers, as illustrated in Fig. 3.1(a). With
this technique one can fabricate junctions with an overlap down to a few
nanometers. If the evaporation angles are ±α, the overlap σ can be estimated
by

σ = 2h · tan(α)− b, (3.1)
where h is the distance between the substrate and the shadow mask, and b is
the width of the resist bridge.

Substrate preparation and resist bilayer

We prepare the intrinsic Si/SiO2 (500 µm/170 nm) substrate by first immers-
ing it in acetone and placing it in a ultrasonic bath for 10 min. This step
is repeated with isopropanol (IPA) and followed by a 5 min long UV-ozone1
plasma. After cleaning the substrate, we spin coat PMMA/MA with a thick-
ness of 600 nm. After baking the first layer, a second resist layer with a
thickness of 200 nm PMMA is coated and the bilayer is baked again.

Since PMMA/MA is more sensitive than PMMA to exposure to the elec-
tron beam used in the subsequent EBL process, one obtains an undercut after
exposure. The undercut geometry is studied with scanning electronic micro-
scope (SEM) imaging in a cross section of a test sample, which is covered with
a thin film of Al to avoid charge accumulation. The apparent sharp side profile
shown in Fig. 3.1(b) is produced by immediately cleaving the chip after pre-
cooling in liquid nitrogen. The shape and magnitude of the undercut depends
on the acceleration voltage and generally increases with increasing exposure.
1UVO-Cleaner© Model 42-220
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Figure 3.1. (a) Illustration of the double angle shadow evaporation technique
with: (i) a 200 nm wide suspended bridge, (ii) a first aluminium (Al) layer
(20 nm), (iii) a thin insulating AlO2 layer, (iv) a second Al layer (50 nm).
With a suspension height h = 600 nm and evaporation angles α = ±25◦ an
overlap σ = 300 nm is predicted. (b) SEM image of the undercut structures,
which enables the fabrication of suspended resist bridges. The resist (violet)
consists of a PMMA/MA (top) and PMMA (bottom) stack. (c) SEM image of
Al/AlO2/Al Josephson junction. The tunneling region is highlighted in pink.

In order to avoid deposition on the undercut walls, the evaporation angles are
adjusted accordingly.

Oxygen cleaning

After the EBL, the sample is developed in a 1 : 3 mixture of methylisobutylke-
tone and IPA (MIBK) for 1 min at 25◦C which is followed by 10 s rinsing
with IPA and a blow-dry step. On the substrate surface a thin layer of resist
residue will remain, which in the vicinity of the junction contaminates the
oxide barrier, changing its chemical composition and physical properties [94].
This process leads to a varying junction resistance over time. To minimize
the contamination, the sample is cleaned with reactive ion etching using an
oxygen plasma.2

Junction design

In the fabrication process, the bridge is the key element for realizing the tunnel
junction. We were able to reproduce stable bridges designed with a length of
∼ 3 µm and a width of 200 nm. The overlapping area A, which is indicated in
Fig. 3.1(c) by the pink shading, can be adjusted with the evaporation angles
2Oxford© Plasmalab 80 Plus
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and defines the normal state resistance RN ∝ 1/A and hence controls the
magnitude of the critical current. Since one side of the bridge is kept wider
than the other, the overlapping area is constant, even for slight misalignments
during the evaporation. The order of the evaporation angles is chosen such that
the wider contact overlaps the smaller one, which prevents the junction edges
from further oxidation. This fabrication process and design can be further
utilised to create array structures and SQUID loops, in which the critical
current can be tuned by an externally applied magnetic field as demonstrated
in Ch. 6.

Evaporation

Next, the sample is prepared for the evaporation process and oxidation step.
The thin Al layers are deposited in our BesTec system, which is ultrahigh-
vacuum evaporator with adjustable sample holder stage. The oxidation of the
first Al layer is realized by exposing the structure to an oxygen atmosphere in
the load-lock.

For the double angle shadow evaporation, the sample stage orientation is
required to be accurately adjustable. In the evaporator, the sample stage
can be mechanically tilted described by y and rotated described by x with
manipulators on top of the evaporation chamber. In addition, there is a main
rotation axis described by z. All adjustments on the orientation can be done,
while maintaining the vacuum conditions in the evaporation chamber. The
zenith position for the Al target is reached when y = 99.875, x = 0.125
and z = 137 ◦. The device is mounted on the sample holder such that the
evaporation angle can be changed by the tilt. A deviation in the tilt from
the zenith position of ∆y requires an additional correction in the x-axis of
∆x = −∆y/2. The evaporation angles are chosen to be ±22.5 ◦≈̂±0.25 = ∆y,
which leads to following tilt coordinates for the two sequential evaporation
steps:

y = 99.625, x = 0.25 and y = 0.125, x = 0

The Al target is thermally evaporated at 1100 ◦C, while cooling the chamber
and the sample stage to increase the film quality. An Al layer of 20 nm is de-
posited at the first tilt position. After the oxidation process, which is described
in the next subsection, a second aluminium layer of 50 nm is evaporated at
the other tilt angle.

Oxidation

After the evaporation of the first Al layer, the sample is transferred into the
load-lock for the oxidation step. The load-lock chamber connects via a small
pipe to a gas bottle filled with oxygen of 5.0 purity and the gas flow can be
regulated by a manual inlet valve. We isolate the load-lock by closing the valve,
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which is located at the exhaust of the turbo pump. The turbo is switched off
and the venting is disabled. After 30 min the number of revolutions goes to
zero and the load-lock leaks up to a pressure of ∼ 4 × 10−2 mbar. One has
to consider, that in this time the sample gets already oxidized a little. Now
oxygen is poured in by opening the inlet valve until an oxidation pressure of
1 mbar is reached. The gas flow rate is very hard to control by the inlet valve.
Many turns on the valve wheel have to be done until the gas starts to flow into
the load-lock. To decrease this flow again, the wheel has to be turned back
nearly all the way. The time until the oxidation pressure is reached can vary
by a few minutes. After closing the inlet valve, the pressure stays constant
during the 10 min of oxidation. The oxidation parameters (tox = 10 min
and Pox = 1 mbar) are adapted to ensure isotropic, reproducible, self-limited
AlO2 layers with a thickness of ∼ 3 nm. The oxidation process is stopped by
turning on the turbo again and by opening the exhaust valve. When the load-
lock pressure has decreased again to a few 10−6 mbar, the sample is transferred
back into the evaporation chamber to deposit the second Al layer.

3.2. SNS junctions

In the following sections we describe the fabrication of JJs made of a small seg-
ments of semiconducting materials embedded in-between two superconducting
leads. In contrast to SIS junctions, the coupling between the superconductors
can be tuned in-situ in these devices by changing the charge carrier density
inside the normal conducting region with electric fields from a nearby gate.
We will first detail the fabrication incorporating Cd3As2 and InAs Al shell
nanowires (NWs). The experimental results of these types of devices are pro-
vided in Ch. 6. JJs formed by NWs are especially interesting, since due their
low dimensional side profile they can host single transfer modes desirable to
suppress cross-mode scattering. At the end of this section we will provide
a brief description for the realization of the multi-mode graphene-Al JJ pre-
sented in Ch. 5.

3.2.1. Cd3As2 junctions
The Cd3As2 nanowires investigated here were grown at the DGIST Research
Institute in Hyeongpung, Korea by the vapor transport method [95] and were
provided by Minkyung Jung. We pre-pattern base structures by standard EBL
techniques [96–98] in combination with the deposition of Ti/Au (5 nm/45 nm)
to define bonding terminals surrounding a marker grid on top of a p-doped
Si/SiO2 (500 µm/305 nm) substrate. The nanowires are transferred by the
cleanroom wipe technique explained in the following [99]. A sharp wipe tip
is first carefully tapped onto the growth chip using an inverse tweezer. Then
the loaded nanowires are tapped off by eye-measures in the center of each base
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structure. Using an optical microscope, we selectively locate the nanowires
that appear most thin, which have typically diameters of ∼ 70 nm. The
nanowires are contacted in a quasi-four-terminal configuration in the Balzers
evaporation system. After an in-situ Ar-milling step performed during 27 s
for removing the native oxide of the wire, Ti/Al (3 nm/200 nm) leads are
deposited by e-beam evaporation. We separately optimized the design and
the EBL parameters to achieve a source drain spacing of ∼ 100 nm. The lift-
off in acetone is performed at 60 ◦C and limited to 25 min to prevent damaging
of the wire as recommended by Minkyung Jung. After flushing the device with
a syringe to remove remaining metal flakes, the device is rinsed with IPA and
blow dried with N2.

Top gates

We developed a recipe to fabricate highly effective top gates. In contrast to
standard fabrication routines, in which the gate dielectrics are grown over
the whole sample area by atomic layer deposition (ALD), we designed a local
deposition method for ALD films. We make use of the extensive undercut pro-
vided in PMMA/MA resist structures. Deep in the undercut, where the ALD
layer is weakest it has a predetermined breaking point, which can be triggered
during the lift-off procedure. For dc device architectures, the advantage of
this method is not directly apparent, however the impact of our development
becomes evident by thinking of a resonant structure surrounding the device.
The standard procedure would cover the entire surface of the resonator, which
would create charge defects in its proximity and hence lowers its quality. With
our achievements we can protect the sensitive resonator, and simultaneously
make use of the advantages provided by top gates.

We cover the Cd3As2 nanowires with a 20 nm thick layer of HfO2,3 which is
a dielectric material with high relative permittivity (εr ≈ 24) to optimise the
capacitive coupling of the gates to the nanowires. A subsequent top gate elec-
trode deposited across the isolated source drain contacts finalizes the device.
These structures typically sustain top gate voltages up to 10 V.

3.2.2. InAs junctions
During our research we had the opportunity to work with the famous InAs
nanowires that are covered with an epitaxially grown Al shell in an in-situ
process [100]. These nanowires are grown at the Niels Bohr Institute by
Prof. P. Krogstrup using molecular-beam epitaxy and provided by Prof. J.
Nygård. In contrast to the standard fabrication of nanowire JJs, in which the
superconducting electrodes are provided by a separate material deposition step
as described in Sec. 3.2.1, here the weak links are defined by locally removing
3Deposited with a Savannah 100 from Cambridge NanoTech Inc. at 220 ◦C.
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the Al shell. It has been demonstrated that the atomically sharp boundaries
between the inner InAs core and the outer Al shell governs a highly transparent
interface with transmission probability near unity [54, 101]. Two flavors of
Al shelled InAs nanowires are processed: a ‘full shell’ NW with a ∼ 30 nm
thick Al mantle covering all facets of the InAs core, which has a diameter of
∼ 70 nm, and a ‘half shell’ NW with a ∼ 6 nm thick Al layer covering three
facets of the InAs core. In the following we will limit our discussion on the
latter type.

Micro-manipulator deposition

In order to reduce damage of the growth chip (as one would do using the
paper-tip pickup method), we pick up a single NW with glass needles and
position it on the desired location of the final chip using a micro-manipulator.
This technique allows for instance to place the NW across a pre-defined bottom
gate structure. Here, the gates together with the bond terminals are patterned
with standard EBL in combination with the deposition of Ti/Al (5 nm/20 nm)
layers on top of a Si/SiO2 (500 µm/170 nm) substrate. The gate structure is
locally covered with a 20 nm thick HfO2 isolation layer, which enables direct
access to the bonding regions.

MF321 Al etching

With the half- and full-shell nanowires, a JJ can be formed by selectively
etching the Al shell surrounding the InAs wire, which is a challenging pro-
cess, especially for the removal of short segments. Together with C. Jünger we
established a wet etching recipe based on the information received from Dr.
M.T. Deng from the University of Copenhagen. The proper formation of such
etch defined JJs is not trivial at all and is discussed in detail in Ref. [102].
In short, the etch mask is formed by using an adhesion promoter in combi-
nation with a low viscosity MMA based resist called EL6 from the company
MicroResist. The etch windows are EBL defined lines, terminated by larger
area openings to increase the rate of flow at the junction during the etching
and stopping processes. The TMAH based optical developer MF321 acts as
soft etchant with an etch time of 75 s for the half shell Al and 85 s for the
full shell Al. The process is stopped by heavily shaking the sample held by
tweezers in two subsequent DI water baths for a total flushing time of 50 s.
The recipe can be applied to nanowires dispersed on SiO2 surfaces, as well as
for nanowires located across HfO2 covered bottom gate structures. We would
like to point out that the etch results are very sensitive to the ageing of the
etchant, and the usage of MF321 shall be omitted after it exceeded its expiring
date.
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Sputter-deposited NbTiN contacts

The final goal for the InAs half shell junctions is to embed them in a rf SQUID
and measure the response of the coupled tank circuit, while exposing the junc-
tion to large in-plane magnetic fields of the order of ∼ 500 mT, at which a tran-
sition to the topological phase is expected. The SQUID loop and the contacts
need to sustain those fields, which limits our choice of material to supercon-
ductors of type II, or very thin type I, whereas the latter requires elaborated
contacting methods. We developed a reliable contact recipe that starts with
an Ar-plasma followed by in-situ sputtering NbTiN (130 nm) leads.4 Since it
is desirable to fabricate the loop and the contacts in one deposition step, we
employed the bilayer resist presented in Sec. 3.1 to create an undercut struc-
ture that minimizes lift-off problems for the inner loop area. Because the
Ar-plasma is rather directional in our system but the sputtered deposited ma-
terial creeps underneath the contact regions, the contact to the Al shell - if
facing towards the target - should always hit the sweet spot where the native
Al oxide is removed but where the Al shell itself is still intact.

3.2.3. Graphene junctions

The graphene Josephson junction, which will be investigated in Ch. 5, were
fabricated by David Indolese in a collaboration with Dr. Romain Danneau
and Dr. Rainer Kraft from the Institute of Nanotechology at the Karlruhe
Institute of Technology (KIT). The graphene Josephson junction (JJ) is made
of a van der Waals heterostructure, which consists, from bottom to top, out
of a thick graphite sheet, a bottom hexagonal boron nitride (hBN) with thick-
ness d = 47.5 nm, a monolayer graphene and a top hBN (21 nm). We sepa-
rately prepare the stack by a standard polycarbonate-assisted pick-up tech-
nique [103] and place it next to the current anti-node of the resonator that
will be discussed in Sec. 3.3. Details about the stacking routine is provided in
the supplementary material of Ref. [104]. At the end of this process, the whole
device is placed for 1 h in dichlormethane to dissolve polycarbonate residuals
to prepare the stacks surface for the following fabrications steps. Interestingly,
dichlormethane treatments are used in the fabrication of optical resonators to
glaze the surface and to remove excess unbonded fluorescence molecules [105].
This fabrication step might have advantages impacting the surface chemistry
of the resonator, resulting in a particularly high internal quality factor as
reported in Ch. 5.

4AJA© ATC Orion 8
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Contacting and Shaping

The graphene is contacted and enclosed by a thermally evaporated Ti/Al
(5/90 nm) lead, which forms the rf SQUID. Access regions for the self-aligned
side contacts [106] are structured with EBL in combination with a CHF3/O2
etching step. The contacts to the graphene and the loop are fabricated si-
multaneously at KIT [107]. The BesTec evaporator at KIT has a specially
large ratio between source-diameter and source-sample-distance, which is pro-
viding substantial undercut deposition. After contacting, the graphene stack
is shaped to a width W = 1µm using a positive PMMA resist mask in com-
bination with a CHF3/O2 etching step. This process step is equivalent to the
one described above.

3.3. λ/4-resonator

In order to investigate the dynamics of JJs, we follow the approach of cou-
pling an rf SQUID inductively to a tank circuit [25]. In our experiment, the rf
SQUID is coupled to the current anti-node of a superconducting λ/4-resonator.
The resonant structure consists of a meandered co-planar transmission line,
which is shorted to ground on one side and interrupted by a coupling capaci-
tance on the other. The capacitive side is coupled via a launcher to the reflec-
tometry set-up. In the following, we will focus on the experimental realization
of a NbTiN based λ/4-resonator, for which a detailed formal description can
be found in Ch.A. The hybrid rf SQUID resonator devices are fabricated by
first sputtering a NbTiN film on a bare wafer as described in Sec. 3.3.1. Next,
the resonator structure is patterned with a dry etch technique, which will be
described in Sec. 3.3.2, and finally the junction element is transferred onto the
device and embedded in a superconducting loop as described in Sec. 3.4.

3.3.1. NbTiN sputtering
In the last four years in a group effort, we have developed a sputtering recipe
to fabricate ultra-high quality NbTiN films to form magnetic field resilient
microwave resonators. Since the film quality is crucial for the sensitivity of
the resonators, we deposit NbTiN films on large scale (typically a quarter of a
4 inch wafer) to pre-characterize the film before further fabrications steps. The
undoped Si/SiO2 wafer (500µm/170 nm) is thoroughly cleaned with following
steps just before the deposition:

• 10 min sonication in deconex© 12 basic/DI-water solution (1:100)
→ flush with DI-water

• 10 min sonication in DI-water → blow-dry
• 5 min baking at 120 ◦C
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• 10 min sonication in acetone
• 10 min sonication in IPA → blow-dry
• 5 min UV-ozone in UVO-Cleaner© Model 42-220

The wafer is then immediately built into the load-lock chamber of the AJA©

ATC Orion 8 sputtering machine. We customized our machine by the instal-
lation of a substrate shutter, which allows to condition the chamber before
sputtering the main film. After inserting the wafer from the load-lock into the
sputtering chamber, typical base pressures of ∼ 8 × 10−9 Torr are achieved.
We form a NbTiN compound by using a NbTi-target (70/30 at%, 99.995%
purity) while N2 is added to the Ar sputtering gas. We position the wafer
as close as possible to the NbTi target to minimize particle scattering. The
target is off-centred, opening a 20 ◦ angle to the zenith axis of the wafer at a
distance of 30 cm. Before deposition, the chamber and the NbTi-target are
conditioned. During the conditioning steps the substrate shutter protects the
wafer from material deposition. We pre-sputter Ti (35 sccm of Ar at 4mTorr
with (DC) 100W for 20min) to remove oxygen residuals in the chamber. After
terminating the Ti pre-sputtering, we pump on the chamber until pressures
< 1× 10−9 Torr are reached, which typically takes ∼ 20min. Then we sputter
NbTi+N2 (50 sccm of Ar, 3.5 sccm of N2 at 2mTorr with 275W (DC)), while
letting the substrate stage rotate. After 4min of sputtering time, we open the
substrate shutter to begin the deposition on the wafer for in total 375 s, which
results in a film thickness of ∼ 80 nm. The N2-flow was optimized separately
to achieve a stoichiometric compound of NbTiN.
After the deposition, we characterize the film quality in a 4 K liquid He

dipstick measurement. For this we typically pattern λ/4-resonators of different
lengths coupled to a central feedline in a hanger arrangement using optical UV-
lithography in combination with a dry etch step discussed in Sec. 3.3.2. Form
the transmission measurements we can correlate the resonance frequency to
the length of the resonators and extract a lower bound for the internal quality
factor of the film. Since the kinetic inductance of the film nearly saturates at
4 K,5 we can accurately design the resonance frequency of the final structure,
which will be measured at ∼ 20 mK in a dilution refrigerator.

3.3.2. Design and patterning

Our device structure is designed to aim for a resonance frequency ∼ 3 GHz,
which is the central frequency of our reflectometry set-up. We plan for a
characteristic impedance of ∼ 50 Ω to achieve efficient coupling to the mea-
surements side as well as to the rf SQUID [108]. The meandered co-planar
5This is because 4 K is well below the critical temperature of NbTiN (80 nm), which is
typical ∼ 14 K.
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transmission line is designed with a central conductor width of 12 µm, a clear-
ance of 6 µm to the surrounding ground plane and a total length of 7.54mm.
The dimensions of the finger capacitor are aimed for providing a coupling
capacitance of ∼ 4 fF. At the shorted end, the spacing between the central
conductor and the ground plane is enlarged to create an open area for the
SQUID loop. Additional leads, such as a flux line to create an on-chip mag-
netic field for phase basing the SQUID loop, a supply line for the gate and a
pulse line6 are guided towards the opening. The supply lines do have on pur-
pose a different aspect ratio to provoke an impedance mismatch for minimiz-
ing loss channels for the resonator. From the measurements and calculations
presented in Ch. 5 and Ch.A, we deduce for this architecture a resonance fre-
quency f0 ≈ 3.098GHz, a characteristic impedance Zr = 69.5 Ω and a coupling
capacitance Cc = 4.7 fF.

After cleaning the film with acetone and IPA, we spin coat PMMA and pat-
tern the structure with standard EBL. Using an oxygen plasma, resist residuals
in the developed regions are decomposed. The exposed NbTiN regions are dry
etched using Ar/Cl2 gases in a inductively coupled reactive ion etching plasma
machine.7 The background pressure is set to 1 Pa, the ICP power to 100 W
and the rf power to 125 W by supplying an Ar flow of 40 sccm and a Cl2
flow of 25 sccm. Using these parameters, the NbTiN is etched with a rate
of ∼ 3 nm/s, whereas the PMMA mask is etched with ∼ 12 nm/s. To ensure
a complete removal of the NbTiN film the etch duration is set to 150% of
the actually required exposure time. The etch mask is lifted-off in acetone at
40 ◦C during 1 h in a ultra-sonic bath. The structure is then rinsed with IPA
and blow dried with N2. Contact regions for grounding the loop and markers
are pattern subsequently by depositing Ti/Au (5 nm/25 nm) after a 30 s long
Ar-milling step in Balzers.

3.4. RF SQUID loop

After transferring the mesoscopic device of interest, either onto a bottom gate
structure in the coupling area, or by directly placing it onto the etched SiO2
surface, the junction needs to be formed and enclosed in a superconducting
loop. For our purpose it is desirable to choose a superconducting loop mate-
rial with a low kinetic inductance. Because this material property adds to the
geometric inductance and hence reflects as an increased total loop inductance
Lloop. As we have seen in Ch. 2.3.2, the screening effect becomes more and
more evident with increasing product LloopIc and eventually results in a hys-
teretic behavior, for which the point ϕ = π can no longer be reached. Although
we developed a method to correct for screening in the non-hysteretic regime
6In the measurements present in this thesis we do not make use of the pulse line.
7Sentech© SI500
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it’s still advantageous to minimize the LloopIc product. This is because close
to the hysteretic regime, the oscillating external phase component stemming
from the coupling to the resonator, will induce large phase biasing oscillations
around ϕ = π and hence smears out the region of interest.

The shape of the loop is always a compromise between maximizing the cou-
pling to the resonator, reducing the amound of pick-up noise and minimizing
the screening effect. We typically form SQUID loops of rectangular shape
with an outer length of ∼ 100 µm and outer width of ∼ 40 µm and a lead
width of 1 − 3 µm, adapted from Ref. [108]. Hence, the loop surrounds an
area of ∼ 4 000µm2 implying that ∼ 1 µT generates a flux quantum inside
the SQUID, or in other words, provides one full phase biasing period. This
small magnetic field is governed by the dc current flowing through a strip-line
running in parllel along the long side of the loop with a spacing of ∼ 1 µm.
The loop is galvanically grounded to allow gating for hybrid semiconducting
JJs. A different coupling method, in which the long axis of the SQUID is
galvanically overlapping the central conductor, is expected to maximize the
inductive coupling, and shall be considered for future devices.

For the graphene rf SQUID presented in Ch. 5 we chose Al, which has a low
kinetic inductance and a relatively small superconducting gap ∆Al = 180µeV,
which is advantageous for keeping the critical current low. The elongated
shape of the loop and the varying lead width (see Fig. 5.1 (b) in Ch. 5) is
aimed for building a compromise between maximizing the coupling to the
resonator and minimizing screening effects. For this specific geometry we find
a self-inductance Lloop = 211 pH from finite-element simulations performed in
Sonnet [109]. Here, we assume a kinetic sheet inductance of 0.2 pH/� for the
90 nm Al film calculated from the value presented in Ref. [110], and extract a
mutual coupling inductance of M = 30.83pH. These circuit parameters are of
particular relevance for the quantification of the electrical properties governed
by the Josephson junction itself.
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Josephson junctions are highly sensitive to electronic noise due to their van-
ishing resistance, and SQUID loops are highly sensitive to flux noise. Both
aspects pose an experimental challenge to accurately measure the emission
spectra of Josephson junctions or to detect the dispersive and dissipative re-
sponse of a resonator coupled to a SQUID loop. In the last four years we
have improved our two high-frequency equipped dry-dilution refrigerators to
enable stable voltage biasing of Josephson junctions on the µV scale and to
effectively reduce flux pick-up. In the following chapter we outline the most
relevant set-up modifications, provide measurement protocols and report on
potential further optimizations.
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4.1. Preface

A prerequisite for measuring superconducting circuits is to cool down the spe-
cific device below its critical temperature. We have seen in Ch. 1 that the tem-
perature has a substantial influence on the critical current and on the current-
phase relation. Since we mainly investigate Josephson elements formed by Al,
we measure our devices in dilution refrigerators with a base temperature of
∼ 20 mK, which is well below the critical temperature Tc ≈ 1.2 K of Al. It
is worth mentioning that the base temperature is typically smaller than the
electronic temperature, which is the relevant parameter for the performance of
the devices. To reduce the thermal coupling between the measurement equip-
ment and the device, several thermalization and filter stages are incorporated.
However, not only the electronic temperature affects the quality of the mea-
surement, additional external noise sources such as current, voltage and flux
fluctuations generally limit the sensitivity of the measurement.

In our group we have two different dilution refrigerators a BlueFors© BF-
LD400 (BF) and an Oxford© Triton 200 system. Both fridges are equipped
with microwave components acting in the low GHz regime and with standard
dc lines. The BF set-up is extended with an additional mounting stage at-
tached below the mixing chamber plate. In this set-up several samples can be
probed simultaneously with rf techniques. In the Triton set-up on the other
hand, only one rf device can be measured at a time, but the transfer system
installed here enables a roll-over time to a next sample from base temperate
to base temperature within ∼ 24 h, which is especially convenient for quick
characterisation of different samples or modifications on the used PCB. Fur-
thermore, the Triton system hosts a 1-1-6 T vector magnet, where the largest
field points along the vertically installed transfer arm. Both set-ups are very
similar from an rf and dc wiring point of view, and the here presented measure-
ment schemes and optimization steps should be considered as equally relevant
for both systems.

In the following, we will first discuss the set-up for measuring Josephson
radiation, with which the results presented in Ch. 6 are obtained. Then we
move forward to the reflectometry set-up used for probing a λ/4-resonator
coupled to an rf SQUID loop, with which the graphene Josephson junction
discussed in Ch. 5 is investigated.

4.2. Josephson radiation and Shapiro step set-up

Before diving into the details of the measurement set-up, we would like to point
out that measuring the emission spectrum of a Josephson junction is a delicate
experiment. First, a stable voltage bias needs to be provided and second, the
detection line needs to be sensitive to extremely small signals. Inspired by the
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Figure 4.1. PCB for radiation measurements in Triton. (a) Optical im-
age of the PCB with a length of 4 cm and width of 2.5 cm. (b) Schematic
representation for bonding a Josephson junction device.

method presented in Ref. [57], we developed an off-chip broadband measure-
ment scheme for detecting Josephson emission in a bandwidth 2.5− 7.7 GHz,
where the exact interval is determined by the circulators in the set-up.
We start our description on the device and PCB level. The PCB shown in

Fig. 4.1(a) is patterned with co-planer transmission lines connecting to SMP
launchers1 and consists of dc lines with solder spots for 0603 SMD components
connecting to a nano-D adapter. The double-sided Ni/Au plated Roger© 4350
PCB is mounted onto a copper plate. The opening for the device is isolated
with a small glass plate to allow potential back gating. An essential element of
the device – the 10 Ω metal film resistor that allows for stable voltage biasing
and damps the junction – is soldered on the back side in-between the ground
plane and the central conductor of the SMP connector.
On the sample side we have made a lot of progress in reducing spurious

resonances by designing the feed leads to be short and continuously reducing
in width towards the junction, as for instance seen in Fig. 6.10(a). We have
seen no qualitative differences between using superconducting or using normal
low-ohmic leads. Two bond terminals that act as source drain for the junction,
should be fabricated in such a way that they can be placed as close as possible
to the central rf line and the ground plane after cleaving. The sample is
glued onto the glass plate with PMMA. All connections that are described
in the following are made with several Al wire bonds2 and are illustrated in
Fig. 4.1(b). The central line connects to one side of the junction, whereas the
1Only one SMP is needed for measuring Josephson radiation and performing Shapiro step
measurements.

2Typically three per connection.
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other side is connected to ground resulting in a resistively shunted junction.3
Both wire bonds are made as short as possible. Two additional bond wires
connect to the differential voltage terminal.

After inserting the PCB, the device is connected to the full measurement
set-up presented in Fig. 4.2. The rf measurement line connects via the bond
wires to the transmission line and to ground. The dc supply lines are filtered at
room temperature, on the PCB and thermalized to the mixing chamber plate
via silver-epoxy filters that provide a cut-off of ∼ 6 MHz [111]. The current
bias is generated by a 1 MΩ resistor in series with a voltage source and flows via
a bias-tee that couples to the rf line through the device to ground. The voltage
drop a cross the junction is measured differentially with a voltage amplifier in
a lock-in technique operating at typically 177 Hz with an excitation current
between 2 − 10 nA. Additionally, the voltage at the output of the amplifier
can be measured in dc with a voltage probe, however we report on improved
readings with the lock-in technique. In the superconducting regime, most of
the current flows through the junction and once the junction switches to the
normal state, most of the current will flow through the shunt resistor where
the exact division of current depends on the ratio between the normal state
resistance and the shunt resistance. By assuming a large junction resistance,
the 1 MΩ source and the 10 Ω shunt resistor act as a voltage divider and
provide a stable voltage drop across the junction.4
As we have seen in Ch. 1 and Ch. 2, a constant voltage drop across a Joseph-

son junction leads to an oscillating current. The amplification chain collects
this tiny radiation signal and feeds it to a spectrum analyzer. The ac signal
is coupled via the bias-tee to a cryogenic HEMT amplifier (+40 dB) located
on the 4 K stage that is isolated from the device with two terminated cir-
culators. The signal is further amplified with a room temperature amplifier
(+35 dB), which is thermalized to the top plate of the cryostat to minimize
temperature-induced gain drifts. The following measurement parameters are
typically set at the spectrum analyzer to sense the amplified Josephson emis-
sion: detection bandwidth 20 MHz, span 24 MHz, radio bandwidth 10 MHz,
video bandwidth 5 Hz and 1001 points resulting in a sweep time of 2 s. The
internal attenuation is set to 7 dB and additional pre-amplification is omitted,
the detection frequency is sweep between fdet = 2.5 − 7.7 GHz. In addition
to the sensing line, a drive line contacts to the device via a directional cou-
pler used for irradiating the junction with a signal generator in Shapiro step
measurements.

3Note that the shunt resistor in this configuration additionally acts as ESD protection
for the Josephson element.

4No further enhancement in the voltage stability was observed when placing the 1 MΩ
source resistor directly on the PCB.
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Figure 4.2. Detailed overview of the radiation measurement set-up for the
Triton. The Fisher cable connecting the break-out box to the cryostat looms
and the cable connecting the 4K HEMT with its power supply are surrounded
with several ferrites. The break-out box shield is linked to the cryostat ground
with a massive copper mesh-cable which is kept as short as possible (indicated
with the red line).
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4.2.1. Optimizations

To generate Josephson radiation within the bandwidth of our set-ups, a stable
voltage bias< 15 µV is required. Additional voltage fluctuations will smear out
the emission peak and hence lower the detectability. Furthermore, externally
coupled fluctuations increase the effective electronic temperature, resulting in
a reduction of the critical Josephson current. During my PhD we drastically
improved our systems in terms of noise level and resolved major electrical
issues, which prohibited the detection of Josephson radiation before. In the
following, we will briefly sketch our main findings based on the observations
at the Triton set-up.

Grounding and shielding

The first step to ensure a proper measurement environment is determined by
the grounding of the system. After sorting out several ground loops in the
Triton, the cryostat is now only grounded by one cooper loom connecting to a
common earth ground, at which all measurement equipment is attached. The
frame is floating with respect to the cryostat and is separately grounded at
the pump unit. Because connecting the temperature sensors to the resistance
bridge generates a ground loop, we omit this connection whenever possible.
Because the feedthrough flange for the dc looms was anodized, there was no
shield connection between the break-out box and the cryostat. We solved this
issue by dismounting the flange, unscrewing the connector, and removing the
isolating layer in the contact regions by sanding down the surface.

At the BF set-up we identified a ground loop stemming from the heaters
in the He-thermalization-rods, which can be detached after reaching the base
temperature.
After sorting out these preliminary issues, we trace the non-vanishing zero

bias resistance of an overdamped junction5 to further improve the measure-
ment set-up. We denote that covering the ∼ 1.5 m long Fisher cable that
connects the break-out box to the cryostat with snap ferrites, substantially
decreased the resistance value. Following Michael Steinacher’s suggestion,
we connected the outer cryostat to the break-out box with a massive copper
mesh-cable which is made as short as possible. The observed improvement
was attributed to a reduced noise-coupling between the Fischer cable shield
and the inner measurement looms. Additionally, connecting the measurement
equipment to the control computer with a GPIB cable negatively affected the
resistance reading, and is overcome with the installation of an optical decou-
pler.

5The resistance value is an indirect measure for the electronic temperature as explained
in Ch. 1.2.6.
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Magnet power supply and leads

One rather subtle noise source stems from the magnet power supply cables.
We observed that when the six magnet leads are attached at the cryostat and
floating on the other side, the resistance readout is dependent on the loca-
tion of the these leads. For instance, the value increases when the leads are
close to the pump station but reduces again when moved away and therefore
suspect that the electromagnetic pick-up originates from the pump motors.
As a result, we relocated the power supplies, shortened the leads as much as
possible an shielded the bundled leads with a flexible metal tube. Although
this led to an improvement of the measured residual resistance of the test de-
vice, connecting and switching on the power supplies still triggers a rise of the
zero bias resistance value. For radiation measurements with magnetic fields
applied, we denote substantial improvement of the noise level by placing snap
ferrites around the magnet leads. For radiation measurements without field,
we recommend detaching the magnet leads directly from the feedthroughs for
particular sensitive devices. To guaranty a certain clamping and unclamp-
ing the brace connectors should by modified by incorporating a second screw
fitting.

HEMT wiring and filtering

Probably the most severe issue we identified in the dc biasing lines of the
HEMT amplifier. Both at room and base temperatures, we were not able
to adjust the source drain voltage as well as the gate voltage to the factory
specified settings, and hence were not able to operate the HEMT at its optimal
working point. Together with Joost Riderboos we carried out an investigation
at room temperature and by sourcing the HEMT directly (not via the fridge
wiring) we were able to obtain the factory settings and max out its gain to +40
dB. We identified that high-ohmic looms inside the cryostat are responsible
for the discrepancy and replaced this loom section with low-ohmic Cu looms.
Furthermore, we installed a filter and thermalization stage on the 4 K plate just
in front of the HEMT amplifier. We use low-ohmic silver-epoxy filters with
a cut-off frequency of 100 kHz, which are generously provided by Christian
Scheller. After these modifications, the HEMT can be accurately tuned to the
nominal values at room temperature as well as at base temperatures.
During the development of the Josephson radiation set-ups, we recognized

that it is crucial to filter the supply lines for the HEMT amplifier. From various
different filter designs the CLC π-filters with a cut-off frequency of ∼ 150 kHz
have shown the best performance. The final filter stage was manufactured
Michael Steinacher based on the schematic shown in Fig. 4.3.
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Figure 4.3. Detailed schematic of the home-built LC-filter for the HEMT
amplifier drawn by Michael Steinacher. The filter is located at room temper-
ature close to the feed-though into the cryostat.

4.2.2. Possible future improvements

Although we have progressed significantly in making our fridges more suit-
able for radiation measurements, the following additional improvements could
be implemented in the near future.
Bandwidth: When measuring radiation, the voltage difference between

emission peaks of different orders linearly increases with frequency. The re-
solvability of these peaks therefore directly scales with the accessible maxi-
mum accessible frequency in our measurement set-ups. In this respect, the
Triton set-up should be especially considered for an upgrade, since the system
possesses the ability to generate a large vector field. This makes the system
especially interesting for probing the nature of potential topological Josephson
junctions. Until now the bandwidth is confined to 2.5− 4 GHz determined by
the circulators, which could be replaced to reach frequencies up to 10 GHz,
corresponding to the limiting operation frequency of the HEMT amplifier.
Soft ground: We suspect that the stability of the voltage drop across the

Josephson elements is limited due to fluctuations on the ground potential. In
contrast to the hard ground scheme described above, a soft ground should be
considered in which a capacitor between ground and the device is closes the
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rf circuit. By carefully choosing the capacitance value, efficient decoupling
from the ground fluctuations could be obtained. In addition, by using a soft-
ground, the observed increased noise level when using magnetic fields - when
originating from cross-coupling to ground - should also be effectively reduced.
This modification is compatible with the current PCB design and easily im-
plemented. Note that the return current path would need to be re-routed by
incorporating a second dc loom, which in the hard ground situation is provided
by the cryostat ground.
One could even think of more elaborated device structure, in which two on-

chip fabricated capacitors, bonded to the central rf line and the ground, provide
the coupling to the read-out scheme. This arrangement could be accompanied
with thin meandered NbTiN dc supply lines, thus forming an on-chip bias-tee,
which might reduce the microwave leakage to the current biasing and voltage
probe lines.
Tunable shunt resistor: In the currently used measurement scheme, the

device is always shunted by the 10 Ω resistor, making the normal state behavior
of the junction is barely detectable. By using a tuneable shunt resistor, for
instance a high mobility transistor capable to operate at base temperature or
a relay switch, one could access this regime. Furthermore, we suspect that
with an adjustable resistor an optimised balance between voltage stability and
coupling to the rf lines could be achieved.
Voltage calibration: So far we take the current bias for granted to infer

from the differential voltage readings, the resistance and the actually voltage
drop across the junction.6 However, a voltage biased I/V -converter could be
used to measure the sourced current at room temperature for a hard ground
device. In the case of soft ground arrangement, the current could be measured
via the virtual ground of the unbiased I/V -converter. Another approach em-
ploys an SMD resistor on the PCB, in series with the source to extract the
current from the voltage drop over the resistance, however this technique suf-
fers from the fact that the resistance value needs to be known accurately.
Parametric amplification: Since Josephson parametric amplifiers provide

high gain and potentially have quantum-limited noise, the performance of the
amplification chain could be boosted significantly [112]. Especially interesting
would be the implementation of a travelling wave parametric amplifier, which
still provides nearly quantum limited noise levels, while providing an increased
bandwidth and an enlarged dynamical range [113].
SQUID array resonator: Coupling a Josephson junction via a resonator

to the amplification chain allows for highly efficient photon absorption and
hence increases the signal to noise ratio [59]. By making use of a high quality
SQUID array resonator, in which the resonance frequency can be adjusted via

6We suspect that the voltage discrepancy observed on the WTe2 sample shown in Ch. ??
originates from an inaccurate voltage evaluation.
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the flux tunable Josephson inductance [19], the Josephson emission spectrum
can be probed with increased accuracy. The resonator in-between the junc-
tion and the detector acts as a bandpass filter. Whenever the resonance of
the SQUID loop cavity equals Josephson radiation frequency, a spike in the
measured emission intensity is expected. In particular, the visibility of the
weak higher-order emission peaks will be enhanced.
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4.3. Reflectometry set-up

The measurements on the graphene rf SQUID presented in Ch. 5 are carried
out in the BF set-up after the optimizations listed above. A detailed overview
of the high frequency and dc set-up in the BF system is provided in Fig. 4.4.
The reflectometry set-up is similar to the radiation set-up presented in Sec. 4.2,
but the previously mentioned signal generator and spectrum analyzer are ex-
changed with a vector network analyser (VNA). In addition, the device is sur-
rounded by a permalloy shield to screen external magnetic field fluctuations.
We probe the resonant structure with the VNA in a standard reflectometry
configuration. The probe signal reaches the sample via an attenuated input
line and a directional coupler. The reflected signal travels back to the VNA
through the amplification chain consisting of a room temperature amplifier
and 4K-HEMT amplifier, which are isolated towards the device by two cir-
culators located at the mixing chamber plate. The supply lines for the gate
and bias voltages of the 4K-HEMT amplifier are filtered with the home-built
LC-lowpass filters mentioned in Sec. 4.2.1. The dc lines for tuning the gate
voltage on the graphene junction and the flux inside the rf SQUID, are heavily
filtered at room and base temperature. In addition to the silver-epoxy filters
located on the mixing chamber plate, there is a filter stage in the BF set-up
consisting of a cascade of LC SMD π-filters at the 100 mK stage. The gate
voltage is supplied via a 1 MΩ resistor7 in series with a voltage source, whereas
the current for flux biasing the SQUID loop is directly provided by a current
source. Ecosorb© lowpass-filters fabricated by Jann Ungerear, are placed in
the reflection line which provide a cut-off frequency around 13GHz. The filter
consists of a copper box with a cylindrical hole, in which the central conductor
of the rf line is thermalized to the copper wall with Ecosorb© enriched epoxy.

7This resistor is placed to protect the device and would limit the current in the event of
a gate leakage.
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Figure 4.4. Detailed overview of the reflectometry measurement set-up in
the BlueFors cryostat.

4.3.1. Bonding
After gluing the sample with silver paste onto the copper backplane of the
PCB holder, we connect the rf and DC lines from the PCB with Al bond
wires to the ones of the device. We ensure a homogeneous ground plane by
adding many grounding bonds around the resonant structure. Additionally,
we place bond bridges across the co-planar transmission line and between the
areas surrounding the rf SQUID. Fig. 4.5 presents the bond arrangement used
for the graphene rf SQUID devices presented later.
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1 mm

Figure 4.5. Optical picture for illustrating the bonding of the λ/4-resonator
coupled to an rf SQUID. Note that this picture is taken after removing the
sample from the PCB holder after measurement during which some bond wires
snapped.

4.3.2. Read-out

The read-out power has a substantial influence on the response of the coupled
resonator rf SQUID circuit. In Fig. 4.6 we present the reflectance coefficient
Γ as a function of probe frequency f and probe power VNAout. Here, the
graphene junction is gated with Vbg = 4.5V (electron doped) and tuned to
ϕ = π (spectral gap is smallest). We observe that for increasing the probe
power the resonance frequency shifts to higher values and the resonance line-
shape alters. We attribute this to non-linear effects caused by over driving
the resonator or saturating the ABS spectrum. It could also be that the stray
field of the resonator induces large phase biasing oscillations, which smears out
the phase-dependent features of the JJ. Additionally, irradiating Josephson
junctions affects their current-phase relation [114] and the IV -characteristic
develops Shapiro steps [50]. Both of these effects will also influence the reflec-
tive response. If the read-out power is below -25 dBm, there is no observable
changes in the resonance frequency nor in the resonance lineshape for this par-
ticular device. All subsequent measurements presented in Ch. 5 are carried out
with a probe power VNAout = −30dBm in a bandwidth VNABW =500Hz,
which builds a compromise between the collected data quality and read-out
time. We would like to stress that such a pre-characterization is crucial for
measuring the system in linear response.

Conversion to photon number

By knowing the output power of the VNA, the total attenuation of the input
line and characteristic parameters of the resonant structure can be found by
fitting the resonance line shape as described in Ch.B.1. Together with the
formulas provided in Ch.A, we can evaluate the averaged photon number in
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Figure 4.6. Reflection coefficient Γ at Vbg = 4.5V and ϕ = π as a function
of probe frequency f and probe power VNAout obtained with a bandwidth
VNABW =50Hz. (a) Amplitude and in (b) argument of Γ. All subsequent
measurements are carried out with VNAout = −30 dBm.

the resonator, which is given by [115]

〈n〉 = 2
~ω2

0

Z0

Zr

Q2

Qc
Papp, (4.1)

where ~ is the reduced Planck constant, Z0 is the environmental impedance,
Zr is the characteristic impedance of the co-planar transmission line, Q is the
total quality factor of the resonant structure, Qc is the coupling quality factor
and Papp is the applied microwave power. With ω0 = 2π · 3.1GHz, Z0 = 50 Ω,
Zr = 69.5 Ω, Q = 24 000, Qc = 24 000 and Papp = −130dBm(= 10−16 W)
we obtain an intra cavity photon occupation 〈n〉 ≈ 90. This value should be
considered a rough estimation since, since Papp is determined by using the
total attenuation measured at room temperature and does not consider input
loss on the PCB and/or the feedline of the device.

Probe flux δΦ

Beside the fact that the probe power influences the current-phase relation, it
also induces an oscillating phase bias, which we refer to as the probe flux δΦ.
In order to accurately resolve and sense the phase evolution of the Andreev
bound states in the junction under investigation, δΦ needs to be much smaller
compared to one full phase period. To estimate the probe flux δΦ, we first
evaluate the current at the end of the transmission line and then translate
the current to the magnetic field strength. From transmission line theory we
can derive a function, as shown in Ch.A.4, which expresses the current at
the shorted end of a lossless λ/4-resonator that is capacitively coupled to a
generator (VNA)

ITL(f) = Vgen
sin(βl)

tan(βl)
jZr tan(βl) + Z0 + (j2πfCc)−1 . (4.2)
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I

w
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Figure 4.7. Rectangular loop next to a straight current-carrying wire.

Here, Vgen = 10
Papp[dBm]−10

10 [V] is the generator voltage, Zr is the characteristic
impedance of the TL, Z0 is the input impedance of the generator, β = 2πf

√
εeff
c

is the wavenumber of the transmission line, √εeff is the effective refractive
index, l is the length of the resonator and Cc is the coupling capacitance. By
maximizing the absolute value of this expression for the frequency, one obtains
the maximal current in the resonator provided at resonance. With Papp =
−130dBm, εeff = 10.24, Z0 = 50 Ω, Zr = 69.5 Ω, l = 7.54mm and Cc = 4.7 fF,
which are the characteristic parameters deduced from the experiment shown
in Ch. 5, we obtain |ITL|max = 310 nA at 3.094GHz. The Biot-Savart law
expresses the magnetic field magnitude B at distance r apart from a long,
thin wire, carrying a steady current in free space

B = µ0

2π
I

r
, (4.3)

where µ0 = 4π · 10−7 N/A−2 is the vacuum permeability. By substituting
values I = 310 nA and r = 1 µm one obtains B = 62 nT. Furthermore, we are
interested in the flux created by this current within a rectangular loop, which
can be expressed by

δΦ = µ0I

2π · d · ln
(
s+ w

s

)
, (4.4)

where d is the length of the loop, w is the width of the loop and s describes
the spacing from the wire to the closer loop edge as shown in Fig. 4.7. With
I = 310 nA, d = 80µm, w = 40µm and s = 1µm, which roughly mimics the
dimensions of the rf SQUID investigated in Ch. 5, we obtain δΦ ≈ 0.01 Φ0,
where Φ0 ≈ 2× 10−15 Wb is the magnetic flux quantum, and hence the probe
requirement is fulfilled.
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4.3.3. Magnetic field pick-up
During our characterisation of rather large-scale rf SQUID loops sensed by
an inductively coupled λ/4-resonator, we noted that these devices were highly
sensitivity to magnetic fields from external sources, as will be illustrated in
the following examples.

First, the BF set-up is at a ∼ 3 m distance to another cryostat, which hosts a
magnet that can provide in- and out-of-plane magnetic fields. In the beginning,
the plane of the rf SQUID was facing vertically to the neighboring cryostat.
We traced the resonance frequency as a function of time, while sweeping the
in-plane magnet in the other cryostat. We observed a direct correlation be-
tween resonance frequency shifts and sweep intervals of the magnetic field,
i.e., the SQUID loop was flux biased by the neighboring cryostat. After this
observation, we re-positioned the cold finger such that the SQUID plane is
aligned in parallel to the stray field lines of the other cryostat. However, we
would like to mention that this solution is not optimal and the use of magnets
in neighbouring cryostates should still be coordinated.

Second, in the Triton set-up the plane of the SQUID was facing perpendicu-
lar to the elongation of the transfer arm, which is aligned with the orientation
of the cylindrical hole in the vector magnet. The main power supply cable
for the whole building runs underneath the nearby corridor at ∼ 6 m distance
from the sample. Together with David Indolese we investigated the time de-
pendence of the resonance frequency that senses the rf SQUID during 24 h of
operation. We denoted an irregular pattern and unpredictable phase jumps
during the daytime. However, during the time window from two o’clock in the
morning to five o’clock in the morning the resonance frequency was perfectly
stable. We cannot say with certainty, but we suspect that the flux jumps are
originating from the feedback between the public transport power grid to the
in-house network, and its magnetic stray field couples to the SQUID loop. An
additional indication is that the time interval where the noise appears, exactly
correlates to the hours of operation of BVB – the Basler Verkehrs-Betriebe –
the local transport company. After modifying the sample holder such that the
SQUID plane runs parallel to the elongation of the transfer arm, these daytime
fluctuations were not present. Furthermore, it would be desirable to obtain
a permalloy shield for the Triton set-up to protect the sample from external
magnetic field fluctuations.
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5 Phase-dependent microwave response of a
graphene Josephson junction1

Gate tunability of semiconducting materials provides the basis for classical
computers, while analogously, non-linear Josephson elements in microwave
circuits are the fundamental building blocks of superconducting quantum com-
puters. The combination of these technologies therefore offers a highly promis-
ing platform to in-situ engineer and optimize novel quantum processors. The
interplay between the electromagnetic environment and the Andreev bound
states (ABS) governing the Josephson effect in superconductor-semiconductor-
superconductor junctions is of particular relevance for the performance of these
circuits. Here, we inductively couple a graphene-based Josephson junction (JJ)
to a superconducting resonator operating at 3 GHz, which enables to probe the
structure and dynamics in the ABSs under weak microwave irradiation. By
combining a concise circuit model with a rigorous analysis of the reflectometry
signal that senses the resonant behavior of the coupled system, we determine
the gate-tuneable current-phase relation (CPR) and the phase-dependent loss
of the graphene JJ. Thus, we fully characterize the electrical microwave prop-
erties of the junction. The experimentally deduced inductive and dissipative
microwave response is theoretically reproduced by a short, diffusive JJ model,
from which we infer an ABS lifetime of ∼ 17 ps implying fast equilibration.
1This Chapter together with sections from the appendix, the fabrication and the set-up
chapters will be submitted to PRX in similar form.

The title image was generate by Gergö Fülöp with blender.
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Josephson junction

5.1. Introduction

Josephson junctions (JJs) are one of the most amazing devices in mesoscopic
physics: they couple superconducting properties through non-superconducting
regions. For JJs, in which the superconducting electrodes are linked with a
short normal-conducting region, the coherent superconducting interaction is
promoted by so-called Andreev bound states (ABSs) [29]. These quasiparticle
states are formed in the non-superconducting region and arise from counter
propagating electron-hole pairs undergoing consecutive Andreev reflections at
the superconducting interfaces [26]. The material and geometrical properties of
the weak link together with the superconducting phase difference ϕ across the
JJ define the energy of the quasiparticle states, which due to the electron-hole
symmetry appear always in pairs of opposite energies [116]. The structure and
the occupation dynamics within the ABSs dictate the inductive and dissipative
microwave response, i.e. the admittance of the JJ [41, 117], which is the key
quantity to engineer impedance-matched Josephson circuits.

The strong demand for highly tunable junctions in microwave applications
has raised the attention to JJs consisting of semiconducting materials, for
which the interaction between the superconducting electrodes can be controlled
by an electric gate-field [118]. Embedding such a JJ in a superconducting loop
forms an rf SQUID, which allows to additionally control the phase across the
junction [119]. This rf SQUID coupled to a resonator acts as an effective tun-
able complex impedance in the circuit that shifts and broadens the resonate
behavior, from which one can infer the gate [120] and phase-dependent in-
ductive and dissipative response [32, 121–125], and thereby probe the ABS
characteristics [25, 35, 68, 101]. In particular, the inductive response is a mea-
sure of the time-averaged dispersion of the populated ABS spectrum, which
defines the phase-dependent supercurrent Is(ϕ) across the junction known as
the current-phase relation (CPR) [47, 126]. On the other hand, the dissipative
response relates to the fluctuations in the ABS population, which lead to tem-
poral changes in the supercurrent [127, 128]. The short-lived ABS excitations
can be activated thermally or induced by microwave photons [32].

In our work we make use of a superconducting microwave resonator coupled
to a JJ consisting of a weak-link made of graphene, which is a prototype two-
dimensional (2D) material with high mobility and excellent gating properties.
Graphene JJs have already demonstrated their compatibility in different su-
perconducting circuits, such as bolometers [22, 23], transmon qubits [129, 130]
and tunable microwave cavities [131]. In order to optimize the performance
of graphene-based superconducting microwave circuits, knowledge about the
Josephson admittance is required. Here, we present a classical circuit model
to infer the complex admittance of a graphene JJ from the reflective response
of the coupled microwave circuit operating at ∼ 3GHz. We further translate
this to the CPR and the phase-dependent dissipation at different charge car-
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rier densities and describe our observations within the framework of ABSs.
The experimental results are in remarkable agreement with the theoretically
predicted microwave response of a short, diffusive JJ.

5.2. Device structure

The device investigated here is presented in Fig. 5.1 and consists of a graphene
JJ embedded in a superconducting loop, which inductively couples to a co-
planar transmission line (CTL) resonator. The resonant structure and sup-
ply lines are etched into NbTiN (80 nm) sputtered on an intrinsic Si/SiOx
(500µm/170 nm) substrate. The meandered CTL shown in Fig. 5.1(a) is shorted
to ground on one side, and interrupted by a coupling capacitor on the other.
Both of these terminations act as microwave mirrors of the opposite type,
and thereby form a superconducting λ/4-resonator with a fundamental bare
resonance frequency fbare = 3.098GHz.

+−

  Γ

(a)

50 µm

NbTiN
SiOx

1 mm

(b)
I�ux

ΦVbg
Φ+ δ

Al Al

(c)

50 µm

1 µm

G

Graphite
hBN

SiOx

Al

intrinsic Si

Figure 5.1. Graphene rf SQUID inductively coupled to a superconducting
transmission line resonator. (a) Optical image of the NbTiN λ/4-resonator
consisting of a meandered co-planar transmission line with the shorted end
(current anti-node) on top, seen also at the bottom of image (b), and the open
end (current node) at the bottom, shown in the zoom-in. (b) Optical image of
the monolayer graphene (G) Josephson junction (JJ) embedded in an Al loop
forming the rf SQUID. The DC current Iflux creates a flux Φ inside the loop
(blue line), which allows to phase bias the JJ. The inductive coupling to the
resonator induces a small oscillating probe flux δΦ (red lines). The gate voltage
Vbg applied on the bottom graphite sheet tunes the charge carrier density in G.
(c) SEM image and cross-sectional schematics of the hBN-encapsulated G-JJ
with Al side-contacts of width W = 1µm and length L = 400 nm.
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The graphene JJ, shown in Fig. 5.1(c), is made of a van der Waals het-
erostructure consisting of a monolayer graphene encapsulated in hexago-
nal boron nitride (hBN). The lower hBN layer (47.5 nm) separates the
graphene flake from the bottom graphite gate. A thermally evaporated Ti/Al
(5nm/90nm) lead contacts the graphene from both sides [106] and encloses
the junction in a loop, thus forming a graphene rf SQUID, which is inductively
coupled to the current anti-node of the resonator as illustrated in Fig. 5.1(b).
The galvanic grounding of the loop defines the reference potential for the gate
voltage Vbg applied on the bottom graphite structure. The DC current Iflux
controls the magnetic flux Φ inside the loop and therefore tunes the external
phase difference ϕext = 2πΦ/Φ0 across the rf SQUID, where Φ0 = h/2e is the
superconducting flux quantum. Details about the device fabrication can be
found in Ch. 3.
In the subsequent experiment we perform reflectance measurements on the

port denoted by Γ in Fig. 5.1(a) and investigate the resonant circuit as a func-
tion of Vbg and Iflux, from which we later infer the current-phase relation and
the phase-dependent loss of the graphene JJ.

5.3. Reflectometry

The coupled microwave circuit is probed by reflectometry in a dry dilution
refrigerator, in which the device is surrounded by a permalloy shield. With
a vector network analyzer we measure the complex reflection coefficient Γ as
a function of probe frequency f and Iflux. We ensure a quasi-equilibrium
sensing by setting the probe power to an averaged intra-cavity occupation of
∼ 100 photons, which corresponds to an oscillating probe flux δΦ ≈ Φ0/100
inside the SQUID loop. Details about the measurement set-up and the cali-
bration of the probe power can be found in Ch. 4. Additionally, we tune the
charge carrier density in the graphene layer by applying a gate voltage in the
range Vbg = [−9, 9]V. For the conversion from Vbg to charge carrier density
consider Ch.D.
The reflective response at Vbg = 6V presented in Fig. 5.2 is exemplary for the

whole measurement set. Clear periodic shifts of the resonance frequency f0 as
a function of Iflux can be observed in Fig. 5.2(a) and Fig. 5.2(b). We encounter
no phase jumps and relate the external phase ϕext = noddπ (= nevenπ) to
points of minimal (maximal) resonance frequencies.[122, 125] Besides f0, the
resonance lineshape also changes as seen in Fig. 5.2(c) and Fig. 5.2(d) when
comparing line cuts at ϕext = −π and ϕext = 0. As we will show, both the
modulation in f0 and the altered lineshape are the consequence of a phase-
dependent electrical impedance of the graphene JJ.
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Figure 5.2. Flux dependence of the reflection coefficient Γ at Vbg = 6V. (a)-
(b) Colormaps of |Γ| and arg (Γ) as a function of probe frequency f and DC flux
current Iflux. The horizontal top axis represents the conversion to the external
phase ϕext across the rf SQUID. (c)-(d) |Γ| and arg (Γ) at ϕext = [−π, 0]
overlaid with fits to Eq. 5.1 (solid lines).

In order to characterize the JJ from the reflective response, we fit |Γ| and
arg (Γ) simultaneously for each combination of Vbg and Iflux with the complex
resonance curve of a loaded λ/4-resonator expressed according to Ref. [132] as:

Γ =

[
Γmin + 2jQ f−f0

f0

1 + 2jQ f−f0
f0

− 1

]
ejφ + 1 (5.1)

Thus, we can deduce f0 and assess the broadening of the resonance curve.
The latter is determined by the total quality factor Q = 1/(Q−1

load + Q−1
i +

Q−1
c ), which in turn, consists of three different dissipation sources: i) The

inverse load quality factor Q−1
load describes loss generated by the rf SQUID,

ii) the inverse internal quality factor Q−1
i describes loss inherent to the prop-

erties of the CTL and iii) the inverse coupling quality factor Q−1
c describes

loss to the measurement environment. Here, Q−1
load and Q−1

i are merged to
an effective quality factor Qe = 1/(Q−1

load +Q−1
i ). Furthermore, we define

Γmin = (Qc −Qe)/(Qc +Qe) and introduce the angle φ, which accounts for
an asymmetric line shape.
The fits to Eq. 5.1 at ϕext = −π and ϕext = 0, shown in Fig. 5.2(c) and

Fig. 5.2(d) as solid lines, reveal an overall shift of 660 kHz in f0 and a drastic
change in Qe, while Qc and φ remain similar (see Tab. 5.1). At ϕext = −π, we
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obtainQe = 19 400 andQc = 23 400; whereas at ϕext = 0, we findQe > 200 000
and Qc = 23 700. Consequently, the resonator is undercoupled (Qe < Qc) at
ϕext = −π, but overcoupled (Qe > Qc) at ϕext = 0, which explains the dis-
tinct resonance lineshapes [133]. Since Qi can be treated as a constant with
Qe being a lower bound, we conclude that Qi > 200 000. This large value
allows us to treat the CTL as lossless (Q−1

i = 0) such that Qe ≈ Qload. In
Ch.B.1 further insights about the resonance curve fitting is provided.

ϕext f0 φ Qc Qe
−π 3.09755GHz 0.224 23 400 19 400
0 3.09821GHz 0.235 23 700 > 200 000

Table 5.1. Fit results for the resonance frequency f0, asymmetry angle φ,
coupling quality factor Qc and effective quality factor Qe at different phase
conditions at Vbg = 6V.

The observed flux tunable microwave response in terms of f0 and Qload
is the direct manifestation of phase-dependent microscopic processes in the
graphene JJ [122], which will be discussed in detail in Sec. 5.7 and Sec. 5.8
within the framework of ABSs. In the following section we model the electrical
properties of the graphene JJ with lumped elements and explain their effect
on the resonant behavior with the circuit of a loaded λ/4-resonator.

5.4. Circuit model

The inductively coupled rf SQUID acts as a variable load impedance Zload
attached to the resonator, which tunes the reflective response. We express
Zload according to the circuit schematic depicted in Fig. 5.3. The rf SQUID is
modeled as a loop with self-inductance Lloop in series with the JJ. The mutual
inductance M quantifies the coupling strength to the resonator, which is built
from a CTL with characteristic impedance Zr. The JJ itself is represented
by a variable Josephson inductance LJ in parallel with a variable shunt resis-
tance Rs. For this arrangement the load impedance terminating the resonator
reads [134]:

Zload = ω2M2

jωLloop + (Gs + jBJ)−1 , (5.2)

where ω = 2πf is the angular frequency, Gs = 1/Rs is the shunt conductance
and BJ = −1/(ωLJ) is the susceptance. Note that Y = Gs + jBJ is the
complex admittance of the JJ.

66

5



5.4. Circuit model

loopL

4λ/ -resonator
0Z

cC loadZ

sR

  

M

ϕ

Γ

rZ
JL

Figure 5.3. Circuit schematic of a rf SQUID coupled to a λ/4 resonator. The
resonator couples inductively to the rf SQUID with strength M and connects
to the reflectometry setup via capacitance Cc. The rf SQUID is modeled
as a loop with self-inductance Lloop in series with the JJ, which in turn, is
modeled as a variable Josephson inductance LJ in parallel with a variable
shunt resistance Rs. This forms a variable load impedance Zload, which tunes
the reflective response Γ.

The influence of Zload on the λ/4-resonator is twofold and is derived in Ch.A:
First, the imaginary part of Zload causes a shift of the resonance frequency

δf0 = f0 − fbare = − 2
πZr

Im(Zload)fbare, (5.3)

with respect to the unloaded resonance frequency fbare. Second, the real part
of Zload gives rise to dissipation in the resonant circuit, which is described by

Qload = πZr
4 Re(Zload) . (5.4)

From Eq. 5.2 one recognizes, that the junction variables, Gs and BJ affect
both Re(Zload) and Im(Zload). Consequently, δf0 and Qload would need to be
considered simultaneously to evaluate them. However, it turns out that, due to
the obtained relatively large Qload values, one is allowed to set Gs → 0 to infer
the inductive part from δf0. With this approximation Eq. 5.3 simplifies to

δf0 ≈
8
π2

M2

Lp (LJ + Lloop)fbare, (5.5)

where Lp is the parallel LC-equivalent inductance of the λ/4-resonator. This
means that the shift of the resonance frequency mainly originates from the
Josephson inductance LJ , whereas the broadening of the resonance originates
from the dissipation in the JJ specified by the shunt conductance Gs. These
two circuit parameters, LJ and Gs are of high interest, since they describe the
full complex microwave admittance of the JJ.
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Since the inverse Josephson inductance is a measure of the change in the
supercurrent Is(ϕ) with respect to the phase ϕ across the junction [47]

LJ(ϕ)−1 = 2π
Φ0

∂Is(ϕ)
∂ϕ

, (5.6)

we can express the resonance frequency shift and the behavior of LJ(ϕ) with
the current-phase relation (CPR).

In order to quantify the CPR and Gs from the resonator response, we per-
form finite-element simulations [109] based on the device geometry, to acquire
Lloop = 211 pH andM = 30.83pH. Moreover, we find Zr = 69.5 Ω from confor-
mal mapping techniques [135] in combination with properties of the resonator,
and deduce Lp = 4.55nH. Detailes about the evaluation of Zr and Lp can be
found in Ch.A.3.

5.5. Current-Phase relation

In this section we extract the CPR by fitting the periodic shift of the resonance
frequency under consideration of self-screening effects. The coupling strength
between the superconducting leads is determined by the Cooper pair trans-
mission probability and defines the shape of the CPR. For small coupling or
low transmission probability the CPR is sinusoidal, whereas the CPR becomes
forward-skewed for increased coupling. Due to the semiconducting properties
in graphene JJs, the coupling strength and therefore the CPR skewness can be
tuned with the gate voltage [104, 131, 136–138]. To capture the non-sinusoidal
behavior, we express the CPR as Fourier series [54]

Is(ϕ) =
∑
k

(−1)k−1Ak sin(kϕ), (5.7)

with k being the harmonic order and Ak the corresponding amplitude.
In order to extract the CPR from the measured resonance frequency mod-

ulations we need to relate the external phase ϕext to the phase difference ϕ
across the JJ. This is not straightforward, since if a supercurrent flows within
the rf SQUID, there is a phase drop over the loop in addition to the phase drop
over the JJ, which leads to a non-linear relation between the internal phase ϕ
and the external phase ϕext – known as the screening effect [3]:

ϕ = ϕext −
2π
Φ0
LloopIs(ϕ). (5.8)
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Figure 5.4. Evaluation of the CPR. (a) Colormap of the resonance frequency
shift δf0 = f0− fbare with fbare = 3.098 GHz as a function of gate voltage Vbg
and external phase ϕext. (b) δf0 at Vbg = 6V as a function of ϕ and ϕext,
respectively overlain with the curve fittings (solid lines), from which the CPR
is deduced. Arrows illustrate the screening effect, which is eliminated by an
iterative fitting routine, and from which the internal phase ϕ is obtained. (c)
δf0 at the charge neutrality point (Vbg = −0.44V) as a function of ϕ overlain
with the fit (d) CPR inferred from (a) as a function of Vbg.

Here, we obtain the CPR for each gate voltage by solving the set of equations
Eqs. 5.5-5.8 in a self-consistent way by using an iterative fitting method. The
basis for this method is the resonance frequency shift as a function of ϕext,
which is presented for the entire gate range in Fig. 5.4(a). At each fitting
iteration we include Fourier amplitudes Ak upto to the 10th-harmonic and
allow for small changes in fbare to account for parasitic effects. This method
is detailed in Ch.B.2.
In Fig. 5.4(b) we illustrate the effect of screening by comparing δf0 as a

function of ϕ and ϕext, respectively – for the example at Vbg = 6V. The
corresponding CPRs, deduced from fitting the modulations in δf0 with respect
to phase, shown as solid lines in Fig. 5.4(b), are presented in Fig. 5.5(a). The
screening consideration causes a distortion of the phase around π as indicated
by arrows. Omitting this effect results in an apparent enhancement of the
skewness [139]. Even after correcting for screening, we find a substantially
forward-skewed CPR, visualized by the comparison with a sinusoidal behavior.
Although screening effects are small in this case, we want to emphasize that
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Figure 5.5. (a) Presents the corrected (blue) and uncorrected (dashed)
CPR at Vbg = 6V deduced from the fit shown in Fig. 5.4 in comparison with
a sinusoidal behaviour (doted). (b) CPR at the charge neutrality point Vbg =
−0.44V.

they can have a significant impact on the evaluated skewness, especially for
larger Is and Lloop.
In Fig. 5.4(d) we map the extracted CPR as a function of Vbg. The smallest

CPR amplitude is found at Vbg = −0.44V, which we attribute to the charge
neutrality point (CNP) of graphene. Here, resonance frequency modulations of
only ±10 kHz can still be clearly resolved as seen in Fig. 5.4(c), which demon-
strates the sensitivity of the microwave circuit. The CPR at the CNP, shown in
Fig. 5.5(b), is slightly skewed and has a maximal supercurrent of Ic = 6.3 nA.
In the following, we quantify the CPR and its skewness by two commonly

used ways: i) by the skewness parameter S = (2ϕmax/π)−1, where ϕmax = [0, π]
is the phase maximizing the CPR to the critical current Ic [137], and ii) by di-
rectly providing the set of Fourier amplitudes Ak [54]. The latter description
is more precise, since it captures the entire CPR lineshape, whereas the S-
parameter together with Ic is not uniquely characterizing the CPR, but might
be more intuitive.

In Fig. 5.6 we employ both of these characterizations to illustrate the gate
dependence of the CPR. We observe a rapid enhancement of Ic up to ∼ 200nA
for gating towards positive voltages (n-doped), whereas towards negative volt-
ages (p-doped) the increase is weaker and reaches only ∼ 50 nA as seen in
Fig. 5.6(a). Because A1 closely follows Ic, the CPR is mainly determined by
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Figure 5.6. Characteristics of the CPR as function of gate voltage Vbg. The
step size in Vbg is reduced close to the CNP (Vbg = −0.44V). (a) Critical
current Ic and Fourier amplitudes Ak. (b) Skewness parameter S and ratios
Ak/A1. The theoretical skewness value for a short, diffusive system under ideal
conditions S = 0.255 is illustrated with the pink mark. (a)-(b) Systematic
error bars in Ic and S are generated by modifying M by ±3% and Lloop by
±5% in the CPR evaluation.

the 2π-periodic sinusoidal contribution for all Vbg. However, the small addi-
tions from higher harmonics lead to a forward-skewed CPR. The amplitudes
Ak for k ≥ 5 are negligibly small and omitted in the figures. From Fig. 5.6(b)
it appears that the skewness saturates in both doping regimes with a slight re-
duction around the CNP. For the n-doped side, the skewness saturates around
S ≈ 0.22, whereas on the p-doped side the skewness is less pronounced, satu-
rating around S ≈ 0.12. The ratios Ak/A1 follow the same trend.

The asymmetric behavior in Ic and S with respect to Vbg are attributed to
the presence of n′-doped contact regions inducing additional scattering poten-
tials. The JJ is therefore more transparent in the n′nn′-situation compared to
the n′p n′-case [137, 140]. We speculate that the minimal skewness of S ≈ 0.05
close to the CNP originates from the formation of electron-hole puddles [141]
in the graphene flake, which further enhance the scattering probability.
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5.6. Phase-dependent loss

Having the CPR extracted, we now deduce the phase-dependent dissipative
part of the graphene JJ; namely, the shunt conductance Gs. We can infer Gs
from Eq. 5.4, in which we express the susceptance BJ with the CPR according
to Eq. 5.6 and make use of Qload obtained from the reflectance curve analysis.

From Fig. 5.7(a), we observe that around the 0-points (ϕ = nevenπ) the
dissipation in the microwave circuit stemming from the rf SQUID is minor
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Figure 5.7. Evaluation of the shunt conductance Gs. (a) The load quality
factor Qload in logarithmic scale as a function of Vbg and ϕ, deduced from
resonance curve fittings. (b) Gs in logarithmic scale obtained by using Eq. 5.4
with Qload and the CPR results. (c) Phase dependence of Gs for different gate
voltages. (d) Gate dependence of Gs for phase biasing conditions ϕ = noddπ.
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(Qload > 200 000) for all Vbg. However, at the π-points (ϕ = noddπ), the dissi-
pation becomes significantly larger and gate dependent with a minimal quality
factor of Qload ≈ 9800.

This behavior is reflected in Gs, which is mapped in Fig. 5.7(b) as a func-
tion of Vbg and ϕ. Around the 0-points, we deduce low conductance values
Gs ≤ 0.1 mΩ−1, which refers, according to the parallel circuit model presented
in Sec. 5.4, to weak dissipation. In contrast, at the π-points, a pronounced
Lorentzian-shaped dissipation peak develops, as seen in Fig. 5.7(c). The dis-
sipation onsets locate symmetrically around the π-points and are weakly gate
dependent. On the other hand, the peak heights are strongly influenced by
Vbg and reach a maximal value of Gs ≈ 10 mΩ−1 at large n-doping. Al-
though the amplitude of the peak appears to fluctuate as a function of Vbg,
the height replicates for the three π-points, as illustrated in Fig. 5.7(d). This
demonstrates the stability of the gate-tunable potential landscape in graphene.

5.7. Theory of Andreev Bound States

In the following we relate the CPR and the phase-dependent dissipation to
the concept of Andreev bound states (ABSs) formed within the JJ. Coherent
Andreev reflections of quasiparticles at the graphene-superconductor interfaces
lead to the formation of ABSs. These quasiparticle states transfer Cooper pairs
across the junction in form of counter propagating electron-hole pairs [142].
Due to the electron-hole symmetry, the ABSs come in pairs; one state has
negative energy E−n ≤ 0 and the other has positive energy E+

n = −E−n , where
n stands for a specific transport channel. The spectral gap δE quantifies
the minimal transition energy between states with negative and states with
positive energies.
Inherent to wide junctions – like the graphene JJ investigated here – is

that there are various possible transport channels leading to many ABSs and
hence to a dense ABS spectrum [143]. The phase dependence of the ABS
spectrum is determined by the geometry of the JJ and its material properties,
i.e. the superconducting gap ∆ in the leads and the inverse transport time
in the normal region that relates to the Thouless energy ET . In the ballistic
transport limit ET = ~vF /L, where vF is the Fermi velocity in the normal
region and L is the junction length. In the diffusive limit ET = ~D/L2, where
D = vF lmfp/2 is the diffusion coefficient determined by the elastic scattering
mean-free path lmfp. An important characteristics of JJs is whether they
are in the ‘short’ or ‘long’ junction limit. The former case is realized when
ET � ∆, while the latter holds in the opposite limit. The condition for the
short junction limit can also be expressed with the coherence length ξ, which
needs to be longer than L. In the ballistic case the coherence length reads
ξ = ~vF /∆ and in the diffusive case ξ =

√
~D/∆.
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As already seen in Ch. 1, for a short multi-channel JJ the ABS energies are
given by E±n (ϕ) = ±∆

√
1− τn sin2(ϕ/2), where τn is the transmission proba-

bility of a specific channel. Since diffusive transport associates to continuously
distributed transmission coefficients following Dorokhov’s bimodal distribu-
tion [42], describing that there are many channels with low transmission, but
also many with high transmission probabilities, a dense ABS spectrum with
a spectral gap δE = 2∆| cos(ϕ/2)| emerges for short diffusive JJ as illustrated
in Fig. 5.8(a). Characteristic for this type of JJ is that the spectral gap closes
(δE → 0) towards the π-points while it is maximally open (δE = 2∆) at the 0-
points. Long, diffusive junctions behave similarly, but the spectral gap evolves
as δE ≈ 3ET | cos(ϕ/2)| [32].

The structure of the ABS spectrum is relevant because each occupied state
carries supercurrent proportional to the derivative of its energy with respect to
phase. The sum over the set of all channels defines the total supercurrent [37],
which can be expressed as

Is(ϕ) = 2π
Φ0

∑
n

f(E±n )∂E
±
n

∂ϕ
, (5.9)

where f(E±n ) is a functional describing the occupation probability of the nth
ABS. In equilibrium the functional is given by the Fermi-Dirac distribution.

At zero temperature and in the absence of photons, all ABSs with negative
energies are occupied (f(E−n ) = 1), whereas all ABSs with positive energies are
empty (f(E+

n ) = 0). In this situation the system is in the ground state and
the occupation of the ABS spectrum is constant. Therefore the supercurrent
Is is free of any fluctuations. By virtue of the fluctuation-dissipation theo-
rem, [144] there is no dissipation and the effective junction shunt conductance
assumes Gs → 0.
When finite electronic temperatures T and/or the absorption of photons

from the electromagnetic environment are considered, the situation becomes
different; thermal activation and/or microwave-induced transitions will drive
the system out of the ground state. The excitation-relaxation dynamics gives
rise to fluctuations in the ABS population (f(E±n ) 6= const.), and correspond-
ingly, in the supercurrent as well. Consequently, there is dissipation and a finite
shunt conductance Gs appears [128]. When the spectral gap closes (δE → 0),
which is the case at the π-points in transparent ballistic and coherent diffu-
sive junctions, already small temperatures T and small photon energies hf
will trigger fluctuations. We note that the fluctuations are determined by the
temperature, the photon absorption and emission rates and as well by the re-
laxation time τrel of a non-thermal distribution towards a thermal one, which
we express in the following as the energy γ = ~/(2τrel). In conclusion, this
means that in general, both the inductive and dissipative part of a JJ depend
on the ABS spectrum and the population dynamics within this spectrum.
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Figure 5.8. ABS spectrum and theoretical microwave response for a short,
diffusive JJ. (a) Spectrum of a short JJ with multiple channels of different
transparencies. (b) Microwave-induced transitions between states triggered
by the absorption of a photon with energy hf . (c) The finite lifetime of states
described by the relaxation rate γ causes a spectral broadening of the ABS
energies and hence blurs the transition condition. (d) Theoretically predicted
Gs (blue, left axis) and BJ (red, right axis) normalized by the conductance
value at ϕ = π as function ϕ for different γ/ET ratios. The normalization
values read for increasing γ/ET , Gs(π)/GN = 45, 11, 8.6, 7, 5.9, 5, 4.4, where
GN is the normal state conductance. Here: ∆/ET = 0.1, hf/ET = 0.01 and
kT/ET = 0.008.

In order to explain this in more detail and later compare this to our ex-
periment, we make use of theoretical works [41, 117]2 that predict the linear
microwave response of JJs in terms of the susceptance BJ and the shunt con-
ductance Gs. For the theoretical analysis we consider a diffusive multi-channel
JJ in the short junction limit at finite temperature coupled to a photonic envi-
ronment of energy hf . Note that in the experiment the photonic environment
is provided by the driven microwave resonator.
Once the spectral gap becomes smaller than the excitation energy δE ≤ hf ,

transitions across the gap are accessible leading to a sharp onset in Gs as
2Pauli Virtanen for the University of Jyväskylä performed numerical simulations to solve
the time-dependent Usadel equations.
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depicted by the solid gray line in Fig. 5.8(d). The width and the height of the
dissipation peak depends on characteristic energy scales denoted in the figure
caption. It is worth mentioning that not only transitions across the gap lead to
dissipation; all possible absorption processes, including intra-band excitations
E+
n → E+

m, contribute to it, whereas the transition probability scales according
to Fermi′s Golden rule with the available density of states [120]. Fig. 5.8(b)
depicts a microwave-induced transition of a quasiparticle from an arbitrary
initial state to an available final state.
The fact that the ABSs have a finite lifetime specified by γ causes a spec-

tral broadening of the energies. This results in a blurring of the transition
condition (δE ≤ hf) as sketched in Fig. 5.8(c). Therefore, increasing γ, i.e.,
shortening the lifetime, broadens the dissipation peak as seen by the blue
lines in Fig. 5.8(d). Importantly, the lifetime broadening also affects the sus-
ceptance, in particular the phase conditions for BJ = 0 shift away from the
π-point, which is equivalent to a reduction of the CPR skewness. Note that
BJ for γ → 0 shown in dashed gray appears different, because it is rescaled
with a large conductance value Gs(π). Besides this, also the electronic tem-
perature T influences the dissipative and inductive response, because the tem-
perature balances the population between E+

n and E−n – states as described by
the Fermi-Dirac distribution.
The theoretically predicted response as function of T together with experi-

mental results as well as a representation of Fig. 5.8(d) without normalization
are presented in Ch.C.
In short, environmental perturbations, namely, temperature and electromag-

netic irradiation, cause dynamical variations in the population of ABS spectra
on the timescale of the non-equilibrium occupation lifetime, which influence
the susceptance BJ likewise the CPR and give rise to dissipation captured by
the shunt conductance Gs.

5.8. Comparison with Theory

Finally, we compare the experimental results of the graphene junction with
theoretical predictions based on the assumption of a short, diffusive multi-
channel JJ.
The CPR of a short, diffusive junction in equilibrium can be expressed an-

alytically, from which one obtains a skewness S = 0.255 at T = 0 [41, 43] as
indicated in Fig. 5.6. The assumption of predominantly diffusive transport
in the graphene JJ investigated here is supported by multiple observations:
i) the small discrepancy to the experimentally determined skewness at large
n-doping (S ≈ 0.22), ii) the lack of Fabry-Pérot oscillations [137] in the gate
dependence of the CPR presented in Fig. 5.6, and iii) the randomly evolving
shunt conductance Gs seen in Fig. 5.7. The reduced skewness in the p-doped
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Figure 5.9. Susceptance BJ versus shunt conductance Gs obtained at ϕ = π
follows a linear trend as predicted for a short, diffusive junction.

regime (S ≈ 0.12) we assign to an overall suppression of the transmission prob-
ability due to the formation of pn′-junctions at the graphene-superconductor
interfaces. Since the superconducting coherence length of similar devices is
reported to be ξ ≈ 500nm [143, 145] and the junction under investigation has
a length L = 400nm, the condition for the short junction limit ξ ≥ L seems
reasonably valid.
One theoretical prediction, which was not explicitly pointed out above, is

that the inductive and dissipative response (BJ ,Gs) scale linearly with the
normal state conductance GN [41, 117], which is here tunable with the gate
voltage. From Fig. 5.9 one can retrace this statement, since the relation be-
tween the experimentally deduced values of the susceptance BJ and conduc-
tance Gs obtained at ϕ = π for all different Vbg – clearly follows a linear trend.
Furthermore, the ratio BJ/Gs is the inverse loss tangent describing the quality
of the Josephson inductance [125]. A larger ratio implies a more ideal behavior
of the inductance. Counter-intuitively the ratio at the π-points decreases for
lowering the temperature or reducing the relaxation rate, whereby the latter
effect can be inferred from Fig. 5.8(d). This behavior might originate from
the bimodally weighted ABS spectrum. We attribute the cone-shaped spread
around the mean ratio (〈BJ(π)/Gs(π)〉 ≈ 7) seen in Fig. 5.9 to altered ABS
spectra and modified relaxation dynamics at different gate voltages.
In the next step, we search for the best match between the theoretically pre-

dicted and the experimentally deduced phase-dependent microwave response
by considering both the inductive and the dissipative properties of the JJ.
To this end, we numerically generate sets of BJ and Gs with different char-
acteristic parameters. In particular, we vary the ratios kT/ET and γ/ET to
account for a finite electronic temperature and capture the effect of lifetime
broadening. We have fixed the Thouless energy to ET = 10∆ and the pho-
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Figure 5.10. Experimental observations in comparison with theoretical
predictions for a short, diffusive JJ. (a)-(b) Normalized measured Gs (dotted
blue, left axis) and BJ (dotted red, right axis) overlaid with the normalized
theoretical predictions for Gs (solid) and BJ (dashed), for which ∆/ET = 0.1
and hf/ET = 0.01 are fixed, but kT/ET and γ/ET are variable. The best
fitting parameter ratios are indicated in the figure. For Vbg = −6V (6V) the
normalizations read 〈Gs(π)〉 = 0.98mΩ−1 (5.23mΩ−1) for the experimental
traces and for the theoretical traces Gs(π) = 4.4GN (7GN ), where GN is the
normal state conductance.

ton energy to hf = ∆/10: the first condition ensures the short junction limit,
whereas the second one compares favourably well to the expected experimental
relation between the photon energy of the resonator and the superconducting
gap of Al.

In Fig. 5.10(b) we compare the normalized theoretical and experimental val-
ues for Vbg = −6V, whereas in Fig. 5.10(c) we perform the comparison for
Vbg = 6V. The experimental values Gs (blue dots) and BJ (red dots) are
normalized with the shunt conductance at ϕ = π, denoted by 〈Gs(π)〉 3. Close
overlap between theory and experiment can be found for both gate voltages

3We average the three shunt conductance values closest to ϕ = π to accommodate for
scattering of the data.
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with the same temperature (kT/ET = 0.008), but distinct relaxation rates γ.
At Vbg = −6V we observe differences between the model and the experimen-

tal data even with the best match (γ/ET = 0.03). This is especially evident
at the flanks of the dissipation peak and the susceptance at the π-point. We
attribute this mismatch to an inappropriate choice of transport regime for this
gate voltage, because here the additional pn′-junctions at the interfaces effec-
tively elongate the quasiparticle trajectories and lmfp becomes shorter. As a
consequence, the JJ tends to be in the long-junction limit.
On the other hand, we stress that we observe striking agreements between

the theoretical predictions with γ/ET = 0.015 and the experimental data at
Vbg = 6V. Apparently, the model of a short, diffusive junction reproduces
simultaneously the inductive and dissipative response of the graphene JJ for
this doping configuration. By evaluating the best fitting ratios kT/hf = 0.8
and γ/hf = 1.5 with the resonance frequency f = 3.098GHz, we deduce an
electronic temperature T = 120mK and obtain an relaxation time τrel = 17ps.
A similar equilibration time (τrel = 7ps) is reported for an equivalent short
diffusive Al-graphene JJ probed at mK temperatures and large n-dopings [146].
We would like to mention that the ABS spectrum of a short, diffusive junction
might not be the only spectrum which in a similar theoretical model could
reproduces the experimentally observed response. In particular, in a wide
JJ the ABS spectrum can be built from quasiparticles with long and short
trajectories leading to more complex ABS structure than discussed above [143].

5.9. Conclusion

We have measured the reflective response of a microwave resonator inductively
coupled to graphene-based rf SQUID as a function of flux-bias and charge
carrier density. We made use of a concise circuit model to infer from the
modulations in the resonance frequency and the broadening of the resonances
the current-phase relation and the phase-dependent dissipation of the graphene
JJ. We hereby obtain the full complex admittance of the junction, which is the
key parameter to achieve impedance-matched Josephson microwave circuits.
Our comprehensive investigation demonstrates the impact of the environ-

ment on the performance of JJs in terms of finite temperature and microwave
photons. If the environment provides energies larger than the spectral gap,
short-living excitations appear in the ABS spectrum, which induce fluctua-
tions in the supercurrent and lead to dissipation. The comparison between
the experimentally deduced microwave response at high electron density and
the one predicted by theory for a short, diffusive junction model yields strik-
ing agreement, from which we deduce a relaxation time of 17 ps. This quick
thermal relaxation makes graphene-based devices, which additionally stand
out due to their low electron-phonon coupling, unique candidates for highly

5

79



5. Phase-dependent microwave response of a graphene
Josephson junction

sensitive and fast bolo- and calorimeters [22, 23, 147]. Furthermore, the device
architecture and measurement protocols presented in this work are well-suited
to explore the fundamental properties of other JJs, such as junctions made
of 2D/3D topological insulators or Dirac and Weyl semimetals [92]. Particu-
larly, the topological nature of these JJs can be probed, because it is predicted
that they host ABS states, which cross at the π-points, but do have opposite
parities, meaning that microwave-induced transitions across the gap are pro-
hibited [74]. As a consequence, it is expected that the dissipative character of
topological JJs is distinctly different from trivial ones [90, 91], which could be
probed with the technique presented here.

80

5



6 Josephson Radiation and Shapiro Steps1

Measuring the frequency dependent emission of voltage biased Josephson junc-
tions is powerful way to probe the charge correlations of the supercurrent and
provides direct access to the Fourier components of the current-phase rela-
tion. We investigate the Josephson radiation from many different kinds of
Josephson junctions which we can classify in three categories: (1) Al-based
SIS tunnel junctions, (2) 1-dimensional SNS junctions, one made of an InAs
nanowire and one made of Cd3As2 nanowire, and (3) higher dimensional junc-
tions made of HgTe and WTe2. We report on various phenomena that mod-
ify the emission spectrum beyond the trivial 2e-radiation. In particular, we
observe the down-conversion of a trivial emission peak due to the interaction
with the electromagnetic environment, which causes the emergence of an emis-
sion peak mimicking a topological 1e-radiation signal. Furthermore, we detect
higher order tunneling events appearing as 4e- and 6e-radiation peaks, which
are signatures of non-sinusoidal supercurrent oscillations in highly transparent
Josephson junctions.

1Parts of this chapter were published in a similar form in the Master Thesis of Dario
Sufra "AC Josephson effect in InAs nanowire Josephson junction" (2018) and in the
Master Thesis of Melissa Osterwalder "Probing Cd3As2 Nanowire Josephson Junctions
with RF Techniques" (https://nanoscience.ch) both supervised by R. Haller et al.

81

https://nanoscience.ch/wp-content/uploads/sites/8/2019/12/master-thesis-melissa-osterwalder.pdf


6. Josephson Radiation and Shapiro Steps

6.1. Introduction

The measurement of Josephson radiation may have a profound and essential
application for determining the existence of Majorana quasiparticle states in
topological Josephson junctions (JJ). The search for perturbation protected
quantum computation based on the non-Abelian exchange statistics of Majo-
ranas initiated the search for these non-trivial JJs [70, 148, 149]. Since the
opposing parities of Majorana doublet-states ensure a level crossing at super-
conducting phase differences ϕ = ±π,±3π, . . . across the junction and con-
sequently, the current-phase relation (CPR) in topological JJs is expected to
be 4π-periodic [85, 150]. However, as previously explained in Ch. 2, fast equi-
libration triggered by quasiparticle poisoning or coupling to the surrounding
trivial Andreev bound state spectrum, can result in a restoring of the trivial
2π-periodic Josephson effect. Therefore, potential topological JJs need to be
measured on time scales shorter than the relaxation time, which is supposedly
provided by directly probing the microwave emission spectrum of the junc-
tion [151]. The universal relation between the frequency fJ of the oscillating
supercurrent and an applied dc voltage bias V is given by

fJ
V

= q∗

h
, (6.1)

where q∗ is the effective charge transferred across the junction and h is the
Planck constant. We have seen in Ch. 2, that for trivial JJs the effective
charge is a multiple of the Cooper pair charge, q∗ = n · 2e; whereas for topo-
logical JJs the effective charge is given by q∗ = e. Although the relation
given in Eq. 6.1 together with the expected charge granularity provides a clear
distinction between the two JJ-flavors, many experimental aspects – such as
weak emission strength, lifetime broadening, voltage noise, finite detection
bandwidth, self-irradiation and down-conversion of the emission – pose a chal-
lenge to unambiguously prove the emergence of Majorana states in topological
JJs [57, 58, 87].

In this chapter, we provide a broad overview of Josephson emission spectra
for a rich diversity of JJs. Similar measurements are performed on a wide
range of devices and we will now summarize the important quantities that
define these experiments. In general, the emitted radiation signal is enhanced
in an amplification chain and probed with a spectrum analyzer at room tem-
perature as described in detail in Ch. 4. The power spectral density (PSD) of
the radiation signal is collected in a specific bandwidth2 around a center fre-
quency fdet. In order to isolate the junction contribution from the background
noise and to exaggerate the contrast, we typically normalize the PSD by shift-
ing the minimal PSD value to zero and scaling the maximum value to 1 at each
2The bandwidth is set to either 20 MHz or 50 MHz, which qualitatively gives the same
results.
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detection frequency. The voltage bias V is controlled by the dc current bias
I that flows through the resistively shunted junction to ground. The shunt
resistor ensures a stable voltage drop across the junction after exceeding the
critical current. The differential voltage is measured with standard lock-in
techniques in a quasi-four-probe configuration and serves the differential re-
sistance dV/dI via the current excitation. By numerically integrating dV/dI
over the current we obtain the voltage drop V across the junction.

In Sec. 6.2 we investigate the dc characteristics and the emission spectrum of
a dc SQUID formed by two Al/AlO2/Al-tunnel junctions embedded in a super-
conducting loop. In Sec. 6.3, we turn our attention to gate tunable nanowire
(NW) JJs where we first probe the ac Josephson effect in a Cd3As2 NW with
superconducting Al leads by collecting the radiation signal and by detecting
the response of the junction under irradiation with a microwave tone. Sec-
ond, we trace the radiative behavior of an InAs NW JJ formed by locally
removing its epitaxial Al half shell. In Sec. 6.4, we focus on JJs consisting of
multi-dimensional materials. One of the junctions consists of a HgTe layer
contacted with Nb leads, while the other one incorporates a WTe2 flake in
proximity to Pd stripes and MoRe contacts.

6
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6. Josephson Radiation and Shapiro Steps

6.2. SIS junction

The device presented in Fig. 6.1 consists of two Al/AlO2/Al JJs embedded in
a superconducting loop, forming a dc SQUID. The SIS tunnel junctions are
fabricated by a double-angle shadow evaporation technique with an interme-
diate oxidation step as described in Ch. 3. The launcher and the surrounding
ground plane seen in Fig.6.1 (a) are patterned simultaneously with the junc-
tions and are expected to reduce microwave losses. The size of the SQUID loop
is designed such that the current Iflux in the flux line running in parallel, is
able to supply multiple flux quanta through the SQUID area, before the stripe
switches to the normal state. By adjusting the overlapping area between the
two Al layers shown in the zoom-in of Fig. 6.1(b), we ensure an overdamped
junction behavior.

If the two junctions have the same critical current Ĩc, the maximum su-
percurrent across the SQUID is given by Ic(Φ) = 2Ĩc |cos (πΦ/Φ0)| [4], where
Φ0 is the flux quantum, Φ = B · A is the magnetic flux though the loop
area A for a given external magnetic field B, which is here produced by Iflux.
The dark region in Fig. 6.2(a) indicates the superconducting state, where the
periodic oscillation is dictated by the flux dependence of Ic. We attribute
the non-vanishing supercurrent amplitude to slight asymmetries between the
junctions.

spectrum
analyzer

Al

Al

I

V

500 µm

fluxI

Φ

SiOx
1µm

R

(a) (b)

Figure 6.1. dc SQUID formed by Al/AlO2/Al-tunnel junctions embedded
in a radiation set-up. (a) Optical overview picture of the device. The flux
current Iflux running parallel to the SQUID loop provides a the magnetic field
for phase bias the junctions. The SQUID is shunted by a resistor (R = 10 Ω).
(b) Optical image (left) of the loop with an area 40 × 200µm2 and a SEM
image (right) of one of the junctions. The overlapping tunnelling region is
shaded in pink.
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Figure 6.2. Flux dependence of the Al/AlO2/Al-tunnel junction dc SQUID.
(a) Differential resistance dV/dI as a function of current I and flux bias Iflux.
(b)-(d) Switching behavior and IV -characteristics for Ic = 1.6 µA obtained
at Iflux = 38 µA. (b) dV/dI as a function of I, (c) V as a function of I. (d)
dV/dI as a function of V . (e)-(g) Switching behaviour and IV -characteristics
for Ic = 400 nA obtained at Iflux = 64 µA. The pink shaded region in (c), (d),
(f), (g) denotes the voltage range for the radiation measurements.

In the normal state in Fig. 6.2(a), we observe depression patterns in the
differential resistance dV/dI that follow the shape of the oscillation of Ic,
which are also clearly seen in the linecuts in Fig. 6.2(b) and 6.2(e). We plot
these linecuts in Fig. 6.2(d) and 6.2(g) with respect to the voltage V across
the junction and find that the dips occur at regular voltages V = nhfenv/(2e)
where, n is an integer number and fenv corresponds to the frequency of an
environmental cavity. We therefore interpret these regular dips as self-induced
Shapiro steps where their periodicity for Ic = 1.6 µA is given by fenv =
5.3 GHz, whereas for Ic = 400 nA an environmental cavity frequency of fenv =
5 GHz is found.
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6. Josephson Radiation and Shapiro Steps

V

)f(1Γ )f(2Γ
envf

Jf envnf−Jf

Figure 6.3. Illustration of self-induced Shapiro steps and the down-
conversion of the Josephson radiation.

The emergence of self-induced Shapiro steps is the manifestation of fun-
damental properties of JJs: they are simultaneously radiation sources and
sensors. The electromagnetic environment with which the JJ interacts is cru-
cial for the radiative interplay. The environment can might be modelled as a
cascade of semi-transparent interfaces that lead to the formation of a cavity
operating around the frequency fenv. When applying a finite voltage drop
across the junction, microwave photons are generated that are then partially
reflected back to the junction, as sketched in Fig. 6.3 by violet arrows, which
leads to self irradiation. The effect becomes most pronounced close to the
eigenfrequencies of the environmental cavity. In general, the surrounding mi-
crowave environment is hard to control, since stray capacitance, impedance
mismatches, and the microwave response beyond the sample border need to
be considered. Therefore the precise reason for the appearance of the environ-
mental cavity is unknown. However, we suspect that the large ground plane
surrounding the SQUID is part of the cavity mode. In the in-house built de-
vices presented below we minimized the appearance of self-induced Shapiro
steps by designing the electrodes to be short and progressively narrowing to-
wards the junction.

From Fig. 6.2(c) and 6.2(f) we observe a smooth increase of the voltage ver-
sus I within the frequency window of 2.5−5 GHz. This bandwidth corresponds
to the operation bandwidth of the amplification chain, as highlighted by the
pink shaded regions for 2e-radiation. The possibility to apply a stable volt-
age bias in this range is required to accurately probe the frequency dependent
emission spectrum.
The measured, normalized emission spectrum of the tunnel SQUID tuned to

Ic = 400 nA is shown in Fig. 6.4(a) and overlaid with the expected peak posi-
tion for the trivial 2e-radiation with a gray line. In addition to the clear emer-
gence of 2e-radiation, we observe two emission peaks that move in parallel. We
explain these features by the down-conversion of Josephson emission produced
at higher voltages. The observed frequency shift, i.e., the spacing in V between
the gray lines, matches with the environmental frequency fenv = 5 GHz in-
ferred from the self-induced Shapiro step pattern. This is further illustrated in
Fig. 6.4(b), by the highly accurate alignment between the measured emission
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Figure 6.4. Emission spectrum of the tunnel SQUID at Ic ≈ 400 nA. (a)
Normalized power spectral density as a function of detection frequency fdet
and voltage V across the junction. (b)-(c) Line cuts in the radiation map at
fixed fdet as indicated by the purple and blue arrows in (a) respectively.

peaks and the dashed lines that represent the down-converted signals. The
down-conversion can be described with a multi-photon process exciting an en-
vironmental mode as depicted in Fig. 6.3. The Josephson photon at frequency
fJ (blue) is split in two lower frequency photons, one which stays in the cavity
nfenv, and another that reaches the detector fJ − nfenv (pink), causing an
effective down-conversion of the Josephson emission.
At frequencies satisfying fdet = fenv the down-converted 2e-radiation peak

coincides with the position of the 1e-peak and hence can mimic the feature
of a topological JJ. For example, in a line cut at fdet = 4.833 GHz presented
in Fig. 6.4(c), the down-converted features appearing at the 1e-position dom-
inate the trivial 2e-emission and can be misinterpreted as the signature of a
topological junction.
Consequently, radiation measurements need to be performed over a wide

range of frequencies to ensure one can accurately determine the slopes of the
respective emission peaks as a function of voltage.
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Figure 6.5. Emission spectrum of the tunnel SQUID with the expected
resonance conditions overlaid for 2e-emission (gray) and its down-conversion
(dashed) in (a) for Ic ≈ 700 nA and in (b) for Ic ≈ 980 nA. The blue arrows
indicated non-dispersing emission peaks.

For increasing the critical currents we observe a progressive broadening of
the radiation peaks, and a reduced voltage dependence in the emission spec-
trum, as can be recognized in Fig. 6.5. We attribute this weaker dispersion
to enhanced voltage noise across the junction. As indicated by the pink bar
in Fig. 6.2 (d), the IV -characteristics steepens in the measured frequency in-
terval for larger critical currents and as a consequence the voltage becomes
ill-defined, which results in broadband emission. Furthermore, the back-action
from the microwave environment increases, as seen by the enhancement of the
down-converted signal over the full frequency range.
We have successfully shown that we are able to measure Josephson radiation

from a tunnel SQUID with critical currents ranging from 400−1000 nA and ob-
serve, in addition to the expected 2e-radiation peak, multiple down-converted
radiation signals due to environmental back-action. In the next section we
will investigate 1D nanowire SNS junctions with, in general, lower critical
currents, resulting in a weaker absolute radiation signal. This makes measure-
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6.2. SIS junction

ments more challenging from an experimental point of view. In contrast to
the tunnel SQUID discussed here, in nanowire SNS JJs higher order n2e-peaks
(integer n denotes the order) may become visible based on the transparency
of the channels in the junction.
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6. Josephson Radiation and Shapiro Steps

6.3. 1D nanowire SNS junctions

In this section we present and discuss the experimental results obtained on
gate tunable NW JJs. We will first focus on a weak link formed by Cd3As2,
which is a Dirac semimetal with ultrahigh carrier mobility, unique bulk Dirac
cones and nontrivial surface states [152]. On this platform, the emergence of
topological superconductivity has been claimed from Shapiro step measure-
ments [153]. The second device consists of an InAs NW with an epitaxial
Al half shell [100], where the JJ is formed by locally removing the Al clad.
These types of junctions are one of the work horses in the search for the il-
lusive Majorana fermions. It is predicted that topological superconductivity
emerges in this material system upon applying a magnetic field along the wire
axis [88, 154].

6.3.1. Cd3As2 nanowire Josephson junction
Cd3As2 NWs are placed by a random deposition technique on top of a highly
p-doped Si/SiO2 (500 µm/305 nm) wafer with pre-patterned Au markers and
bonding pads. After removing the native oxide with Ar-milling, the NW is
in-situ contacted by Ti/Al (3 nm/200 nm) electrodes in a quasi-four-probe

(a)

spectrum
analyzer

signal
generator

directional
coupler

Al

Au 180 nmV

I

Cd3As2

+
−

tgV R

50 µm

500 µm

HfO2Au

Al(b)

Figure 6.6. Cd3As2 nanowire Josephson junction formed by Al leads embed-
ded in a radiation/irradiation set-up. (a) Colored SEM image of the device.
The top gate electrode (yellow) is isolated from the junction by a 20 nm thick
HfO2 layer. The voltage Vtg applied on the Au gate structure allows to tune
the charge carrier density. The junction is shunted by a resistor (R = 10 Ω).
(b) Optical image showing the direct (top) and indirect (bottom) surroundings
of the device.
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Figure 6.7. Gate dependence of the Cd3As2 nanowire. (a) Differential
resistance dV/dI as a function of current bias I and top gate voltage Vtg.
(b) Power spectral density (PSD) as a function of the voltage drop V across
the junction and Vtg. The signal is collected at a fixed detection frequency
fdet = 3 GHz. The gray dashed line indicates the expected 2e-peak position.
(c) Line cuts in dV/dI at different voltages. (d) Line cuts in the PSD with
subtracted background (∆PSD) for different voltages. (e) ∆PSDmax (see (d))
versus the corresponding critical current squared (I2

c ).

configuration as seen in Fig. 6.6(a). The wire has a diameter of 50 nm and
the junction length is 180 nm. The Al leads extend from the NW up to the
inner border of the base structures. We cover this inner region, indicated
by the green box in Fig. 6.6(b), with a 20 nm thick locally deposited HfO2
gate-dielectric. A subsequently deposited Au top gate allows tuning of the
charge carrier density. In addition to the radiation detection set-up, a signal
generator is connected to the device via a directional coupler to irradiate the
junction with microwaves.
In Fig. 6.7, we probe the response of the junction as a function of the top

gate voltage Vtg, by sweeping the current bias while simultaneously measur-
ing the differential resistance and the emission spectrum at a fixed detection
frequency. The differential resistance as a function of current bias and gate
voltage presented Fig. 6.7(a), reveals a clear continuous switching behavior.
In contrast to the observations in Sec. 6.2, we find a stable resistance value
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without features of self-induced Shapiro steps as can be infer from the linecuts
presented in Fig. 6.7(c), which we attribute to the restructured lead architec-
ture with omitted ground plane and short electrodes, continuously narrowing
towards the junction.

We estimate the critical current Ic by identifying the position of the dV/dI
peak at each gate voltage. An anomalous evolution of Ic is observed when
sweeping the gate from negative to positive voltages; Ic first increases and
then asymmetrically decreases again. This behavior contrasts with ordinary
semiconductor JJs, which generally exhibit a steady increase of the critical
current as a function of larger electric-field induced doping. The unusual gate
response has been previously reported in long Cd3As2 NW JJs and has been
proposed to originate from scattering mechanisms between surface and bulk
states that give rise to dephasing [155]. In this case, increasing the electron
density enhances the scattering which results in a suppression of the coherent
Cooper pair transport, and hence leads to a reduction of the critical current.
We inferred the normal state resistance RN from measurements carried out
in magnetic field with a large probe excitation in combination with a parallel
resistor model. We denote IcRN -products of ∼ 50 µV in the far negatively
doped regime up to ∼ 100 µV at the maximal Ic position, which indeed points
to the direction of gate dependent scattering mechanisms on the surface.
Fig. 6.7(b) maps the raw data of the collected radiation signal with respect

to the top-gate voltage Vtg and voltage V across the junction. We observe
that the emission peak remains visible throughout the whole gate range and
aligns to a high degree with the expected 2e-peak position at V = hfdet/(2e)
(see the gray dashed line) with fdet = 3 GHz. Besides the trivial 2e-emission,
no additional spurious radiation peaks or signatures of high-order tunneling
events appear. In Fig. 6.7(d), we present the background-subtracted linecuts
in the emission spectrum at fixed voltages. Note that even for a relatively low
critical current Ic ≈ 200 nA at Vtg = −7 V, the radiation power overcomes
the noise floor.
In Fig. 6.7(e) we plot the effective emission peak height versus the corre-

sponding extracted critical current squared. We recognize a clear quadratic
dependence between the emission strength and Ic. If we naively think of the
junction acting as sinusoidal ac current source with amplitude Ic that is in par-
allel with a resistor R̃, a power P = R̃I2

c /2 will be dissipated in the circuit. In
the full experimental circuitry, a fraction of the power will be dissipated within
the amplification chain and the shunt resistor. The other fraction is dissipated
across the 50 Ω-termination in the spectrum analyzer, which is directly pro-
portion to the measured PSD. Consequently, the PSD height is proportional
to the current squared. In order to quantitatively relate the measured PSD to
Ic, the full transfer function between the junction and the detector needs to be
considered. In of case a non-sinusoidal ac source, reflecting a skewed current-
phase relation (CPR), the trivial and higher-order emission peak heights would
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Figure 6.8. Emission spectrum of the Cd3As2 device for Ic ≈ 600 nA
obtained at Vtg = 0 V. (a) Normalized radiation spectrum overlaid with the
expected position of the 2e-emission peak. (b) Differential resistance dI/dV
in log-scale as a function of current bias I. (c) IV -curve with the current
and voltage range that produces 2e-radiation in a frequency window from
2.5−3.8 GHz as indicated by the violet shading. (d) Line cut in the normalized
radiation map at a fixed detection frequency.

correspond to the Fourier amplitudes of the CPR. In Sec. 6.3.2 and 6.4.2, we
make use of the heuristically found proportionality between the peak height
and the current amplitude to obtain the relative ratios between the Fourier
amplitudes.
In a next step, we investigate the Josephson radiation spectrum at a con-

stant top gate voltage Vtg = 0 V, which corresponds to a critical current
Ic ≈ 600 nA. In Fig. 6.8(a), the normalized power spectral density is plotted
as a function of the voltage bias V and the detection frequency fdet in the
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range 2.5− 3.8 GHz, that is limited by the measurement set-up. The detected
radiation features are symmetric in voltage and solely determined by trivial
single Cooper pair transport. No signatures of topological 1e-transfer events
or higher-order processes appear. In agreement with the lack of self-induced
Shapiro steps in the dV/dI, no features of down-conversion emerge. The ob-
served emission peaks appear sharp with a base width of ∼ 2 µV, as can been
inferred from the line cut presented in Fig. 6.8(d). We attribute this to a stable
voltage drop across the junction, which by virtue of a noise picture is reflected
in the rapid switching behavior (see Fig. 6.8(b) and (c)) and the nearly vanish-
ing residual resistance in the superconducting state as presented in log-scale in
Fig. 6.8(b). The fact that the IV -curve becomes steep just below the detection
bandwidth for trivial emission, as indicated in 6.8(c), makes the voltage drop
ill-defined for the voltage range that could produce features of higher-order
tunnelling events. These higher-order process could have been expected for
the short semimetal section investigated here.
We now direct our focus to the investigation of the ac Josephson effect by

measuring the Shapiro step pattern. The junction is irradiated by a microwave
tone of fixed frequency f = 2 GHz at variable output power P of the signal
generator. The driving signal is applied to the rf line connecting the device
to the amplification chain, as seen in Fig. 6.6. We probe the differential resis-
tance dV/dI as a function of current bias and P for a constant gate voltage
Vtg = 0 V. The resulting map shown in Fig. 6.9(a), reveals the characteristic
plateaus of constant current and zero dV/dI (and constant V ) represented
by the elongated dark regions. It can be observed that with increasing the
drive power, the plateau of the 0-voltage state becomes narrower and eventu-
ally disappears, while higher-order Shapiro steps progressively emerge. The
Shapiro steps can be identified as dips in the dV/dI, as seen in the line cut
for P = −18 dBm presented in Fig. 6.9(b). Here, the first and the second
steps are indicated with black arrows. In Fig. 6.9(d) we present the IV -curve
obtained by integrating dV/dI for different drive powers. The voltage axis
presented in units of the Shapiro step voltage with f = 2 GHz nicely matches
the measured voltage steps. The development of the various voltage plateaus
depends on the drive power. By numerically differentiating the interpolated
IV -curves we can extract the differential conductance dI/dV , which is pre-
sented in Fig. 6.9(c) as function of V and P . With this visualisation technique
developed by Joost Ridderbos [51] no binning is required and the resolution is
maintained. The voltage plateaus appear as lines in the color map, whereas
their intensity reflects the width of the Shapiro step.
In parallel with the Shapiro steps, we measure the emission spectrum of

the junction for a fixed detection frequency. In Fig. 6.9(e), which presents the
normalized emission spectrum as a function of V and P , we observe replicas of
the 2e-peak at large drive power, which are shifted up in voltage by multiples of
the drive tone. Since these features are not present at low drive powers we refer
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Figure 6.9. Shapiro step measurement performed on the Cd3As2 device by
irradiating the junction with a microwave tone of frequency f = 2 GHz. (a)
Differential resistance dV/dI as a function of drive power P and current bias
I. (b) Line cut in dV/dI for a fixed power value. (c) Numerically deduced
differential conductance dI/dV as a function of P and the voltage V in units
of the Shapiro step voltage with f = 2 GHz. (d) IV -curves obtained by
integrating dV/dI over I for different irradiation powers. (e) Normalized power
spectral density (n. PSD) as a function of V and P . The signal is collected at a
fixed detection frequency fdet = 3.5 GHz. The black dashed line indicates the
expected 2e-peak position, whereas the blue lines indicate its ‘forced’ down-
conversion.
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to them as ‘forced’ down-conversions of the Josephson emission. The fact that,
in contrast to measuring radiation, Shapiro step measurements heavily drive
the system out-of-equilibrium and frequency mixing between the Josephson
emission and the drive tone arises [114], makes the extraction of 4π-periodic
CPR contributions from plateau size analysis a poor identifier of topological
superconductivity and will be omitted here.

For the first the emission spectrum of a Cd3As2 nanowire has been mea-
sured. Although a topological emission peak is predicted for this material, we
have only measured trivial 2e radiation. The 1e emission intensity might be
limited by scattering potentials on the surface, which could strongly reduce
the transparency of the topological modes living on it. This explanation is
consistent with the observation of the anomalous gate effect. In addition, we
have obtained a very clean radiation signal and Shapiro step pattern where
environmental modes were not observed, in contrast to the Al/AlO2/Al tun-
nel SQUID. We partly explain this cleaner electromagnetic environment to
an omitted ground plane and an optimized design of the on-chip electrodes.
Importantly, we denote a quadratic proportionality between the supercurrent
amplitude and the emission intensity.

6.3.2. InAs nanowire Josephson junction
We now move to a device where a single InAs NWwith an epitaxial Al half shell
is deterministically deposited on top of a pre-patterned bottom gate structure
made of Ti/Au (5 nm/20 nm), in turn, covered with a 20 nm thick HfO2 dielec-
tric. The gate structure consists of a thin middle gate flanked by two large area
side gates, extending beyond the length of the NW as seen in Fig. 6.10(b). The
Josephson weak link is formed by removing the 7 nm thick Al half shell just
above the middle gate using a wet etching procedure. The resulting bare InAs
section, which is seen in Fig. 6.10(c), has a length of 55 nm. Here, the bare
InAs section is enclosed between the Al covered nanowire and the bottom-gate
structure, which ensures a strong capacitive gate coupling. The NW tails are
contacted by sputtering NbTiN, after removing the native oxide by in-situ Ar-
milling. The electrodes are designed to be short and homogeneously increasing
in width to reduce loses and suppress spurious resonances. An overview of the
final device is shown in Fig. 6.10(a).

Here, we aim to investigate Josephson transport in a highly transparent
regime, which is obtained by applying positive voltages on the three bottom
gates to accumulate charge carries and open-up a transport channel. In the
following, we limit our discussion to the gate configuration in which the two
outer gates are set to Vog1 = Vog2 = 4 V and the middle gate to Vmg = 6 V.
This gating potential was optimized for obtaining the highest critical current.
The corresponding differential resistance measured as a function of current
bias I, presented in Fig. 6.11(b), reveals a critical current Ic ≈ 120 nA. We
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Figure 6.10. InAs nanowire Josephson junction embedded in a radiation
set-up. (a) Three bottom gates allow tuning of the junction. The nanowire
is contacted by NbTiN leads and shunted by a resistor (R = 10 Ω). (b) The
locally deposited 20 nm thick HfO2-layer isolates the gate structure consisting
of a thin middle gate and two large-area side-gates. (c) SEM image of the
nanowire junction, formed by locally etching the epitaxial Al half-shell. The
etched region is centered over the middle gate.

observe a non-vanishing resistance value for I = 0, which we attribute to
finite temperature effects and current/voltage noise in the system. The device
was measured in the BlueFors set-up with an amplification chain providing a
bandwidth of 3 − 7.7 GHz. This allows to probe the emission spectrum in a
wide voltage range, as indicated on the IV -curve in Fig. 6.11(c) with the violet
shading for 2e-radiation.
Fig. 6.11(a) presents the high resolution emission spectrum3, which was col-

lected in a time window of 80 h with 1 s per data point averaging time. We
detect trivial 2e-emission that appears as broad white lines due to the satu-
rated color-scale. In addition, we observe two faint emission traces at lower
voltages with clearly different slopes compared to the 2e-emission. We find a
remarkable agreement between this feature and the expected peak positions
that corresponds to 4e-radiation, and we therefore attribute these features to
a higher-order inelastic Cooper-pair tunnelling event that incorporates four
electrons.
The appearance of higher-order tunnelling events in this device is the direct

manifestation of a highly transparent junction. Assuming that the emission
peak height scales with the contribution to the total supercurrent, we can

3The background and the color-scale are adjusted such that features are optimally visible.
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Figure 6.11. Emission spectrum for the InAs nanowire Josephson junction
Ic ≈ 120 nA. (a) Normalized radiation spectrum with the gray line indicating
the expected position of the 2e-emission peak and the black dashed line tracing
the emission of a 4e-peak. (b) Differential resistance dI/dV as a function of
current bias I. (c) IV -curve with the current and voltage range that produces
2e-radiation in a frequency window from 3 − 7.7 GHz is indicated with the
violet shading. (d) Normalized radiation signal obtained at a fixed detection
frequency.

estimate the ratio of the Fourier amplitudes of the higher order processes as

A2

A1
∝
√

∆PSDmax2

∆PSDmax1
. (6.2)

In the linecut shown in Fig. 6.11(d), the signatures of 4e-radiation can be
recognized as minor peaks between the two main 2e-emission peaks. From this
we estimate a relative peak height ratio ∆PSDmax2/∆PSDmax1 ≈ 0.05 between
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the 4e and 2e signal, from which we obtain A2/A1 ≈ 0.22. On the same
nanowire platform, very similar A2/A1-ratios have been reported in Ref. [54]
and are attributed to an averaged transparency of τ ≈ 0.8. This implies
that the InAs NW JJ investigate here might have a transparency of the same
order. However, we want to stress that the modest analysis used here is only a
rule of thumb. Further developments where we take into account the frequency
dependence of the relative ratios A2/A1 and the voltage dependent background
noise, would offer a more accurate estimation.
Besides trivial emission we collect 4e-radiation signals from the InAs NW

junction, which implies coherence between subsequent Cooper pair transfer
events. By virtue of a heuristic model, we can estimate the relative ratio
of the Fourier components and hence obtain direct access to the CPR. In
contrast to conventional rf/dc SQUID methods to probe the CPR, radiation
measurements can be even performed in large magnetic fields and are therefore
highly interesting for probing surface supercurrents. The observed higher-
order emission stemming from a supercurrent amplitude of A2 ≈ 30 nA, further
demonstrates the sensitivity of our radiation set-up.
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6.4. 2D/3D SNS junctions

In this section we focus on the experimental results obtain from JJs mad of
2D/3D materials. The first sample discussed here originated from a collabo-
ration with the group of Prof. Dieter Weiss: a HgTe junction with Nb leads,
which was fabricated and pre-characterized by Ralf Fischer at the University of
Regensburg. HgTe is a 3D topological insulator [156], in which the emergence
of Majonana fermions is theoretically predicted when the surfaces states inter-
act with an ordinary superconductor [71]. Therefore, this material system is
a highly promising platform to observe the non-trivial 4π-periodic Josephson
effect [57, 81, 82]. The second, in-house built device, was measured together
with A. Kononov, who fabricated the device together with M. Endres. The
Josephson element investigated here incorporates a WTe2 flake with Pd in-
duced superconductivity [157]. Since WTe2 is predicted to be a higher-order
topological insulator with 1D-hinge states [157–159], it is as well a particularly
promising candidate for hosting topological superconductivity.

6.4.1. HgTe Josephson junction
The following brief description of the HgTe JJ device is adapted from the
fabrication recipe provided by Ralf Fischer. Fig. 6.12(c) illustrates a cross-
section of the heterostructure, in which the 80 nm thick HgTe layer is capped
by CdHgTe/CdTe buffer layers on a GaAs/CdTe growth-substrate [160]. A
stripe-shaped MESA structure with a width of 2.7 µm, as seen in Fig. 6.12(b),
is formed by chemical wet etching. After locally removing the capping layer in
a subsequent wet etching step, these contact regions are cleaned by Ar-milling
before in-situ depositing Ti/Nb (3 nm/100 nm) leads, which are protected by
a 3 nm thick Pt layer. The length of the JJ is defined by a 200 nm contact
separation and a top-gate allows tuning of the charge carrier density. An
overview of the device together with the microwave set-up can be seen in
Fig. 6.12(a). Because wire bonding on the CdTe substrate is difficult, large
bond terminals are patterned for potential indium press contacts, which are
far away from the junction. Furthermore, the Nb supply lines from the bond
region to the junction are narrow all the way.
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Figure 6.12. HgTe Josephson junction embedded in a radiation set-up. (a)
The voltage Vtg applied on the Au top gate structure (yellow) allows to tune
the charge carrier density. The MESA is contacted by Nb leads and shunted
by a resistor (R = 10 Ω). (b) SEM image of the junction. (c) Cross-sectional
schematic of the junction. Ralf Fischer from the University of Regensburg
took the pictures and fabricated the device.

The differential resistance dV/dI is presented in Fig. 6.13(a) and is measured
as a function of current bias I and top gate voltage Vtg. We infer a weak gate
dependence of the critical current, with a range Ic ≈ 280 − 420 nA. The line
cut taken at Vtg = 0 V shown in Fig. 6.13(b), reveals a smooth switch behavior
and the emergence of a potential self-induced Shapiro step, indicated with the
pink arrow. The corresponding IV -curve is shown in Fig. 6.13(c).
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Figure 6.13. Gate dependence of the HgTe junction. (a) Differential resis-
tance dV/dI as a function of current bias I and top gate voltage Vtg. (b) dV/dI
in response to I at Vtg = 0 V. The pink arrow indicates a potential self-induced
Shapiro step. (c) Voltage V across the junction obtained by integrated dV/dI
as a function of I. The gray dashed line indicates the linear behavior of a 10 Ω
resistor and the violet shading corresponds to the current and voltage range
that produces 2e-radiation in a frequency window from 2.5− 4 GHz.

6

101
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We again investigate the emission spectrum of the junction, for which the
experimentally available frequency range for 2e-radiation is highlighted on the
IV -curve in the violet color in Fig. 6.13(c). We would like to note that the
emission spectrum stays qualitatively unchanged for different gate voltages and
we therefore limit our subsequent discussion to the Vtg = 0 V configuration.
The normalized radiation map, shown in Fig. 6.14(a) is taken at Vtg = 0 V and
includes a plethora of features. First of all, we observe the appearance of a clear
2e-emission peak indicated by the black solid line. Second, we notice bright
blobs at higher voltages which one might mistake for a peak corresponding to
1e radiation. However, upon careful inspection over the measured frequency
range, these features do not match with the slope of the the expected 1e-
radiation (shown in green), and this allows us to rule out the observed feature
as signatures of a 4π-periodic supercurrent contribution. Instead, we attribute
the high-voltage emission features to down-converted 2e-radiation with two
environmental frequencies, fevn1 = 3.2 GHz and fevn2 = 5.3 GHz. The latter
frequency is also observed as a self-induced Shapiro step marked in Fig. 6.13(b).
Furthermore, a broadband emission peak emerges at the voltages indicated by
the gray arrows in Fig. 6.14(a). The lowest peak (solid gray arrow) largely
coincides with the expected peak position for a 4e-radiation signal, however
the slope of the peak seems not to match (gray line). The second peak at
higher voltage (dashed gray arrow) has a similarly horizontal shape. Due to the
limited frequency range and the relatively large peak widths, we cannot draw
any further conclusions from these additional radiation peaks. The diversity in
this emission spectrum might originate from suboptimal design of the on-chip
contact electrodes.
By measuring the voltage dependent emission at elevated temperatures and

at a fixed detection frequency, we observe that the down-converted peaks
weaken and a more conventional spectrum is obtained, as seen in Fig. 6.14(b).
A similar evolution can be seen in Fig. 6.14(c), where we apply an in-plane
magnetic field that points perpendicular to the direction of the current, as il-
lustrated in Fig. 6.12(b) by the Bx-arrow. In both cases we observe a decrease
of the main 2e-peak heights, corresponding to a reduction in critical current.
In addition, we also observe diminishing environmental radiation peaks with
increased temperature and magnetic field, which can either be the result of the
reduced strength of self-irradiation (because of the smaller critical current), or
from temperature and magnetic field dependent changes in the electromagnetic
environment. Although not shown in this work, we also investigated the emis-
sion spectrum as a function of an in-plane magnetic field that points along the
current direction. Here, the goal was to thread a flux quanta through the cross-
sectional junction area, which could give rise to the Little-Parks effect [161]
due to the potential presence of superconducting surface states. However, the
evidence of the effect is still illusive since our experimental observation were
suffering from induced noise, while measuring in magnetic field.
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Figure 6.14. Emission spectrum of the HgTe junction at Ic ≈ 380 nA. (a)
Normalized radiation spectrum overlaid with the expected position of the 2e-
emission peak (black) and the gray line traces the one of the 4e-peak. The two
dashed black lines running parallel to the 2e-emission peak indicate the down-
conversion of the signal produced at higher voltages for different environmental
frequencies fenv1 and fenv2. (b) Temperature dependence of the emission spec-
trum obtained at a fix detection frequency with subtracted background. (c)
In-plane magnetic field dependence of the emission spectrum obtained at a
fix detection frequency with subtracted background. The field Bx is aligned
parallel to the contacts as indicated in Fig. 6.12.

In Fig. 6.15(a) we look at dV/dI versus I and the out-of-plane magnetic field
Bz. A clear Fraunhofer-like pattern emerges, however a strong increase in the
noise level is observed compared to measurements without an applied mag-
netic field. This noise reduces the maximum value of Ic and ‘smears out’ the
switching behaviour: for the maximal critical current, the maximum in dV/dI
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Figure 6.15. Dependence on the out-of-plane magnetic field Bz at Vtg =
0 V. (a) Differential resistance dV/dI as function of current bias I and Bz.
(b) Bz-dependent emission spectrum is obtained at a fix detection frequency
fdet = 3.5 GHz and plotted with respect to the voltage V across the junction.
The dashed line indicates the expected 2e-peak position. The offset in Bz
likely originates from flux trapping.

barely reaches the 10 Ω shunt resistor value, contrasting the stronger previ-
ously observed peak in Fig. 6.13(b). Although our past efforts have already
greatly improved the set-up, we attribute this noise to the power supplies of
the magnet and pick-up on the magnet leads. In strong contrast to the more
noisy lock-in measurement, a much cleaner Fraunhofer-like pattern is observed
in the simultaneously measured radiation signal shown Fig. 6.15(b), which im-
plies that the voltage drop across the junction is not that much affected. The
discrepancy between the rf and dc readings might be explained by fluctuations
on the ground potential together with a finite RC-time on the dc side. Fur-
ther investigations have to be performed to eliminate the cross-talk between
the magnet system and the measurement equipment.

6.4.2. WTe2 Josephson junction

We now arrive at the last device that is investigated in this chapter, namely
a top-down fabricated WTe2 JJ. The following brief description of the WTe2
JJ is adapted from the fabrication recipe developed by Artem Kononov and
others. The 2D WTe2 consists of a single crystal with a thickness of ∼ 22 nm,
which corresponds to ∼ 31 single layers. To form Josephson junctions with
WTe2, we used Pd-induced superconductivity that emerges at the interface be-
tween the WTe2 crystal and the metal [157, 162]. First, Ti/Pd (3 nm/40 nm)4
stripes are patterned on top of a p-doped Si/SiO2 (500 µm/295 nm) substrate.
The stripes have a width of 3 µm and a spacing of 1 µm, defining the length of
the studied junction. In the next step, the WTe2 crystal covered with a hBN
protection flake, is stacked on top of the Pd stripes using a standard polymer

4Ti acts as a sticking layer.
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Figure 6.16. WTe2 Josephson junction embedded in a radiation set-up. (a)
The hBN covered WTe2 flake is placed on top of Pd strips and side-contacted
by MoRe leads. (b) Cross-sectional schematic of the junction. Device fabrica-
tion and imaging was performed by Artem Kononov.

pick-up technique [103]. Both the exfoliation and the stacking have been per-
formed under nitrogen atmosphere in an oxygen free glovebox to avoid WTe2
flake oxidation. In the last step, the superconducting contacts to the WTe2 are
formed by sputtering MoRe following a local plasma etching of hBN. This ap-
proach employs the standard recipe for making edge superconducting contacts
to graphene [104]. The main idea of this design is to combine the advantage
of the highly transparent Pd-mediated WTe2 Josephson junctions, with fully
superconducting contacts that minimize loss for the radiation measurements.
An optical image of final device with a schematic measurement set-up, and
an illustration of the cross-section of the junction are provided in Fig. 6.16(a)
and (b) respectively. Due to the expected low normal state resistance on the
order of ∼ 2 Ω for these devices, the previously used shunt resistor is omitted
in the microwave set-up.
In Fig. 6.17(b), we plot the measured differential resistance dV/dI as a func-

tion of current bias I for three different temperatures, which shows character-
istic Josephson junction behavior. At base temperature T = 20 mK the dV/dI
shows hysteretic behavior: When the current bias is swept from I = 0 to higher
values, the junction maintains in the superconducting state up to the critical
current Ic ≈ 9 µA. Decreasing the current bias again leaves the junction in the
normal state until the re-trapping current Ir ≈ 4 µA is reached. While this be-
haviour is typical for underdamped Josephson junctions, it could also originate
from overheating in the normal state due to high critical current [163].
The corresponding IV -curve in Fig. 6.17(c) reveals that the voltage range

relevant for 2e-emission in a detection bandwidth 3.2− 4.2 GHz falls into the
hysteretic regime of the junction where the junction cannot be operated as a
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radiation source. We overcome this problem by increasing the temperature. At
T = 350 mK the critical current has shrunk to Ic ≈ 1.8 µA and the switching
appears symmetric around I = 0 as seen by the blue trace in Fig. 6.17(b).
The corresponding IV -curve shown in blue in Fig. 6.17(c) exhibits a smooth
voltage increase, which corresponds to an overdamped junction desirable for
properly measuring the Josephson emission spectrum.
In Fig. 6.17(a) the emission spectrum of the WTe2 junction is presented. The

color scale is confined to the lower 10% of the spectrum to enhance the visibility
of the faintest measured features. We overlay the map with the expected
peak position for inelastic Cooper pair tunnelling events, incorporating the
following effective charges: in black q∗ = 2e, in gray q∗ = 4e and in pink
q∗ = 6e. We note a good agreement between the measured peaks evolution
and the expected behavior, with a tendency for the experimental peaks to lay
slightly below the expected voltages. We speculate that this slight discrepancy
in the voltage peak positions originates from imperfect measurements of the
differential resistance.

We can estimate the individual contributions of the different orders of Cooper
pair tunneling to the total supercurrent, by looking at amplitudes of the
corresponding emission peaks following the approach described in Sec. 6.3.2.
Fig. 6.17(d) shows the emission spectrum at a fixed frequency in the full n. PSD
range. The spectrum is dominated by the 2e-peaks at V ∼ ±8 µV, which flank
the ∼ 6 times smaller 4e-peaks at V ∼ ±4 µV. The 6e-peaks, highlighted with
pink arrows in the insert, have an amplitude that is ∼ 20 times smaller than
the 2e-peaks. Employing the heuristic Eq. 6.2 we find a Fourier amplitude ratio
A2/A1 ≈ 0.4 for the first two harmonics, and similarly a ratio A3/A1 ≈ 0.22.
In the following, we compare these Fourier amplitudes ratios with theoret-

ical predictions for different transport regimes: a ballistic weak link with a
perfect transmission τ = 1 has a saw-tooth CPR, yielding decaying Fourier
amplitudes for increasing order k as Ak ∝ 1/k [43]. Hence, the expected ratios
are A2/A1 = 0.5, A3/A1 = 0.33,. . . On the other hand, for a diffusive weak
link in the short junction limit, the amplitudes decay as Ak ∝ 1/k2 [43] and
a forward skewed CPR emerges. Here, the averaged junction transparency is
given by τ ≈ 0.8 and the ratios progress as A2/A1 = 0.25, A3/A1 = 0.11,. . .
Previously, a similar highly non-sinusoidal CPR in junctions of similar length

has been linked to topological modes [164, 165]. Furthermore, the topological
states are expected in our sample for several reasons. First, WTe2 is be-
lieved to be a higher-order topological insulator hosting 1D edge states with a
demonstrated contribution to Josephson transport [157–159]. Second, the sam-
ple has sufficient thickness to host topological Fermi arc surface states [166],
which were previously connected with the appearance of fractional Shapiro
steps [167]. We also want to emphasize that the previous analysis and conclu-
sions are not invalidated by the elevated temperature at which measurements
were performed. On the contrary, for an ordinary Josephson junction higher-
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Figure 6.17. Emission spectrum of the WTe2 Josephson junction obtained
at elevated temperature (T = 350 mK). (a) Normalized radiation spectrum
(n. PSD) for Ic ≈ 1.8 µA overlaid with the expected positions of the 2e-
emission peak (black), 4e-emission peak (gray) and 6e-emission peak (pink).
Values above 0.1 are saturated in the color plot. (b) Differential resistance
dV/dI as a function of current bias I at different temperatures and sweep
directions. The blue curve corresponds to the dc characteristics of the map
shown in (a). (c) IV -curves measured at the different temperatures and sweep
directions. The violet shading indicates the current and voltage range that
produces 2e-radiation in a frequency window from 3.2−4.2 GHz. (d) Line cut
in n. PSD for a fixed detection frequency.

order Fourier components are decaying faster with the temperature [43, 54],
suggesting an even stronger representation of the higher order processes if
the sample could have been measured at base temperature. Nonetheless, we
cannot exclude that a part of the much higher supercurrent at the base tem-
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perature (Ic(20 mK) ≈ 9 µA vs Ic(350 mK) ≈ 1.8 µA) is hosted by diffusive
bulk modes.
To sum up, we studied Josephson radiation from WTe2 with highly trans-

parent superconducting contacts, provided by Pd induced superconductivity
in WTe2. In the emission spectrum we observe radiation peaks up to the 3-rd
order, with amplitudes ratios that suggest the junction is close to the ballis-
tic limit. We connect this observation with the potential contribution from
topological states in WTe2.

6.5. Conclusion

We have developed a measurement set-up for sensing the microwave emission
spectrum of Josephson junctions in a broad frequency range. A superiority of
the presented technique compared to the more conventional characterization
of Josephson elements is evident since we gain direct access to the Fourier
amplitudes that appear as higher-order emission bands. Another strength of
this read-out scheme lays in the simplicity from a device point of view. No loop
or additional junction needs to be integrated to the circuity, which makes the
method particularly powerful for measurements in large magnetic fields. Since
these large fields are essential with respect to the investigation of topological
surface states, this is a strong motivator for continued efforts improvements to
both set-up and sample in our lab.
By directly measuring the emission spectrum of µV-regime biased Joseph-

son elements, we gained substantial insight in their radiative behavior and
interaction with the environment. Our initial investigation shows parasitic
effects, such as self-induced Shapiro steps and down-converted emission fea-
tures, which disappeared after changing the device designs and junction mate-
rial. The observation of higher-order emission bands in junctions with modest
critical currents implies a great sensitivity of our method. Various different
material systems with potential for topological surface states haven been mea-
sured, for which 1e radiation is predicted. However, no such feature has been
observed so far. About the reason we can only speculate. In the case of the
Cd3As2 junction a possible explanation is the presence of a high concentration
of surface states that drastically suppress the transmission probability and one
could raise the same argument for the HgTe and WTe2. However, there can be
other explanations. There can be some unaccounted factors in the measure-
ments that prevent the observation of 1e emission or maybe the problem has a
more involved cause. Since the topological states can be elusive and are easily
mimicked by other phenomena, a combination of techniques should be used
on a single sample to be able to obtain a solid proof of topological states. It
is therefore possible that real topological materials are even less common than
we believe they are from other experimental methods. The answers to these
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questions are beyond the scope of this thesis but gives a strong motivation to
perform additional experiments.
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7 Conclusion and Outlook

This work was inspired by two fascinating, although very distinct physical
phenomena: the rather exotic Josephson physics that appear when two su-
perconductors are weakly linked, and the versatility and probing power of
microwaves that are omnipresent in our everyday life. Their combination sent
us on a scientific journey, in which we use microwaves of varying frequency
and power to explore the fundamental properties of a wide arrange of different
Josephson elements.
Our research can be categorized into two main experimental approaches:

The first approach makes use of a highly sensitive superconducting resonator
operating at microwave frequencies to both probe and interact with a Joseph-
son junction. Here, a gate-tunable graphene Josephson junction is embedded
in a superconducting loop and forms a rf SQUID. The junction is placed in
close proximity to the resonant structure – a NbTiN λ/4-resonator – to obtain
a finite inductive coupling. By applying magnetic flux through the rf SQUID
loop, the elementary phase across the junction can be adjusted over its full
range, allowing us to characterise its changing electrical properties. Due to the
inductive interaction, the Josephson element has become part of the resonant
circuit, which allows us to trace its changing properties by ‘simply looking’
at the resonator characteristics. Interaction implies a two-way exchange of
information and indeed, the oscillating stray field of the resonator creates a
back-action on the Josephson junction. In our case, this stray microwave
photon-field acts mainly on phase-dependent quasiparticle states living in the
junction, the famous Andreev bound states (ABS).
By virtue of a concise circuit model in combination with an iterative fit-

ting procedure, we translate the resonator response to the CPR, corrected
for screening and the phase-dependent dissipation. Theoretical predictions,
which take into account this microwave interaction between the resonator and
the ABS spectrum, reveal a striking agreement for a short, diffusive junction
model from which an ABS lifetime of ∼ 17 ps was deduced.

The second experiment requires a less complicated device design. It mainly
contains a voltage biased Josephson element and directly makes use of the con-
version from a dc voltage to an oscillating supercurrent, as dictated by the ac
Josephson relation. These oscillations are small but can be probed when the
Josephson element is sufficiently coupled via a low-noise high-gain amplifica-
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tion chain to a spectrum analyzer, essentially ‘listening’ to the junction. The
operational bandwidth of our set-up lays in the microwave regime and hence
requires a stable µV-voltage bias, ensured by shunting the junction with a
resistor. In general, voltage biased Josephson elements simultaneously emit
at different well-defined frequencies, where the respective amplitudes can be
directly related to the Fourier amplitudes of the current-phase relation.

By directly measuring the emission spectrum of different types of Josephson
junctions we have obtained a zoo of observations: (i) clear signatures of trivial
2e emission have been detected on all different flavors of junctions (SIS, SNS,
1D and 2/3D), (ii) we have found features attributed to a down-conversion of
the emission on junctions with non-ideal lead designs, which also result in self-
induced Shapiro steps, and more impressively (iii) we detected the emission
traces of higher-order tunneling events, attributed to 4e and even 6e radiation
which indicates, beside large junction transparencies, also a high measurement
sensitivity.

The fact that both of these measurement techniques are now well established
and there exist plentiful ideas for device and set-up optimisations, a unique and
highly versatile platform for future experiments is provided. The obvious next
step for the rf SQUID technique would be to incorporate a potentially topo-
logical material, investigate whether the topological nature can be observed
in the dissipation feature, and most importantly, whether it poses a clear dis-
tinction from the trivial case. We should stress that the graphene junction
investigated here could serve as benchmark for the trivial case. Because of the
extremely small gap at the π-point the spectrum has a very similar shape as
the one expected for Majoranas, but without the essential parity protection.

On the side of the radiation measurements, the first steps that should be
taken in the near future should rather focus on further improving the set-up.
An essential part is to solve the problem with excessive noise when performing
measurements in magnetic fields. Furthermore, the incorporation of a tunable
resonator would be applicable without large modifications to the devices or
setup. An experiment on the further horizon could even combine these two
techniques. For instance, the radiative signal from a Al SIS tunnel junction
can have energies up to the gap edge (∼ 44 GHz), which can be utilized to
perform two-tone spectroscope over very large frequency ranges on the ABS
or MBS spectrum of a second more exotic junction. An even more elaborate
measurement scheme could exploit the emitter/detector dualism of a JJ and
so that it could be used as an on-chip VNA. Not only would both the source
and detection take place at milliKelvin temperatures which greatly reduces
thermal fluctuations, there would also be an obvious and huge improvement in
terms of scaling up. One would no longer require rf-components and advanced
expensive electronics, and a full microwave characterisation could be performed
using only dc infrastructure.
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A Formal description of a λ/4-resonator

In this chapter we derive the basics of a λ/4-resonator in a loaded and unloaded
configuration. We provide consistency proofs for the expressions relating the
resonance frequency shift and the quality factor of the resonant circuit to prop-
erties of the inductively coupled load impedance – the rf SQUID. Furthermore,
we describe a method to infer the characteristic impedance of the co-planer
transmission line λ/4-resonator from geometrical means and evaluate its equiv-
alent lumped-element parallel RCL-circuit. Finally, the current distribution
along the resonator is derived, which is an important quantity for estimating
the induced phase oscillations in the inductively coupled rf SQUID. For this
chapter we will closely Ref. [168].
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A. Formal description of a λ/4-resonator

A.1. Loaded λ/4-resonator

The performance of a resonator is depending on the load impedance Zload
attached to it. In order to relate the resonance frequency f0 and the quality
factor Q of the resonator to properties of Zload, one can compare the input
impedance of the specific circuit with the one of a known circuit. Here, we
will compare a loaded λ/4-resonator with a parallel RLC-circuit.

Input impedance of a λ/4-resonator

In the following we consider a λ/4-resonator, in which the normally shorted
end is replaced by a load impedance Zload as shown in Fig. A.1.
In general, the input impedance of a transmission line (TL) of length l and

characteristic impedance Zr shunted by Zload is given by

Zin,TL = Zr
Zload + Zr tanh(γl)
Zr + Zload tanh(γl) . (A.1)

Since the complex propagation constant γ can be expressed as γ = α + jβ,
where the real part α is the attenuation constant in TL and, the imaginary
part β the wavenumber of the TL, we can rewrite

tanh(γl) = 1− j tanh(αl) cot(βl)
tanh(αl)− j cot(βl) . (A.2)

With β = ω/vp, where vp is the phase velocity of the TL and by introducing
the relative frequency δω = ω − ω0 with respect to the resonance frequency
ω0, the argument of the cot-term becomes

βl = ω0l

vp
+ δωl

vp
. (A.3)

The phase velocity at resonance for a quarterwave resonator (λ = 4l) reads
vp = λf0 = 2lω0

π
and therefore

βl = π

2 + πδω

2ω0
. (A.4)

Assuming δω being small, we can approximate

cot(βl) = cot
(
π

2 + πδω

2ω0

)
= − tan

(
πδω

2ω0

)
≈ −πδω2ω0

. (A.5)

Assuming that the λ/4-resonator is lossless (α = 0) we can simplify the input
impedance to

Z
λ/4
in = Zr

Zload − jZr 2ω0
πδω

Zr − jZload
2ω0
πδω

. (A.6)
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A.1. Loaded λ/4-resonator
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Figure A.1. Loaded quarterwave transmission line.

In the case of Zr � πδω
2ω0

Zload, we can write

Z
λ/4
in = 1

Zload
Z2

r
+ j πδω

2ω0Zr

. (A.7)

In general the load impedance is complex valued and can be decomposed into
its real and imaginary part, such that Zload = Re(Zload) + jIm(Zload), which
leads to

Z
λ/4
in = 1

Re(Zload)
Z2

r
+ j

Zr

[
πδω
2ω0

+ Im(Zload)
Zr

] . (A.8)

Input impedance of parallel RLC-circuit

We compare this now to a parallel RLC resonant circuit shown in Fig. A.2.
The input impedance of this circuit reads

ZRLCin =
(

1
Rp

+ 1
jωLp

+ jωCp

)−1

(A.9)

and its resonance frequency is ω0 = 1/
√
LpCp. Making again use of the

relative frequency shift and analysing the circuit near resonance allows us to
rewrite the former equation to

ZRLCin ≈ 1
1/Rp + 2jδωCp

(A.10)

or alternatively as
ZRLCin ≈ 1

1/Rp + 2j
√

Cp

Lp

(
δω
ω0

) (A.11)

Additionally, the internal quality factor of the parallel resonant circuit can be
expressed as

QRLC = ω0RpCp. (A.12)

A
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A. Formal description of a λ/4-resonator

pRpLpC

in
RLCZ

Figure A.2. Parallel RLC-circuit.

A.2. Influence of Zload on f0 and Qload

The resonance condition for a loaded λ/4-resonator is fulfilled, when Im[Zλ/4in ] =
0, which leads to πδω

2ω0
+ Im[Zload]

Zr
= 0 deduced from Eq.A.8. With the load – the

new resonance frequency is called ω0(= 2πf0), while the resonance frequency
of the unloaded resonator is called ωbare(= 2πfbare), hence δω = ω0−ωbare. In
the limit, f0 ≈ fbare, we can express the resonance frequency shift influenced
by the load impedance as

δf0 = f0 − fbare = − 2
πZr

Im(Zload)fbare. (A.13)

In order to express the quality factor Qload of a loaded quarterwave resonator,
we assume that Im[Zload]

Zr
� 1, such that we obtain from Eq.A.8

Z
λ/4
in ≈ 1

Re(Zload)
Z2

r
+ j

Zr

(
πδω
2ω0

) . (A.14)

By comparing this expression with Eq.A.11, we can conclude that Rp =
Z2

r
Re(Zload) . Combining this finding with Eq.A.12 and Eq.A.25, we can express
the load quality factor as

Qload = πZr
4Re(Zload) . (A.15)

A.2.1. Inductively coupled load
The load impedance in our circuit, as shown in Fig.A.3, can by found by
applying the transformer equations and reads

Zload = ω2M2

jωLloop +
( 1
Rs

+ 1
jωLJ

)−1 , (A.16)

where ω describes the operating frequency. With this load impedance, we
obtain for the quality factor

Qload = π

4 ·
Zr

RsM2

[
L2
loop + (LJ + Lloop)2R2

s

ω2L2
J

]
. (A.17)
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A.2. Influence of Zload on f0 and Qload
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Figure A.3. Circuit schematic of the inductively coupled rf SQUID, in
which the Josephson junction is modelled as variable Josephson inductance
LJ in parallel with a variable shunt resistance Rs. The inductance of the
superconducting loop is described by Lloop and the mutual inductance M
quantifies the coupling strength between the end of the λ/4-resonator and the
rf SQUID.

Hence, we found a formalism to convert the load quality factor into an effective
resistor shunting the JJ. In the case of LJ � Lloop and Rs

ωLloop
� 1, we can

make the approximation:

Qload ≈
π

4 ·
Zr

ω2M2 ·Rs. (A.18)

Assuming Rs → ∞ in Eq.A.16 and making use of Eq.A.26, we can approxi-
mate Eq.A.13 as

δf0 ≈
8
π2

M2

Lp(LJ + Lloop)fbare, (A.19)

which describes the frequency shift as a function of the Josephson inductance
LJ , which, in turn, is directly related to the current-phase relation (CPR).

A.2.2. Consistency proof for analytical expressions
Here, we prove the validity of the analytic formulas for δf0 and Qload (Eq.A.19
and Eq.A.17) by comparing their solutions with the numerically evaluated full
model. In particular, we generate reflection curve maps and extract from those,
the resonance frequency f full0 and the load quality factor Qfull

load by fitting as
explained in Ch.B.1. In general, the reflection coefficient reads

Γ = Zfull
in − Z0

Zfull
in + Z0

, (A.20)

where Z0 = 50 Ω is the environmental impedance. The coupling capacitance
Cc between the measurement set-up and the TL leads to an impedance Zc =
1/(j2πfCc) in series with the input impedance of the loaded TL, Zin,TL,

Zfull
in = Zc + Zin,TL. (A.21)

Hence, by combining Eq.A.1 and Eq.A.16 in Eq.A.20 with the use of Eq.A.21,
we can express Γ as a function of Zload with properties of the TL.

A
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A. Formal description of a λ/4-resonator

Consistency proof for δf0

First, we provide a consistency proof for the expression of the frequency shift.
In Fig. A.4, we keep the shunt resistance Rs = 100MΩ constant and sweep
the Josephson inductance LJ .
From the artificial Γ-maps shown in Fig. A.4(a)-(b) a clear change in f full0 is

observed as a function of LJ , while the lineshape is not affected. Details about
the parameters used here are listed in the figure caption. In Fig. A.4(c) we
overlay the fit results for resonance frequency f full0 of the artificial data (blue
circles) with the prediction from the analytic formalism (red, Eq.A.19).
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Figure A.4. Parameters for artificial data: Cc = 4.6 fF, α = 0.001m−1,
β = 2πf

√
εeff
c

, where εeff = 11.225 and c is the speed of light, l = 7.1mm,
Zr = 64.5 Ω, Lloop = 200pH, M = 32pH, Rs = 100MΩ, sinusoidal CPR
→ LJ = 2π

Φ0Ic cos(ϕ) , here the sweep range corresponds to the phase biasing
condition ϕ = π and the critical current is tuned Ic = 10→ 180nA (larger Ic
produces more shift). (a)-(b) Colormaps of the artificial data |Γ| and arg(Γ)
as a function of Josephson inductance LJ . (c) The resonance frequency f full0
(blue circles) obtained by fitting the artificial resonance curves. The analyt-
ically predicted resonance frequency (red lines) deduced from Eq.A.19 with
the same parameters as listed above and fbare = 3.12028GHz obtained from
minimizing |Γ| for LJ →∞ in the full model. (d) Difference between f full0 and
the analytically obtained resonance frequency.
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A.2. Influence of Zload on f0 and Qload

From Fig. A.4(d), which shows the difference ∆f0 between the resonance
frequency of the artificial data and the one obtained from the analytic formal-
ism, we observe only slight discrepancies on the order of Hz. Consequently,
Eq.A.19 describes the resonance frequency as function of LJ to a very high
accuracy.

Consistency proof for Qload

Here, we provide a consistency proof for the expression of the load quality fac-
tor. In Fig. A.5, we keep the Josephson inductance LJ = −3.2 nH (sinusoidal
CPR with Ic = 100 nA at ϕ = π) constant and sweep the shunt resistance Rs.
For simplicity we set α = 0, such that the effective quality factor is determined
by the load.
From the artificial Γ-maps shown in Fig. A.5(a)-(b) a clear change in the

lineshape of the resonance curve as a function of Rs is observed. Details about
the parameters used here are listed in the figure caption.
The dark region in Fig. A.5(a), where |Γ| = 0 corresponds to full matching

with Qc = Qload. The coupling quality factor can be expressed as [108, 169]

Qc = π

4ω2Z0ZrC2
c
, (A.22)

for which we find Qc = 29 950 with the model parameters Cc = 4.6 fF, Zr =
64.5 Ω and ω ≈ 2π · 3.12GHz. For small Rs values the resonator becomes
overcoupled (Qc > Qload) and arg(Γ) evolves smoothly, whereas for large Rs
values the resonator becomes undercoupled (Qc < Qload) and arg(Γ) undergoes
a 2π-leap. In Fig. A.5(c) we overlay the fit results for Qload of the artificial data
(blue circles) and the prediction from the analytic formalism (red, Eq. A.17).
From Fig. A.5(d), which presents the difference ∆Qload between the artificial
data and the predications, we observe very small discrepancies. Since, Rs
is naturally present in Im(Zload), changing the resistance causes in addition
a small shift of the resonance frequency. By the comparison between the
resonance frequency of the artificial data and the one obtained analytically
(assumption Rs →∞, such that Eq. A.19 becomes valid) shown in Fig. A.5(e),
we observe a discrepancy of ∼ 6 kHz for the smallest Rs value. On a first glance
this seems a lot, one should however relate this number with the overall shift of
the resonance frequency coming from LJ = −3.2 nH, which is about 200 kHz.
Hence, the error induced by neglecting Rs, is on the order of a few % as long
as Rs ≥ 100 Ω, which is the case for our measurement.

A
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A. Formal description of a λ/4-resonator
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Figure A.5. Parameters for artificial data: Cc = 4.6 fF, α = 0, β = 2πf
√
εeff
c

,
where εeff = 11.225 and c is the speed of light, l = 7.1 mm, Zr = 64.5 Ω,
Lloop = 200 pH, M = 32 pH, Ic = 100 nA, LJ = −Φ0/(2πIc) = −3.183
nH. (a)-(b) Colormaps of the artificial data |Γ| and arg(Γ) as a function of
shunt resistance Rs. (c) The load quality factor Qfull

load (blue circles) obtained
by fitting the artificial resonance curves as a function of Rs. The analytically
predicted load quality factor (red lines) deduced from Eq.A.17 with the same
parameters as listed above and fbare = 3.12028GHz obtained from minimizing
|Γ| for LJ →∞ and Rs →∞ in the full model. (d) Difference between Qfull

load
and the analytically obtained load quality factor. (e) The resonance frequency
f full0 (blue circles) obtained by fitting the artificial resonance curves and pre-
dicted resonance frequency for LJ = −3.2 nH. (f) Relative error between the
actual resonance frequency shift and the predicted resonance frequency shift
fan.0 ; ∆f0(%) = (f full0 − fan.0 )/(fbare − fan.0 ).
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A.3. Unloaded λ/4-resonator

A.3. Unloaded λ/4-resonator

We can describe the special case of an unloaded quarterwave resonance circuit
by evaluating Eq. A.7 for Zload = 0:

Z
λ/4
in = 1

j π
2Zr

(
δω
ω0

) . (A.23)

By directly comparing Eq. A.23 with Eq. A.11 for Rp →∞ one finds

π

2Zr
= 2
√
Cp
Lp
. (A.24)

One can now determine the capacitance of the equivalent parallel RLC circuit
with ω0 = 1/

√
LpCp as

Cp = π

4ω0Zr
(A.25)

and the inductance of the equivalent circuit as

Lp = 4Zr
πω0

. (A.26)

In a real experimental scenario the characteristic impedance Zr is often
not known precisely, since besides geometric ingredients – in particular, the
capacitance per unit length Cr and the self-inductance per unit length Ls
– there is also a contribution from material properties, which gives rise to
the kinetic inductance per unit length Lk. Consequently, the characteristic
impedance reads Zr =

√
Lr/Cr, where Lr = Ls + Lk. Both Cr and Ls

can be computed with conformal mapping techniques to very high accuracy,
whereas Lk needs to be determined experimentally. Lk can be measured in a
temperature dependence or estimated via the low temperature normal sheet
resistance [170]. In order to circumvent this inconvenience, we can make use of
the wavelength λ, which in the case of a lossless transmission line is given by

λ = 2π
β

= 2π
ω0
√
LrCr

. (A.27)

By rearranging this expression at the quarterwave resonance condition and
multiplying both sides with Cr, we find

ω0Cr = 2π
4l
√
LrCr 1

Cr

. (A.28)

Substituting Zr =
√
Lr/Cr into the previous equation and solve for Zr leads to

Zr = 2π
4lω0Cr

. (A.29)
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A. Formal description of a λ/4-resonator

This is now a description for Zr by just geometrical means (l and Cr) in
combination with the resonance frequency ω0. Here, we do assume an ideal
resonator without any coupling to the environment – however those corrections
will be small for large coupling quality factors Qc. Now inserting Eq. A.29
into the expressions for the equivalent circuit (Eq. A.25 and A.26), we find in
agreement with Ref. [171]

Cp = Crl2 , (A.30)

Lp = 2
lω2

0Cr
. (A.31)

Evaluating Zr and Lp

In order to evaluate characteristic properties of the resonant circuit, we make
use of conformal mapping techniques derived in Ref. [135] to express the ca-
pacitance per unit length. The effective dielectric constant of a two-layered
substrate is found to be

ε̃eff = 1 + εr1 − εr2
2 · K(k1)K(k′0)

K(k′1)K(k0) + εr2 − 1
2 · K(k2)K(k′0)

K(k′2)K(k0) (A.32)

and the corresponding capacitance per unit length reads

Cr = 4ε0ε̃eff
K(k0)
K(k′0) . (A.33)

The functions K are the complete elliptical integrals of the first kind, in which

k0 = s

s+ 2w

k1 =
sinh

(
πs
4h1

)
sinh

(
π(s+2w)

4h1

)
k2 =

sinh
(

πs
4(h1+h2)

)
sinh

(
π(s+2w)
4(h1+h2)

)
k′i =

√
1− k2

i with i = 0, 1, 2,

where s is the central conductor width, w is the spacing to the ground plane, h1
is the thickness of the top dielectric with relative permittivity εr1 and h2 is the
thickness of the bottom dielectric with relative permittivity εr2 see Fig.A.6.
With s = 12.1µm, w = 6.1µm, SiO2 thickness h1 = 170nm, Si thickness

h2 = 500µm, SiO2 permittivity εr1 = 3.9, Si permittivity εr2 = 11.8 and the
vacuum permititvity ε0 = 8.854× 10−12 F/m we find Cr = 153.9 pF/m. With
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A.4. Current within a λ/4-resonator
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Figure A.6. Cross-section of a transmission line on a layered substrate.

this and the length of the TL l = 7.54mm in combination with the resonance
frequency f0 ≈ 3.098029GHz we can now evaluate Zr = 69.54 Ω with Eq.A.29,
Cp = 580 fF with Eq.A.30 and Lp = 4.548 nH with Eq.A.31. Note that ε̃eff
describes purely the dielectric properties of the TL, whereas εeff also contains
properties of the kinetic inductance.

A.4. Current within a λ/4-resonator

In order to form a λ/4-resonator the TL needs to be confined between two dif-
ferent ends. The so-called open end couples the TL via a coupling capacitance
Cc to the measurement setup. Whereas the so-called shorted end terminates
the TL via a load impedance Zload to ground. Fig. A.7 shows a schematic of
this circuit embedded in a measurement environment.
In an ideal λ/4-resonator, where Cc = 0 and Zload = 0, perfect reflection at

both ports is provided. And one finds a current anti-node (node) and voltage
node (anti-node) at the shorted (open) end. Thus, the first resonant mode has
a wavelength λ0 = 4 · l, where l is the distance between the ports. With the
phase velocity vp = c√

εeff
one can write the bare resonance frequency as

f0 = c

λ0
√
εeff

= c

4 · l · √εeff
. (A.34)

∼gV

gZ

cC

inZ

l− 0 z

0Z

⇒ eff, rZ loadZ

0Γ

Figure A.7. Schematic of a loaded λ/4-resonator with coupling capaci-
tance Cc and load impedance Zload connected to measurement set-up with
impedance Z0.
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A. Formal description of a λ/4-resonator

In the non-ideal case (C > 0) the wave is leaking out through the open
end, which results in a larger wavelength as compared to the ideal case and
therefore the resonance frequency is slightly reduced.

Now we want to focus on the current amplitudes within a loaded λ/4-
resonator. Then we are interested in the magnetic field strength induced by
the current within the resonator, since the resulting alternating magnetic field
stimulates the nearby rf SQUID.

The total voltage and current waves on a terminated lossless transmission
line can be written as

V (z) = V +
0
[
e−jβz + Γ0e

jβz
]

(A.35a)

I(z) = V +
0
Zr

[
e−jβz − Γ0e

jβz
]
. (A.35b)

Here Γ0 is the reflection coefficient at the termination in a load impedance
Zload and reads:

Γ0 = Zload − Zr
Zload + Zr

. (A.36)

The input impedance looking from the coupling capacitance into the termi-
nated TL is

Zin = V (−l)
I(−l) = Zr

1 + Γ0e
−2jβl

1− Γ0e−2jβl . (A.37)

The voltage amplitude at this point can be expressed with the voltage division
formula and reads with Eq.A.35a:

V (−l) = Vg
Zin

Zin + Zg
= V +

0
[
ejβl + Γ0e

−jβl] . (A.38)

Now one finds
V +

0 = Vg
Zin

Zin + Zg

1
[ejβl + Γ0e−jβl]

. (A.39)

Here Vg is the peak generator voltage and Zg is the generator impedance,
which reads Zg = Z0 + Zc. Here Z0 = 50 Ω refers to the source’s output
impedance and Zc = 1/j2πfCc corresponds to the coupling impedance. Fi-
nally, substituting Eq.A.39 into Eq.A.35b one finds an expression for the
current amplitude distribution along the resonator:

I(z) = Vg
Zr

Zin

Zin + Zg

1
[ejβl + Γ0e−jβl]

[
e−jβz − Γ0e

jβz
]
. (A.40)

With Zload = 0 this simplifies to:

I0(z) = Vg
sin(βl)

tan(βl)
jZr tan(βl) + Zg

cos(βz). (A.41)

136

A



A.4. Current within a λ/4-resonator
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Figure A.8. (a) Blue line plots the absolut current |I0(0)| at the shorted end
(z = 0) with Zload = 0 as a function of freqeuncy f provided by Eq. (A.41).
The red points correspond to the results deduced from the circuit simulator.
(b) Shows the current distribution along the TL Eq. (A.41) at the resonance
frequency. (c) Shows the current distribution close to the capacitor for Cc =
10 fF (blue) and Cc = 20 fF (orange).

Now we compare the analytical result (visualized with Wolfram Mathemat-
ica 11.1.1) with the simulation result created within QUCS 0.0.19 (freeware).
Note, the peak generator voltage Vg can be expressed as: Vg = 10

P [dBm]−10
20 [V] ,

where the power at the sample reads P = Pout − Patt with the VNA’s output
power Pout and attenuation Patt ≈ 70 dBm. For the comparison following pa-
rameters were used: P = −100 dBm (Vg = 3.16 µV), Z0 = 50 Ω, Cc = 10 fF,
Zr = 50 Ω, εeff = 1 , l = 15 mm and Zload = 0. The blue curve in Fig.A.8(a)
plots the absolute value of Eq.A.41 as a function of frequency f at the shorted
end (z = 0). One finds the current maximum |I0(0)|max = 4.07 µA at the
resonance frequency fr = 4.94712 GHz. This resonance frequency differs from
the bare resonance calculated with Eq.A.34 by 49.4212 MHz. The red points
in Fig. A.8a) are provided by the simulation software and match the analytic
expression perfectly.
Fig.A.8(b) shows the absolute value of Eq.A.41 as a function of z at reso-

nance. A current anti-node is generated at the shorted and a current node at
the open end. Fig. A.8(c) provides a zoom-in of the open end regime. One
observes a non-zero current exactly at the capacitance and different leak-out
distances for Cc = 10 fF (blue) and Cc = 20 fF (orange) resulting in different
resonance frequencies. However, this is only a qualitative statement, since the
model is only valid within the resonator (−l ≤ z ≤ 0).
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B Fitting routines

B.1. Resonance curve fitting

Changing the flux biasing in the graphene rf SQUID coupled to the λ/4-
resonator influences the resonant behavior of the circuit as seen in the re-
flectance curve maps presented in Ch. 5.3. We implement a fitting routine,
which is taking into account both the amplitude and the argument of Γ at
once to insure a highly robust fitting procedure. An other advantage of the
method is the clear distinction between the coupling quality factor Qc and the
effective quality factor Qe. In the following we consider the resonance curve
obtained at Iflux = −74 µA. From Fig. B.1(a) we observe that |Γ| has a shallow
asymmetric lineshape and from Fig. B.1(b) we observe that arg(Γ) develops a
2π-jump. In the IQ-plane, where I = Re(|Γ|ej arg (Γ)) andQ = Im(|Γ|ej arg (Γ)),
the resonance curve generates here a circle surrounding the IQ-point=(0,0) as
shown in Fig. B.1(c). We fit both |Γ| and arg (Γ) simultaneously with a least-
square method with following combination of formulas [132]

Γ =

[
Γmin + 2jQ f−f0

f0

1 + 2jQ f−f0
f0

− 1

]
ejφ + 1, (B.1)

where Γmin = Qc−Qe
Qc+Qi

is the minimal reflection coefficient in the symmetric case
(φ = 0), Q = (Q−1

c +Q−1
e )−1 is the total quality factor, Qe = (Q−1

i +Q−1
load)−1

is the effective quality factor, in which Qload is the quality factor of the load, f
is the probe frequency, f0 is the resonance frequency and φ is the asymmetry
angle, which causes a rotation of the resonance circle in the IQ-plane around
the off-resonance point. In order to account for an offset and a slope in |Γ| as
well as in arg (Γ), we make use of following expression, which together with
Eq.B.1 provides the complete fitting formula:

Γfit = |Γ| · [aoff + aslope(f − f0)] · ej[arg (Γ)+poff+pslope(f−f0)], (B.2)

where aoff describes an offset in the amplitude, aslope describes a slope in the
amplitude, poff describes an offset in the argument and pslope describes a slope
in the argument. In Fig. B.1 the fit result (solid red) is overlain with the
measurement data (blue crosses) and the complete set of fitting parameters is
listed in Tab.B.1
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Figure B.1. Reflective response at Iflux = −74µm and Vbg = 5V. (a)-(b)
Resonance curve in |Γ| and arg(Γ) as a function of probe frequency f . (c)
Resonance curve in the IQ-plane. (a)-(c) The measured data is shown as blue
crosses, while the fit result is presented as solid red line.

f0 φ Qc Qe
3.0981GHz 0.25 rad 23 800 669 800

aoff aslope poff pslope
4.3× 10−3 5.1× 10−11/Hz 0.16 rad −4.7× 10−7 rad/Hz

Table B.1. Fit results at Iflux = −74µm and Vbg = 5V. In the top the
resonance frequency f0, asymmetry angle φ, coupling quality factor Qc and
effective quality factor Qe. At the bottom the background offset and slope in
the amplitude (a) and argument (p).
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B.1. Resonance curve fitting

B.2. Curve fitting with screening correction

Following routine to correct the rf SQUID response for screening was developed
together with Gergö Fülöp. Using Eqs. 5.5, 5.6 and 5.7 from Ch. 5.4, we ex-
press the shifted resonance frequency f0 as a function of the junction phase ϕ,

f0(ϕ) =

 8
π2

M2

Lp

((
2π
Φ0

∑kmax
k=1 (−1)k−1Akk cos(kϕ)

)−1
+ Lloop

) + 1

 fbare.
(B.3)

We fix the values of M = 30.83 pH, Lloop = 211 pH and Lp = 4.546 nH
obtained from simulations, and treat Ak and fbare as free fitting parameters.
In the absence of current in the rf SQUID loop, the junction phase ϕ is solely
determined by the external magnetic flux Φ in the loop, ϕ = ϕext = 2πΦ/Φ0.
Taking into account the flux created by the circulating DC supercurrent yields

ϕ = ϕext −
2π
Φ0
LloopIs(ϕ). (B.4)

This means, that the junction phase ϕ depends on the external flux and the
CPR to-be-determined as well.
In the experiment the resonance frequency f0 is measured as a function of the
current in the flux line. Using the periodicity of the signal, we convert the flux
current to the external phase ϕext by applying a linear transformation. Next,
to determine the CPR from the (f0, ϕext) data while taking into account the
flux contribution of the supercurrent, we find the self-consistent solution of
Eqs. B.3 and B.4 with an iterative method. The scheme is presented with the
pseudocode in Algorithm 1. Essentially, it combines fixed-point iteration with
Eq.B.4 and least-square fits to Eq.B.3. The procedure realizes the non-linear
transformation of ϕext to ϕ, and outputs the harmonic coefficients Ak and the
bare resonance frequency fbare.

Algorithm 1. Iterative procedure for curve fitting with screening correction
function fitWithScreening(f0, ϕext;M,Lp, Lloop, niter = 30, α = 0.2 −
0.4, kmax = 10)

ϕ = ϕext . Initialization
for niter repetitions do

Ak, fbare ← least-square fit of (f0, ϕ) data points to Eq.B.3
Is(ϕ) =

∑kmax
k=1 (−1)k−1Ak sin(kϕ) . Substitution of Ak into Eq. 5.7

ϕnew = ϕext − 2π/Φ0 · LloopIs(ϕ) . Substitution of Is into Eq. B.4
ϕ = αϕnew + (1− α)ϕ . Smooth update

end for
return Ak, fbare, ϕ

end function

B
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Figure B.2. (a) Measured resonance frequency f0 (blue circles) as a function
of external phase ϕext at Vbg = 6V. From the fit (solid red, Eq.B.3) one
obtains the supercurrent Is(ϕext) as a function of external phase shown in (b).
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Figure B.3. Convergence of the iterative curve fitting method (Vg = 6 V,
α = 0.4). (a) The magnitude of the phase update, ϕupdate = 〈|ϕnew − ϕ|〉avg
converges to zero as the iteration progresses. (b-c) Convergence of the bare
resonance frequency fbare and the harmonic coefficient ratio A2/A1.

In the following we illustrate the fitting routine with the experimental data
obtained at Vbg = 6V. In Fig. B.2 the initialization is shown, whereas the
iteration and the outcome of the algorithm is illustrated in Figs. B.3-B.4. The
convergence of the procedure has been checked manually for each gate voltage.
The correctness of the final fbare can be proven by the vanishing background
slope in the CPR deduced by integrating the Josephson inductance LJ (ob-
tained by directly solving Eq. 5.5) according to Eq. 5.6. Depending on the
values of M and Lloop, manual tuning of the smoothing parameter α was
necessary.
Figs. B.3(c) and B.4(c) show that neglecting the flux contribution of the su-

percurrent, and using the approximation ϕ = ϕext leads to overestimating the
skewness of the CPR. While the apparent skewness parameter in this approx-
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B.1. Resonance curve fitting
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Figure B.4. Outcome of the iterative curve fitting method (Vbg = 6V) (a-
b) Junction phase ϕ as a function of the external phase ϕext = 2πΦ/Φ0. The
self-consistent solution of the equation set (continuous, blue) deviates from the
ϕ = ϕext line (dashed black). (c) Harmonic coefficients Ak at different stages of
the iteration: initial solution (corresponding to the ϕ = ϕext approximation),
solution at niter = 3 and niter = 30 (converged).

imation is Sext = 0.2434, the self-consistent solution yields S = 0.2168. Simi-
larly, the harmonic coefficient ratio reduces from A2/A1 ≈ 0.185 to A2/A1 ≈
0.165 as the iteration converges.
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C Temperature dependence of an rf SQUID

C.1. Theoretical predication

We numerical solve the time-dependent Usadel equation [117, 172], from which
we infer the inductive BJ and dissipative Gs microwave response of short,
diffusive Josephson junction. The theoretical predictions are based on char-
acteristic energy scales: The electronic temperature T , the photonic energy
irradiating on the junction hf , the relaxation rate γ, the superconducting gap
∆ and the Thouless energy ET .

In Fig. C.1, we fix ∆/ET = 0.1 and hf/ET = 0.01. On the left axis the
dissipative response normalized with the normal state conductance Gs/GN is
plotted (solid blue lines) and on the right axis the inductive response normal-
ized with the normal state conductance BJ/GN is plotted (dashed red lines).

In Fig. C.1(a) we fix γ/ET = 0.02, while we sweep the temperature ratio
kT/ET . The wide onset of the dissipation peak even at low temperatures is
mainly due to the non-vanishing relaxation ratio γ/ET causing lifetime broad-
ening of the ABS spectrum. With increasing temperature the conductance
peak shrinks and becomes wider due to the dynamics of the thermally pop-
ulated E+

n states. Additionally, a plateau like feature turning into a double
wall can be recognized at ϕ = π From the susceptance we observe that the
conditions for BJ/GN = 0 are moving away from ϕ = π for increasing tem-
perature and the absolute values of BJ/GN at ϕ = π and ϕ = 0, 2π approach
each other, which means that the CPR is becoming more sinusoidal.
For comparison we present in Fig. C.1(b) the numerical results for fixing

kT/ET = 0.008, while sweeping the relaxation ratio γ/ET . We recognize a less
evident change of the dissipation peak center as compared to the temperature
sweep. Overall the conductance peak broadens accompanied with a shrinking
of the height. Importantly, here the susceptance reveals as well a reduction
of the CPR skewness. Note, that this plot is the same as Fig. 5.8(d), but
globally normalized with GN . Since the temperature effect seem to evolve dif-
ferently from the relaxation rate dependence – both of this parameters should
be accessible by comparing theoretical predications with experimental data.
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Figure C.1. Numerical simulations of the shunt conductance Gs/GN and
junction susceptance BJ/GN both normalized with the normal state conduc-
tance GN . Fixed parameters ∆/ET = 0.1 and hf/ET = 0.01. (a) Dissipative
(left) and inductive (right) microwave response for different temperatures but
fixed relaxation rate. (b) Dissipative (left) and inductive (right) microwave
response for different relaxation rates but fixed temperature.

C.2. Experimental results

From theory it is predicted that for increasing the temperature T the current-
phase relation (CPR) becomes more and more sinusoidal, which is due to the
balancing between E+

n - and E−n -states described by the Fermi-Dirac distribu-
tion. The population of E+

n -states further decrease the absorbency of the ABS
spectrum for bimodal channel transparency distribution. As a consequence the
dissipation peak becomes smaller.
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Figure C.2. Temperature T dependence at Vbg = 12V. (a) Self-consistent
CPR for different temperatures (see legend). (b) Critical current Ic as a func-
tion of T . (c) Skewness parameter S as a function of T .

In the following we probe the microwave response of the graphene JJ pre-
sented in Ch. 5 in terms of the CPR and the phase-dependent dissipation at
Vbg = 12V for different temperatures. We deduce the CPR and the shunt
conductance with the same methods described above and in the maintext.
In Fig. C.3(a) we illustrate the self-consistent CPR solution for different base
temperatures adjusted by heating the mixing chamber plate. We observe a
clearly skewed CPR for temperatures far below the critical temperature of Al
(Tc ≈ 1.2K), while for T → Tc the skewness as well as the critical current Ic
decreases as present separately in Figs. C.3(b) and C.3(c). These effects are
attributed to: i) the washing out of the energetically low lying states (close to
E = 0), which are responsible for the skewness due to their high transparency
and ii) the closing of the superconducting gap. Measurements for T > 900mK
were suffering from strong temperature fluctuations.
As postulated by theory we obtain a counter-intuitive decreasing of the

dissipations peak for increasing temperatures as seen in Fig. C.3(d). Not only
the height is influenced by the temperature, but also the width, which is also
a result from the theoretical predictions. We fit the different dissipation peaks
with a Lorentzian function of the form L = a(b/2)2

(ϕ−c)2+(b/2)2 + d, where a is a
scaler for the peak height, b is the full-width-half-maximum (FWHM), c is a
translation on the phase-axis and d describes a vertical offset. We find that

C
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Figure C.3. Phase-dependent dissipation at different T for Vbg = 12V. The
peaks a fitted with Lorentzian function, which reveals a clear spreading of the
width for increasing T .

the averaged FWHM of the two peaks measured at the same temperature is
increasing 〈FWHM〉 ≈ 0.2π → π for temperatures T = 20 → 600mK, while
the peak height shrinks by a factor of ∼ 3.
In contrast to the low temperature results shown in Ch. 5, we did not found

combinations of kT/ET and γ/ET , which simultaneously reproduce the in-
ductive and dissipative response. We attribute this to the finite parameter
space used in the simulation. In order to describe the microwave behavior of
the JJ at high temperatures – effects like highly enhanced relaxation rates,
modifications in junction length limit and the gap closing would need to be
considered.
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D Extracting the charge carrier density

This chapter was mainly written by David Indolese and added for completness.
To convert the applied back gate voltage (Vbg) to charge carrier density (ng) we
used a plate capacitor model including the quantum capacitance of graphene
[173], which results in

e(Vbg + Voff) = e2ngd

ε0εr
+ sgn(ng)~vF

√
π|ng|, (D.1)

where Voff = 0.44V is the offset voltage of the charge neutrality point with
respect to 0V, e is the electron charge, d = 47.5 nm the thickness of the gate
dielectric, ε0 = 8.854×10−12 F/m the vacuum permittivity, εr = 3.8 the dielec-
tric constant of hBN [174], ~ the reduced Planck constant, and vF = 106 m/s
the Fermi velocity of graphene. The quantum capacitance corresponding to
the second term on the right hand side of Eq.D.1 leads to minor deviations
of the linear behavior on ng with respect to Vbg around charge neutrality,
as shown in Fig.D.1 (a). By using Eq.D.1 the previously extracted critical
current Ic(Vbg) is plotted as a function of ng in Fig.D.1 (b).
In previous works oscillations of Ic(ng) were observed for negative densities

for high mobility and ballistic graphene Josephson junctions [175, 176]. They
arise due to quantum interference of the electrons moving in a Fabry-Pérot
cavity [177] , which is formed by potential steps in the graphene. Namely, the
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Figure D.1. (a) Charge carrier density ng determined with Eq.D.1 as func-
tion of gate voltage Vbg. (b) Critical current Ic as function of ng.
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D. Extracting the charge carrier density

graphene is n′-doped with electrons close to the contacts given by the work
function mismatch of the graphene and the Al boundary, while the bulk of
graphene is p-doped with holes due to the negative applied Vbg. The oscilla-
tions show their mth maxima at √ng = m

√
π/L, where L corresponds to the

length of the cavity. Nevertheless, no such oscillations were observed in our
measurement of Ic(ng), which indicates that the electron transport is diffusive
in our sample.
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