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1 Introduction

Strictly two-dimensional (2D) crystals were thought to be thermodynami-
cally unstable [1, 2] until the first successful isolation of graphene in 2004 [3].
Graphene is a sheet of carbon atoms arranged in a honeycomb structure, which
has proved to be a wonder material with many exceptional properties [4–8].
The great interest for quantum transport lies in the unique electronic band
structure of graphene, which was already derived by Wallace in the 1940s [9].
The most striking difference from conventional metals and semiconductors is
the low energy linear dispersion relation, which makes the charge carriers in
graphene massless Dirac-like. The Dirac nature of the charge carries were
confirmed by the experimental observation of the half-integer quantum Hall
effect in 2005 [10, 11]. Shortly after that, many other characteristic physical
phenomena were predicted and observed in graphene, such as Klein tunnel-
ing [12–14], distinct quantum interference effects [15, 16], or giant intrinsic
mobility [17, 18].
Although graphene has many superlatives to its name [7], it is not om-

nipotent. Advantages in one case can become disadvantages in another, for
example, the zero band gap for transistor applications [19], or the weak in-
trinsic spin orbit coupling for spin manipulation [20]. Different engineering
approaches have been proposed and used to tailor and enrich the electronic
properties of graphene, such as proximity effect and strain engineering.
Graphene is a semimetal [21], but its advent triggered the discovery of a

big family of 2D materials spanning a wide spectrum of electronic behaviors:
hexagonal boron nitride (hBN) is an insulator [22], MoS2 is a semiconduc-
tor [23], NbSe2 is a superconductor [24], WTe2 is a topological insulator [25–
27] and CrI3 is a ferromagnet [28]. By placing graphene in proximity to other
materials, new electronic properties can be induced in graphene, including fer-
romagnetism [29, 30], the formation of Andreev states [31, 32], and enhanced
spin-orbit coupling [33, 34]. When the graphene lattice is aligned to another
similar lattice, a moiré superlattice forms that leads to many new physical
observations, such as secondary Dirac points [35–37], the Hofstadter Butter-
fly [35–39], and strongly correlated states [40, 41].
Graphene has been shown to be the strongest material ever measured and

can sustain an elastic tensile strain up 25% [42]. Such a large mechanical
strength enables one to modify the electronic properties of graphene by strain
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1. Introduction

engineering [7, 43]. A series of fascinating effects have been predicted for
strained graphene, including the appearance of a scalar potential [44], pseu-
domagnetic fields [44–46], valley filtering [47, 48] and superconductivity [49].
In order to study strain effects in transport experiments, several challenges
need to be overcome simultaneously. First, the graphene quality must be
preserved after complex fabrication processes, since the observation of strain
effects might be hindered by disorder. Second, the strain generation must
be compatible with transport measurements, namely the devices should be
equipped with electrical contacts and gate structures. Furthermore, mechan-
ical deformations should not degrade the sample quality or generate any ar-
tificial effects, such as changes in the gate capacitance, that complicates the
analysis of actual strain effects. Most importantly, the strain should be in situ
tunable so that strain effects can be disentangled from other effects.

The aim of this thesis is to study electronic transport in graphene with engi-
neered properties. Although numerous engineering approaches are possible, in
this thesis, we restrict our focus to strain engineering and moiré superlattices.
We first show the development of a straining method that meets all the above
mentioned requirements. Then a series of text book mesoscopic transport ex-
periments are studied in the presence of in situ strain tuning. In addition,
moiré superlattice engineering from both interfaces of graphene is presented.

Outline of this thesis

The thesis starts with an introduction to relevant theoretical concepts in chap-
ter 2. The crystal structure and the unique band structure of graphene are
first described, followed by an introduction to basic transport concepts in
graphene. Then, different strain effects and the characterization of strain in
graphene are discussed. Furthermore, a brief introduction to moiré superlat-
tice effects is given. In chapter 3, an overview of the most important fabrica-
tion techniques and experimental setups is given. The preparation of flexible
substrates and the mechanism for strain generation are shown, followed by a
description of the low temperature transport measurement concepts. Chap-
ter 4 presents the investigation of multiterminal suspended bilayer graphene
devices, where an unexpected non-local signal that cannot be attributed to
current spread is observed near the charge neutrality point. Different exper-
imental attempts are made to find out the nature of the non-local signal,
which however remains to be an open question. The deterministic and repro-
ducible in situ strain tuning in graphene using a three-point bending setup
is shown in chapter 5. We use spatially resolved Raman spectroscopy to
demonstrate that a homogeneous strain field can be achieved with a rectan-
gular device geometry and a strain gradient can be realized in a trapezoidal-
shaped device. Additionally, in the first transport experiments with strain
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we show that the on-substrate encapsulated graphene approach offers two key
advantages, including the preservation of the exceptional quality of pristine
graphene and the avoidance of gate capacitance change during the deformation
process. Even thought the graphene is encapsulated by hBN, microscopic cor-
rugations are still present, which results in random strain fluctuations (RSFs)
in the graphene lattice. In chapter 6, we show that the RSFs limit the car-
rier mobility of most high-quality encapsulated graphene devices. With our
straining method, the RSFs can be in situ reduced in individual devices. In
low-temperature transport measurements, a strong correlation between an in-
crease in carrier mobility and a decrease in residual doping is found when the
global strain is increased uniaxially in the graphene. Furthermore, the in situ
reduction of RSFs by global straining is substantiated by Raman spectroscopy
measurements. In chapter 7, different strain effects in various transport
experiments are presented and discussed. First, the strain-induced scalar po-
tential is shown, which manifests as a shift of the conductance curve in gate
voltage. We then move on to conductance fluctuations measurements, where
a shift of the fluctuation features with strain in magnetic field is found. In
transverse magnetic focusing measurements, we show an amplitude increase
and a position change of the focusing peaks with strain. In the end, strain
effects in quantum Hall regime are presented for devices with different geome-
tries. A complete different behavior with strain is found for the trapezoidal
devices from that for the square devices. Our fully hBN-encapsulated de-
vices show state-of-the-art transport characteristics, which is exemplified by
the formation of a three-layer moiré superlattice in chapter 8. The transport
signatures of graphene/hBN two-layer moiré superlattices were discovered a
couple of years ago [35–37]. In this chapter, we show the transport signature of
a super-superlattice, which occurs when both the top and the bottom hBN lay-
ers are aligned to the graphene lattice. The overlay of the two two-layer moiré
superlattices results in a third superlattice, whose period can be larger than
the maximum period (∼14 nm) in a graphene/hBN system. A simple model
based on geometrical analysis is also given there for predicting the period of
the super-superlattice.
Finally, we summarize the main findings of this thesis in chapter 9, where

a brief outlook is given as well.
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2 Theoretical background

This chapter provides the most important theoretical concepts that are needed
for the experiments presented in this thesis. First, an introduction to the crys-
tal structure of graphene and its peculiar band structure is given. Second, some
basic concepts of charge transport in graphene, such as field effect, ballistic
transport and quantum Hall effect, are introduced. Furthermore, the band
structure modification by strain and the induced effects are discussed, includ-
ing the appearance of a scalar potential and pseudomagnetic fields. Apart
from that, the principle of strain characterization by Raman spectroscopy is
introduced. In the end, an additional section is dedicated to the moiré super-
lattice effects when the graphene lattice is aligned to another similar lattice.
The first two sections follow partially the references [21, 50–52], whereas the
strain part follows partially the references [53, 54].1

1The sketch showing non-uniformly strained graphene was adapted from Ref. [44].
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2. Theoretical background

2.1. Basics of graphene

Graphene is a single two-dimensional (2D) sheet of carbon atoms arranged
in a hexagonal structure as shown in Fig. 2.1(a). Each carbon atom has six
electrons with a configuration of 1s2 2s2 2p2. In graphene, the 2s orbital
hybridizes with the 2px and 2py orbitals to form three sp2 orbitals with a
trigonal planar structure, while the remaining 2pz orbital stays perpendicular
to this plane. The two core electrons in the 1s orbital are inert and do not form
any chemical bonds. Three of the four valence electrons occupy the sp2 orbitals
forming a localized σ-bond between carbon atoms. The σ-band is responsible
for the robustness of the lattice. The last valence electrons occupy the 2pz
orbitals forming the delocalized π-bonds among the carbon atoms, leading to
the formation of a half-filled π-band which determines the low energy electronic
states in graphene. In the following a tight-binding model based on nearest-
neighbor hoping will be used to derive the low energy spectrum of graphene.

2.1.1. From lattice structure to band structure
The primitive unit cell of graphene has two atoms (A and B), which is spanned
by the two lattice vectors

~a1 = a0

2

(
3√
3

)
and ~a2 = a0

2

(
3
−
√

3

)
(2.1)

to form the hexagonal lattice, which can be seen as two sublattices A and B.
Here, a0 = 1.42Å is the inter-atomic distance. Each A atom directly neighbors
three B atoms and vice versa, as depicted in Fig. 2.1(a). The nearest-neighbors
in real space are connected by vectors

~d1 = a0

(
1
0

)
and ~d2 = a0

2

(
−1
−
√

3

)
and ~d3 = a0

2

(
−1√

3

)
. (2.2)

The reciprocal lattice is shown in Fig. 2.1(b) with the hexagon being the first
Brillouin zone. The two reciprocal lattice vectors are given by

~b1 = 2π
3a0

(
1√
3

)
and ~b2 = 2π

3a0

(
1
−
√

3

)
, (2.3)

which are obtained by the relation ~ai~bj = 2πδij.
In a tight-binding model, the electrons are assumed to be well localized in

atomic orbitals at the site of each atom, but are allowed to hop between neigh-
boring atoms. Usually only the nearest neighbor hopping is considered, which
describes the physics accurate enough in most cases. Next-nearest neighbor
hopping and higher terms will lead to a correction of the band structure at
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2.1. Basics of graphene

A
B

x

y

(b)(a) ky

kx

Κ

Κ’

ΜΓ

3d 1d

2d

1a

1a

1b

2b

Figure 2.1. Graphene lattice in real and reciprocal space. (a) The unit
cell (shaded in red) of graphene containing two atoms (A and B) is spanned
by the two lattice vectors ~a1 and ~a2 in real space. (b) The first Brillouin zone
shown as hexagon is spanned by the two reciprocal lattice vectors ~b1 and ~b2.
The two inequivalent sets of valleys K and K′ sit at the six corners of the
Brillouin zone. Figure adapted from Ref. [55].

high energies and are often neglected. As mentioned above, the low energy
electronic states are determined by electrons in the 2pz orbitals. We therefore
take the two 2pz orbitals, |φA〉 for A atom and |φB〉 for B atom, in the unit cell
to construct the Bloch functions for the tight-binding calculation. The Bloch
functions depend on the position vector ~r and the wave vector ~q and are given
by

ψA(B)(~r) = 1√
N

∑
~RA(B)

ei~q
~RA(B)φA(B)(~r − ~RA(B)), (2.4)

where the sum is over N different unit cells and ~RA(B) denotes the location of
the atoms. Due to the two sublattices, the Hamiltonian takes the form

H =
(
HAA HAB
HBA HBB

)
. (2.5)

The diagonal terms are given by

HAA(BB) = 〈ψA(B)(~r)|H |ψA(B)(~r)〉 , (2.6)

yielding HAA = HBB = ε with ε being the on-site energy which is usually set
to zero without loss of generality. The off-diagonal terms are calculated with

HAB(BA) = 〈ψA(B)(~r)|H |ψB(A)(~r)〉 , (2.7)

7



2. Theoretical background

yielding
HAB = H∗BA = t ·

(
ei~q

~d1 + ei~q
~d2 + ei~q

~d3
)

= t · f(~q) (2.8)

with t = 〈φA(~r)|H |φB(~r)〉 ≈ −2.7 eV being the nearest neighbor hopping
energy [21]. The Hamiltonian can then be written as

H = t ·
(

0 f(~q)
f(~q)∗ 0

)
. (2.9)

The eigenvalues readily come out as E± = ±|t|
√
|f(~q)|2, where the ±-sign

accounts for the conduction and valence band. An explicit expression can be
written as

E±(~q) = ±t

√
1 + 4 cos

(3
2qxa0

)
cos
(√

3
2 qya0

)
+ 4 cos2

(√
3

2 qya0

)
(2.10)

by plugging in the nearest neighbour vectors from Eq. 2.2. This function is
plotted in Fig. 2.2(a) for the first Brillouin zone2, capturing the electronic
band structure of graphene. In pristine graphene, the Fermi level lies at zero
energy.

(b)(a) (c)

ΚΚ’

valence band

conduction band

qx

qy

k

E
ky
kx

Ek

Figure 2.2. Band structure of graphene. (a) Energy spectrum (in units
of t) for t = −2.7 eV and the next-nearest neighbor hopping t′ = 0.2 t. Figure
adapted from Ref. [21]. (b) Low-energy spectrum in the vicinity of one Dirac
point. (c) Cut for qy = 0 as indicated with the grey plane in (a) and (b).
The orientation of the pseudospin (~sK,K’) is parallel (anti-parallel) to ~k for
the K(K′) valley in the conduction band. In the valence band the opposite
chirality is found. Figure adapted from Ref. [55]

2Next-nearest neighbor hopping is included for calculating Fig. 2.2 which leads to an
asymmetric valence and conduction band.
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2.1. Basics of graphene

Valley degree of freedom

The conduction band touches the valence band at the six corners of the first
Brillouin zone. Therefore, graphene has a zero band gap, which distinguishes
it from conventional semiconductors and metals. The touching points are the
so-called Dirac points, which are divided into two sets (K and K′) because
they cannot be connected with a reciprocal lattice vector. Therefore the Fermi
surface of graphene has two inequivalent cones located at the two different
Dirac points, giving the charge carriers in graphene an additional degree of
freedom. This degeneracy is referred to as the valley degree of freedom. The
K and K′ points of the Brillouin zone are located at the positions

~K = 2π
3a0

(
1

1/
√

3

)
and ~K′ = 2π

3a0

(
1

−1/
√

3

)
, (2.11)

respectively. Since the two valleys are well separated in k-space, intervalley
scattering is strongly suppressed, making valley a good quantum number in
graphene.

Linear dispersion

The dispersion relation can be expanded around the K point for low energies
with ~q = ~K + ~k, where |~k| � | ~K| is the quasi-momentum measured from the
K point. Similar expansion can be done for the K′ point. A Taylor expansion
of Eq. 2.10 around ~K yields a linear dispersion relation:

E±(~k) = ±~vF|~k|, (2.12)

with ~ the reduced Planck constant and vF = 3ta0/(2~) ≈ 1× 106 m s−1 the
Fermi velocity. The + (-) accounts for the conduction (valence) band. The
linearized Hamiltonian for both valleys can be written as

H0 = ~vF(κkxσ̂x − kyσ̂y) (2.13)

with κ = +(−) for the K (K′) valley and σ̂i the Pauli matrices acting on
the sublattice space. This Hamiltonian has the form of the Dirac equation.
Therefore, charge carriers in graphene are often described as “massless” Dirac
Fermions with velocity vF.

Density of states

As discussed above, charge carriers in graphene have valley degeneracy in
addition to the normal spin degeneracy. Since the dispersion relation is linear
in ~k, the density of states (DoS) in graphene depends linearly on energy, given
by

DoS(E) = gsgvE

2π(~vF)2 , (2.14)
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2. Theoretical background

where gs = gv = 2 are the degeneracies due to spin and valley. This energy
dependent DoS is in stark contrast to that of conventional 2D semiconductors
which have a constant DoS due to the parabolic dispersion relation. With the
relation | ~k |= kF =

√
πn, one can write the Fermi energy of graphene as a

function of carrier density:

E(n) = ~vF

√
4πn
gsgv

. (2.15)

2.1.2. Pseudospin and Berry-phase
Due to the presence of A and B sublattices, the charge carriers in graphene have
an additional quantum number, called pseudospin, in analogy to a real spin. It
describes the relative contribution of the two orbital wave functions, |φA〉 and
|φB〉, to the total wave function. Using kx +iky = keiθ with θ = arctan(ky/kx),
Eq. 2.13 can be rewritten as

H = ~vFk

(
0 ±e∓iθ

±e±iθ 0

)
, (2.16)

where the ±-sign accounts for the solution around the K and K′ valley. The
eigenvectors of Eq. 2.16 are given for the conduction (|EVC〉) and valence band
(|EVV〉) as

|EVC〉 = 1√
2

(
e∓iθ/2

e±iθ/2

)
and |EVV〉 = 1√

2

(
e∓iθ/2

−e±iθ/2

)
, (2.17)

with ±-sign accounting for the K and K′ valley. In a more compact way, the
eigenvectors can be written as

|s〉 = 1√
2

(
e∓iθ/2

se±iθ/2

)
, (2.18)

where s = +(−) accounts for the conduction (valence) band. The probability
of finding the wave function on sublattice A or B is given by the absolute
square of the two components of the vector in Eq. 2.18. Similar to a real spin,
this vector can be viewed as the result of a spin-1/2 rotation operator R(θ)
acting on the initial state |s0〉 pointing along the x-direction:

|s〉 = R(θ)|s0〉 =
(

e∓iθ/2 0
0 e±iθ/2

)(
1/
√

2
s/
√

2

)
(2.19)

For a 2π rotation, which is equivalent to a charge carrier encircling the K or
K′ point, the wave function picks up a phase of π. This phase is the so-called
Berry phase.
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2.1. Basics of graphene

As shown in Fig. 2.2(c), the pseudospin is parallel (anti-parallel) to ~k in the
conduction (valence) band for the K valley, while it is the opposite for the K′
valley. A relevant quantity used to characterize the eigenvectors is the chirality,
which is defined as the projection of the pseudospin onto the momentum. At
low energies, the chirality is conserved. Therefore, backscattering within one
valley is not allowed because this would require to change the chirality of the
charge carrier. Backscattering would then need to involve the other valley,
which requires a momentum change on the order of ∼ ~K ∼ 1/a0. Such a
large momentum change can only be provided by scattering at short-range
disorders, such as edges or atomic defects.

2.1.3. Bilayer graphene
Bilayer graphene (BLG) can be seen as two monolayer graphene (MLG) stacked
on top of each other. The most common stacking order is the AB stacking,
where the A atom of the top layer sits directly above the B atom of the bottom
layer. The lattice of an AB stacked BLG is shown in Fig. 2.3(a) with the most
relevant hopping terms γi indicated. The intralayer hopping between A1 (A2)
and B1 (B2) in the bottom (top) layer corresponds to the nearest neighbor
hopping in MLG and therefore γ0 = t = −2.7 eV. All other hopping terms are
interlayer and describe the coupling between the two layers with γ1 = −0.4 eV
connecting the B1 and the A2 atoms, γ3 = −0.3 eV connecting the A1 and the
B2 atoms, and γ4 = −0.04 eV connecting the B1 and the B2 atoms [56].

The tight-binding model can be adapted to derive the electronic structure of
BLG as well. Considering only γ0 and γ1, the low energy electronic structure
of BLG is described by the following energy dispersion relation:

Eα± = ±

[
V 2 + ~2v2

F~k
2 + γ2

1
2 + (−1)α

√
4V 2~2v2

F
~k2 + γ0~2v2

F
~k2 + γ4

1
2

]
,

(2.20)
where + (-) accounts for the conduction (valence) band, vF = 1× 106 m s−1

is the Fermi velocity of MLG and V describes a possible difference of the
electrochemical potential between the two layers, which can, for example, be
tuned by an external perpendicular electric field [50]. The parameter α is used
for describing the two subbands in the conduction and valence band, which
are shifted away from zero energy by γ1 in the case of V = 0. For V = 0,
Eq. 2.20 can be simplified to:

Eα± = (−1)α · γ1

2 ±
γ1

2

√
1 + (~k/k0)2. (2.21)

where k0 = γ1/(2~vF) is a characteristic wave vector. For small ~k (
∣∣~k∣∣ �

k0), Eq. 2.21 describes a parabolic dispersion relation with an effective mass
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2. Theoretical background

m∗ = γ1/(2v2
F) ∼ 0.03me, where me is the free electron mass. For large

~k (
∣∣~k∣∣ � k0), the dispersion relation becomes linear. The turning point is

around a charge carrier density of 5× 1012 cm−2. At low energies, the DoS of
BLG is independent of energy due to the parabolic dispersion relation [50]:

DoS(E) = 4m∗
2π~2 , (2.22)

where the factor 4 accounts for the spin and valley degeneracy.

KK΄

E

k

E=0 E≠0
(a)

(b)

(c) (d)

Figure 2.3. Band structure of bilayer graphene. (a) The lattice of an
AB stacked bilayer graphene shown in real space with all relevant hopping
terms indicated by γi. Figure adapted from Ref. [50]. (b) Electronic structure
of bilayer graphene shown on an energy scale of 3 eV measured from the Dirac
point. The black hexagon represents the first Brillouin zone. The blue (yellow)
surfaces show the low-energy (split) bands. TheK andK′ valleys are indicated
with red circles. Figure adapted from Ref. [57]. (c) Band structure around the
K point with and without a perpendicular electric field. A finite gap opens
up with electric field. The trigonal warping is not taken into account. Figure
adapted from Ref. [19]. (d) Low energy spectrum at the K valley including
trigonal warping. Figure adapted from Ref. [57].

In Fig. 2.3(b) the band structure of BLG is shown with the two split bands
represented by two colored surfaces. The gap opened by an external perpen-
dicular electric field is schematically shown in Fig. 2.3(c). When the other
interlayer hopping terms γ3 and γ4 are included, the topology of the band
structure at low energy changes from a parabola to four mini Dirac cones, as
shown in Fig. 2.3(d) [57]. As it deforms the band structure into a trigonal
shape, this effect is usually called trigonal warping. For pristine BLG, the
transition of the Fermi surface from a single circle to four disconnected circles
happens at an energy ∼1 meV. This transition is called the Lifshitz transition.
The charge carriers in BLG are also chiral and the chirality is opposite for the

12



2.2. Charge transport in graphene

two valleys, the same as in MLG. However, the Berry phase is 2π [50, 58],
different to that in MLG.

2.2. Charge transport in graphene

Since the experiments presented later in this thesis focus mostly on electron
transport in graphene, it is helpful to introduce the relevant transport con-
cepts first. In this section we first define some length scales, followed by an
introduction to the field effect and some basic quantities which characterize
the device quality, such as mobility and residual doping. Second, different
transport regimes and corresponding effects are discussed. Furthermore, the
quantum Hall effect in graphene is introduced.
For a rectangular 2D conductor, the system size is defined by the device

width W and the device length L. One important length scale is the mean
free path lmfp, which is the distance the charge carriers can travel between
two momentum scattering events. Another relevant length scale is the phase
coherence length lφ, which is defined as the distance the charge carriers travel
before their phases are randomized. The length scales can also be expressed
in their corresponding time scales: momentum relaxation time τ and phase
coherence time τφ.
Different transport regimes can occur depending on the ratio of the char-

acteristic length scales to the device size. If lmfp � W,L, which is called
the diffusive regime, many scattering events happen when the charge carriers
travel through the device and their momenta are fully randomized. On the
other hand, if lmfp ∼W,L, the ballistic regime occurs. Similarly, the phase co-
herent transport regime is entered when lφ ∼W,L. Several transport regimes
and corresponding phenomena are introduced later.

2.2.1. Field effect

A typical device investigated in this thesis has two electrodes (source and
drain) and a global back gate. In transport experiments, usually a small
voltage VSD is applied between the source and drain electrodes, inducing a
current ISD in the device which can be measured. The conductance is then
calculated with G = ISD/VSD. For graphene devices, the conductance can be
tuned by varying the charge carrier density, which can be realized by applying
a finite voltage difference between the graphene channel and the gate electrode.
In most cases, the induced charge carrier density is very well estimated by the
plate capacitor model with a gate capacitance of

C = ε0εr
A

d
, (2.23)
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2. Theoretical background

where A is the device area, d is the thickness of the dielectric and εr is the
relative dielectric constant. The induced density leads to a shift of the Fermi
level in graphene, which can be tuned into both the electron and the hole
band due to the zero-gap of graphene, as shown in Fig. 2.4. Theoretically the
Fermi level can be tuned to the Dirac point in graphene, however, potential
fluctuations, which cannot be screened at low carrier densities, prevent this
in real devices. The device breaks into random electron-hole puddles near
the Dirac point instead of having a homogeneous carrier density. Therefore,
the Dirac point is often referred to as charge neutrality point (CNP). The
residual doping n0, which is the lowest homogeneous carrier density that can
be realized in a device, characterizes the device quality in terms of how close
the Fermi level can be tuned to the Dirac point.

2.2.2. Diffusive regime and Drude model

In the diffusive regime, the conductivity based on the classical Drude model
is given as

σ = ne2τ

m
, (2.24)

where τ is the average time between two momentum scattering events. Using
m = |~p|/vF = ~kF/vF as the charge carrier mass for graphene, the following
equation arises:

σ = 2e2τvF
√
πn

h
, (2.25)

Usually, the two dominant scattering sources are charged impurities [59–65]
and random strain fluctuations [66, 67]. Both scattering mechanisms give a
τ ∝ kF relation, yielding a linear dependence of the conductivity on carrier
density:

σ ∼ neµ, (2.26)

with a carrier density independent mobility µ.
In Fig. 2.4 a typical plot of the conductance versus carrier density of a

two-terminal device is shown. In a two-terminal configuration, the graphene
resistance is measured in series with the contact resistance RC (including line
resistance of the measurement circuit). The conductance starts to saturate at
higher gate voltages because the contact resistance starts to dominate. The
slight asymmetry between the electron (n-doped) and hole (p-doped) side orig-
inates from the formation of a p-n junction near the contact due to contact
doping. The conductance is related to the conductivity by σ = αG with a
geometry factor α, which is the aspect-ratio (L/W ) for rectangular devices.
Taking the contact resistance into account, the conductance of a two-terminal
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2.2. Charge transport in graphene

Figure 2.4. Field effect in graphene: Carrier density dependence of
the graphene conductance showing ambipolar field effect. Red solid line rep-
resents the data and dashed lines are the fits. Different doping levels are
shown schematically with the insets. Fitting with equation 2.27 yielding
µ ≈ 54 000 cm2V−1s−1 for both sides and n0 ≈ 2× 1010 cm−2.

device as a function of carrier density is given by

G = 1
α

eµ
√
n2+n2

0
+Rc

, (2.27)

where n0 is the residual doping. Therefore, Eq. 2.27 can be used to extract
the mobility and residual doping by fitting the conductance curve as shown in
Fig. 2.4.

2.2.3. Ballistic transport

The mean free path of the charge carriers is given by lmfp = vFτ . Using
Eq. 2.25 and Eq. 2.26, lmfp can be written as

lmfp = ~
e
µ
√
nπ. (2.28)

For high mobility samples, lmfp can approach the size of the device and the
system becomes ballistic. Since in this regime scattering only happens at
the edges and the contacts, the diffusive formulas mentioned above start to
fail. The conductance is then given by the number of modes and each of them
carries a conductance of 4e2/h due to spin and valley degeneracy. The number
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of modes is determined by the width W of the graphene channel and the total
conductance is given by [68]

G = 4e2

h

W

λF/2
= 4e2

h
W
√
n/π, (2.29)

with λF = 2π/kF .
Many interesting phenomena can be observed in ballistic regime, such as

transverse magnetic focusing (TMF) [69, 70], Fabry-Pérot resonances [71, 72]
and snake states [71, 73]. In the following we discuss the TMF in more detail.

Transverse magnetic focusing

When graphene is subject to an out-of-plane magnetic field, the charge carriers
will undergo a cyclotron motion with a radius of

rc = ~
√
πn

eB
. (2.30)

In the ballistic regime, such cyclotron motion allows one to focus the charge
carriers, which is known as the transverse magnetic focusing. An illustration of
TMF in a hBN/graphene/hBN heterostructure is shown in Fig. 2.5(a), where
the measurement configuration is sketched with the bottom-left and -right
contacts as the injector and collector, respectively.

Whenever the condition d = i·2rc is fulfilled, where d is the distance between
the injector and the collector and i is an integer, a non-local signal is detected
as RNL = Vc/Ii. The measurement is shown in Fig. 2.5(b), where the dashed
lines are the expected signal maxima calculated according to Eq. 2.30 for
i = 1, 2, 3. The observation of higher-order TMF signals (i = 2, 3, 4...) implies
specular reflection at the graphene edge, which only occurs when the graphene
edge is smooth on the order of the Fermi wavelength λF. Therefore, TMF
can be used as a tool to characterize the edge quality of the sample [74].
Effects which are determined only by ballistic transport, such as TMF or
snake states, can survive up to ∼100 K [69, 70, 73], because the mechanisms
suppressing the ballistic transport, such as phonon scattering and electron-
electron scattering [70], are strongly reduced below these temperatures.

2.2.4. Phase coherent transport

If the phase coherence length lφ is comparable to the device size, the quantum
mechanical phase of the charge carriers is preserved during transport and the
system enters the phase coherent regime. Effects due to interference, such as
universal conductance fluctuations (UCF) and weak localization (WL), arise
in this regime. In the following we give a short introduction to both effects.
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Figure 2.5. Transverse magnetic focusing. (a) False-colored SEM image
of a typical device for TMF measurements. The hBN-encapsulated graphene is
colored in cyan and the metal contacts in yellow. In the presence of an out-of-
plane magnetic-field, charge carriers perform a cyclotron motion as indicated
with the red arrow. (b) Non-local resistance as a function of gate voltage Vg
and magnetic field B. Black-dashed lines are the first three expected TMF
features calculated according to Eq. 2.30. Figure adapted from Ref. [55]

Universal conductance fluctuations

In a diffusive conductor, the charge carriers can travel through different paths,
which interfere with each other due to the coherent phase. These constructive
and destructive interferences result in a deviation of the conductance from the
classically expected value. If lφ ∼ L,W , the amplitude of the conductance
fluctuations is of the order of the conductance quantum e2/h and is indepen-
dent of the device size and the strength of the disorder [52, 75], which made
people call the fluctuations universal.

The interference pattern can be tuned by both the path length and the
wavelength. One way to modify the paths of the charge carriers is to apply
a perpendicular magnetic field, which bends the trajectories of the charge
carriers. The charge carrier wavelength λF can be changed by changing the
Fermi level with an electric gate. In addition, gating also modifies the charge
carrier paths by changing the disorder potential. These allow one to tune the
conductance fluctuations by varying the magnetic field or the gate voltage.
When the phase coherence length is smaller than the device dimensions, the

overall UCF amplitude reduces, as it can be seen as an average of fluctuations
over several independent regions with size ∼ l2φ. Therefore, the UCF can be
suppressed by reducing lφ (e.g. by increasing temperature). Furthermore, an
ensemble averaging over different densities or magnetic fields can also be used
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to reduce the UCF amplitude.
If phase coherent transport occurs in the ballistic regime, interference can

only happen at the edge or electrostatic defined boundaries. In this case,
effects such as Fabry-Pérot resonances arise [71, 72].

Weak localization

Charge carrier trajectories can form closed loops after several scattering events
in a diffusive system, as shown schematically in Fig. 2.6. The forward (solid
lines) and the reversed paths (dashed lines) are identical in possibility and
are related to each other by time-reversal symmetry. If we use A+ and A−

to denote the complex quantum mechanical amplitudes of the two paths, the
probability of returning to the starting point is given by

|A+ +A−|2 = |A+|2 + |A−|2 +A+A−∗ +A+∗A−. (2.31)

The first two terms on the right-hand side describe the classical contributions
to backscattering, which are captured in the Drude formalism presented in
section 2.2.2. The last two terms arise from the interference of the two paths

A+

A-

B

Figure 2.6. Schematics of weak localization. Time-reversed loops due
to multiple scattering events. At zero magnetic field, the interference of the
forward and the reversed paths is always constructive, leading to an enhanced
backscattering probability. A finite magnetic field ~B applied through the loop
area (grey shaded region) changes the interference condition and suppresses
the backscattering probability. Figure adapted from Ref. [76]

which are neglected in the incoherent approximation of Drude formalism. At
zero magnetic field, A+ = A− ≡ A is required by time-reversal symmetry. The
classical return probability is then given by

Pcl = 2|A|2, (2.32)
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2.2. Charge transport in graphene

while the quantum mechanical return probability is doubled due to the inter-
ference terms and is given by

Pqm = 4|A|2. (2.33)

This correction due to quantum interference is called weak localization [52].
In the presence of an out-of-plane magnetic field, the wave function will pick

up an Aharonov-Bohm phase

φAB = 2π BS
h/e

(2.34)

with opposite signs for the two paths upon returning to the starting point.
Here, S is the loop area. The quantum mechanical amplitudes therefore be-
come magnetic field dependent, A±(B) = Ae±iφAB , leading to

Pqm = 2|A|2 + 2|A|2 cos
(

4π BS
h/e

)
, (2.35)

which is periodic in magnetic field. Since many pairs of time-reversed paths
enclosing different areas will occur in a macroscopic diffusive device, the oscil-
latory contribution of individual time-reversed paths averages out completely
at finite magnetic fields. At zero field, however, the cosine function has its
maximum for all these oscillations and therefore the backscattering is at its
maximum, yielding a minimum in the conductance. As a result, WL can be
suppressed by magnetic filed leading to an increase of the conductance.

2.2.5. Quantum Hall effect in graphene
In the presence of a magnetic field, charge carriers experience a Lorentz force
and undergo cyclotron motion. In a conductor, when a magnetic field is applied
perpendicular to the direction of current flow, a voltage normal to the plane of
the magnetic field and the current flow appears [77], which is now commonly
called the classical Hall effect. In a 2D system, the Hall voltage is given by [52]
VH = IB/(en), where I is the applied current. This makes the Hall effect a
way to measure the charge carrier density in a 2D conductor, e.g. graphene.
The cyclotron radius is inversely proportional to the applied magnetic field,

as given in Eq. 2.30 for graphene. For very large magnetic fields the charge
carriers can complete a full cyclotron orbit within the sample and quantum
effects start to play a role. In this case, the longitudinal resistance Rxx drops
to zero, whereas the Hall resistance Rxy becomes quantized. This effect is the
so-called quantum Hall effect (QHE). It was first realized with a 2D electron
gas in a silicon metal-oxide-semiconductor field-effect transistor at low tem-
perature [78, 79], where Rxy = h/(e2ν) was observed with ν being an integer.
The quantum Hall effect can be understood with dissipationless edge channels
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carrying the current while the bulk of the sample is gapped, which results in
the quantized Hall conductance. Two main conditions are required for observ-
ing the quantum Hall effect. First, the magnetic filed should be large enough
so that the charge carriers can perform full cyclotron motion without being
scattered. Second, the temperature must be low enough such that the thermal
energy scale kBT is smaller than the Landau level (LL) spacing.

For graphene, solving the Dirac equation in a perpendicular magnetic field
one obtains the LL energies as

EN = sign(N)vF
√

2e~B|N |, (2.36)

with N being the LL index. The LLs have non-equidistant spacing (in contrast
to conventional semiconductors) due to the square-root dependence on B. The
zeroth LL is at zero energy, containing half electrons and half holes. The largest
LL spacing is between the first two LLs, which is so large that QHE is observed
even at room temperature [80]. The quantum Hall conductance of graphene
takes the form

Gxy = gsgve
2

h
(N + 1/2), (2.37)

with gs = gv = 2 being the spin and valley degeneracy. The shift of 1/2 comes
from the Berry phase picked up by closed loops. In very clean samples, the
spin and valley degeneracy can be lifted due to electron-electron interactions,
leading to the observation of quantized conductance at all integer values of
e2/h [81].
The quantum Hall effect is usually measured in a six-terminal device, com-

monly referred to as a Hall-bar. In this thesis, most investigated devices
have only two terminals, where the Rxx and Gxy cannot be measured inde-
pendently. Instead, a combination of both components is measured, but well
defined plateaus with values given in Eq. 2.37 can still be observed for devices
with an aspect ration of W/L ∼ 1 [82, 83].
For BLG, the LL energy is given by [84]

EN = ±~ω
√
N(N − 1), (2.38)

which is nearly equidistant due to the approximately parabolic dispersion at
low energies, as introduced in section 2.1.3. The LLs are fourfold degenerate
due to spin and valley degeneracy except for N = 0 and N = 1. As can be
seen from Eq. 2.38, both the N = 0 and N = 1 LLs lie at zero energy, which
leads to an eightfold degeneracy. The same as in MLG, this LL contains half
electrons and half holes. The usual quantum Hall conductance in BLG has
values of ±4,±8,±12... in unit of e2/h [84].
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2.3. Strain in graphene

The large mechanical strength of graphene allows one to modify its electronic
properties by externally induced strain fields [7, 43], which has been extensively
discussed theoretically [43, 85–90]. In this section, the main strain effects in
graphene are discussed, followed by a brief introduction to strain characteri-
zation with Raman spectroscopy.

2.3.1. Strain effects on electronic properties

An intuitive way to understand the strain effects in graphene is to look at
the strain induced perturbations to the Dirac cones shown in Fig. 2.2. Strain
induced scalar potential can be understood as the up/down shift of the Dirac
cones in energy, while the vector potential/pseudomagnetic field originates
from the in-plane displacement of the Dirac cones in momentum. The slope
of the Dirac cones can also be modified by strain, that is the Fermi velocity
renormalization. In the following, we discuss the above effects one by one.
The unstrained graphene lattice is illustrated in Fig. 2.7(a) with the bond

vectors denoted ~dj, where j = 1, 2, 3 and |~dj| = a0, as given in Eq. 2.2. Strain
induced lattice deformations can be seen as relative displacement of the atoms.
Assuming the center atom is fixed, the displacement of the three neighboring

1d2d

3d

1d
1u

1d’

x

y

(a) (b)

Figure 2.7. Lattice distortion. (a) Illustration of a carbon atom with
its three nearest neighbors for unstrained graphene. The bond vectors are
denoted ~dj. (b) Illustration of distorted graphene lattice, with distorted bond
vectors denoted ~d

′
j and atom displacement vectors denoted ~uj. Figure adapted

from Ref. [53].

atoms are described with the displacement vectors ~uj, which results in a set of
new bond vectors ~d′

j = ~dj + ~uj, as depicted in Fig. 2.7(b). The change in bond
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length is approximated as

∆d = |~d′
j | − |~dj| ≈ ~uj ·

~dj

a0
. (2.39)

In the continuum limit, the strain tensor ε̄ can be obtained from the theory of
elasticity with its components given as [91]

εmn = 1
2(∂num + ∂mun), m, n ∈ {x, y} . (2.40)

For simplicity, only in-plane strain is considered here. Then, the displacement
vectors can be approximated in terms of strain tensor as

~uj ≈
(
εxx εxy
εyx εyy

)
· ~dj. (2.41)

Scalar potential

The changed bond lengths lead to shifts in the on-site energies of the pz or-
bitals, resulting in a modification in the Dirac equation that can be described
by an effective scalar potential [44, 92]. The strain dependence of this scalar
potential can be written as [44, 90, 93]

V (x, y) = V0 · (εxx + εyy) (2.42)

with V0 ≈ 2.5 eV, which is estimated from a theoretical work function study
of graphene [90]. The scalar potential manifests as an additional doping for
graphene, which can be observed in transport experiments as a strain-induced
shift of the CNP in gate voltage.

Vector potential and pseudomagnetic field

For the nearest-neighbor tight-binding model, a change in the bond length
would lead to a perturbation of the hopping energy t and thus results in dif-
ferent hopping energies tj for the neighboring atoms. Based on an exponential
decay assumption, the dependence of the renormalized hopping energy on the
change of the bond length can be written as [43]

tj = te
−β∆d

a0 , (2.43)

where β = ∂ log t/∂ log a |a=a0 ≈ 3.37 is the modulation factor for the strained
hopping energy. For small strain, Eq. 2.43 can be expanded to the first order
and one obtains

tj = t(1− β∆d
a0

), (2.44)
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In the assumption of a spatially smooth strain field and a set of constant hop-
ping energies {t1, t2, t3} within a local vicinity, a “local” effective Hamiltonian
could be written as

H̃ = t ·
(

0 f̃(~q)
f̃(~q)∗ 0

)
, (2.45)

where
f̃(~q) =

∑
j

(1 + δj)ei~q·
~dj and δj ≡ (tj − t)/t. (2.46)

Expending f̃(~q) around the two valleys to the first order in ~q with Eq. 2.39,
Eq. 2.41 and Eq. 2.44, the Hamiltonian in Eg. 2.45 becomes

H̃±K ≈ vFσ̂(~~k ± e ~A), (2.47)

where
~A = ~β

2ea0

(
εxx − εyy
−2εxy

)
(2.48)

and the ±-sign accounts for the two valleys. The term ~A induced by strain
resembles the vector potential from a magnetic field, which is commonly called
pseudo-vector potential. Taking the curl of the pseudo-vector potential, one
obtains the pseudomagnetic field (PMF) as

~Bps = 5× ~A = (0, 0, ∂xAy − ∂yAx) = (0, 0, Bps). (2.49)

It is important to note that the PMF has an opposite sign for the two valleys,
as can be seen in Eq. 2.47.

x

y

Figure 2.8. Strain pattern for homogeneous PMF. Illustration of rect-
angular graphene deformed into an arc. A strain gradient is generated along
y-direction. Figure adapted from Ref. [44].

It is obvious from Eq. 2.48 that the PMF depends on the strain configu-
rations. For uniform strain fields, such as uniaxial and biaxial strain, ~A is
a constant which leads to zero PMF [43, 45, 86]. One needs a non-uniform
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2. Theoretical background

strain field to generate a PMF. An example is given in Fig. 2.8, where a strain
gradient is generated in y-direction by deforming a rectangular graphene rib-
bon into a circular arc. The deformation field can be described approximately
with the following form [44]:

~u(x, y) = 1
R

(
xy,−x

2

2

)
, (2.50)

with R being the radius of the inner circle. Plugging it into Eq. 2.48 results in

~A = ~β
2ea0

(
y/R

0

)
, (2.51)

which would then translate to a fairly homogeneous PMF using Eq. 2.49.

Fermi velocity renormalization

For pristine graphene, usually a constant Fermi velocity vF is assumed. In the
case of strain, the Fermi velocity becomes directional-dependent, which comes
from a warping of the Dirac cones and can be written in a tensorial notation
as [94–97]

v̄ = vF
(
Ī + (1− β)ε̄

)
, (2.52)

where Ī is the 2 × 2 identity matrix and ε̄ is the strain tensor. For uniax-
ial strain, it exhibits a strong anisotropy [43]. With large uniaxial strains,
quasiparticles can even become massive along the strain direction while in the
perpendicular direction they remain massless [90].

Since the strain levels involved in the experiments presented in this thesis
are quite small (6 1 %), where the Fermi velocity renormalization is not pro-
nounced, we will not go into the details of this effect. More information about
this topic can be found in Ref. [90, 94, 97].

2.3.2. Valley Hall and inverse valley Hall effect
As introduced in section 2.1.1, valley is another degree of freedom in graphene,
which can be manipulated to generate charge-neutral current. In analogy to
the spin Hall effect and the inverse spin Hall effect, the valley Hall effect (VHE)
and the inverse valley Hall effect (IVHE) are phenomena that converts charge
currents to pure valley currents and vice-versa.
In a study of graphene/hBN superlattice, a detected non-local signal was

interpreted with the VHE and the IVHE [99]. It has been argued that the
aligned hBN substrate breaks the inversion symmetry of graphene which opens
an energy gap at the Dirac point and gives rise to a finite Berry curvature.
Due to the opposite sign of the Berry curvature for the two valleys, electrons
acquire an anomalous velocity and lead to a valley-polarized current in the
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2.3. Strain in graphene

VHE

A

K

D

K’

V
IVHE

Valley current

Figure 2.9. Valley Hall and inverse valley Hall effect. Schematic
of non-local measurement based on VHE and IVHE in bilayer graphene. A
displacement field (D) realized with dual-gating is used to induce a gap. On
the left side, the charge current leads to a pure valley current in the transverse
direction via the VHE. On the right side, this valley current is converted into a
charge current by means of the IVHE, generating a non-local voltage. Figure
adapted from Ref. [98].

bulk transverse to the charge current, which is the VHE. By means of the
IVHE, the valley current is converted back to charge current and results in an
electrical response in remote regions. Similar results have been reported for
bilayer graphene [98, 100], where dual-gating is used to break the inversion
symmetry. A schematic demonstrating the VHE and the IVHE in bilayer
graphene is shown in Fig. 2.9. Analogous to the spin Hall effect and the
inverse spin Hall effect [101], a non-local resistance from the VHE and the
IVHE is given by[98, 100]

RNL = 1
2ρ

3
xx(σVH

xy )2W

λv
exp(− L

λv
), (2.53)

where ρxx is the local resistivity, σVH
xy is the valley Hall conductivity and λv is

the intervalley scattering length. L and W represent the length and width of
the Hall bar channel, respectively. Therefore a cubic dependence of the non-
local resistance on the local resistivity is thought to be an evidence of pure
valley current.
Since strain induced PMF has opposite signs for the two valleys, as in-

troduced in section 2.3.1, non-uniform strain field can be used as another
approach to generate valley-polarized currents. It has been predicted that
strain-induced VHE and IVHE can be observed even with modest strain levels
(lower than those required for observing pseudo-LLs) in disordered samples
(diffusive regime), with a large non-local resistance as the hallmark [102]. Our
related experiments are presented in chapter 4.
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2. Theoretical background

2.3.3. Strain characterization with Raman spectroscopy

Raman spectroscopy has been used extensively to characterize properties of
semiconductors [103–105]. It has proven to be a versatile tool for studying
the properties of graphene as well, such as to determine the number of layers,
the defect density, the amount of doping, the edge chirality, and the strain
levels [54, 106, 107].

Raman spectroscopy in graphene

To interpret the Raman spectra of graphene, it is essential to understand the
phonon dispersion, which is shown in Fig. 2.10. There are in total six phonon
branches in graphene due to the two-atom unit cell, including three acoustic
(A) and three optical (O) phonons [106]. Two of the phonon branches are
out-of-plane (o): one acoustic and one optical. The other four branches are
in plane (i). The phonon modes are further classified as longitudinal (L) or
transverse (T) according to vibrations along or perpendicular to, respectively,
the carbon-carbon bonds.
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Figure 2.10. Phonon dispersion of graphene. All six phonon branches
are shown. The phonons associated with the G, D and 2D Raman bands are
highlighted. Figure adapted from Ref. [54, 106, 108].

The in-plane transverse optical (iTO) and in-plane longitudinal optical (iLO)
phonons are responsible for the main Raman bands, the G band and the 2D
band, in graphene. It is important to note that the energies of both the iTO
and the iLO phonons are strongly dispersive and relatively lower at the Γ and
K points, as can be seen in Fig. 2.10. Such phonon energy softening is caused
by the renormalization of the phonon energy due to electron-phonon coupling
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2.3. Strain in graphene

at these points, which is known as the Kohn anomaly [109, 110].
The mechanism for the G band is shown schematically in Fig. 2.11(a), an

incident photon resonantly excites a virtual electron-hole pair in the graphene,
which is scattered by either an iTO or an iLO phonon at the Γ point (center of
the first Brillouin zone) and then re-combines, emitting a photon that is red-
shifted by the amount of energy given to the phonon. The phonons involved
in this process have very little momentum, since it occurs at the Γ point.

G Band

q

K

q

G’ (2D) Band

-q

K’

D Band

q

-d

K K’

(a) (b) (c)

Figure 2.11. Illustration of main Raman processes in graphene.
(a) G band, involving a phonon with almost zero momentum. (b) G’ or
2D band originating from a double resonant process with electronic levels.
Two phonons are involved. (c) D band, involving one phonon and a defect
scattering (horizontal dashed line). Figure adapted from Ref. [54].

The strongest Raman peak in graphene is the 2D (or G’) band, which is
a second order process involving two iTO phonons, as shown in Fig. 2.11(b).
The incident photon creates an electron-hole pair near the K point. The
electron is then scattered by an iTO phonon to the K’ point inelastically.
Due to the energy and momentum conservation, the electron must scatter
back to the K point in order to recombine with the hole. In the 2D band
case, the back-scattering of the electron is mediated by a second iTO phonon.
Since the incident photon and the first phonon scattering (or the scattered
photon and the second phonon scattering) are resonant with electronic levels
in the graphene, this process is known as double resonant. In experiments, the
number of graphene layers in a flake can be determined by the 2D band [111].
Another important band is the D band, which is induced by disorder and

therefore can be used to determine the defect density in graphene. The first
half of the Raman process for this band is the same as that for the 2D band.
In the second half of the process, the electron is elastically back-scattered from
the K point to the K’ point by a defect [112–114], different from the inelastic
scattering with a second iTO phonon for the 2D band. Since the process only
involves one phonon for the D band, the energy shift is half of that for the G’
(2D) band. This is the reason why the G’ band is now commonly called 2D
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2. Theoretical background

band.
A typical Raman spectrum with characteristic G and 2D peaks of a pristine

graphene flake is shown in Fig. 2.12. The intensity of the 2D peak is much
higher than that of the G peak, which is a signature of monolayer graphene.
The D peak is absent, indicating a defect-free graphene. The G peak occurs at
∼1580 cm−1, which is independent of the energy of the incident photon. This
is because only virtual elecoton-hole pairs are involved in this process and the
involved phonons are always from the Γ point. In the case of 2D and D bands,
the involved phonon frequency changes with the incident photon energy due
to the resonance with the electronic levels and the highly dispersive phonon
energy at the K/K’ point. For incident photons with an energy of 2.41 eV, the
2D peak appears at ∼2700 cm−1.
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Figure 2.12. Example Raman spectrum of graphene. Raman spectrum
of a pristine graphene flake, showing the characteristic G and 2D (G’) bands.

Strain characterization

Since Raman spectroscopy probes the phonon frequency in graphene, strain,
which shifts the frequency of the phonons involved in the G and 2D bands,
can therefore be determined from Raman measurements [89]. Strain changes
the inter-atomic distance and hence modifies the vibration frequency of the
lattice. Tensile strain usually results in phonon softening, and the opposite for
compressive strain [115].

Characteristic redshifts in the Raman peaks of graphene have been observed
with tensile strain [115–117]. One example is shown in Fig. 2.13, where the
strain was induced by bending a flexible substrate with graphene flakes directly
deposited on top. The strain values were calculated from the bending of the
substrate. In addition to the redshift, the G peak shows a clear splitting into
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2.3. Strain in graphene

two subbands (G+ and G−) with strain due to the degeneracy lifting of iTO
and iLO phonon modes at the Γ point. The 2D peak does not develop a
splitting, which has been reported to only occur when large strain is applied
along high-symmetry directions [118]. The orientation of the graphene crystal
with respect to the uniaxial strain axis can be determined from measurements
with different light polarization, thanks to the polarization dependence of the
G+ and G− intensities [115].
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Figure 2.13. Redshift of Raman peaks with strain. (a) G and (b) 2D
peaks of graphene Raman spectra measured with linearly polarized light along
the uniaxial strain direction for different strain levels. For higher strain, the G
peak splits into two subbands, G+ and G−, while the 2D peak broadens. The
numbers on the right side of the spectra indicate strain values in %. Figure
adapted from Ref. [115]

In our experiments, we use Raman spectroscopy as a tool to quantify the
strain generated in graphene, based on the redshift of the G and 2D peaks.
It is worth noting that there is a disagreement in the literature about the
shifting rates [115–120], which might arise from the different ways of strain
determination. We choose an intermediate one among the reported values for
the strain characterization, which can still be recalibrated when the shift rates
are precisely confirmed.
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2.4. Moiré superlattice

A moiré superlattice is a larger-scale lattice structure that can be produced
when two similar lattices are superimposed. Such a superlattice was already
observed in 1925 in an X-ray diffraction study on gold-copper and palladium-
copper systems [121]. Hexagonal boron nitride (hBN) is now a widely used
substrate for graphene devices. It has also a honeycomb lattice and therefore
can form moiré superlattice with graphene, which can modify the electronic
properties of graphene. In the following we introduce the graphene/hBN moiré
superlattice and also discuss its implications on the electronic band structure
of graphene.

2.4.1. Formation of graphene/hBN superlattice

Similar to graphene, the lattice of hBN is also hexagonal, but its unit-cell con-
sists of two different atoms (boron and nitrogen) as illustrated in Fig. 2.14(a).
The lattice constant of hBN is ∼1.8 % larger than that of graphene. Instead
of a zero-gap semiconductor, hBN is an insulator with a large band-gap of
5.97 eV, making it a good substrate and dielectric for graphene devices. When
a graphene lattice is place on a hBN lattice, a moiré superlattice forms. Due
to the small lattice mismatch, the supperlattice is present even when the two
lattices are fully aligned, as shown in Fig. 2.14(b).

(b) (c)
φ=0

(a)
C B N

graphene

hBN

aG
ahBN

aG
ahBN

φ

φ

Figure 2.14. Graphene/hBN moiré superlattice. (a) Lattice structures
of graphene and hBN. The unit-cell of graphene consists of two carbon atoms,
while that of hBN consists of one boron and one nitrogen atom. (b) Illustration
of the moiré superlattice when graphene and hBN lattices are fully aligned.
(c) Superlattice period λ and orientation θ plotted as a function of twist angle
φ according to Eq. 2.54 and Eq. 2.55. Figure adapted from Ref. [55]
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2.4. Moiré superlattice

With only geometrical analysis, the period (λ) of a graphene/hBN super-
lattice can be calculated and is given by [122, 123]

λ = (1 + δ)a√
2(1 + δ)(1− cosφ) + δ2

(2.54)

with a = 2.46Å (a =
√

3a0) being the graphene lattice constant, δ = 0.018
being the lattice mismatch between hBN and graphene, and φ being the twist
angle between the two lattices. The orientation of the superlattice relative to
the graphene lattice is described by the angle θ:

tan θ = − sinφ
(1 + δ)− cosφ. (2.55)

In Fig. 2.14(c), the functional dependence of λ and θ on φ is plotted for −30◦ 6
φ 6 −30◦, which covers all the possibilities due to hexagonal symmetry. The
superlattice period reaches its maximum at φ = 0 with a value of λ ≈ 14 nm,
while it decreases rapidly with increasing φ. The superlattice orientation is
also very sensitive to φ at small twist angles, whereas it almost saturates at
large angles. The graphene/hBN superlattices have been first observed and
studied by scanning tunneling microscopy (STM) [122, 124, 125].

2.4.2. Band structure modification

The presence of moiré superlattice causes a modification to the electronic
band structure of graphene. The signature of that is the emergence of addi-
tional Dirac points located symmetrically around the original Dirac point of
graphene, which are commonly called satellite/secondary/superlattice Dirac
points (SDPs). Using the model of a simple potential modulation, the SDPs
are predicted to appear at the boundary of the superlattice Brillouin (SBZ) [126].
However, the details of the modified band structure is still not fully known.
Three different moiré band reconstructions for graphene on hBN from Ref. [127]
are shown in Fig. 2.15, which strongly depend on the model and the parame-
ters therein. The corresponding DoS for the three different models are plotted
in the bottom panel of Fig. 2.15. The DoS drops to zero at one point (SDP)
on the hole side (E < 0) for all three cases, while on the electron side (E > 0)
only a modulation of the DoS is observed. The number of SDPs generated in
the SBZ for each main DP also depends on the model and parameters, as can
be seen in the top panel of Fig. 2.15.
In transport measurements, the moiré superlattice manifests as conductance

dips at high doping symmetrically around the main DP. As mentioned above,
SDPs are expected to form at the SBZ boundaries at ~k = ~G/2, where

∣∣ ~G∣∣ =
4π/(
√

3λ) is the length of the superlattice wave vector and λ the moiré period.
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Figure 2.15. Possible reconstructed band structure by moiré super-
lattice. (a-c) Top: three different moiré miniband calculated using differ-
ent model-parameters. Bottom: corresponding DoS as a function of energy.
The dashed lines indicate the DoS of pristine graphene. Figure adapted from
Ref. [55, 127].
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2.4. Moiré superlattice

For graphene, k is related to n by k =
√
πn. The position of the SDPs in charge

carrier density for a given period λ is then given by

ns = 4π
3λ2 (2.56)

Therefore, the moiré period and the twist angle can be extracted from the
charge carrier density where the characteristic conductance dips are observed.
It is important to note that even though a moiré superlattice is always present
in graphene/hBN systems, the signature in transport measurements is only
observable for small twist angles. This is because for large twist angles, the
moiré period is very small and the characteristic conductance dips would oc-
cur at very high carrier densities, as can be seen from Eq. 2.56, which can-
not be accessed with conventional gating. The moiré superlattice has been
demonstrated in various transport experiments [35–37, 39, 70, 99, 128–130].
In quantum Hall regime, a fourfold degeneracy of the LLs was found around
the SDPs, implying only one SDP in the SBZ for each main DP [35, 37].
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3 Experimental methods

10 µm

This chapter is dedicated to the description of important experimental meth-
ods used in this thesis. First, the key fabrication techniques for different types
of devices are introduced, followed by an introduction to the bending setup for
strain measurements. Furthermore, the basic concepts of the low temperature
transport measurements is briefly described1.

1A SEM image of multiple suspended devices is shown.
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3.1. Sample fabrication

For all the experiments presented in this thesis, clean graphene is a prereq-
uisite. To obtain clean graphene devices, two main techniques have been
developed in the community. The first one is to suspend graphene above the
SiO2 substrate in order to avoid its influence and perform current annealing
to remove the resist residuals from fabrication [131–135]. A more widely used
technique nowadays is to use hBN as the substrate [18, 136–138], which is
atomically flat and expected to be free of surface charge traps, and encapsu-
late graphene in order to protect it from resist residuals.

In this section, we introduce the most important techniques of fabricating
clean graphene devices. First, the exfoliation of graphene and hBN is de-
scribed. Then a short introduction to the fabrication of suspended devices
is given, followed by the presentation of assembling hBN/graphene/hBN het-
erostructures. Standard nanofabrication procedures, such as electron beam
lithography, reactive ion etching and metallization with thermal or e-beam
evaporation are used to complete the device fabrication, but are not discussed
here. All the detailed fabrication recipes can be found in the appendix A.

3.1.1. Exfoliation

The 2D material research field started with the first successful isolation of
graphene with mechanical exfoliation in 2004 [3]. Nowadays the exfoliation
technique is applied to the isolation of many other materials, such as hBN and
TMDCs.

(a) graphene (b) hBN

~30 nm

~50 nm

10 µm 10 µm

MLG

MLG
BLG

BLG

TLG

Figure 3.1. Graphene and hBN exfoliation. (a) Exfoliated graphene
flakes on a Si wafer with ∼285 nm of SiO2. Monolayer (MLG), bilayer (BLG)
and trilayer (TLG) graphene can be easily distinguished. (b) Exfoliated hBN
flakes. We usually use the flakes with a thickness of ∼30 nm.

36



3.1. Sample fabrication

In our experiments, Nitto2 tape was used for exfoliation. Graphene flakes
were exfoliated from natural graphite3. The hBN flakes were exfoliated from
high quality crystals grown by K. Watanabe and T. Tanaguchi [139]. Examples
of exfoliated graphene and hBN flakes are shown in Fig. 3.1. The number
of layers for graphene can be easily determined from the optical contrast,
when the flakes are exfoliated onto Si wafers with ∼285 nm of SiO2. For the
fabrication of suspended samples, graphene was exfoliated onto PMMA, where
contrast enhancement with filters was used for the recognition of monolayers.
For hBN, we usually choose the flakes with a thickness of ∼30 nm, which can
be recognized by the color under optical microscope, see e.g. the flake shown
in Fig. 3.1(b).

3.1.2. Suspension
The suspension of graphene was first achieved by etching away the SiO2 below
the contacts using Hydrofluoric acid (HF) [131, 133]. Later an alternative
suspension technique based on lift-off resist (LOR) was developed [134], which
is compatible with most standard PMMA based nanofabrication procedures.
In our experiments, the LOR4 based technique was used and the samples

were fabricated following a recipe by Maurand et al. [135], shown schemati-
cally in Fig. 3.2(a-c). The fabrication starts with the preparation of substrates
with bottom gates, followed by the spin coating of LOR. A further lithography
step is needed to open a window in LOR for bonding pads. Graphene is then
transferred and aligned to the bottom gates using a wet transfer method [136].
First, graphene flakes are exfoliated on wafers with a PMMA/dextran double
layer. The dextran layer is then dissolved in water, releasing the PMMA mem-
brane with the graphene floating on the surface of water. In the next step, the
floating PMMA layer is fished out with a glass slide with a volcano structure.
After drying, it is transferred on top of the bottom gate structures with the
help of a transfer stage and a microscope. Standard e-beam lithography and
oxygen plasma are then used to make metal contacts and shape the device.
In the last step, the LOR below the graphene and contacts is exposed with a
very high e-beam dose (much higher than that for PMMA) and subsequently
dissolved in Ethyl-lactate, leaving the graphene and contacts freely suspended.
The SEM image of a multi-terminal test device is shown in Fig. 3.2(d), where
resist residuals can be easily seen on the suspended graphene.
Before transport measurements, current annealing is performed at low tem-

peratures to remove the resist residuals, where a DC voltage is ramped up and
down across the device, heating up the graphene to hundreds of degrees [140].
Ultraclean graphene has been achieved for two-terminal devices [141], while

2For example, SPV 224P, Nitto Europe NV
3Obtained from NGS Trading & Consulting GmbH.
4LOR 5A, MicroChem Corp.
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the current annealing on multi-terminal devices remains challenging. Details of
the fabrication and discussions on limitations of suspended graphene samples
can be found in Ref. [142].

(a)

(c)

(b)

(d)

2µm

Figure 3.2. Fabrication of suspended graphene (a) Bottom gates pre-
fabricated on the substrate. (b) LOR spin-coated. Then graphene is trans-
ferred on LOR with alignment to the bottom gates. (c) Graphene is shaped
and the LOR is removed with selective e-beam exposure. The device is sus-
pended with free-standing contacts. (d) A SEM image of a multi-terminal
suspended graphene device for test. Fabrication schematics are adapted from
Ref. [135].

3.1.3. Encapsulation

The key steps of encapsulating graphene with hBN are shown schematically
in Fig. 3.3 following the pick-up technique introduced by Wang et al. [138]
and Zomer et al. [143]. First, a polycarbonate (PC) film is prepared on a glass
slide, which is later picked up by an adhesive tape with a ∼1 cm×1 cm window
in the center. The PC film is then transferred on top of a ∼0.5 cm × 0.5 cm
PDMS stamp fixed on a glass slide, as shown in Fig. 3.3(b). Additional tape is
used along the edges of the window to fix the PC film on the glass slide. The
glass slide with the assembled PDMS/PC stamp is then mounted on a xyz-
stage of a home-built transfer microscope for picking up the flakes exfoliated
on Si wafers. The flakes are selected and located optically beforehand. The
wafer with the top hBN is first mounted on the transfer stage and a clean area
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PC on glass slide

PC on PDMS stamp

Stack placed on target substrate

Scotch tape
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(b)
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graphene

exfol. b-hBN
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Figure 3.3. Flow chart of graphene encapsulation. (a-b) PC film and
PDMS/PC stamp preparation. (c-e) Picking up the flakes sequentially, top
hBN, graphen and bottom hBN. (f) Placing down the assembled stack onto
the target substrate. Details of each step is shown in the circular insets. Figure
adapted from Ref. [55, 76].
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of the PC film is then used to pick up the desired flake, see Fig. 3.3(c). Details
of this process will be described in the next step for picking up graphene. After
a successful pick-up of the top hBN, we exchange the wafer for the one with
graphene flake and use the picked-up top hBN to pick up the graphene flake.
The transfer stage also has a roll and pitch degree of freedom. These two
parameters are used to tilt the bottom stage relative to the top translation
stage, so that the PC film can touch the wafer gradually. In this step, the
flakes need to be aligned so that the graphene is fully covered by the hBN.
As shown in Fig. 3.3(d1), the PDMS/PC stamp is lowered until it touches the
wafer at one corner. The contact front (CF), which is the interface between
the region still suspended and that in contact with the wafer, is moved forward
slowly by further lowering the PDMS/PC stamp carefully until the top hBN
is just next to the graphene flake. The stage is then heated, leading to a
thermal expansion of the PC film, which moves the contact front across the
graphene flake making the top hBN fully in contact with the graphene, see
Fig. 3.3(d2). This usually happens during heating from room temperature to
80 ◦C. Once it goes over both flakes, the CF is kept at a fixed position by
slowly retracting the PDMS/PC stamp until the temperature reaches 80 ◦C.
The heater is switched off at 80 ◦C and the substrate starts to cool down. A
few minutes later, the PC film starts to shrink and retract automatically, as
shown in Fig. 3.3(d3). The flake will be picked up during retraction because
graphene sticks better to hBN than to SiO2 due to stronger interaction. That
is also the mechanism when picking up the top hBN layer in the first step.

For making moiré superlattice samples, one needs to align the sharp edges of
both flakes, because the flakes tend to cleave along crystallographic directions.
Since the zigzag and armchair directions are equally favorable, theoretically
only half of the attempts will succeed on average. In reality, the yield can be
lower due to the imperfect alignment accuracy.
For the bottom hBN, there can be different procedures depending on the

experiments. Usually, the top hBN/graphene half stack is place onto the
bottom hBN, which is exfoliated on a wafer with markers. Afterwards, other
fabrication steps can be done directly on this wafer. For strain experiments, the
full stack needs to be transferred onto a flexible substrate. Therefore, we pick
up the bottom hBN in the similar way instead of placing the first two layers
onto it, see Fig. 3.3(e). In the last step, the assembled hBN/graphene/hBN
stack is transferred onto the target substrate by heating the substrate to 150 ◦C
to detach the PC film from the PDMS stamp, as shown in Fig. 3.3(f). At this
temperature, the PC film sticks better to the substrate than to the PDMS
stamp. In the end, the PC is dissolved in chloroform, leaving the assembled
stack on the substrate.

Afterwards, the stack is characterized with AFM to locate bubble-free re-
gions and determine the thickness of both hBN layers for device design. Later,
standard nanofabrication techniques, including e-beam lithography, reactive
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ion etching and metallization processes, are used to make electric contacts
and shape the stack into the desired device geometry. Detailed recipes are
given in the appendix A.

Suspend encapsulated graphene

A few suspended encapsulated graphene devices were also fabricated for strain
experiments before we fully focused on the on-substrate approach.
First, palladium leads are fabricated on LOR above the bottom gate struc-

tures with thermal evaporation, which are used to support the stack and also
to protect the LOR underneath from unwanted exposure during the e-beam
evaporation of Cr/Au contacts. The stacks are assembled in the way described
above and transferred onto the palladium supporting leads. Afterwards, stan-
dard fabrication processes for encapsulated samples are used and in the end
the devices are suspended in the way described in section 3.1.2.

3.2. Strain setup

For generating strain in graphene, we fabricate the devices on a flexible sub-
strate and use a three-point bending setup to deform the substrate, which is
adapted from a home-built break-junction setup. In this section, we first in-
troduce the preparation of the flexible substrates, followed by the description
of the bending setup. Furthermore, a brief introduction to the Raman setup
for characterizing strain is given.

3.2.1. Flexible substrate preparation
We use 0.3 mm thick phosphor bronze plate5 as the flexible substrate. The
commercially available phosphor bronze plates are already quite flat, but for
our nanofabrication purpose it is not flat enough, as can be seen later in
Fig. 3.4. The plate is first cut into 5 cm × 5 cm pieces and polished with a
lapping machine. Afterwards, a layer of ∼5 µm polyimide6 (PI) is deposited
onto the polished plate by spin coating for electrical isolation. The roughness
of the PI surface is characterized with a profilometer and compared to that
of PI deposited on an unpolished plate, as shown in Fig. 3.4. The surface is
much flatter after polishing and on the length scale of 20 µm, the length scale
for device fabrication, it is almost as flat as the surface of Si wafers. Detailed
recipe for PI deposition and curing is given in the appendix A
The plate with PI is then cut into smaller pieces with dimensions of 24 mm×

9.5 mm using a diamond wire saw. PMMA is spin coated on the PI surface
beforehand to protect the PI surface from metal fragments generated during

5CuSn6, häuselmann metall GmbH
6PI2610, HD MicroSystems GmbH
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3. Experimental methods

sawing. After that, the protecting PMMA layer is removed and standard
nanofabrication techniques are used to prefabricate big structures, including
the bottom gate with markers, metallic leads and contact pads. The bottom
gate has a varying width of 10 µm to 30 µm for different size of flakes. Till then
the preparation of the substrate is completed. A typical prepared substrate
is shown in Fig. 3.5(b). Both suspended and encapsulated devices can be
fabricated on these substrates with the methods described in section 3.1.
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Figure 3.4. Surface roughness. The height profiles of PI surface on unpol-
ished bronze plates (black and red) and on polished bronze plates (blue) are
plotted for a 20 µm distance. For reference, the height profiles on the surface of
Si wafers (green) are also plotted. In this length scale, the polished surface is
almost as flat as the Si wafer. The curves are shifted in y-direction for clarity.

3.2.2. Three-point bending setup
Inspired by the break junction technique [144–147], we use a three-point bend-
ing setup to deform the flexible substrate and therefore generate strain in
graphene. The setup cross section is shown schematically in Fig. 3.5(a), where
the substrate is mounted between two fixed counter supports and a movable
wedge. The deformation of the substrate is controlled by the displacement ∆z
of the pushing-wedge relative to the mounting position.

Strain in graphene can be characterized with Raman spectroscopy, as in-
troduced in section 2.3.3. We use a commercially available confocal Raman
system WiTec alpha300. The bending setup can be mounted under the Ra-
man microscopy, as shown in Fig. 3.5(c), making the strain characterization
very convenient. The displacement ∆z of the pushing-wedge is controlled by
the long screw sticking out. Due to the reduction effect of the gear system,
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3.3. Low-temperature electrical measurements

one full rotation of the screw corresponds to a displacement of ∆z ≈ 20 µm,
giving a very fine control of the substrate deformation and hence the strain
in graphene. With the fine-positioning piezoelectric stage, spatially resolved
Raman maps can be measured, which is important for characterizing strain
fields over the whole device area. The system is also equipped with light polar-
izers, making it possible to determine the strain direction with respect to the
crystallographic directions of graphene [115]. The presented Raman spectra in
this thesis were acquired in ambient conditions using linearly polarized laser
with a wavelength of 532 nm and a power of 1 mW, unless otherwise stated.
The laser spot size is around 500 nm and the used grating of the spectrometer
is 600 grooves/mm. The measurements of strain characterization on different
types of devices are presented in chapter 5.

( a ) ( c )( b ) pushing
wedge

24 mm

pushing-wedge

∆z

counter-supports

device

Figure 3.5. Three-point bending setup. (a) Schematic cross section of
the bending setup. The displacement ∆z of the pushing-wedge determines the
substrate deformation. (b) A typical prepared flexible substrate. The gate
structure in the center, metallic leads and contact pads are prefabricated. (c)
Room temperature bending setup mounted under the Raman microscope.

For low-temperature transport measurements, we have another bending
setup shown in Fig. 3.7. We relate the induced strain from one setup to
the other through the displacement ∆z of the pushing-wedge. More details of
the low temperature setup are discussed in section 3.3.2.

3.3. Low-temperature electrical measurements

For studying strain effects in transport measurements at low temperatures, we
need to make the bending setup compatible with cryostat. At the same time,
the electrical contact to the devices should be reliable during bending of the
substrate. In this section, we first introduce the method we use to electrically
connect the devices. Then a introduction to the low temperature bending
setup is given, follow by a brief description of electrical measurements.
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3. Experimental methods

3.3.1. Electrical connection

For devices using SiO2/Si as substrate, electrical connection is usually made
by wire bonding. In our case, wire bonding is not applicable due to the special
substrate (PI coated phosphor bronze). Instead, we use electrical clamps which
can be fixed to the nanofabricated contact pads on the substrate with screws,
as shown in Fig. 3.6(a,b). First, small indium pieces with a diameter of ∼2 mm
and a thickness of ∼0.5 mm are placed on the contact pads, see left side of
Fig. 3.6(b). Second, the clamp is placed on top, with the pins aligned to the
indium pieces, and fixed to the substrate by screwing to the counterparts on
the other side of the substrate, see right side of Fig. 3.6(b). The connector
at the other end of the clamp can then be plugged into a socket and makes
connections to measurement electronics. In the other direction, the contact
pads on the substrate are connected to the devices through on-chip metallic
lines, as shown in Fig. 3.6(c,d). With this method, we can make in total 12
contacts to the sample, including gate electrodes.

(a)

(b)

24 mm 2 µm

(c)

(d)

Figure 3.6. Electrical connection to the devices. (a) A typical electrical
clamp with six pins. (b) Demonstration of clamping. First, indium pieces are
placed on the contact pads, shown on the left side. Then the clamp is fixed
with two screws to the substrate with the pins aligned to the indium pieces,
shown on the right side. (c,d) Zoom-in to typical encapsulated devices.
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3.3. Low-temperature electrical measurements

3.3.2. Cryogenic measurement setup
The measurements of suspended samples presented in chapter 4 were per-
formed in a cryostat with a variable temperature insert (VTI) having a base
temperature of ∼1.5 K. All the other low temperature measurements were
conducted using a home-built insert equipped with three-point bending setup,
as shown in Fig. 3.7(a). The sample is mounted between the pushing-wedge
and two counter-supports. The pushing-wedge is connected all the way up
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Figure 3.7. Cryogenic measurement setup. (a) Home-built insert for
studying strain effects in transport measurements. The inset shows the three-
point bending setup. (b) Schematic of the setup for a typical voltage-biased
differential conductance measurement at low temperature, with the most im-
portant components indicated. Schematic adapted from Ref. [148]

to the controlling knob with a rotating rod. A differential screw is used to
make fine controls over the substrate bending. One full rotation of the con-
trolling knob corresponds to a displacement of ∆z ≈ 100 µm. The insert is

45



3. Experimental methods

enclosed with a metallic tube, which is pumped into vacuum, see black box
in Fig. 3.7(a). A tiny amount of helium gas is let in as exchange gas before
cooling down. The tube is then immersed in liquid 4He bath in a cryostat
equipped with superconducting magnets. The base temperature for this setup
is then ∼4.2 K. Since the insert was designed to be compatible for different
cryostats, in principle all magnetic field configurations available in our lab can
be applied to the sample, e.g. up to 9 T out-of-plane field or up to 4 T in-plane
field.
Electrical connections from the clamps are made with twisted wire pairs to a

break-out box at room temperature, which is then connected to measurement
electronics with BNC cables. Differential conductance/resistance measure-
ments were performed with standard low-frequency lock-in techniques7. In
Fig. 3.7(b), the schematic of a typical measurement setup is shown. Home-
built low-noise/low-drift I/V-converters and voltage amplifiers8 were used for
detecting the signals. For DC voltage sources, we used either a home-built low-
noise/high-resolution DAC or a commercially available instrument (Yokogawa
YK7651). A DC voltage was applied to the offset voltage of the IV-converter
for bias measurements. Small magnetic fields required for weak localization
and UCF measurements were generated using a Keithley 2400 source meter
instead of the standard power supply for the superconducting magnets. All
measurement instruments were communicated and controlled through RS232
or GPIB interfaces with LabView programs, Igor Pro scripts or Qcodes based
on Python.

7Standford SR830 lock-in amplifier.
8Designed and made by the Electronics Lab at the Department of Physics, University of
Basel.
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4 Suspended multiterminal bilayer graphene
and non-local signal

In this chapter, we investigate multiterminal suspended bilayer graphene de-
vices 1. Using in situ current annealing technique at low temperature, four-
terminal bilayer graphene devices with reasonable quality have been achieved
and measured. Tuning the charge carrier density by the bottom gates, an
unexpected non-local signal larger than the ohmic contribution is observed
near the charge neutrality point. With bias spectroscopy and temperature
dependent measurements we try to understand the nature of the non-local
signal. We discuss possible sources of the non-local signal, however, no solid
conclusions can be drawn.

1A scanning electron microscope image of a partially current annealed suspended four-
terminal bilayer graphene device. Resist residuals can still be seen on the graphene.
The scale bar corresponds to 1 µm
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4. Suspended multiterminal bilayer graphene and non-local signal

4.1. Introduction

It has been introduced in section 2.1 that the valley degree of freedom in
clean graphene is a good quantum number, implying the potential use for
electronic applications, referred to as valleytronics, in a way similar to the role
of spin in spintronics [149]. In order to address valley, ultraclean disorder-
free graphene is a prerequisite. With in situ current annealing, which cleans
the resist residues from fabrication process, ultraclean suspended graphene
has been developed, yielding very high mobilities and ballistic transport over
micron distances [141]. Secondly, one needs a handle to control valley for
generating and detecting the valley current. As shown in section 2.3 that
non-uniform strain configurations can generate pseudomagnetic fields that act
with opposite signs on the two different valleys [45], we try to use strain as
the handle to control the valley degree of freedom in graphene.

1 4
L

W

2 3

(a) (b)

gates
contact

contactco
nt
ac
t

Figure 4.1. Device architectures and measurement mechanism. (a)
SEM image of triangle-shaped graphene suspended symmetrically by contacts.
(b) SEM image of the measured device, where two triangles are connected in
order to perform non-local measurements. Resist residuals are not fully cleaned
away by current annealing, especially near the contacts. The two bottom gates
are connected together to act as one global gate in this experiment. The red
arrow indicates the current injection. The blue (orange) arrow represents the
path of K (K’) valley polarized current. The scale bars correspond to 1 µm.
L ≈ 2 µm and W ≈ 1.1 µm.

One possible strain configuration has been proposed in Ref. [45] in order
to generate a homogeneous pseudomagnetic field, where stresses need to be
applied perpendicular to the perimeter of a triangular graphene flake. How-
ever, this strain configuration is still experimentally challenging. Instead, we
start with a simplified variation, in which the three arms are fixed on the
contacts, as shown in Fig. 4.1(a). The strain in graphene can be generated
by pulling down the flake capacitively using an electric bottom gate and the
strain configuration is determined by the triangular geometry. For this geome-
try, one can perform measurements based on the valley Hall effect (VHE) and

48



4.2. Local and non-local signal

the inverse valley Hall effect (IVHE), as introduced in section 2.3.2. In order
to detect the valley Hall voltage, we connect a second triangular graphene as
shown in Fig. 4.1(b). If a current is injected from the bottom-left contact, for
example, electrons from K valley (blue) will go to the up-left contact while
electrons from K’ valley (orange) will bend to the right triangle. Then again
in the second triangle, the K’ electrons will bend to the right and go to the
bottom-right contact resulting in a potential difference between the right two
contacts. This potential difference can be detected by voltage measurements
as a non-local signal.
The fabrication of suspended graphene devices is described in section 3.1.2.

Our yield of suspending four-terminal devices is quite high (∼80%), but the
challenging part is the current annealing. Usually only bilayer graphene can
be successfully current annealed for multiterminal devices [150, 151]. We have
tried to current anneal more than 20 monolayer devices and none of them was
cleaned successfully. For bilayer devices, approximately 5 out of 10 devices
were successfully cleaned with current annealing. The experiment presented
in the following was conducted on a bilayer device. All measurements were
performed at T ≈ 1.6 K using standard low-frequency lock-in techniques unless
otherwise stated.

4.2. Local and non-local signal

First, we define Ra,b−c,d ≡ Vcd/Iab, where Iab is the current passed from
contact a to contact b and Vcd is the voltage probed between contact c and
contact d. The local resistance RL is measured as a function of gate voltage
Vg with four different schemes which give very similar results, as shown in
Fig. 4.2(a). A field-effect mobility of ∼150 000 cm2 V−1 s−1 is extracted from
a linear fit near the charge neutrality point (CNP) and a residual doping of
∼3× 109 cm−2 is estimated from a log-log plot of the conductance versus the
carrier density [132]. The “shoulder” on the electron side might originate from
the inhomogeneity of the device. The non-local resistance RNL measured with
two different schemes is plotted in Fig. 4.2(b), which also show almost identical
results.
In Fig. 4.2(c), we compare RNL with RL. Interestingly, RNL exhibits a

much sharper peak than RL around the CNP. The ohmic contribution to the
non-local resistance due to current spread can be estimated by:

Rohmic = ρ

π
e−π

L
W , (4.1)

with ρ being the sheet resistance, W the width and L the length between the
current path and the non-local voltage detection [152]. It is important to note
that Eq. 4.1 is based on a Hall-bar geometry, which can only give an order of
magnitude estimate in our case. The comparison of the measured RNL with the
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4. Suspended multiterminal bilayer graphene and non-local signal
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Figure 4.2. Measured local and non-local resistances RL and RNL:
(a) Gate voltage dependence of RL. (b) Gate voltage dependence of RNL. (c)
Comparison of the RNL curve (red) with the RL curve (blue). (d) Compari-
son of the non-local signal RNL (red) with the calculated ohmic contribution
(orange). (e) Shape comparison of the RNL curve (red) with the R3

L curve
(blue). (f) RNL and R3

L plotted against RL in logarithmic scale.
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4.3. Temperature dependence of local and non-local signal

estimated ohmic contribution is shown in Fig. 4.2(d). It is clear that current
spread alone cannot account for the large non-local resistance observed.
Here we try to investigate the valley Hall origin of the non-local signal.

Other possible origins are discussed later in section 4.5. In Ref. [98–100], RNL
larger than ohmic contribution is also observed at zero magnetic field for both
monolayer and bilayer graphene. They attribute it to the VHE and the IVHE
due to the broken inversion symmetry, realized either by moiré superlattice
(for monolayer) or by interlayer electric field with dual gating (for bilayer).
The broken inversion symmetry opens a band gap at the CNP and gives rise
to non-zero valley-contrasted Berry curvatures [153], which act effectively as
magnetic fields in the momentum space that causes the Hall effect [154]. In
the diffusive regime, the non-local resistance from this origin can be described
by a power law relation [98–101]:

RNL ∝ R3
Lσ

2
xye
−L/λv/λv, (4.2)

where σxy is the valley Hall conductivity and λv is the valley diffusion length.
Figure 4.2(e) shows the comparison of RNL with R3

L. The curves are quite
similar in shape except a small offset of the maxima. This offset might origi-
nate from device inhomogeneity [100]. In Fig. 4.2(f), RNL (red) and R3

L (blue)
are plotted as a function of RL in logarithmic scale. The red line follows quite
well the blue line, showing a good agreement with a cubic dependence. This
seems to imply the valley Hall origin of the non-local signal. Compared to
Ref. [98–100], however, we have neither superlattice nor an interlayer electric
field induced by dual gating to break the inversion symmetry in our device.
The non-local signal maximizes at the CNP, but the strain induced by ca-
pacitive coupling to the gate is minimum and negligible at this point [155].
Therefore, the non-local signal is unlikely an effect of the strain-induced pseu-
domagnetic field either.

4.3. Temperature dependence of local and non-local signal

Figure 4.3(a,b) present RL and RNL as a function of Vg for different tempera-
tures. Although no insulating state is observed at the CNP down to T ≈ 1.6 K,
both RL and RNL show a strong temperature dependence. The temperature
dependence at the CNP is very different from that at higher Vg. Both RL
and RNL decrease very fast at the CNP with increasing temperature, which
is reminiscent of a thermal activation behavior, suggesting the presence of a
band gap. In contrast, at higher Vg, both RL and RNL increase slowly with
increasing temperature, implying a metallic-like transport.
The Arrhenius-type plots of RL and RNL at the CNP are shown respectively

in Fig. 4.3(c,d). The slope of the line fit to the linear part gives an estimate of
the thermal activation energy, which yields ∼0.4 meV from RL and ∼1.2 meV

51



4. Suspended multiterminal bilayer graphene and non-local signal

 !!!

"!!!

#!!!

$!!!

%!!!

&
'
()
*
+

,%! ! %!

-.()-+

#!

$ 

$!

% 

%!

 

/()0+

)1+

 !

"!

#!

$!

%!

!

&
2
'
()
*
+

,%! ! %!

-.()-+

#!

$ 

$!

% 

%!

 

/()0+

)3+

456

45"

45$

45!

78
&
'

!5 !5"!5#!5$!5%

%9/()0
,%
+

):+

"5!

#56

#5$

$54

78
&
2
'

!5 !5"!5#!5$!5%

%9/()0
,%
+

);+

Figure 4.3. Temperature dependence of RL and RNL: The gate voltage
and temperature dependence of the (a) local and (b) non-local resistance.
There is no offset between traces. (c,d) Arrhenius-type plots of local and
non-local resistances at the CNP. Red symbols are the experimental data and
blue lines are the line fit to the linear part.
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4.4. Bias spectroscopy

from RNL. Both activation energies are orders of magnitude smaller than those
achieved in Ref. [98–100] with inversion symmetry broken by external means.
Interestingly, the activation energy extracted from RNL is roughly triple of
that from RL, which is similar to the bilayer case with inversion symmetry
broken by interlayer electric field [98]. The factor of three difference in the
two activation energies already implies the non-linear relation between RNL
and RL in our device. This observation is in stark contrast to the monolayer
case with morié superlattice breaking the inversion symmetry, where both
activation energies are similar [99].
Note, the electric field at the CNP is negligibly small in our device and is

unlikely to induce a substantial layer asymmetry that results in a gap [156,
157]. One possibility could be the spontaneously gapped state in suspended
bilayer graphene, which were reported previously in several studies [157–160].
In the following we use bias spectroscopy to gain more insights into the gap-like
behavior.

4.4. Bias spectroscopy

The conductance map as a function of source-drain bias Vsd and gate voltage
Vg is presented in Fig. 4.4(a), which shows a dip feature around zero Vsd bias
for the CNP. Cuts at three different gate voltages are shown in Fig. 4.4(c),
where different behaviors are observed for different regions. The conductance
increases with bias at the CNP while the opposite is observe for regions away
from the CNP. This observation is consistent with the temperature dependent
measurements discussed in the previous section. Figure 4.4(b) shows the spec-
troscopy measurement at the CNP with out-of-plain magnetic field, where hint
of the development of an insulating state with magnetic field is observed. Cuts
at three different magnetic fields are shown in Fig. 4.4(d). The conductance
drops rapidly with increasing magnetic field.
Compared to similar measurements in Ref. [157, 160], where both insulating

and conducting phases were observed at the CNP in devices fabricated in the
same way, our device belongs more likely to the conducting case. That means
no spontaneously gapped state is present in our device. The reason why the
insulating state is not always observed remains unclear [161]. In Ref. [150],
this sample-dependent behavior has been attributed to the sample-dependent
inhomogeneity of the device after current annealing. It has also been pointed
out in Ref.[160] that increasing disorder has an effect similar to increasing
temperature on the insulating state, which obscures the observation of the
insulating state in experiments. The absence of the insulating state in our
device might be related to the disorder due to the remaining resist residuals,
as can be seen in Fig. 4.1(b).
In summary, although gap-like behavior is observed, the band gap is not
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Figure 4.4. Bias spectroscopy: (a) Two-terminal differential conductance
as a function of source-drain bias Vsd and gate voltage Vg. (b) Two-terminal
differential conductance as a function of Vsd and out-of-plane magnetic field
at the CNP. (c) Cuts for (a) at three different gate voltages. (d) Cuts for (b)
at three different magnetic fields.
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4.5. Discussion, conclusion and outlook

directly measured. We further current annealed the device, the conductance
minimum dropped further but still remained finite (not shown here). There-
fore, we could not conclude that the band gap is present in our device.

4.5. Discussion, conclusion and outlook

In Ref. [102], Zhang et al. shows theoretically that graphene can sustain a
classical VHE with modest strain levels which can be detected in non-local
transport measurements. Modest strain levels are defined as strain levels
lower than those required for observing pseudo-Landau levels. Such strain
levels may occur after current annealing in suspended devices, as reported in
a recent study where built-in strain up to ∼ 4% has been observed [162]. This
mechanism could be a possible origin of our non-local signal.
Another possible origin is the edge current due to enhanced doping or ad-

ditional conducting channels along the edge of graphene flakes, as reported in
Ref. [150, 163–165]. Non-local signal larger than ohmic contribution is also ob-
served on monolayer graphene Hall-bars [76], which also points to the direction
of an enhanced doping along the edge.
In conclusion, we measured large non-local resistance in suspended bilayer

graphene which cannot be explained by current spread. The valley Hall origin
due to band gap was investigated, but no strong evidence was found. Further
work is needed to fully clarify the origin of the large non-local signal observed.
For example, a scanning technique to map the current distribution at the
CNP would be helpful to determine the bulk or edge origin of the non-local
signal. Or measurements at lower temperatures would help to investigate
the presence of the gapped state at the CNP. Furthermore, low temperature
Raman spectroscopy can directly determine the strain in the graphene and
thus might help to justify the possibility of built-in strain induced VHE.

55





5 In situ strain tuning in graphene 1 2

pushing-wedge

∆z

counter-supports

device

In this chapter we demonstrate deterministic and reproducible in situ strain
tuning in graphene devices by bending a flexible substrate. The technique
is first used for suspended graphene, then adapted for suspended encapsu-
lated graphene and finalized with the on-substrate encapsulated graphene
approach. The full hBN encapsulation preserves the exceptional quality of
pristine graphene for transport experiments. In addition, the on-substrate
approach allows one to exploit strain effects in the full range of possible sam-
ple geometries and at the same time guarantees that changes in the gate ca-
pacitance remain negligible during the deformation process. We use Raman
spectroscopy to spatially map the strain magnitude in devices with two differ-
ent geometries and demonstrate the possibility to engineer a strain gradient,
which is relevant for accessing the valley degree of freedom with pseudomag-
netic fields. Comparing the transport characteristics of a suspended device
with those of an on-substrate device, we demonstrate that our new approach
does not suffer from the ambiguities encountered in suspended devices.

1Raman measurements on suspended samples in this chapter are done in collaboration
with Jan Overbeck and Oliver Braun.

2Parts of this chapter have been published in a similar form in Ref. [166]. c© 2019
American Chemical Society
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5. In situ strain tuning in graphene

5.1. Introduction

A series of intriguing effects were predicted for strained graphene, such as
the appearance of a scalar potential [44], pseudomagnetic fields [44–46], val-
ley filtering [47, 48] or superconductivity [49]. Different methods have been
introduced to generate strain in graphene. One common approach is based
on suspended graphene, where strain is induced by using different microac-
tuators [120, 167–169] or by simply bending a flexible substrate [170]. In
other approaches, graphene is not suspended and strain can be generated by
bending a flexible substrate [115], by using highly stressed metallic pads [171],
or by placing graphene on periodic structures [172–174]. However, several
challenges that need to be overcome simultaneously hampered the progress
of these platforms for studying strain effects in transport experiments. First,
complex fabrication usually significantly degrades the graphene quality and
hinders the observation of the strain effects. In addition, the device is often
limited to very basic structures, without the possibility of local gating or multi-
terminal devices. Second, mechanical deformations often result in changes in
the gate capacitance that cannot be easily distinguished from the actual strain
effects. The third challenge is that the strain should be in situ tunable and
non-hysteretic to disentangle strain effects from other effects.

( a )

( d )

( b )

( c )

hBN/graphene/hBN
Cr/Au

polyimide
phosphor bronze

LOR
Pd

pushing-wedge
∆z

counter-supports

Figure 5.1. Schematic cross sections: (a) suspended graphene device,
(b) suspended encapsulated graphene device, (c) on-substrate encapsulated
graphene device and (d) three-point bending setup. The bending is described
by the displacement of the pushing-wedge, ∆z.

In this chapter we first demonstrate deterministic strain tuning in three
different types of devices, i.e. suspended graphene, suspended encapsulated
graphene and on-substrate encapsulated graphene. The schematic cross sec-

58



5.2. Strain tuning in suspended graphene

tions of them are shown in Fig. 5.1(a-c), respectively. Fabrication details of
these devices are given in section 3.1. Bending the flexible substrate in a
three-point bending setup, as illustrated in Fig. 5.1(d), generates strain in the
graphene. The deformation of the substrate is determined by the displace-
ment ∆z of the pushing-wedge relative to the mounting position. Second, we
compare the first low temperature transport characteristics of a suspended
encapsulated device with those of an on-substrate encapsulated device and
conclude that the latter meets all the above requirements for studying strain
effects in transport experiments.

5.2. Strain tuning in suspended graphene

The schematic cross section of the device is illustrated in Fig. 5.1(a), where
a graphene flake is suspended over an electrical bottom gate on a polyimide
coated metal plate. A typical suspended device is shown in Fig. 5.2(a). Usually
ripples can be observed, suggesting built-in strain in the graphene which is
confirmed by the Raman measurements later. Figure 5.2(b) shows a device
broke after fabrication while Fig. 5.2(c) shows the device broke after strain
measurements. One can easily see the differences.

(a)

(d) (e)

(b) (c)

Figure 5.2. SEM images of suspended graphene devices and Raman
measurements. (a) A suspended device after fabrication. (b) A broken
device after fabrication. (c) A broken device after strain experiment. The
scale bars correspond to 1 µm. (d) ω̄G and (e) ω̄2D plotted as a function of
∆z. The red lines are linear fits. The grey dashed lines are guides to the eye.
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5. In situ strain tuning in graphene

Previous studies reported characteristic redshifts in the Raman peaks of
graphene [115–117], which we now use to quantify the local strain generated
in our devices. For small strain values, both the G peak and the 2D peak
can be fitted by a single Lorentzian with center frequency ωG and ω2D [115],
respectively. To investigate strain tuning, we acquire Raman spectra at the
center of the device for different ∆z. The extracted ωG and ω2D are plotted
for a series of increasing ∆z in Fig. 5.2(d,e), respectively. From ∆z = 0 mm
to 0.3 mm, both ωG and ω2D shift to lower values, indicating increasing strain
in the graphene sheet. The corresponding strain value of a ∆ω2D ≈ −49 cm−1

is ∼ 0.91%, which is obtained using ∂ω2D/∂ε = −54 cm−1/% from theoretical
calculations [89]. We note that the shift rate is not known very accurately
and our choice is among the intermediate reported values [89, 115–120]. Since
the bending of the substrate is small and the device size is more than three
orders of magnitude smaller than the size of the substrate, one can assume the
induced strain in graphene increases linearly with ∆z. We then fit the data
with a linear function and the corresponding slopes are shown as annotations
in Fig. 5.2(d,e). The ratio of the ω2D slope to the ωG slope is ∼ 2.3, which
confirms strain as the origin of the redshift of the Raman peaks [169, 175–177].
The data points at ∆z = 0.4 mm jump to higher values, suggesting the rupture
of the device. Compared with the first data point, we estimate the built-in
strain to be ∼ 0.16% after fabrication.

5.3. Strain tuning in suspended encapsulated graphene

For transport experiments, clean graphene is required. Current annealing sus-
pended graphene is a possible way to make graphene exceptionally clean [141],
but the combination with strain tuning is very challenging. An alternative
to get clean graphene is to encapsulate it with hBN [138], which preserves
the exceptional quality of pristine graphene for transport experiments. The
device also becomes much more robust due to encapsulation. Since generation
of tunable strain by bending a flexible substrate has been demonstrated for
suspended graphene in section 5.2, in this section we apply this method to sus-
pended encapsulated graphene and investigate strain tuning in such suspended
stacks.
The schematic cross section of this type of devices is illustrated in Fig. 5.1(b).

One-dimensional edge contacts [138] are used to contact the graphene instead
of two-dimensional top contacts. We use exfoliated graphene from natural
graphite and usually choose ∼20 nm thick hBN for the top layer and ∼30 nm
thick hBN for the bottom layer. A typical fabricated device is shown in the
inset of Fig. 5.3. We performed Raman measurements at the center of the
stack for different ∆z, the same way as for suspended graphene samples. The
extracted 2D peak center frequency ω2D is plotted as a function of ∆z in
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5.4. Strain tuning in on-substrate encapsulated graphene

Figure 5.3. Raman measurements of a suspended encapsulated de-
vice: ω̄2D plotted as a function of ∆z. The red line is a linear fit. The inset
is a micrograph of the measured device. The scale bar corresponds to 1 µm.

Fig. 5.3. A shift of roughly −18 cm−1 is achieved for ω2D at ∆z = 1 mm,
corresponding to a strain of ∼ 0.33%. It is surprising that the edge contacts
can sustain such amount of strain. We then fit the data linearly and a slope
of −18 cm−1/mm is obtained, which is almost one order of magnitude smaller
than that for suspended graphene (see Fig. 5.2(e)). The reduced straining
efficiency can be attributed to the thickness of the stack (tens of nm), which
is orders of magnitude larger than that of monolayer graphene.
In summary, we have demonstrated that it is possible to tune the strain in

graphene even when it is encapsulated. Transport measurements have been
done on such devices as well (see section 5.4.6), but a gate capacitance change
occurs due to the bending-induced change in the graphene-to-gate distance,
which makes it very difficult to separate strain effects from other effects.

5.4. Strain tuning in on-substrate encapsulated graphene

Since the encapsulation already protects graphene from resist residuals during
fabrication, the suspension is actually not necessary anymore for the purpose
of clean graphene. We therefore simplify the fabrication and directly strain
the van der Waals (vdW) heterostructure on-substrate, as shown schemati-
cally in Fig. 5.1(c). We use spatially resolved Raman spectroscopy to demon-
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5. In situ strain tuning in graphene

strate that our method is versatile and allows one to engineer various strain
fields, such as strain gradients, which are important for the generation of
pseudomagnetic fields [44]. We also show that the edge contacts work reliably
and can sustain strain up to ∼ 1%. The metallic contacts and the gate al-
low us to perform transport experiments while tuning the strain in situ. In
the first low-temperature electron transport measurements, we demonstrate
that our method solves the problem of the gate capacitance change due to
a bending-induced change in the graphene-to-gate distance, which occurs in
suspended graphene devices. Therefore, our approach of on-substrate encapsu-
lated graphene offers an ideal platform for studying strain effects in transport
experiments.

5.4.1. Device design for different strain fields

The metallic contacts are essential for generating strain in a vdW heterostruc-
ture. In section 5.4.4, we present a comparison between devices with and
without contacts. The result shows that strain cannot be induced by sub-
strate bending in devices without contacts. Based on the assumption that
the graphene sheet is pulled uniaxially by the contacts during the bending
of the substrate, we designed devices with two different geometries in order
to obtain different strain fields. This is illustrated in Fig. 5.4(a), where the

( a )

5 µm

( b ) device A

x

y device B

Figure 5.4. (a) Illustration of the mechanism for different strain fields. The
solid lines represent devices without strain while the dashed lines stand for
strained devices. The arrows indicate the elongation of the device along the
contacts. The magnitude of strain is shown in grayscale with black corre-
sponding to large strain. (b) Micrograph of two typical devices with different
geometries.

rectangle (device A) is expected to result in a homogeneous strain field, while
the trapezoid (device B) should exhibit a strain gradient along the y-axis, i.e.
perpendicular to the straining axis. An optical micrograph of two fabricated
devices is shown in Fig. 5.4(b).
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5.4. Strain tuning in on-substrate encapsulated graphene

5.4.2. Strain fields mapping with spatial Raman spectroscopy

Typical Raman spectra of encapsulated graphene are shown in Fig. 5.5(d)
for two different ∆z. The zoomed-in to the hBN peak and the graphene G
and 2D peaks are shown in Fig. 5.5(a-c), respectively. The bending of the
substrate results in a redshift of all peaks, with the most prominent effect
on the graphene 2D peak. In the following, we use spatially resolved Raman
spectroscopy to map the strain field based on the redshift of the graphene 2D
peak. The same analysis for the hBN Raman peak is presented in section 5.4.3,
which shows that both hBN and graphene are strained similarly in this method.
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Figure 5.5. Raman spectra: Typical Raman spectra of an encapsulated
device for two different ∆z, zoomed in to (a) the hBN peak, (b) the graphene
G peak and (c) 2D peak, respectively.

We first focus on the investigation of the rectangular device A. In Fig. 5.6a-g,
ω2D is plotted as a function of position for device A, for a series of increasing ∆z
from 0 mm to 0.6 mm (straining) and then decreasing back to 0 mm (relaxing),
as indicated by the gray arrows. With increasing ∆z, ω2D shifts to lower values
at all positions on the map, consistent with increasing strain everywhere in the
graphene sheet. When ∆z is decreased back to 0 mm, ω2D reverts back to the
initial values. The mean value ω̄2D averaged over the whole device is plotted as
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5. In situ strain tuning in graphene

a function of ∆z in Fig. 5.7(a), where ∆z is first increased from 0 mm to 0.6 mm
then decreased back to 0 mm. The very symmetric V-shape reveals a linear
dependence and a good reproducibility of the strain tuning in the graphene
device and exhibits no significant hysteresis. This process was repeated several
times (up to 8 cycles) and no degradation was observed. The corresponding
average strain values (ε̄) are shown on the right axis, which are calculated using
∂ω2D/∂ε = −54 cm−1/% [89] with ω2D ≈ (2685 ± 4.4)cm−1 for unstrained
graphene. The latter value is obtained as the average over 10 Raman spectra
measured at different positions on three different hBN/graphene/hBN stacks
before fabrication. The strain values at ∆z = 0 mm are not 0, probably due
to the intrinsic strain accumulated in the device after fabrication. We obtain
an average strain of up to 0.23% and a maximum strain near the contacts of
0.3% for device A at ∆z = 0.6 mm. Figure 5.8(c) shows the plot of ω̄2D versus
ω̄G (center frequency of the graphene G peak) of both devices for different ∆z
values. The data points fall on a line of slope 2.2, which confirms strain as the
origin of the redshift of the Raman peaks [169, 175–177].

4 µm

y
x

(a) (b) (c) (d)

(e)

(i) (j) (k) (l)

(m) (n) (o)
(p)

(f) (g) (h)

∆z = 0 ∆z = 0.2 mm ∆z = 0.4 mm ∆z = 0.6 mm

∆z = 0 ∆z = 0.2 mm ∆z = 0.4 mm ∆z = 0.6 mm

Figure 5.6. Spatial Raman maps. (a-g) Spatially resolved Raman maps
of ω2D for device A at different ∆z values. The white dashed lines outline
the device boundaries and the colored dashed boxes mark the positions of
the profiles shown in Fig. 5.8. The gray arrows show the sequence of the
measurements. (h) Spatially resolved Raman maps of ∆ω2D for device A,
obtained by subtracting map (a) from map (d). (i-o) Spatially resolved Raman
maps of ω2D for device B at different ∆z values. (p) Spatially resolved Raman
maps of ∆ω2D for device B, obtained by subtracting map (i) from map (l).

We note that there is a small inhomogeneity in the map of ω2D for device A
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5.4. Strain tuning in on-substrate encapsulated graphene

in Fig. 5.6(a) which does not change significantly with external straining. We
analyze the data in a scatter plot of ω2D versus ωG in the appendix B, which
shows that the inhomogeneity in the maps of ω2D originates mostly from the
strain variation over the large device area [175–178]. The homogeneity of the
externally induced strain field can be seen directly in Fig. 5.6(h), which shows
a map of the change in the Raman shift, ∆ω2D, between the map at ∆z =
0.6 mm (Fig. 5.6(d)) and the map without external straining (Fig. 5.6(a)). For
this rectangular geometry, the externally induced strain is fairly homogeneous
in the bulk with a vanishing strain gradient, which matches quite well the
expected strain fields for device A as shown in Fig. 5.4(a). The detailed strain
pattern for this geometry from finite element method (FEM) simulations is
shown in the appendix B.
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Figure 5.7. Averaged values over the maps. ω̄2D and the corresponding
strain values plotted as a function of ∆z for (a) devices A and (b) device B.

We now turn to the investigation of strain and strain gradients in the trape-
zoidal device B. The spatially resolved maps of ω2D for device B are plotted in
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5. In situ strain tuning in graphene

Figure 5.8. Profiles of the maps. (a,b) Profiles at the center of the maps
indicated in Fig. 5.6 for ∆z = 0 mm (red), 0.2mm (orange), 0.4mm (green),
0.6mm (blue). Open circles are data, solid lines are linear fit. (c) ω̄2D versus
ω̄G at different ∆z for both devices, the grey line has a slope of 2.2. (d)
Slopes of the profiles plotted as a function of ∆z. The slopes are extracted
from linear fitting in (a) and (b). The error bars are the fitting errors. The
corresponding strain gradient is shown on the right axis.
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5.4. Strain tuning in on-substrate encapsulated graphene

Fig. 5.6(i-o) for the same series of ∆z as above for sample A. Also this device
shows a tunable average strain controlled by ∆z. The device averaged ω̄2D
and the corresponding extracted strain values are plotted in Fig. 5.7(b) as a
function of ∆z. At identical ∆z values, the average strain for device B is larger
than that for device A due to the smaller size of device B, but shows a similar
V-shape, i.e. a linear, non-hysteretic dependence on ∆z. These findings can
also be seen directly in the Raman maps. We obtain an average strain of up
to 0.38% and maximum values at the lower sample edge of 0.52% for device B
at ∆z = 0.6 mm. The existence of a strain gradient is visible in Fig. 5.6(j-l).
At the shorter (bottom) edge of the device, ω2D shows a stronger shift than
that at the longer (top) edge, which matches the predicted strain pattern for
a trapezoidal geometry, as illustrated in Fig. 5.4(a) (see also the FEM simu-
lations in in the appendix B). Figure 5.6(p) shows the difference between the
Raman signals at large bending (Fig. 5.6(l)) and no bending (Fig. 5.6(i)).
To demonstrate the deterministic generation of a strain gradient in more

detail, we plot ω2D for both devices in Fig. 5.8(a,b) as a function of the position
along the y-axis in the center of the device area, averaged over 1 µm in the
x-direction, as indicated by the colored dashed boxes in Fig. 5.6(a-d) and (i-l).
For both devices we find a clear increase in the average strain (overall shift of
the curves) and an essentially unchanged background variation with increasing
∆z. In addition, for the trapezoidal geometry (device B) we find a clear linear
increase in the strain when moving from the longer to the shorter sample edge.
We now take the average slope of these curves as an estimate of the large

scale (non-microscopic) strain gradient along the y-axis. For this purpose we
plot in Fig. 5.8(d) the slopes of linear fits to the data in Fig. 5.8(a) (device A)
and Fig. 5.8(b) (device B) as a function of ∆z, with the right axis showing the
corresponding extracted strain gradient. The small non-zero slope for device
A stems from the small intrinsic strain variation over the large device area
discussed above and stays constant for increasing ∆z. In contrast, for device
B we find a linear dependence of the average slope on the ∆z, demonstrating
that strain gradients can be generated by modifying the device geometry. The
pseudo-magnetic field (Bps), as introduced in section 2.3.1, depends on the
strain gradients [44, 45],

Bps = ~β
ea

[
−2∂εxy

∂x
− ∂(εxx − εyy)

∂y

]
, (5.1)

with β ≈ 3.37 the Grüneisen parameter [43] and a = 1.42Å the interatomic
distance. To estimate Bps, we use

Bps ≈
~β
ea

∂εxx

∂y
, (5.2)

and obtain values on the order of 10 mT in the bulk of device B at ∆z =
0.6 mm. We note that much larger strain gradients occur near the corners
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5. In situ strain tuning in graphene

of the device, which might result in local pseudo-magnetic fields larger than
100 mT. We also point out that larger average strain values can be achieved
in this setup (see section 5.4.5), but with an increased probability of device
failure, which happens at a strain on the order of 1%.

5.4.3. Raman maps of hBN peak
In this section we plot the center frequency of the hBN Raman peak, ωhBN, as
a function of position for device A and device B. The displacement ∆z is first
increased from 0 mm to 0.6 mm and then decreased back to 0 mm, as indicated
by the gray arrows. The ωhBN shifts to lower values with increasing ∆z at
all positions on the map for both devices, consistent with increasing strain
everywhere in the hBN [179]. The ωhBN reverts back to the initial values, when
∆z is decreased back to 0 mm, demonstrating a good reversibility of the strain
tuning. In device A, the externally induced strain is fairly homogeneous in the
bulk with no strain gradient, as shown in Fig. 5.9(a). In device B, ωhBN shows
a larger red-shift on the bottom edge than on the top edge, demonstrating an
externally induced strain gradient, as shown in Fig. 5.9(b). These results are
consistent with those extracted from the graphene 2D peak in section 5.4.2.

∆z = 0 ∆z = 0.2 mm ∆z = 0.4 mm ∆z = 0.6 mm

∆z = 0 ∆z = 0.2 mm ∆z = 0.4 mm ∆z = 0.6 mm

(a)

(b)

4 µm

Figure 5.9. Raman maps of hBN peak. (a) Spatially resolved Raman
maps of ωhBN for device A at different ∆z values. The white dashed lines
outline the device boundaries and the gray arrows show the sequence of the
measurements. (b) Spatially resolved Raman maps of ωhBN for device B.

5.4.4. Clamping of edge contacts
Here we compare the devices with edge contacts to devices without any con-
tacts in Raman measurements. The micrograph of the devices are shown in
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5.4. Strain tuning in on-substrate encapsulated graphene

P1
P2P3

P4  4 µm

(a)

Figure 5.10. Comparison between devices with and without con-
tacts. (a) Micrograph of the sample with two devices without contacts (P1,
P2) and two devices with contacts (P3, P4). The circles mark the laser spot
positions for the Raman measurements. (b) Center frequency ω2D of the
graphene 2D peak plotted as a function of ∆z for all four devices. (c) Cen-
ter frequency ωhBN of the hBN peak plotted as a function of ∆z for all four
devices.
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Fig. 5.10(a). During the measurements, the substrate bending, ∆z, is first
increased to 1 mm and then decreased back to 0 mm in steps. In Fig. 5.10(b),
the ω2D of device P3 and P4 shows the V-shape behavior, revealing a lin-
ear dependence and a good reversibility of the strain tuning in the contacted
devices, similar to the devices shown in section 5.4.2. The fluctuations on
the curves can be attributed to the relative shift of the laser spot between
each measurement and the not fully homogeneous strain within the device.
In contrast, ω2D in the devices P1 and P2 do not show any dependence on
∆z, suggesting no strain induced in these devices by bending the substrate.
Similar results are observed in the hBN Raman peak, as shown in Fig. 5.10(c).
These results demonstrate that the contact clamping is essential for generating
strain in encapsulated devices.

5.4.5. Edge contact failure

Here we show a typical straining sequence leading to contact failure of a device
at large bending. In Fig. 5.11(a-c), ω2D shifts to lower values with increasing
∆z for the whole device area, as expected for an externally induced strain in
the graphene. After a critical amount of bending, here around 0.9 mm, the
ω2D does not redshift with increasing bending, but instead blueshifts. This
indicates a failure of the mechanical contact to the metal. This process is
gradual as one can see in Fig. 5.11(d,e). When the contact failure happens,
the electrical contact resistance increases dramatically. The average strain
achieved in this device is about 0.7% before the contact failure.

∆z = 0 ∆z = 0.4 mm ∆z = 0.8 mm ∆z = 0.9 mm ∆z = 1.0 mm

4 µm

(a) (b) (c)

(f) (g) (h)

(d) (e)

Figure 5.11. Demonstration of contact failure: spatially resolved Ra-
man maps of ω2D for a rectangular device at different ∆z values. The white
dashed lines outline the device boundaries and the gray arrows show the se-
quence of the measurements.
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5.4. Strain tuning in on-substrate encapsulated graphene

5.4.6. First transport measurements

One of the major advantages of our technique is that the edge contacts not
only act as clamps for the mechanical deformation, but also allow for simul-
taneous transport experiments. Here we show the first low-temperature (4 K)
transport experiments with in-situ strain tuning of a device fabricated in the
described fashion and compare the results to similar measurements on a device
where the encapsulated graphene is suspended, using the LOR based suspen-
sion technique [134, 135]. The two experiments are shown schematically in
Fig. 5.12(a-b). For both devices the two-terminal differential conductance, G,
is measured as a function of the gate voltage, Vg, for different ∆z values using
standard low-frequency lock-in techniques (see Fig. 5.12(c,e)).
There are significant differences between suspended and on-substrate devices

for bending experiments. For the suspended device one can immediately find
a systematic change of the curves in gate voltage with increasing ∆z (see
Fig. 5.12(c)), while such an obvious effect is absent for the on-substrate device
(see Fig. 5.12(e)). The effects found in the suspended device can be fully
accounted for by the change in the graphene-to-gate distance when bending the
substrate, as depicted in Fig. 5.12(a). This is illustrated in Fig. 5.12(d), where
we plot the data of Fig. 5.12(c) rescaled linearly in gate voltage for each curve
with Vg = 0 V as a fix point. This can be understood in a simple capacitor
model in which the charge induced in the graphene are given by Q = CVg,
with C the effective capacitance between the graphene layer and the gate. If
the capacitance is changed by a factor α to αC due to the substrate bending,
the same charge Q is induced at Vg/α, which is equivalent to a rescaling in the
gate voltage. This scaling factor is extracted for each curve by matching the
CNP to that of the curve at ∆z = 0 mm and it is linear in ∆z. After rescaling,
all data points fall onto the same curve, see Fig. 5.12(d). This demonstrates
that the bending-induced gating effect is dominant for the suspended graphene
device, which makes it very difficult to study effects due to actual strain.
This effect is absent in the on-substrate devices optimized for strain tuning.

For comparison, we performed the same type of measurements also on an
on-substrate device, with the results shown in Fig. 5.12(e). Since the gate
voltage lever arm in this device is much larger than that for the suspended
device due to the shorter graphene-to-gate distance, we apply smaller gate
voltages to obtain a similar carrier density range as that in the data of the
suspended device (see top axes of Fig. 5.12(d,e)). An electron mobility of
∼100 000 cm2 V−1 s−1 is extracted from a linear fit around the CNP, suggesting
a high graphene quality in our device. On this gate voltage scale and also on
much larger scale (see inset of Fig. 5.12(e)), all curves with different ∆z values
are virtually identical, which demonstrates that there are no bending-induced
changes in the carrier density or in the contact resistance in this experimental
configuration. The additional conductance minimum at Vg ≈ 1.3 V comes from
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Figure 5.12. Low temperature transport measurements. (a,b) Illus-
tration of substrate bending for suspended and on-substrate devices, respec-
tively. (c) Two-terminal differential conductance, G, plotted as a function of
gate voltage, Vg, for a suspended device for different ∆z values. The inset is
the micrograph of the measured device. (d) The same data as in (c) with the
curves rescaled in Vg with respect to Vg = 0 V by matching the CNP of each
curve with that of the curve at ∆z = 0. The corresponding carrier density is
shown on the top axis. (e) G of an on-substrate device for a similar charge
carrier density range for different ∆z values. The inset shows G on a larger
Vg range. The micrograph is the measured device. The scale bars correspond
to 2 µm.
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a double moiré superlattice effect in encapsulated graphene [180]. We point
out that on this scale of graphene straining we could not detect significant
changes in the conductance.

5.5. Conclusion and outlook

In conclusion, we have successfully generated tunable strain in suspended
graphene, suspended encapsulated graphene and on-substrate encapsulated
graphene devices. For the on-substrate encapsulated devices, it allows us to
design a large variety of device geometries. As an example, we use spatially
resolved Raman imaging to demonstrate that the edge contact clamping and
rectangular geometry result in a fairly homogeneous straining of the graphene.
In a second step, we use this design freedom to generate a strain gradient in
a trapezoidal geometry. In first transport experiments we then demonstrate
another major advantage of on-substrate encapsulated devices, namely that
the bending-induced gate capacitance change can be avoided, which is cru-
cial for studying strain effects in transport experiments. This approach is not
limited to graphene, but also suitable for studying strain effects in other 2D
materials and complex vdW heterostructures, for example in MoS2 [181–183].
Because our method is simple and intuitive, nonetheless allowing complex de-
vice structures, we expect that it will pave the way towards deterministic strain
engineering and new approaches to valleytronics.
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6 Mobility enhancement in graphene by in
situ reduction of random strain
fluctuations1

Microscopic corrugations are ubiquitous in graphene even when placed on
atomically flat substrates. These result in random local strain fluctuations
limiting the carrier mobility of high quality hBN-supported graphene devices.
In this chapter we present transport measurements in hBN-encapsulated de-
vices where such strain fluctuations can be in situ reduced by increasing the
average uniaxial strain. When ∼ 0.2% of uniaxial strain is applied to the
graphene, an enhancement of the carrier mobility by ∼ 35% is observed while
the residual doping reduces by ∼ 39%. We demonstrate a strong correlation
between the mobility and the residual doping, from which we conclude that
random local strain fluctuations are the dominant source of disorder limit-
ing the mobility in these devices. Our findings are also supported by Raman
spectroscopy measurements.

1This chapter has been published in a similar form in Ref. [184]. c© 2020 American
Physical Society
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6. Mobility enhancement in graphene by in situ reduction of random strain
fluctuations

6.1. Introduction

In the first generation of graphene devices, where SiO2 was used as the sub-
strate, it is commonly believed that random charged impurities at the substrate
surface are the dominant source of disorder limiting the device quality [59–65].
One way to improve the device quality is to suspend graphene to spatially
separate it from the charge traps [131–135]. Nowadays, a more widely used
technique is to place graphene on hexagonal boron nitride (hBN) [18, 136–138],
which is atomically flat and expected to be free of surface charge traps. A sig-
nificant improvement in device quality has been achieved, exhibiting very high
carrier mobilities, enabling the observation of a series of new physical phenom-
ena, such as the fractional quantum Hall effect [185–187], transverse magnetic
focusing [69, 70, 188] and various moiré superlattice effects [35–37, 180]. Al-
though the mobility of hBN-supported graphene devices is generally higher
than that of the SiO2-supported, the reported mobility values vary over a
large range, suggesting another mechanism that limits the mobility. It has
been pointed out that random strain fluctuations (RSFs) in graphene could be
a dominant source of disorder leading to electron scattering [66]. In a recent
statistical study of many devices on hBN substrates, a clear correlation be-
tween the carrier mobility µ and the residual doping n0 was found, pointing to
RSFs as the dominant microscopic source of scattering [67]. The residual dop-
ing caused by charge fluctuations manifests in a broadening of the resistance
peak around the charge neutrality point (CNP), as introduce in section 2.2.2.
Similar results have been found as well in bilayer graphene [189].

Ripples and pronounced corrugations can form naturally in graphene due
to its two-dimensional nature, as, for example, demonstrated by transmission
electron microscopy in suspended graphene membranes [190]. In stacked lay-
ers, microscopic corrugations can spontaneously form during exfoliation due to
thermal fluctuations at room temperature [66, 191, 192]. These corrugations
might persist through the fabrication processes and give rise to RSFs in the
final device. In SiO2-supported devices, nanometer-scale ripples have been ob-
served in scanning probe microscopy studies [193–196] and their effects on elec-
tron transport have been reported in weak localization studies [15, 197, 198].
Although the hBN surface is typically much flatter, height fluctuations are
still present in hBN-supported graphene devices [136], which can result in
RSFs. These RSFs have been confirmed in Raman spectroscopy measure-
ments [176, 199].

In this chapter we demonstrate in a direct experiment that RSFs can be
the mechanism limiting the mobility of encapsulated devices. We compare
the transport characteristics of individual devices before and after increasing
the average uniaxial strain, which directly reduces the strain fluctuations in
the same device. In Fig. 6.1(a) the RSFs in graphene lattice are illustrated,
which we believe can be reduced gradually by increasing the average strain, as
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6.2. Experimental setup and fabrication

pushing-wedge

∆z

counter-supports

hBN/graphene/hBN
Cr/Au

polyimide

bendable substrate

(a) (b)

(c)

Figure 6.1. Demonstration of in situ reduction of strain fluctuations.
(a) Illustration of strain fluctuations and the effects of increasing average
strain. The arrows indicate the direction and the strength of the externally
induced strain by substrate bending mediated by contacts. (b,c) Schematics
of the device cross section and the three-point bending setup. The bending of
the substrate is determined by the displacement of the pushing-wedge, ∆z.

indicated by the arrows. The reduction of the RSFs due to increasing average
strain is further confirmed by directly probing the RSFs using Raman spec-
troscopy [176]. This not only allows us to determine the dominant microscopic
mechanism, but also to actually increase the mobility of the device.

6.2. Experimental setup and fabrication

The setup of the experiment is shown schematically in Fig. 6.1(b,c). It allows
us to tune the average uniaxial strain in hBN-encapsulated graphene devices by
bending a flexible substrate [166]. The displacement ∆z of the pushing-wedge
relative to the mounting position determines the deformation of the substrate
and is used to tune the average strain in the graphene. Details of the sample
fabrication and the setup for strain generation are given in chapter 5.

6.3. Field-effect measurements and mobility extraction

To investigate the effects of average strain on the transport characteristics of
graphene, we measure the two-terminal differential conductance G as a func-
tion of the gate voltage Vg for different ∆z values, as plotted in Fig. 6.2(a).
The measurements were performed at low temperature (T = 4.2 K) using stan-
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Figure 6.2. Field-effect measurements and mobility extraction. (a)
Two-terminal differential conductance G plotted as a function of gate voltage
Vg for different ∆z values. The slope of the curves becomes steeper for larger
∆z, for both the electron and hole side. The inset shows a zoom-in to the
hole side. (b) G versus n for two different ∆z on the electron side. The
fits according to Eq. 6.1 are shown as dashed lines for ∆z = 0 and 0.6 mm,
respectively, with the fitting parameters given in the table.
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6.4. Analysis of fitting results

dard low-frequency lock-in techniques. The CNP is at Vg = 0.4 V, indicating
an offset p-doping in our device. The conductance of the graphene increases
faster when gated away from the CNP for larger ∆z, suggesting an increase
in field effect mobility with increasing ∆z. This effect is reversible when ∆z
is decreased (see appendix C). A displacement of ∆z = 0.6 mm corresponds
to ∼ 0.2% of average strain, which is determined from Raman measurements
shown later [166]. The conductance starts to saturate at higher gate voltages
because of the contact resistance. On the hole side (p-doping), a p-n junction
forms near each contact due to the n-doping from the contact, resulting in
a sightly larger contact resistance and a lower saturation conductance, which
renders the mobility-change less visible. The zoomed-in data in the inset of
Fig. 6.2(a) shows qualitatively the same effect as for the electron side.
To quantitatively evaluate the effects of strain tuning on the electrical prop-

erties of graphene, we fit each curve on the electron side (n-doping) with the
following formula based on the Drude model [65, 136], as introduced in sec-
tion 2.2.2:

G = 1
α

eµ
√
n2+n2

0
+Rc

, (6.1)

where e is the elementary charge and α is the geometry factor describing
the aspect ratio, which is 1.28 in this case (see appendix C). The fitting pa-
rameters are the charge-carrier density independent mobility µ, the residual
doping n0 around the CNP and the contact resistance Rc. The charge-carrier
density n is calculated from the applied gate voltage Vg with a lever arm of
5.13× 1011 cm−2 V−1 using a parallel plate capacitor model. The thickness of
the bottom hBN, which is the gate dielectric, is determined by atomic force
microscopy. Two examples of the fitting are shown as dashed lines for ∆z =
0 and 0.6 mm in Fig. 6.2(b) with the corresponding parameters given in the
inset.

6.4. Analysis of fitting results

The fitting results for µ and n0 are plotted as a function of ∆z in Fig. 6.3(a,b),
respectively. The mobility µ shows a clear increase with increasing ∆z, while
n0 decreases significantly. The change is slower in the beginning, which might
be attributed to a small mechanical hysteresis of the bending setup. The ex-
tracted contact resistance Rc (including ∼350 Ω line resistance) is shown in the
inset of Fig. 6.3(c) and is essentially unaffected by the bending, demonstrat-
ing the mechanical robustness of the device for these levels of applied average
strain [166]. The mobility increases gradually from ∼40 000 cm2 V−1 s−1 to
∼54 000 cm2 V−1 s−1 when ∆z is increased from 0 to 0.6 mm. At the same
time the residual doping drops gradually from ∼2.7× 1010 cm−2 (∆z = 0) to
∼1.6× 1010 cm−2 (∆z = 0.6 mm). The (µ, n0) pairs are plotted as 1/µ versus

79



6. Mobility enhancement in graphene by in situ reduction of random strain
fluctuations

 !

 "

!#

!$

%&

'
()
*
"
%
+
,

$
-
.*
/
.*
0

"1#"1!"1$"

23(),,0

)40 $1&

$1!

$1"

*1#

5
"
()
*
"
*
"
+
,

.$
0

"1#"1!"1$"

23(),,0

)60

"17"

"1#&

"1##

8
+
()
9
:
0

"1#"1!"1$"

23(),,0

$!

$$

$"*
;'
()
*
"
.#
+
,

.$
-
/
0

$1#$1!$1$$1"*1&*1#

5"()*"
*"
+,

.$
0

)+0

<=<+>?@5A(/=@B<()"1*! CD"1""7!0EF;<
G@<HHI+I<5>(J4=K</(D(@5<(/>45L4?L(L<JI4>I@5

4 MC1* *$(D("1#7 
6 M#1"%$#(D("1%"7

Figure 6.3. Fitting results. (a) Extracted field effect mobility µ and
(b) residual doping n0 values from fitting plotted as a function of ∆z on the
electron side. The error bars are the standard errors from fits. The mobility µ
shows an increase with increasing ∆z while n0 shows a decrease. (c) Data of
(a) and (b) plotted as 1/µ versus n0, showing a clear linear relation. The red
line is a linear fit to the data with 1/µ = (0.146± 0.007)× (h/e)n0 + 1/µ0 and
µ0 ≈ 110 000 cm2 V−1 s−1. The inset shows the extracted contact resistance
Rc (including ∼350 Ω line resistance) for different ∆z.
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6.5. Raman measurements

n0 in Fig. 6.3(c), clearly demonstrating the proportionality between 1/µ and
n0. The same analysis is performed for the hole side and similar results are
obtained with a larger contact resistance (see appendix C), which is consistent
with the interpretation that the p-n junction makes the effect less pronounced
on the hole side.
Since the graphene is encapsulated with hBN, it is very unlikely that the

small applied average strain changes the charged impurities at the graphene-
hBN interfaces, ruling them out as dominant mechanism for the observed
mobility increase. An artificial effect due to the change of the gate capacitance
with strain is also ruled out [166], because the CNP appears at the same gate
voltage for all ∆z values.

RSFs have been identified theoretically as a possible source of disorder lim-
iting charge carrier mobility [66]. Strong evidence of this mechanism has been
found in a statistical study involving many devices, where a clear linear relation
between 1/µ and n0 was observed, with 1/µ ≈ 0.118×(h/e)n0 [67]. Moreover,
a detailed microscopic mechanism was proposed in which the variation of n0
was attributed to RSFs-induced scalar potentials, while the limitation in µ
was attributed to randomly varying pseudomagnetic fields [67]. Fitting our
data linearly in Fig. 6.3(c) yields 1/µ = (0.146± 0.007)× (h/e)n0 + 1/µ0 and
µ0 ≈ 110 000 cm2 V−1 s−1. It shows a similar slope (∼ 0.146× (h/e)), allowing
us to draw two conclusions. First, the charge carrier mobility is limited by
RSFs and second, the control of the average strain allows us to control the
RSFs and hence the mobility. The offset 1/µ0 might imply another mobil-
ity limiting mechanism when RSFs are not dominating anymore. The value
µ0 ≈ 110 000 cm2 V−1 s−1 nearly coincides with the mobility of the devices, in
which no mobility enhancement due to increasing average strain is observed
(see section 6.7).
Theoretically both, in-plane and out-of-plane, strain fluctuations can con-

tribute to this effect [67]. In a previous study of weak localization on SiO2-
supported graphene devices [198], a reduction of the phase coherence time τφ
was found for an increasing in-plane magnetic field. It has been attributed to
an enhanced dephasing rate due to a random vector potential generated by the
in-plane magnetic field penetrating out-of-plane corrugations in the graphene
layer. Similar effects have been observed in encapsulated devices [200, 201],
strongly suggesting that out-of-plane corrugations are also present in encapsu-
lated graphene. We therefore attribute the mobility increase in our experiment
to the reducing of out-of-plane strain fluctuations, as illustrated in Fig. 6.1(a).

6.5. Raman measurements

To further substantiate our findings, we use spatially resolved Raman spec-
troscopy to directly probe the RSFs at room temperature. For small uniaxial
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Figure 6.4. Raman measurements. (a) Spatially averaged center fre-
quency ω̄2D of the Raman 2D peak for different ∆z, showing a linear decrease
with increasing ∆z, which suggests an increasing average strain. (b) Spatially
averaged linewidth Γ̄2D of the Raman 2D peak as a function of ∆z, exhibiting
a nonmonotonic characteristics with a minimum of ∼19.3 cm−1.

strain, which is the case in our experiment, the graphene Raman 2D peak
can be fitted by a single Lorentzian [115], with a center frequency ω2D and
linewidth Γ2D. As introduced in section 2.3.3, the center frequency ω2D red-
shifts with increasing strain, while the linewidth Γ2D broadens due to the
splitting of the 2D peak [89, 118]. It has been shown that nanometer-scale
strain inhomogeneities within the laser spot (∼500 nm) also broadens the 2D
peak [176], originating from averaging over regions with different local strain
and hence different ω2D. Therefore, Γ2D can be used to probe the RSFs. We
perform spatially resolved Raman spectroscopy and extract maps of ω2D and
Γ2D for different ∆z. The mean value of the center frequency ω̄2D averaged
over the whole device is plotted as a function of ∆z in Fig. 6.4(a). It shifts
linearly to lower values with increasing ∆z, indicating an increasing average
strain in the graphene sheet [115]. The ∼3 cm−1 shift at ∆z = 0.2 mm corre-
sponds to an externally induced average strain of ∼ 0.06% [166]. In Fig. 6.4(b)
the averaged value of the 2D peak linewidth Γ̄2D is plotted as a function of
∆z, showing nonmonotonic characteristics with a minimum of ∼19.3 cm−1

at ∆z = 0.12 mm. It first decreases with increasing ∆z before increasing
again, which can be explained by the competition between the two broadening
mechanisms. The initial value of Γ̄2D (∼20 cm−1) is larger than the intrinsic
linewidth (∼17 cm−1) of the 2D peak [176], indicating that RSFs are present
in our graphene. We attribute the decrease of Γ̄2D to a reduction of the RSFs
due to the externally applied strain, as illustrated in Fig. 6.1(a). When the
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6.6. Weak localization measurements

broadening of the 2D peak induced by the increasing average strain dominates,
Γ̄2D increases again with increasing ∆z.

6.6. Weak localization measurements

To investigate the characteristic scattering times on this device, we performed
weak localization measurements. Figure 6.5(a) shows the low-field magneto-
conductivity for different Vg around Vg = 1 V for ∆z = 0. A narrow dip in
conductivity is observed around B = 0, which is a signature of weak local-
ization. Conductance fluctuations induced by random interference are also
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Figure 6.5. Weak localization measurements. (a)Magnetoconductivity
as a function of out-of-plane magnetic field B and gate voltage Vg measured
at T = 4.2 K for ∆z = 0. A clear feature is observed around B = 0. (b)
Magnetoconductivity averaged over all traces at different Vg. The red circles
represent data that have been ensemble-averaged and the blue line is the fit
to the theory of weak localization in graphene.

visible, which are suppressed by ensemble-averaging over a small Vg range
around the target Vg value [67, 200]. The averaged curve obtained in this way
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is shown in Fig. 6.5(b) as red circles. We fit the data with the equation from
the weak localization theory for graphene [58]:

∆σ(B) = e2

πh

[
F

(
τ−1

B

τ−1
φ

)
− F

(
τ−1

B

τ−1
φ + 2τ−1

iv

)
− 2F

(
τ−1

B

τ−1
φ + τ−1

iv + τ−1
∗

)]
,

(6.2)
where F (z) = ln(z) + Ψ(0.5 + 1/z), with Ψ(x) the digamma function, τ−1

B =
4eDB/~ and D = v2

F τ/2. The fitting parameters are the phase coherence time
τφ, the intervalley scattering time τiv and the intravalley scattering time τ∗.
The elastic scattering time τ = ∼2.6× 10−13 s is determined from the carrier
mobility and is not a fitting parameter here. The fitted curve is plotted as
blue solid line in Figure 6.5(b) with the results τφ = (9.9± 0.5)× 10−12 s,
τiv = (5.8± 0.6)× 10−12 s and τ∗ = (2.8± 0.2)× 10−13 s.
The intervalley scattering time τiv is much longer than the elastic scatter-

ing time τ , implying that the mobility is not limited by intervalley scattering
processes (scattering on short-range potentials, e.g. defects, edges). In con-
trast, the intravalley scattering time τ∗ (the time needed to break the effec-
tive single-valley time-reversal symmetry) is nearly identical to τ , pointing to
RSFs-induced random pseudomagnetic fields as the main factors limiting the
mobility [67]. For charged impurities, it has been argued that τ∗ � τ [67],
which is not the case here.

6.7. Device without mobility enhancement

We have observed a clear increase in the mobility with increasing average strain
in more than 5 devices. Their mobility values varies from ∼30 000 cm2 V−1 s−1

to ∼80 000 cm2 V−1 s−1. Another example is presented in the appendix C. In
Fig. 6.3(a), there is also an indication that the mobility starts to saturate
when it approaches higher values. For the devices with a mobility larger than
∼80 000 cm2 V−1 s−1, the mobility-increase effect is absent. One example is
shown in Fig. 6.6, where the mobility does not increase with increasing ∆z.
The mobility value is above 100 000 cm2 V−1 s−1, which is beyond the highest
value of the studied range in Ref. [67]. The absence of the mobility-increase
effect in this device suggests that either the strain fluctuations cannot be
fully reduced by increasing the average strain or another scattering mechanism
becomes relevant for ultra high mobility devices.

6.8. Conclusion and outlook

In conclusion, we have demonstrated an in situ reduction of the RSFs in in-
dividual encapsulated graphene devices by increasing the average strain. In
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Figure 6.6. Device without mobility enhancement. Two-terminal dif-
ferential conductance G measured as a function of gate voltage Vg for different
∆z. The corresponding carrier density is shown on the top axis.

low-temperature transport measurements, an enhancement of the carrier mo-
bility by ∼ 35% is observed while the residual doping reduces by ∼ 39% when
∼ 0.2% of average strain is applied to the graphene. The linear correlation be-
tween 1/µ and n0 reveals that RSFs are the dominant scattering mechanism.
These findings are further substantiated by Raman spectroscopy, in which the
2D peak linewidth Γ2D, first decreases with increasing average strain before
the average strain induced broadening dominates. The in situ straining allows
us to directly compare results on individual devices and to avoid statistics
over different devices. Using this technique we have directly confirmed that
RSFs are the dominant scattering mechanism limiting the mobility in most
hBN-supported graphene devices. For devices with even higher mobilities, ei-
ther the reduction of RSFs is not possible, or another scattering mechanism
becomes dominant.
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7 Strain effects in transport experiments 1

In this chapter, we present strain effects in various transport experiments of
high-quality encapsulated graphene devices and discuss possible interpreta-
tions. First, the strain setup and the design of device geometries are briefly
recapitulated. Second, the strain-induced scalar potential is demonstrated in
experiments, followed by conductance fluctuations measurements, where evi-
dence of pseudomagnetic field is found. Then, the stain effects in transverse
magnetic focusing is discussed, where Fermi velocity renormalization might be
involved for explanation. Furthermore, strain effects in quantum Hall regime
are shown, where the device geometry makes a big difference. Further ex-
perimental and theoretical investigations are required to fully understand the
strain effects there.

1Parts of this chapter are in preparation for publication.
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7. Strain effects in transport experiments

7.1. Introduction

Due to the mechanical flexibility of graphene, strain can be used to alter its
electronic properties [7, 21, 43, 87]. A scalar potential [44, 92], and/or a
vector potential/pseudomagnetic field (PMF) [44–46, 86, 202] can be induced
by different strain fields, as introduced in section 2.3.1. Various STM studies
of strain effects in graphene have been reported [172, 173, 203–207]. However,
such strain effects have not been so much explored in transport experiments
due to several challenges, such as the limitation of sample quality or the lack
of in situ tunability of the strain [171, 173, 208]. Formation of ripples in the
graphene or changes of the gate capacitance during straining also hinders the
observation of strain effects [170, 209]. We have developed a straining method
that not only resolves all the challenges mentioned above, but also enables
engineering of different strain fields [166], the details of which can be found
in chapter 5. The key innovation of our method is the combination of in situ
straining with the full hBN encapsulation of graphene, which preserves the
exceptional graphene quality for transport experiments.

In this chapter we present various transport experiments while the strain
in the graphene is in situ tuned. First, we briefly recapitulate the straining
method and the device designs for different strain fields. Then the conductance
measurements as a function of gate voltage at zero magnetic field are presented,
where a shift of the CNP in gate voltage with increasing strain is observed.
This shift can be quantitatively explained by a global strain-induced scalar
potential. After that, experiments in small magnetic fields are shown, where
systematic strain effects are found and discussions on possible interpretations
are given. Furthermore, strain effects in the quantum Hall regime are presented
and discussed.

7.2. Strain setup and device geometries

The mechanism of generating strain in encapsulated graphene is shown schemat-
ically in Fig. 7.1(a,b), where a three-point bending setup is used to bend a flex-
ible substrate. The induced strain in graphene is controlled by the bending
of the substrate, which is determined by the displacement ∆z of the pushing-
wedge relative to the mounting position. The edge contacts to graphene act as
clamps for strain generation and at the same time as electrodes for transport
measurements. It has been shown in chapter 5 that the edge contacts work
reliably up to a strain value of ∼1 % and different strain fields can be achieved
by modifying the device geometry. In this chapter we study strain effects on
two types of devices, as shown in Fig. 7.1(c,d). Device type A has a square
geometry, which is intended for generating a homogeneous strain field, while
device type B is trapezoidal, where a strain gradient in y-direction is expected,
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7.3. Strain-induced scalar potential

as indicated by grayscale with higher strain on the shorter side. The strain
gradient is required for generating PMF.
All transport measurements were performed at liquid helium temperature

(T ≈ 4.2 K) using standard low-frequency lock-in techniques.

( a )

( b )

( c )

( d )

pushing-wedge
∆z

counter-supports

phosphor bronze

hBN/graphene/hBN
Cr/Au

polyimide

x

y

type A

type B

Figure 7.1. Strain setup and device geometries. Schematic cross sec-
tion of (a) the device and (b) the bending setup. The displacement ∆z of
the pushing-wedge controls the bending of the substrate and thus the induced
strain in graphene. (c,d) Illustration of device geometries designed for gen-
erating different strain fields, with the square for a homogeneous strain field
and the trapezoid for a strain gradient in y-direction. The solid lines stand for
unstrained devices while the dashed lines represent devices with strain. The
elongation of the devices is indicated by the arrows along the contacts and the
strain magnitude is shown in grayscale.

7.3. Strain-induced scalar potential

The two-terminal differential conductance G of a square device (Sample1 A)
is measured as a function of gate voltage Vg for different ∆z, as shown in
Fig. 7.2(a). No significant strain effects can be seen on this scale. With a
linear fit around the CNP, a charge-carrier mobility of ∼100 000 cm2 V−1 s−1 is
extracted, suggesting a high device quality. The mobility enhancement effect
discussed in chapter 6 is absent, because in such high mobility devices the
carrier mobility is not limited by random strain fluctuations. The additional
conductance minimum at Vg ≈ 1.2 V originates from a super-superlattice effect
in encapsulated graphene when both the top and the bottom hBN layers are
aligned to the graphene lattice [180]. More discussions on this effect can be
found in chapter 8.
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7. Strain effects in transport experiments

Sample1 A

Figure 7.2. Strain-induced scalar potential. (a) Two-terminal differen-
tial conductance G plotted as a function of gate voltage Vg for different ∆z.
Inset: optical image of the measured device, scale bar corresponds to 2 µm.
(b) Zoom-in to the CNP. Inset: position of the CNP (VCNP) plotted as a func-
tion of ∆z. The values of VCNP are extracted by reading out the minimum
conductance point. Red line is a linear fit with a slope of ∼10 mV/mm. (c)
Zoom-in to the CNP for ∆z = 0 and ∆z = 0.8 mm. (d) The same as in (c)
with the ∆z = 0.8 mm curve shifted by 8 mV in Vg.
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7.3. Strain-induced scalar potential

A zoom-in to the CNP is shown in Fig. 7.2(b), where very regular oscillations
in conductance are observed. These features are reminiscent of quantized
conductance originated from quantum point contacts [68, 210]. However, the
corresponding Fermi wavelengths at the carrier densities of these oscillations
are on the order of a few hundred nm2, which are an order of magnitude
smaller than the device width (∼4.4 µm). Therefore, this possibility is ruled
out. Another possibility could be the Fabry-Pérot resonances due to a region
near each contact that has a different doping from the bulk [13, 72, 141, 211].
The electrical contacts to the graphene are below the metallic leads and are
∼400 nm away from the two vertical dark interfaces seen in the optical image
of the device shown in the inset of Fig. 7.2(a). This design is intended for
mechanical reinforcement of the contacts, see appendix B.1. A cavity length
of∼450 nm3 is extracted from the oscillations, which matches well the∼400 nm
overlap near the contacts. We therefore tentatively attribute these oscillations
to Fabry-Pérot resonances.
Apart from these strain-independent conductance oscillations, a systematic

shift of the CNP in Vg is observed with increasing ∆z, see Fig. 7.2(b). This
effect is reversible with decreasing ∆z. The CNP of each curve at gate volt-
age VCNP is extracted by reading out the minimum conductance point and is
plotted as a function of ∆z in the inset of Fig. 7.2(b). The plot shows a clear
down-shift of VCNP with increasing ∆z. A linear fit to the data yields a slope
of ∼10 mV/mm. The shift of the CNP is better seen in Fig. 7.2(c), where only
the curves with the lowest (∆z = 0) and the highest strain (∆z = 0.8 mm) are
plotted. Shifting the curve at ∆z = 0.8 mm by 8 mV in Vg, all the features
fall onto that of the curve at ∆z = 0, as can be seen in Fig. 7.2(d). This
effect is different from the bending-induced gating effect due to gate capac-
itance change in suspended samples, where the gate-voltage axis is rescaled
by a multiplication factor instead of a constant shift (see section 5.4.6). We
attribute this shift to a strain-induced scalar potential in graphene. With a
lever arm of ∼4.92× 1015 m−2 V−1, extracted from quantum Hall measure-
ments, and the relation EF = ~vF

√
πn, where n is the charge carrier density,

a down-shift of ∆VCNP = 8 mV can be converted to a Fermi level up-shift
of ∆EF = ∼7.3 meV. The lever arm is a constant used to convert the gate
voltage to the carrier density, which is determined by the gate capacitance of
the device. As introduced in section 2.3.1, the strain-induced scalar potential
can be written as [44, 90, 93]

V (x, y) = V0 · (εxx + εyy), (7.1)

where εxx and εyy are the diagonal components of the strain tensor, and V0
is a constant. It is worth noting that the value of V0 is not well known [44,

2Estimated with λF = 2π/kF = 2π/
√
πn.

3Estimated with L =
√
π/(√nj+1 −

√
nj), where L is the cavity length, √nj+1 and √nj

are the corresponding carrier densities of two consecutive oscillations [211]
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90, 93, 212, 213] and here we use V0 ≈ 2.5 eV, which is estimated from a
work function study of graphene [90]. The scalar potential acts effectively as
a shift of the graphene Fermi level. Assuming a homogeneous uniaxial strain
along the x-direction, with the Poisson’s ratio ν = 0.165 of graphene [42],
the strain induced by bending in the graphene at ∆z = 0.8 mm can then be
calculated with ∆EF = V0(1−ν)εxx, yielding εxx ≈ 0.35 %. This value matches
very well the strain that can be achieved in our setup at such bending of the
substrate [166], as shown by the Raman studies in chapter 5. The consistency
of the transport and Raman measurements confirms the scalar potential origin
of the observed strain effect.
The strain-induced scalar potential has been observed in all our devices

(more than 10) of both geometry types. In some devices this effect is com-
plicated by conductance fluctuations at the CNP, making the quantitative
analysis difficult.

7.4. Strain effects in conductance fluctuations

Apart from the scalar potential, strain can also generate a vector potential
in graphene, which, for example, gives rise to a PMF for non-uniform strain
fields [44, 45, 86, 202]. A strain field with a constant gradient is a simple form
of non-uniform strain fields, which can be realized with a trapezoidal device
geometry as shown by Raman measurements in chapter 5. Experimental phe-
nomena that are sensitive to magnetic fields, such as conductance fluctuations
(CF), can be used to detect such strain-induced PMFs.
The gate voltage dependence of two-terminal differential conductance of two

devices with different geometries are presented for different ∆z in Fig. 7.3(a,b),
respectively. No significant strain effects are observed in these measurements
except a similar scalar potential (not shown) as for Sample1 A. A field-effect
mobility of∼110 000 cm2 V−1 s−1 (∼140 000 cm2 V−1 s−1) is extracted for Sam-
ple2 A (Sample2 B). The additional conductance minimum near Vg = 1 V for
both devices is again the super-superlattice effect [180].
To study strain effects in CF, we measure two-terminal differential conduc-

tance as a function of small out-of-plane magnetic field B at Vg = 0 with
smaller steps in ∆z. A smoothed background in B is subtracted from each
curve in order to extract the CF. The conductance after subtraction of both
devices are shown in Fig. 7.3(c) and (d), respectively. Fluctuations of the con-
ductance as a function of magnetic field are observed. When ∆z is increased,
the fluctuations start to evolve. For the first ∼0.15 mm of ∆z (shaded area),
the features stay unchanged, which we attribute to a mechanical hysteresis of
the bending setup. For the square device (Sample2 A) the CF change in a
rather random manner with ∆z, while a more clear trend is observed for the
trapezoidal device (Sample2 B), as indicated by dashed lines in Fig. 7.3(d).
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7.4. Strain effects in conductance fluctuations

Sample2 A Sample2 B

Figure 7.3. Strain effects in conductance fluctuations. (a,b) Two-
terminal differential conductance G measured as a function of gate voltage Vg
at different ∆z for two devices with different geometries, respectively. Insets:
optical images of the measured devices, scale bars correspond to 2 µm. (c,d)
Conductance fluctuations measured in magnetic field B with increasing ∆z
for sample2 A and B, respectively. A smooth background in B is subtracted
for each ∆z. (e,f) The same as (c,d) for decreasing ∆z. The mechanical
hysteresis of the bending setup is indicated with filled gray boxes. The green
arrows show the bending direction. Parallel dashed lines are guide to the eye.
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Similar results are found for decreasing ∆z, as shown in Fig. 7.3(e,f), where
the mechanical hysteresis can also be seen.

As introduced in section 2.2.4, the CF originate from quantum interference
between different trajectories of the charge carriers. The interference can be
tuned by different means, such as by changing the charge carrier wavelength, by
altering the trajectories, or by adding a phase. In graphene, the charge carrier
wavelength can be tuned by shifting the Fermi level with an electric gate. A
strain-induced scalar potential can also shift the Fermi level in graphene [44,
86, 92], therefore strain can in principle tune the CF via the mechanism of
changing the charge carrier wavelength. However, the scalar potential here is so
small that its effect on the CF is negligible, as can be seen in the measurements
of CF in Vg shown in the appendix D. The period of the CF in Vg is on the
order of 100 mV, while the achieved scalar potential corresponds to the order
of 10 mV. Therefore, the large change of CF in B cannot be attributed to
strain-induced scalar potential.

Another way to tune the CF is to change the trajectories of the charge
carriers, which can be realized by changing the disorder in graphene or by
applying a perpendicular magnetic field that bends the trajectories of the
charge carriers. Strain can induce a PMF that acts on the orbital motion
of the charge carriers [44–46, 86, 202]. In Sample2 A, however, a uniform
strain field is expected which does not result in a global PMF. It has been
shown in chapter 6 that local random strain fluctuations are present even
in encapsulated graphene devices and such strain fluctuations can be tuned
by the global strain. Although the mobility value extracted from the global
transport is not limited by strain fluctuations in such high mobility devices,
local effects of changing strain fluctuations can still be present, such as altering
the scattering paths. With this mechanism, the CF are expected to change
in a random manner. We therefore tentatively attribute the strain-tuning of
the CF in Sample2 A (see Fig. 7.3(c,e)) to the modification of local strain
fluctuations which is effectively like changing the disorder in graphene.
For Sample2 B, a clear directional shift of all the CF features is observed with

increasing ∆z instead of a random change, as shown in Fig. 7.3(d). The parallel
dashed lines are guides to the eye. The trapezoidal geometry of this device is
designed for generating a strain gradient which leads to a fairly homogeneous
global PMF [44]. From the total shift of the CF features in Fig. 7.3(d), a
global PMF of ∼10 mT could be extracted, which matches very well the value
estimated from Raman measurements for a similar device in chapter 5. Before
we attribute the CF shift to a strain-induced PMF, there is one problem to
be solved. If the phase coherent paths of the charge carriers would be valley
degenerate, one would expect a splitting of the CF features instead of a single
shift because the PMF has an opposite sign for the two valleys [21, 44, 93,
214]. Here we argue with the local strain fluctuations which generates small
PMFs locally [197]. Due to the opposite sign for the two valleys, the local
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7.5. Strain effects in transverse magnetic focusing

PMFs should lead to a separation of charge carriers with different valleys
during the scattering process, making the possible trajectories for each charge
carrier valley polarized. The preservation of the valley degree of freedom is a
fair assumption here, because the intervalley scattering time in high mobility
devices is much longer than the elastic scattering time [67]. The CF shown in
Fig. 7.3(d) is very regular in B, which might originate from a single dominating
Aharonov-Bohm like scattering loop in the simplest picture. From the CF
period B0 ≈ 15 mT in an external magnetic field, a characteristic loop size of
l =

√
Φ0/B0 ≈ 500 nm can be extracted, where Φ0 = h/e is the magnetic

flux quantum. A mean free path of lmfp ≈ 100 nm is calculated with lmfp =
2D/vF, where D ≈ 0.05 m2 s−1 is the diffusion constant4 at the density the
CF are measured and vF ≈ 1× 106 m s−1 is the Fermi velocity. A phase
coherence time of τφ ≈ 13 ps is extracted from the autocorrelation of the
CF [215], leading to a phase coherence length of lφ =

√
Dτφ ≈ 800 nm, which

makes our interpretation with a single Aharonov-Bohm like loop plausible.
The strain gradient induced global PMF induces an additional phase to the
valley polarized Aharonov-Bohm loop, which shifts the CF in one direction.
For decreasing ∆z the CF shift is reversible, as shown in Fig. 7.3(f). We find
the features become less regular, the exact reason for that is not clear. We
speculate that it might be caused by the distortion of the single Aharonov-
Bohm like loop during the reversed process.

7.5. Strain effects in transverse magnetic focusing

Transverse magnetic focusing (TMF) has been used to study the Fermi surface
of metals [74], semiconductor heterostructures [216], mono-, bi-and tri-layer
graphene [69], as well as graphene superlattice [70]. Here, we use TMF as
a spectroscopy tool to investigate in situ strain-induced changes in the band
structure of graphene.
To study TMF, we fabricated multi-terminal encapsulated graphene devices.

The four-terminal resistance of the investigated device as a function of gate
voltage is shown in Fig. 7.4. The resistance peak around the CNP becomes
sharper with increasing ∆z, suggesting a carrier mobility enhancement with
strain, which is discussed in chapter 6. The field-effect mobility of this device
is ∼60 000 cm2 V−1 s−1. A shift of the CNP due to the strain-induced scalar
potential is also observed, as shown in the right inset of Fig. 7.4.
The measurement configuration for TMF is shown in the left inset of Fig. 7.4,

where a current is injected from contact C4 while contact C2 is on ground. A
non-local resistance RNL is calculated by normalizing the probed voltage VC3C1

between contact C3 and C1 by the injected current IC4C2 . The maps of RNL

4Estimated using the Einstein relation σ = e2ρ(EF)D, where ρ(EF) = 2
√
n/(
√
π~vF) is

the density of states for monolayer graphene
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2 µm

L 
V

Sample3 B

c1

c3 c4

c2

c5

Figure 7.4. Four-terminal resistance and device scheme. Four-
terminal resistance Rxx measured as VC3C4/IC1C2 for different ∆z. The inset
on the right shows the zoom-in to the CNP, where the strain induced scalar
potential is observed. The inset on the left shows the measurement scheme for
TMF, where current IC4C2 is injected from contact C4 into graphene and the
non-local voltage VC3C1 is measured. L = 1.5 µm and the width of the side
contacts is ∼500 nm.

as a function of Vg and B for different ∆z are shown in Fig. 7.5. The top insets
show representative trajectories for each TMF mode. The first mode (middle
inset) originates from charge carriers propagating directly from the injector to
the collector and for the second mode (right inset) charge carriers reflect once
at the edge before reaching the collector. There is another mode (left inset) in
the region with opposite magnetic field, which corresponds to a small portion
of the charge carriers reflecting once at the big tilted contact C2 on the right
before reaching the collector. For electrons (n-doping), the first and second
TMF modes occur in positive B region, while for holes (p-doping) they appear
in negative B region due to the opposite sign of the charge carriers.
For charge carriers in a system with a circular Fermi surface, the magnetic

field, Bf, required to focus them at a distance of L is given by [74]

B
(N)
f =

(2~kF

eL

)
N, (7.2)

where N = 1, 2, 3... is the mode number, ~ is the reduced Planck constant,
e is the elementary charge and kF is the Fermi wave vector. This relation
also holds for graphene [69], where kF =

√
4πn/gsgv with n being the carrier

density and gs = gv = 2 being the spin and valley degeneracies respectively.
The carrier density n can be tuned by the gate voltage Vg with the relation
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∆z = 0.6 mm

∆z = 0.2 mm

∆z = 0.4 mm

∆z = 1.0 mm∆z = 0.8 mm

∆z = 0

(a) (b)

(c) (d)

(e) (f)

Figure 7.5. TMF maps for different strain. Non-local resistance RNL =
VC3C1/IC4C2 is measured as a function of gate voltage Vg and out-of-plane
magnetic field B for different ∆z. TMF peaks from different modes can be
observed, with the top insets showing representative trajectories for each mode.
Dashed lines for the first mode are fits according to Eq. 7.3 and dashed lines
for the second mode are calculated from the first mode.
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7. Strain effects in transport experiments

n = α(Vg − VCNP), where α is the lever arm and VCNP is the position of the
CNP. We can then fit the position of the first TMF mode in the maps shown
in Fig. 7.5 with

Bf =
2~
√
πα(Vg − VCNP)

eL
+B0, (7.3)

where B0 is an offset in magnetic field that might, for example, arise from
trapped flux in the magnet.
As can be seen in the maps, the TMF features change substantially with

increasing ∆z. First, the overall amplitude of the signal increases with ∆z.
A line cut for each map at Vg = 6 V is shown in Fig. 7.6(a), where a clear
shift of the TMF peaks with increasing ∆z is also observed in addition to
the amplitude increase. The amplitude value Rpeak and the position Bpeak
in magnetic field of the first TMF peak are plotted as a function of ∆z in
Fig. 7.6(b) and (c), respectively. The amplitude increase can be understood
with the mobility enhancement, which makes the system more ballistic and
therefore enables more charge carriers to reach the collector, leading to an
increase of the focusing amplitude. However, the shift of the focusing peaks
in magnetic field cannot be explained by this mechanism. In the following
we analyze the peak shift in detail by fitting the peak position of the first
TMF mode with Eq. 7.3. The peak position of the second TMF mode can be
calculated with Eq. 7.2 using the same parameters.

We consider different possibilities how strain could change Eq. 7.3. First,
strain can induce a scalar potential that shifts the CNP. From Fig. 7.4, VCNP
is estimated to be ∼0.15 V and ∼0.11 V for ∆z = 0 and 1.0 mm, respectively.
We fitted with both values and found the effect of such a small shift in VCNP
to be negligible, therefore in the following we fix VCNP = 0.15 V for the fitting.
The second quantity that strain could change is the distance L. We then use
a fixed lever arm α = 2.73× 1015 m−2 V−1 and fit the peaks for different ∆z
with L and B0 as fitting parameters. This lever arm is extracted from a plate
capacitor model, which matches very well the one extracted from quantum Hall
measurements in a nearby square device from the same hBN/graphene/hBN
stack. The third possibility could be that strain changes the lever arm α
instead of the distance L. For this possibility, we fix L = 1.5 µm and fit the
peaks with α and B0 as fitting parameters for different ∆z. This distance
L = 1.5 µm is the center-to-center distance between the injector and collector
contacts by design.
The fitting results for L and α are presented as a function of ∆z in Fig. 7.6(d).

For fixed α, the fitted distance L decreases from ∼1.95 µm to ∼1.53 µm when
∆z is increased from 0 to 1.0 mm (red data points). Such a change in L is im-
possible in the experiments, because that would corresponds to a compressive
strain of ∼21.5 % which is in stark contradiction to the Raman measurements
discussed in chapter 5. Therefore, this possibility is ruled out. For fixed
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Figure 7.6. Analysis of strain effects in TMF. (a) Cuts at Vg = 6 V
of the maps shown in Fig. 7.5. (b,c) Peak value of RNL and peak position in
B for the first TMF mode in (a) as a function of ∆z. (d) Fitting results for
L with a fixed lever arm α = 2.73× 1015 m−2 V−1 (red) or for α with a fixed
L = 1.5 µm (blue) as a function of ∆z. (e) Fitting results for offset magnetic
filed B0 as a function of ∆z. Error bars are the standard error from fitting.
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L, the fitted lever arm α increases from 1.62× 1015 m−2 V−1 at ∆z = 0 to
2.62× 1015 m−2 V−1 at ∆z = 1.0 mm (blue data points). We could not find
any mechanism accounting for such a large change in the lever arm. It has
been shown in section 5.4.6 that the gate capacitance does not change with
∆z, clearly in contrast to the extracted values. Therefore the possibility of
lever arm change is also ruled out.
Equation 7.3 is based on kF =

√
πn, which only holds for a circular Fermi

surface. It has been shown theoretically that strain can make the Fermi veloc-
ity anisotropic and deforms the Fermi surface from a circle in graphene [90, 97],
and a position-dependent Fermi velocity induced by strain can affect local
probe experiments [94]. Therefore, one possible explanation of the strain-
induced position change of the TMF peaks could be the strain-induced modi-
fication of the Fermi velocity and thus of the relation kF =

√
πn. A theoretical

model is needed to analyze this possibility quantitatively.
The fitting results for the offset magnetic field B0 are the same for either

fixed α or fixed L, which surprisingly shows a systematic decrease with ∆z,
as shown in Fig. 7.6(e). The shift of B0 is on the same order as the PMF
extracted from CF experiments in Fig. 7.3(d). However, different from CF,
we cannot argue for valley polarized charge carries here because Eq. 7.3 for
TMF includes valley degeneracy. An interpretation invoking PMF here would
be inconsistent with theoretical predictions that the PMF has opposite sign
for different valleys [21, 44, 93, 214].

All the above mentioned strain effects in TMF experiments are reversible
with decreasing ∆z. Similar effects are observed for a second device. Further
theoretical investigations are needed to fully understand the position change
of the TMF peaks with strain.

7.6. Strain effects in quantum Hall regime

After studying strain effects in measurements with small magnetic fields, we
increase the magnetic field and investigate strain effects in the quantum Hall
regime. Devices of both geometry types are studied and distinct strain ef-
fects are observed. For square devices, only strain-induced scalar potential is
observed while peculiar strain effects are observed for trapezoidal devices.

7.6.1. Square devices
The two-terminal differential conductance of a square device (Sample1 A) as
a function of gate voltage at three different quantizing magnetic fields are
presented in Fig. 7.7(a) for different ∆z. Various quantum Hall plateaus are
observed but no significant strain effects can be seen on this scale. The plateaus
on the hole side are not well developed (not shown) due to the p-n junction near
the contacts or the double moiré effect. On the electron side, the ν = 1 plateau
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Sample1 A

Figure 7.7. Square device in quantum Hall regime. (a) Two-terminal
differential conductance of Sample1 A as a function of gate voltage at different
magnetic fields for different ∆z. (b) Zoom-in to a small region for ∆z = 0 and
∆z = 0.8 mm. (c) The same as in (b) with the ∆z = 0.8 mm curves shifted
by 8 mV in Vg. Scale bar: 2 µm.
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is already well developed at B = 2 T, suggesting a very high device quality.
At B = 8 T, even ν = 2/5, 4/3, 7/3... fractional states are observed [185–
187, 217, 218]. The exact fraction of these states can be determined from the
measurement of longitudinal magnetoresistance Rxx, where a Hall bar or a
Corbino geometry is needed [187, 217, 218].
A zoom-in to a small region is shown in Fig. 7.7(b), where a shift of the

plateaus in Vg is observed with increasing ∆z. In Fig. 7.7(c), the curves at
∆z = 0.8 mm (red) are shifted by 8 mV in Vg, which are then identical to the
curves at ∆z = 0 (blue). This effect matches very well the one observed at
zero magnetic field shown in section 7.3, and is attributed to the development
of a strain-induced scalar potential. Similar results are observed on two other
square devices fabricated from different stacks.

7.6.2. Two-terminal trapezoidal devices
In Fig. 7.8, the two-terminal differential conductance of two trapezoidal devices
in different magnetic fields is plotted as a function of gate voltage for different
∆z. The hole side is not shown because the conductance is suppressed due
to contact doping induced p-n junction and no well developed quantum Hall
plateaus are observed. Curves of smaller magnetic fields are shifted upwards
sequentially by e2/h for clarity. Both devices show surprisingly large effect of
strain on the conductance that cannot be explained by a global scalar potential.
The field-effect mobility of Sample2 B2 is ∼65 000 cm2 V−1 s−1, which does

not show a significant enhancement with increasing ∆z (not shown). A strain-
induced scalar potential is observed at zero magnetic field (not shown) and
is comparable to that observed for square devices. In Fig. 7.8(a), all plateau
values do not change with ∆z, suggesting that the contact resistance does not
change with strain. At B = 2 T, strain does not affect the plateaus while
at higher magnetic field the situation starts to change. At B = 4 T, the
ν = 2 and ν = 6 plateaus become shorter with increasing ∆z, but their onsets
stay unchanged. Strain changes the transition between these two plateaus
significantly and helps the broken symmetry states to develop. The ν = 3
plateau becomes more visible with increasing ∆z. When the magnetic field
is increased to higher values, the strain effects become more pronounced, and
the ν = 0 and ν = 1 plateaus appear but do not show strain dependence.
Apparently, the strain-induced scalar potential, which would cause a shift of
the whole curve in Vg, cannot explain the observed effects. For the quantum
Hall effect, it is commonly believed that localized states induced by disorder
in the bulk can pin the Fermi level between two Landau levels [219, 220], and
thus affect the length of the quantum Hall plateaus in gate voltage. In our
device, disorder due to random strain fluctuations can be reduced by increasing
the global strain, as discussed in chapter 6. Reduced disorder would give less
localized states in the bulk and thus reduce the pinning of the Fermi level
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0.5 1.5

Sample2 B2
(a)

(b) Sample4 B

Figure 7.8. Two-terminal trapezoidal devices in quantum Hall
regime. (a) Two-terminal differential conductance of Sample2 B2 as a func-
tion of gate voltage at different magnetic fields for different ∆z. (b) The same
as (a) for Sample4 B. Curves of smaller magnetic fields are shifted sequentially
by e2/h for clarity. Scale bars: 2 µm.
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and lead to a shorter quantum Hall plateau in Vg at a fixed magnetic field, in
agreement with our observations for the ν = 2 and ν = 6 plateaus shown in
Fig. 7.8(a). However, this mechanism should affect all plateaus the same way,
which is not the case in the experiments.

Another possible interpretation could be the strain-induced PMF (Bps),
which acts on the two valleys with opposite sign. In the presence of an external
magnetic field B, charge carriers of one valley, say the K valley, would experi-
ence an effective magnetic field of B+Bps while those of the other valley would
experience B−Bps. Since the Landau level (LL) degeneracy is proportional to
the magnetic field as introduced in section 2.2.5, a strain-induced PMF would
then lead to a different number of states in the LLs with different valley indices.
A change in the LL degeneracy at a fixed external magnetic field may manifest
as a change of the quantum Hall plateau length in Vg, in agreement with our
observations in the measurements shown in Fig. 7.8 qualitatively. However,
there are several problems that make the quantitative analysis difficult. First,
disorder can also affect the plateau length as discussed above, which cannot
be fully ruled out. Second, in the broken symmetry regime, where the spin
and valley degeneracies are lifted by interactions [221–223], the valley index
of each state is not yet clear. In a recent spin-wave measurements [224], a
valley sequence different from that determined from earlier tilted field magne-
totransport measurements [81] and selective equilibration measurements [225]
was invoked to explain their findings. Third, different devices show different
strain effects in our experiments, as can be seen later for Sample4 B and Sam-
ple3 B. Furthermore, compared to the quantizing external magnetic field, the
global PMF can be achieved in our devices is rather negligible (on the order
of 10 mT) as discussed previously, which is unlikely to be responsible for such
big changes on the quantum Hall plateaus.
The quality of Sample4 B is not very high with a field-effect mobility

of ∼15 000 cm2 V−1 s−1, which shows an enhancement with increasing ∆z
(not shown here). The strain effect in the quantum Hall regime is shown
in Fig. 7.8(b), where the plateaus are not as regular as those in Sample2 B2.
The ν = 1 plateau does not show any strain dependence, the same as in
Sample2 B2. The ν = 2 state shows an extremely long plateau in Vg, which
becomes even longer with increasing ∆z, in stark contrast to that in Sample2
B2. A closer inspection of the curves at B = 8 T shows that a new plateau ap-
pears after the ν = 2 plateau at higher ∆z. Although a mobility enhancement
with strain is observed for this device, the strain effects on the quantum Hall
plateaus cannot be attributed to this mechanism because the ν = 2 plateau
becomes longer, instead of shorter, with increasing ∆z.
All the strain effects presented above are reversible for decreasing ∆z. In the

following we present quantum Hall measurements on a multi-terminal device,
which provides more information, and more discussion is given there.
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7.6.3. Multi-terminal trapezoidal devices

The multi-terminal device studied here is the one used for TMF studies in sec-
tion 7.5. In Fig. 7.9(a,b), the two-terminal differential conductance G and the
Hall conductance Gxy at B = 2 T are plotted as a function of gate voltage for
different ∆z, respectively. Better defined quantum Hall plateaus are observed
on the electron side for G while Gxy shows more pronounced plateaus on the
hole side. The values of the well developed quantum Hall plateaus match very
well the theoretical values for graphene, especially for Gxy at ∆z = 1.0 mm.
The strain effects here are really remarkable and are different from those ob-
served in Sample2 B2 and Sample4 B. It is really surprising that more quantum
Hall plateaus appear with increasing ∆z for both cases, as if the curves were
rescaled on the Vg axis. The plateaus in G become shorter and the plateaus in
Gxy become better defined for larger ∆z, which can be understood with the
mobility enhancement shown in Fig. 7.4.
The classical Hall effect at small magnetic fields for different ∆z is shown

in the appendix D, which is usually used to extract the carrier density and
the gate lever arm [10]. Relying on that, it seems the lever arm increases
by a factor of three when ∆z is increased from 0 to 1.0 mm, which can also
be seen approximately from the slope of the curves in Fig. 7.9(b). However,
such a large increase of the lever arm with ∆z is not physical, as discussed
previously in the TMF experiments. Furthermore, this effect is not observed
in the two-terminal differential conductance, see appendix D. More discussion
on the lever arm is also presented there.
We speculate that the trapezoidal geometry complicates the Hall measure-

ments. It has been shown in a numerical study that a tilted graphene p-n
junction can make the charge and current density larger along one side of the
graphene sheet due to Klein tunneling [226], generating an artificial Hall ef-
fect. As discussed in section 7.3, p-n junctions do exist near the contacts in
our devices. The tilted contacts of the trapezoidal devices construct exactly
the scenario described in Ref. [226]. The irregular features in the Gxy mea-
surements shown in Fig. 7.9(b) might be related to this mechanism, especially
for small ∆z. Although this complication makes the analysis more difficult, it
cannot explain the huge strain effects observed here because it is unlikely that
the p-n junctions vanish with the small applied strain in our devices.
In Fig. 7.10, the measurements at B = 9 T are shown. Apart from the

strain effects similar to those at B = 2 T, there is one more finding. The ν = 1
plateau length in Vg shown in Fig. 7.10(a) first becomes shorter with increasing
∆z and vanishes at ∆z = 0.8 mm, and then reappears at ∆z = 1.0 mm, which
is in stark contrast to the constant ν = 1 plateau for the devices shown in
Fig. 7.8. At a fixed external magnetic field, strain-induced PMF can modify
the Landau level energies. As discussed before, however, the small PMF alone
might not be possible to explain the large effect here. Since the ν = 1 plateau
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2 µm

c1

c3 c4

c2

c5

Figure 7.9. Quantum Hall effect of Sample3 B at B = 2 T. (a) Two-
terminal differential conductance G = IC1C2/VC1C2 of Sample3 B as a function
of gate voltage at B = 2 T for different ∆z. (b) Gxy = IC1C2/VC3C5 measured
at the same time.
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Figure 7.10. Quantum Hall effect of Sample3 B at B = 9 T. The same
as Fig. 7.9 for B = 9 T.
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7. Strain effects in transport experiments

arise from the strong Coulomb interactions [81], to fully understand the strain
effect on this plateau might need to include the strain effect on the interactions,
where further theoretical investigations are required.

All the above strain effects are reversible for decreasing ∆z. Similar results
are found for a second multi-terminal device.

7.7. Conclusion and outlook

In conclusion, we have shown strain effects in various transport experiments,
some of which are understood and some need further experimental and theo-
retical investigations for a thorough understanding. A strain-induced constant
shift of the conductance curves in Vg is attributed to a scalar potential, from
which an extracted strain value matches very well the Raman measurements.
A comparison of conductance fluctuations measurements between a square de-
vice and a trapezoidal device gives hints for a strain-induced PMF, the magni-
tude of which is consistent with the one estimated from Raman measurements
and FEM analysis. In the TMF measurements, several strain effects are ob-
served. First, the magnitude increase of the focusing peaks with strain we ten-
tatively attribute to a mobility enhancement by reducing strain fluctuations.
Second, the systematic shift of the offset magnetic field B0 with strain might
be related to PMF. Furthermore, a strain-induced position change of the focus-
ing peaks in magnetic field is observed, which might has to do with the Fermi
velocity renormalization in strained graphene. In the quantum Hall regime,
a clear difference between the square devices and the trapezoidal devices is
found. For square devices, no further strain effects are observed except for the
scalar potential. In contrast, surprisingly large and complex strain effects are
found for trapezoidal devices, where the data are still under discussion.

For future experiments, multi-terminal square/rectangular devices would
provide more information about the strain effects in TMF measurements and
also help to understand the strain effects in quantum Hall regime. Low-
temperature Raman spectroscopy measurements would be useful to determine
the actual strain in the devices. A scanning technique to map the charge car-
rier distribution in the devices would be helpful to understand the implication
of the geometries. Furthermore, theoretical studies of strain effects on inter-
actions in graphene would also help to interpret the observed strain effects.
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8 Super-superlattice in doubly aligned
hBN/graphene/hBN heterostructures1

The specific rotational alignment of two-dimensional lattices results in a moiré
superlattice with a larger period than the original lattices and allows one to
engineer the electronic band structure of such materials. So far, transport
signatures of such superlattices have been reported for graphene/hBN and
graphene/graphene systems. In this chapter, we report moiré superlattices
in fully hBN encapsulated graphene with both the top and the bottom hBN
aligned to the graphene. In the graphene, two different moiré superlattices
form with the top and the bottom hBN, respectively. The overlay of the
two superlattices can result in a third superlattice with a period larger than
the maximum period (14 nm) in the graphene/hBN system, which we explain
in a simple model. This new type of band structure engineering allows one
to artificially create an even wider spectrum of electronic properties in two-
dimensional materials.2

1This chapter has been published in a similar form in Ref. [180]. c© 2019 American
Chemical Society

2Illustration of multiple moiré superlattices, prepared by Ming-Hao Liu.
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8. Super-superlattice in doubly aligned hBN/graphene/hBN heterostructures

8.1. Introduction

Superlattice (SL) structures have been used to engineer electronic properties of
two-dimensional electron systems for decades [227–234]. Due to the peculiar
electronic properties of graphene [21], SLs in graphene are of particular in-
terest [126, 235–240] and have been investigated extensively utilizing different
approaches, such as electrostatic gating [241–243], chemical doping [244], etch-
ing [245–247], lattice deformation [248] and surface dielectric patterning [249].
Since the introduction of hBN as a substrate for graphene electronics [136],
moiré superlattices (MSLs) originating from the rotational alignment of the
two lattices have been first observed and studied by STM [122, 124, 125]. It
then triggered many theoretical [123, 127, 250, 251] and experimental studies,
where secondary Dirac points [35–37], the Hofstadter Butterfly [35–39], Brown-
Zak oscillations [35, 252], the formation of valley polarized currents [99] and
many other novel electronic device characteristics [70, 211, 253–257] have been
observed.

Recently, another interesting graphene MSL system has drawn considerable
attention – twisted bilayer graphene, where two monolayer graphene sheets
are stacked on top of each other with a controlled twist angle. For small
twist angles, insulating states [258], strong correlations [259] and a network of
topological channels [260] have been reported experimentally. More strikingly,
superconductivity [40, 261] and Mott-like insulator states [41, 261] have been
achieved, when the twist angle is tuned to the so-called “magic angle”, where
the electronic band structure near zero Fermi energy becomes flat, due to the
strong interlayer coupling.
So far, MSL engineering in graphene has concentrated mostly on MSLs based

on two relevant layers (2L-MSLs). The formation of graphene/hBN 2L-MSLs
has been introduced in section 2.4, where the modification of graphene band
structure and the signature of such MSLs in transport measurements are also
discussed. In fully encapsulated graphene, there are two graphene/hBN inter-
faces, namely at the top and at the bottom, which can result in a much richer
and more flexible tailoring of the graphene band structure. Due to the 1.8%
larger lattice constant of hBN, the largest possible moiré period that can be
achieved in graphene/hBN systems is limited to about 14 nm [122], which oc-
curs when the two layers are fully aligned. This situation changes when both
hBN layers are aligned to the graphene layer. Here, we report for the first
time the observation of a new MSL which can be understood by the overlay
of two 2L-MSLs that form between the graphene monolayer and the top and
bottom hBN layers of the encapsulation stack, respectively. In the transport
measurements, we demonstrate that MSL with a period longer than 14 nm
can indeed be obtained in doubly aligned hBN/graphene/hBN heterostruc-
tures, coexisting with the graphene/hBN 2L-MSLs. These experiments are in
good agreement with a simple model for the moiré periods for doubly aligned
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8.2. Moiré superlattices illustration

hBN/graphene/hBN devices.

8.2. Moiré superlattices illustration

The formation of multiple MSLs is shown schematically in Fig. 8.1, when both
hBN layers are considered . On the right side of the illustration, only the
top hBN (blue) and the graphene (black) are present, which form the top 2L-
MSL with period λ1. The bottom hBN (red) forms the bottom 2L-MSL with
graphene, shown on the left with period λ2. In the middle of the illustration
all three layers are present and a new MSL (3L-MSL) forms with a longer
period, indicated with λ3. The influence of the MSL can be modeled as an
effective periodic potential with the same symmetry. The periodic potentials
for the top 2L-MSL and the bottom 2L-MSL are calculated following the model
introduced in Ref. [122], shown as insets in Fig. 8.1. To calculate the potentials
for the 3L-MSL, we sum over the periodic potentials of the top 2L-MSL and
the bottom 2L-MSL. The period of the 3L-MSL from the potential calculation
matches very well the one of the lattice structure in the illustration.

θ1θ2

φ2

φ1

λ3 λ1

λ2

Figure 8.1. Multiple moiré superlattices. Illustration of three different
MSLs formed in a hBN/graphene/hBN heterostructure. Blue, black and red
hexagonal lattices represent top hBN, graphene and bottom hBN lattices, re-
spectively. φ1 (φ2) is the twist angle between top (bottom) hBN and graphene.
θ1 (θ2) indicates the orientation of the corresponding MSL with respect to
graphene. The resulting moiré periods are indicated with λ1,2,3. The 3L-MSL
(middle part) has a larger period than both 2L-MSLs (left and right parts).
Insets: moiré potential calculations.
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8. Super-superlattice in doubly aligned hBN/graphene/hBN heterostructures

8.3. Transport experiments and results

Transport measurements with and without magnetic field were performed at
4.2 K using standard low-frequency lock-in techniques.

8.3.1. Device fabrication
We fabricated fully encapsulated graphene devices with both the top and the
bottom hBN layers aligned to the graphene, as described in section 3.1. We
estimate an alignment precision of ∼1◦. The schematic cross section of the
devices is shown in Fig. 8.2(a). A global metallic bottom gate is used to tune
the charge carrier density n, and one-dimensional Cr/Au edge contacts are
used to contact the graphene [138]. An optical image of one device and the
measurement scheme is shown Fig. 8.2(b).

Cr/Au

substrate

hBN/Gr/hBN

2 µm

S

Vg

Vbias ID

gate

~

(a) (b)

Figure 8.2. Device and measurement scheme. (a) Schematic cross
section of the device. (b) Optical image of one measured device and sketch of
experimental setup. ‘S’ and ‘D’ are the source and drain contacts, respectively.

8.3.2. Zero magnetic field measurements
The two-terminal differential conductance, G, of one device is plotted as a
function of n in Fig. 8.3. The charge carrier density n is calculated from the
gate voltage using a parallel plate capacitor model. The average conductance
is lower on the hole side (n < 0) than on the electron side (n > 0), which
we attribute to n-type contact doping resulting in a p-n junction near the
contacts. The sharp dip in conductance at n = 0 is the main Dirac point
(MDP) of the pristine graphene. Our device shows a large field-effect mobility
of ∼90 000 cm2 V−1 s−1, extracted from a linear fit around the MDP. The
residual doping is of the order δn ≈ 1× 1010 cm−2, extracted from the width
of the MDP. In addition to the MDP, we find two pairs of conductance minima
symmetrically around the MDP at higher doping, labeled A and C, which we
attribute to two MSLs. The minima on the hole side are more pronounced
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8.3. Transport experiments and results

than their counterparts on the electron side, similar to previously reported
MSLs [35–37, 122].
Based on the simple model of periodic potential modulation [122, 126, 127],

superlattice Dirac points (SDPs) are expected to form at the superlattice Bril-
louin zone boundaries at k = G/2, where |G| = 4π/(

√
3λ) is the length of

the superlattice wavevector and λ the moiré period. For graphene, k is related
to n by k =

√
πn. The position of the SDPs in charge carrier density for

a given period λ is then ns = 4π/(3λ2). The pair of conductance minima
at nsA ≈ ±2.4× 1012 cm−2 can be explained by a graphene/hBN 2L-MSL
with a period of about 13.2 nm. However, the pair of conductance minima at
nsC ≈ ±1.4× 1012 cm−2 cannot be explained by a single graphene/hBN 2L-
MSL, since it corresponds to a superlattice period of about 17.3 nm, clearly
larger than the maximum period of ∼14 nm in a graphene/hBN moiré system.
We attribute the presence of the conductance dips at nsC to a new MSL that
is formed by the three layers together: top hBN, graphene and bottom hBN.
This 3L-MSL can have a period considerably larger than 14 nm.

30
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G
 (e

2 /h
)

-3 -2 -1 0 1 2

n (10
12
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-2

)

12 13.2 17.3 30 inf 30 17.3 13.2

λ  (nm)

A C

A
C

Figure 8.3. Two-terminal differential conductance. G plotted as a
function of charge carrier density n. In addition to the MDP, there are 4
other conductance minima at nsA ≈ ±2.4× 1012 cm−2 (green dashed lines)
and nsC ≈ ±1.4× 1012 cm−2 (blue dashed lines), respectively. The top axis
shows the moiré periods λ =

√
4π/3ns. The red dashed lines indicate the

longest period (lowest density) for a graphene/hBN MSL.

8.3.3. Quantum Hall measurements
To substantiate this claim, we now analyse the data obtained in the quantum
Hall regime. Figure 8.4(a) shows the Landau fan of the same device, where
the numerical derivative of the conductance with respect to n is plotted as a
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function of n and the out-of-plane magnetic field B. Near the MDP, we observe
the standard quantum Hall effect for graphene with plateaus at filling factors
ν ≡ nh/(eB) = ±2,±6,±10, ..., with h the Planck constant and e the electron
charge. This spectrum shows the basic Dirac nature of the charge carriers
in graphene. The broken symmetry states occur for B > 2 T, suggesting
a high device quality. Around the SDPs at nsA ≈ ±2.4× 1012 cm−2, the
plot also shows filling factors ν ≡ (n − nsA )h/(eB) = ±2,±6, ..., consistent
with previous graphene/hBN MSL studies [35]. Around the SDPs at nsC ≈
±1.4× 1012 cm−2, there are also clear filling factors fanning out on the hole
side with ν ≡ (n−nsC )h/(eB) = ±2, which is consistent with a Dirac spectrum
at nsC , while on the electron side the corresponding features are too weak to
be observed. In addition, lines fanning out from a SDP located at density n <
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34
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B

Figure 8.4. Landau fan diagram. (a) dG/dn as a function of n and B
of the same device. Filling factors fan out from all DPs, except for the blue
one on the electron side, and are indicated on top of the diagram, calculated
as ν ≡ nh/(eB), where n is counted from each DP. (b) Zoom-in on the left
side of (a). There are additional lines fanning out from an even higher density
nsB ≈ 5.2× 1012 cm−2, labeled B. The filling factors of these lines are 34, 38,
42, 46 and 50, respectively.

−3× 1012 cm−2 are observed. A zoom-in is plotted in Fig. 8.4(b). The lines
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extrapolate to a density of about −5.2× 1012 cm−2, denoted nsB , with filling
factors ν = 34, 38, 42, 46, ... This density cannot be explained by the “tertiary"
Dirac point occuring at the density of about 1.65nsA , which comes from a
Kekulé superstructure on top of the graphene/hBN MSL [262]. However, nsB

matches the SDP from a MSL with a period of about 9 nm. We therefore
attribute it to a 2L-MSL originating from the alignment of the second hBN
layer to the graphene layer.

8.4. Geometrical analysis

As derived in Ref. [122, 123] and also introduced in section 2.4, the period λ
for a graphene/hBN MSL is given by

λ = (1 + δ)a√
2(1 + δ)(1− cosφ) + δ2

, (8.1)

where a (2.46Å) is the graphene lattice constant, δ (1.8%) is the lattice mis-
match between hBN and graphene and φ (defined for −30◦ to 30◦) is the twist
angle of hBN with respect to graphene. The moiré period is maximum at φ = 0
with a value of λ ≈ 14 nm. This corresponds to the lowest carrier density of
nmin ≈ ±2.2× 1012 cm−2 for the position of the SDPs (red dashed lines in
Fig. 8.3). The orientation of the MSL is described by the angle θ relative to
the graphene lattice,

tan θ = − sinφ
(1 + δ)− cosφ. (8.2)

For the graphene/hBN system, one finds |θ| . 80◦ [122]. These two equations
describe the top 2L-MSL and the bottom 2L-MSL, as shown schematically in
Fig. 8.1. The functional dependence of λ and θ on φ is shown in section 2.4.

8.4.1. Geometrical analysis for super-superlattice
In a fully encapsulated graphene device, not only one, but both hBN layers can
be aligned to the graphene layer so that two graphene/hBN 2L-MSLs can form.
In this case, the potential modulations of the two 2L-MSLs are superimposed
and form a MSL with a third periodicity. The values of the resulting periods
can be understood based on Fig. 8.5. The vectors ~g, ~b1 and ~b2 denote one of
the reciprocal lattice vectors for the graphene, the top hBN and the bottom
hBN layers, respectively. The twist angle between the top (bottom) hBN and
graphene is denoted φ1 (φ2). Following the derivations in Ref. [122, 123], one
of the top 2L-MSL (bottom 2L-MSL) reciprocal lattice vectors ~k1 (~k2) is given
by the vector connecting ~g to ~b1 (~b2). The moiré period λ1,2 is then given by
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λ1,2 = 4π/
√

3
∣∣~k1,2

∣∣, which is explicitly described by Eq. (8.1) as a function of
the twist angle φ1,2. Since the reciprocal lattices of the top 2L-MSL and the
bottom 2L-MSL are triangular, the same as those for graphene and hBN, we
can use the same approach to derive the 3L-MSL, which is described by the
vector connecting ~k2 to ~k1, denoted ~k3. The 3L-MSL period is then given by
λ3 = 4π/

√
3
∣∣~k3
∣∣.

(a) (b)

φ2
φ3

k3

k1

k2b2

b1
g

φ1 φ2

k3
k1

k2

b1

b2
g °N*60

φ1 φ3

Figure 8.5. Geometrical analysis. (a) Schematics in reciprocal space for
the formation of different MSLs, where ~g,~b1,~b2,~k1,~k2 and ~k3 are one of the
reciprocal lattice vectors for graphene, top hBN, bottom hBN, top 2L-MSL,
bottom 2L-MSL and 3L-MSL, respectively. (b) For the case of twist angle
larger than 30◦. N is an integer, which can be 1, 2, or 3.

In order to calculate λ3 using Eq. (8.1), we first need to find the new a, δ and
φ. Due to symmetry, we only consider φ1 < φ2, so λ2, the smaller period of
the two graphene/hBN 2L-MSLs, becomes the new a and the new δ will then
be given by (λ1 − λ2)/λ2. The new φ, denoted φ3, is determined by |θ1 − θ2|,
where θ1 (θ2) is the relative orientation of the top 2L-MSL (bottom 2L-MSL)
with respect to the graphene lattice, described by Eq. (8.2). Different cases
occur for φ3 due to the 60◦ rotational symmetry of the lattices. Since φ in
Eq. (8.1) is defined for −30◦ to 30◦, we subtract multiples of 60◦ to bring φ3
to this range if it is larger than 30◦, given as

φ3 =


|θ1 − θ2| if 0 < |θ1 − θ2| 6 30◦

|θ1 − θ2| − 60◦ if 30◦ < |θ1 − θ2| 6 90◦

|θ1 − θ2| − 120◦ if 90◦ < |θ1 − θ2| 6 150◦

|θ1 − θ2| − 180◦ if 150◦ < |θ1 − θ2| 6 180◦.

For the first case, the 3L-MSL is effectively the MSL formed by the two hBN
layers, as illustrated in Fig. 8.5(a). Another case is shown in Fig. 8.5(b),
where multiples of 60◦ are subtracted, which is equivalent to choosing another
reciprocal lattice vector for ~k2 so that it makes an angle within ±30◦ with ~k1.
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8.4.2. Period for super-superlattice

All possible values for λ3 are plotted in Fig. 8.6(a), as a function of φ1 and
φ2, by using Eq. (8.1) with the new parameters. Theoretically λ3 varies from
below 1 nm to infinity, but one finds values larger than 14 nm only for small
twist angles, as shown in Fig. 8.6(b). For most angles λ3 is very small, which
explains why MSLs with periods larger than 14 nm have not been reported in
previous studies, where only one hBN layer was aligned intentionally to the
graphene layer.
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Figure 8.6. (a) λ3 plotted as a function of φ1 and φ2 for all possible twist
angles. (b) Zoom-in of (a) for small twist angles. Numbers on the contour
lines indicate the values of λ3 in nm.
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Most of Fig. 8.6(b) can be understood intuitively. On the line of the right
diagonal with φ1 ≡ φ2, we have λ1 = λ2 and θ1 = θ2, therefore φ3 = 0, which
results in λ3 =∞. This case is similar to the twisted bilayer graphene with a
twist angle of 0, which does not form a MSL (or a MSL with infinitely large
period). On the diagonal line in the left part with φ1 ≡ −φ2, one has λ1 = λ2,
but θ1 = −θ2. As |φ1| = |φ2| increases, θ1 = −θ2 evolves. Therefore φ3 can
have non-zero values, resulting in different λ3 values. This case is again similar
to the twisted bilayer graphene, but with a tunable twist angle. Whenever
the difference of the orientation of the top 2L-MSL and the bottom 2L-MSL
becomes multiples of 60◦ (i.e. θ1 = −θ2 = 30◦ or 60◦), the arrangement is
equivalent to the full alignment of the two 2L-MSL due to the 60◦ rotational
symmetry of the MSLs. In this case, φ3 is reset to 0, therefore λ3 diverges,
giving rise to the two maxima, which is equivalent to the diagonal on the right
part. The kinks on the contour lines come from the 60◦ rotational symmetry
of the lattices, where |φ3| = 30◦.

8.4.3. Comparison to measurements

We now compare this simple model to our experiments. From the SDPs at
nsA ≈ ±2.4× 1012 cm−2, we calculate the corresponding moiré period λ1 ≈
13.2 nm and the twist angle |φ1| ≈ 0.34◦. Similarly, for the extrapolated SDP
at nsB ≈ −5.2× 1012 cm−2, we obtain λ2 ≈ 9 nm and |φ2| ≈ 1.2◦. The
two twist angles give us two points in the map in Fig. 8.6(b): ∼17.2 nm for
(0.34◦, 1.2◦) and ∼27.1 nm for (−0.34◦, 1.2◦). The ∼17.2 nm matches very
well the value ∼17.3 nm extracted from the new-generation SDPs at nsC ≈
±1.4× 1012 cm−2 in the transport measurement, which confirms that the new-
generation SDPs come from the 3L-MSL.

8.5. Measurements on a second sample

We fabricated five hBN/graphene/hBN heterostructures in total, two of which
exhibit 3L-MSL features. The fabrication details are given in the appendix E.
Further data from other devices of the first heterostructure and devices of the
second heterostructure, including bilayer graphene devices, are also presented
in the appendix E, which all show similar characteristics. Here, we show the
measurements of a device on the second sample as an example, which has a
3L-MSL with λ3 ≈ 29.6 nm.

The two-terminal differential conductance of a second device is plotted as a
function of n in Fig. 8.7(a). In addition to the MDP, one pair of SDPs appear
symmetrically at n ≈ ±2.9× 1012 cm−2, resulting from a graphene/hBN MSL
with λ ≈ 12 nm and φ ≈ 0.6◦. Another SDP appears at n ≈ −0.48× 1012 cm−2.
There are also filling factors fanning out from this SDP as shown in Fig.8.7(b).
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This density corresponds to a superlattice with λ ≈ 29.6 nm, which we at-
tribute to the 3L-MSL. With these parameters and Fig. 8.6(b), we can deduce
back the parameters of the other graphene/hBN MSL to be φ ≈ 1.1◦ or −1.1◦
and λ ≈ 9.5 nm, corresponding to a density of n ≈ ±4.6× 1012 cm−2. This
twist angle is in good agreement with our alignment precision.

-2      0    2    -10  6 -6  -6  -2   0 -2 2 0    2           6         -6  10    -2     0     2

(a)

(b)

Figure 8.7. Measurements of a second device. (a) Two-terminal differ-
ential conductance G as a function of n. (b) dG/dn as a function of n and B
of the same device. Filling factors are indicated on top of the diagram. The
bending and instability/noise of the filling factors at higher densities is due to
the gate leak.

8.6. Conclusion and outlook

In conclusion, we have demonstrated the emergence of a new generation of
MSLs in fully encapsulated graphene devices with aligned top and bottom
hBN layers. In these devices we find three different superlattice periods, one
of which is larger than the maximum graphene/hBN moiré period, which we at-
tribute to the combined top and bottom hBN potential modulation. Whereas
our model describes qualitatively the densities where these 3L-MSL features
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occur, the precise nature of the band structure distortions is unknown. The
alignment of both hBN layers to graphene opens new possibilities for graphene
band structure engineering, therefore providing motivation for further studies.
Our new approach of MSL engineering is not limited to graphene with hBN,
but applies to two-dimensional materials in general, such as twisted trilayer
graphene, graphene with transition metal dichalcogenides, etc., which might
open a new direction in “twistronics” [263, 264].

Recently, the 3L-MSL feature was reported in another experimental study
as well [265], and was also studied theoretically [266], which agrees well with
our findings.
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9 Summary and Outlook

To summarize, we have successfully developed routes to engineer the elec-
tronic properties of graphene, either by controllable strain or by double moiré
superlattices. A new platform that combines in situ strain tuning and trans-
port experiments was developed. With this platform, various strain effects
were found in different transport measurements at low temperatures. In addi-
tion, we discovered a new generation of moiré superlattices in double aligned
hBN/graphene/hBN heterostructures.
In chapter 5 and Ref. [166], we demonstrated deterministic and reproducible

in situ strain tuning in hBN-encapsulated graphene. Different strain fields
can be achieved by varying the device geometries. Spatially resolved Raman
spectroscopy was used to demonstrate that a fairly homogeneous strain field
was achieved in a rectangular device while a strain gradient was realized with
a trapezoidal device geometry. In first transport experiments, it was shown
that the on-substrate approach avoided the bending-induced gate capacitance
change, which is crucial for studying strain effects in transport experiments.
Although the hBN-encapsulation improves the sample quality significantly,

it does not always result in an exceptionally high carrier mobility. In chapter 6
and Ref. [184], we investigated the influence of random strain fluctuations on
carrier mobility of graphene. We demonstrated an in situ reduction of the
random strain fluctuations in individual encapsulated graphene devices by in-
creasing the average strain. In low-temperature transport measurements, a
substantial enhancement of the carrier mobility was observed while the resid-
ual doping reduced significantly when the average strain was increased in the
graphene. The unambiguous linear correlation between 1/µ and n0 reveals
that random strain fluctuations are the dominant scattering mechanism lim-
iting the mobility in most hBN-supported graphene devices. These findings
were further substantiated by Raman spectroscopy, where a decrease of the 2D
peak linewidth with increasing average strain was observed before the average
strain induced broadening dominated. The absence of mobility enhancement
in devices with ultra higher mobilities implies that either the reduction of ran-
dom strain fluctuations is not possible in such devices, or another scattering
mechanism becomes dominant.
In chapter 7, different strain effects in various transport experiments were

presented and discussed. First, a strain-induced scalar potential was observed,
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which manifested as a constant shift of the conductance curves in gate volt-
age. The extracted strain value from this shift is consistent with the Raman
measurements. In conductance fluctuations measurements, a clear systematic
shift of the fluctuation features in magnetic field was found in a trapezoidal
device, which might be related to a strain-induced pseudomagnetic field. In
transverse magnetic focusing experiments on a trapezoidal device, the mobility
enhancement with strain manifested as a magnitude increase of the focusing
peaks because of the enhanced ballistic transport. A systematic shift of the
whole focusing features in magnetic field with strain was also observed, which
might be associated with the pseudomagnetic field as well. Furthermore, a
significant position change of the focusing peaks in the magnetic field/gate
voltage map with strain was observed, where the Fermi velocity renormaliza-
tion might play a role. So far, a thorough understanding of these effects is
still lacking. Further magnetic focusing experiments with square/rectangular
devices might help to resolve the puzzles. In the quantum Hall regime, the
trapezoidal devices showed a completely different behavior with strain from
that of the square devices. No further strain effects except the scalar potential
were observed for square devices, while dramatic changes of the quantum Hall
plateaus with strain were found for trapezoidal devices. These findings are
not compatible with the simple picture one would expect for pseudomagnetic
field that acts on the two valleys with opposite signs. For future experiments,
a scanning technique that maps the charge carrier distribution in the devices
might help to understand the implication of the geometries. Furthermore,
theoretical investigations of strain effects on electron-electron interactions in
graphene might provide useful information for interpreting the strain effects
on the quantum Hall plateaus.

In fully hBN-encapsulated graphene devices, a new generation of moiré su-
perlattices emerges when both the top and the bottom hBN layers are aligned
to the graphene lattice, which was demonstrated with transport experiments
in chapter 8 and Ref. [180]. Three different superlattice periods were found in
these devices, two of which originates from the alignment of each hBN layer.
The third one has a period larger than the maximum graphene/hBN moiré
period (∼14 nm), which was attributed to the super-superlattice formed by the
other two moiré superlattices. A simple model based on geometrical analysis
was provided to describe the densities where such super-superlattice occur.
The alignment of both hBN layers to graphene allows one to artificially create
an even wider spectrum of electronic properties in graphene.

Outlook

First, our new approach of band structure engineering with super-superlattice
is not limited to graphene with hBN, but applies to 2D materials in general,
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which might open a new direction in “twistronics” [263, 264]. Doubly aligned
heterostructures, such as twisted trilayer graphene or graphene with transition
metal dichalcogenides, might give rise to new physical phenomena.
Second, microscopic corrugations are most likely present in other 2D mate-

rials as well, which leads to random strain fluctuations. If such strain fluctua-
tions limit the carrier mobility in those materials the same way as in graphene,
our method of increasing the mobility by in situ straining might also be appli-
cable in this case.
The Lifshitz transition in bilayer graphene is a transition of the Fermi sur-

face topology from a single circle to four disconnected circles near the charge
neutrality point [84]. It has been predicted that strain can tune the Lifshitz
transition in bilayer graphene [57]. A uniaxial strain of 1% would be enough
to induce observable strain effects [267], which is within the capability of our
straining method.
Furthermore, interesting strain effects have been predicted for graphene de-

vices with superconducting contacts. It has been shown in a theoretical study
that strain can induce a 0 − π transition in a zigzag graphene nanoribbon
Josephson junction [268]. The supercurrent at the charge neutrality point has
been demonstrated theoretically to be strain tunable [269]. The supercur-
rent can even be turned on/off with a cutoff strain, depending on the strain
direction with respect to the crystallographic direction of graphene [270].
Last but certainly not least, our in situ straining method is not limited to

graphene, but also suitable for studying strain effects in other 2D materials
and complex vdW heterostructures.
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A Fabrication Recipes

The fabrication techniques used in this thesis are discussed in chapter 3. This
appendix provides details of the fabrication recipes.

A.1. Fabrication of LOR-based suspended graphene samples

A.1.1. Bottom gate structures

1. Pattern PMMA mask with E-beam (see section A.4.1).

2. Short oxygen plasma to remove resist residues.

3. Evaporation of 5 nm Ti and 40 nm Au.

4. Lift-off in xylene at 80 ◦C, rinse with hexane.

5. Repeat above procedures for deposition of 100 nm MgO as dielectric on
gate structures to avoid gate leaks.

A.1.2. LOR coating and opening for bonding pads

Since wire bonding cannot be done on LOR, the bonding pads need to be de-
posited on SiO2. In order to avoid disconnections between the leads (on LOR)
and the bonding pads (on SiO2), a “stair”-structure needs to be developed in
LOR (See Ref. [142] for more details).

1. Spin coat 600 nm LOR 5A (2200 rpm, 45 s) and bake at 200 ◦C for 15 min.

2. Expose bonding pads with a base dose of 600 µC cm−2 and a stepwise
decrease (steps of 40 µC cm−2) along the direction where the leads are
expected to be.

3. Develop in ethyl-lactate for 2 min, wash thoroughly in xylene at 80 ◦C
using a syringe, rinse in hexane.
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A. Fabrication Recipes

A.1.3. Lithography on LOR
PMMA based E-beam patterning can be performed on top of the LOR with
xylene as the developer and lift-off solvent and hexane as a rinsing solvent.
E-gun evaporation of metallic leads (e.g. Ti/Au) is not suitable on LOR, as it
exposes the LOR during evaporation. Therefore, thermal evaporation of Pd is
used (see section A.6.1).

A.1.4. Suspension of graphene
• Expose LOR below graphene with 1100 µC cm−2. This also leads to the

suspension of the contacts.

• Develop in ethyl-lactate for 2 min, rinse in hexane, blow-dry with N2.

A.2. Preparation of flexible substrate

1. Cut the 0.3 mm thick phosphor bronze plate into pieces of 5 cm× 5 cm.

2. Polish the surface with a lapping machine.

3. Spin coat polyimide with a two-step procedure:
500 rpm/1 s/10 s
2500 rpm/5 s/60 s.

4. Soft bake at 170 ◦C for 3 min.

5. Repeat spin coating and soft baking for two more times in order to get
ticker film.

6. Polyimide curing: increase the temperature from 170 ◦C to 350 ◦C with
rate 4 ◦C min−1, bake at 350 ◦C for 30 min then switch off the hot plate,
let it cool to room temperature.

7. Spin coat a thick PMMA layer (∼1 µm) to protect the polyimide surface
before cutting into smaller pieces using a diamond wire saw.

A.3. Fabrication of encapsulated graphene

A.3.1. Wafer preparation and exfoliation
1. Dicing the fresh Si (with ∼285 nm) wafer into appropriate sizes (∼1 cm×

1 cm).

2. Blow with N2.
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A.4. E-beam lithography and development

3. Exfoliate graphene or hBN on the wafer and identify them with an optical
microscopy.

4. UVO and heating treatment can be used to increase the exfoliation yield.

A.3.2. Assembly of hBN/graphene/hBN stacks

1. PC film preparation: drop caste PC solution (dissolved in chloroform
with 9 wt%) on a glass slide. Use a second glass slide to press and slide
against the first glass slide immediately. Let them dry in a fume hood.

2. Use a piece of scotch tape with a widow (∼1 cm×1 cm) cut in the center
to transfer the dried PC film onto a PDMS stamp ∼0.5 cm × 0.5 cm,
which is mounted on a glass slide.

3. Pick up top hBN layer with the PC film at ∼80 ◦C.

4. Pick up the graphene and the bottom hBN sequentially in the same way.

5. Place down the assembled stack onto the target substrate by heating to
150 ◦C to release the PC layer from the PDMS.

6. Remove PC film with chloroform (∼1 h).

A.4. E-beam lithography and development

A.4.1. PMMA resist with xylene as developer

1. Spin-coat 420 nm PMMA and bake at 180 ◦C for 3 min.

2. Expose with E-beam (V = 20 keV, Dose = 180 µC/cm2).

3. Develop in xylene for 2 min, rinse in hexane, blow-dry.

A.4.2. PMMA resist with cold-development

1. Spin-coat 420 nm PMMA and bake at 180 ◦C for 3 min.

2. Expose with E-beam (V = 20 keV; Dose = 450 µC/cm2).

3. Cold-development in IPA:H2O (ratio 7:3) at ∼5 ◦C for 60 s, blow-dry.
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A. Fabrication Recipes

A.5. Reactive ion etching

A.5.1. CHF3:O2 plasma
1. Parameters: CHF3:O2 (80 sccm/4 sccm), P =60 W, p =60 mTorr. This

plasma is used to cut the stack with a controlled etching time for evap-
orating edge contacts.

2. Etching rates:
hBN: ∼20 nm/min
PMMA: <10 nm/min
Polyimide: negligible

A.5.2. SF6:Ar:O2 plasma
1. Parameters: SF6:Ar:O2 (76 sccm/3.6 sccm/5 sccm), P = 50 W, p = 25 mTorr.

This plasma is used to shape the stack.

2. Etching rates:
hBN: >300 nm/min
SiO2: ∼30 nm/min
PMMA: ∼80 nm/min

It is important to do a short O2 plasma etching after each SF6 plasma etching
step to remove the cross-linked PMMA layer due to SF6 plasma.

A.5.3. O2 plasma
1. Parameters: O2 (20 sccm), P =60 W, p =40 mTorr. This plasma is used

to remove PMMA or to shape the graphene for suspended samples.

2. Etching rates:
hBN: ∼20 nm/min
PMMA: ∼100 nm/min
graphene: several layers per minute

A.6. Metal evaporation

A.6.1. Pd leads
1. Type: Thermal evaporation
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A.6. Metal evaporation

2. Pumping to base-pressure of <2× 10−7 Pa

3. Heat the Pd source slowly to 1510 ◦C

4. Open shutter

5. Evaporate 60 nm (∼0.06Å/s)

A.6.2. Cr/Au leads
1. Type: E-beam evaporation

2. Pumping to base-pressure of <2× 10−7 Pa

3. Evaporate away ∼30 nm of Cr before opening the shutter, since the Cr-
target oxidizes in ambient condition, where it is stored.

4. Open shutter

5. Evaporate 5 nm of Cr (0.7Å/s to 1.2Å/s)

6. Evaporate 110 nm of Au (0.7Å/s to 1.2Å/s)
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B Further data and discussions of strain
tuning in graphene

The aim of this appendix is to provide further fabrication details, data and
discussions of strain tuning in graphene presented in chapter 5. First, the edge
contact reinforcement is introduced. Second, the correlation between ω2D and
ωG is presented and discussed, followed by the FEM simulations. Furthermore,
the transport measurements of the suspended encapsulated device is discussed
in more detail.

B.1. Edge contact reinforcement

Since the strain is generated via the edge contacts, we use a small overlap
to mechanically reinforce the contacts, as schematically shown in Fig. B.1.
First, one EBL step is used to etch the top hBN down to ∼10 nm above the
graphene, see Fig. B.1(b). In the second EBL step we open the mask ∼400 nm
more so that it overlaps with the unetched top hBN and etch another ∼15 nm
to cut the graphene for making the edge contacts (Cr/Au, 10 nm/110 nm), as
depicted in Fig. B.1(c-d).

(a) (b) (c) (d)
Stack transfer First etching Second etching Metal deposition

30 µm

Figure B.1. Edge contact reinforcement. Schematics and corresponding
micrographs of different fabrication steps. The overlaps near the edge contacts
are designed for mechanical reinforcement.
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B. Further data and discussions of strain tuning in graphene

B.2. Scatter plot of ω2D versus ωG

Here we discuss the inhomogeneity in the maps of Fig. 5.6 in section 5.4 by
analyzing the scatter plots of ω2D versus ωG. Both strain and charge doping
can induce a shift of the 2D and G peaks. For strain, the data points are
expected to lie along the line with a slope of ∆ω2D/∆ωG ≈ 2.2 [169, 175–177]
while the slope is expected to be around 0.55 for hole doping [178]. Our on-
substrate encapsulated devices are predominately hole doped. In Fig. B.2(a),
the data points of device A are spread along the strain axis, which corresponds
to a strain variation of about 0.1% over the whole device area. With increas-
ing ωG, the data points shift globally along the strain axis while the spread
along the strain axis does not change, which is in good agreement with a ho-
mogeneous external strain induced by the substrate bending. There is also a
spread of the data points along the doping axis, which would correspond to
a doping variation of ∼5× 1012 cm−2 [178]. However, this doping variation is
not realistic, because it is more than one order of magnitude higher than the
typical residual doping in our devices. A typical Raman spectrum from one
of the maps is shown in Fig. B.2(c), where the graphene G peak is not well
resolved due to short integration time during the measurement. Therefore, we
attribute the large spread of the data points along the doping axis to the un-
certainties in extracting ωG. For device B, in addition to the global shift, the
spread of the data points along the strain axis extends with increasing ωG (see
Fig. B.2(b)), which is consistent with the externally induced strain gradient
from the geometry design. In conclusion, the inhomogeneity in the maps in
Fig. 5.6 in section 5.4 is mostly coming from long range strain variation.

B.3. FEM simulations of strain

Here we perform the strain simulations1 for the two geometries given in sec-
tion 5.4. We use Matlab’s finite element method (FEM) modeling toolbox to
solve the 2D partial differential equations in the plane strain mode to esti-
mate the strain distribution in the limit of a continuous, homogeneous and
isotropic medium. The elasticity parameters we use are a 2D Young’s mod-
ulus of 340 N/m, a Poisson’s ratio of 0.165 [42, 271], and no volume forces.
We set the boundary conditions such that at the edge contacts (gray beams
in Fig. B.3) are displaced by 10 nm in the direction of the gray arrows, and no
normal forces act on all other boundaries. Since the bottom edge of device B is
shorter than the top edge, for the same displacement the strain will be higher
on the bottom edge than that on the top edge, which then results in the strain
gradient. We plot the hydrostatic strain (εxx + εyy), the quantity expected
to result in the shift of the Raman 2D-peak [177]. These settings reproduce

1The FEM simulations were performed by Andreas Baumgartner.
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B.3. FEM simulations of strain
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Figure B.2. Correlation between ω2D and ωG. Scatter plot of ω2D versus
ωG at two different ∆z values for device A (a) and device B (b) in section 5.4.
Data points are taken from 40 different positions homogeneously distributed
on each map. The ∆ω2D/∆ωG = 2.2 lines (black dashed) correspond to the
strain axis and the ∆ω2D/∆ωG = 0.55 lines (green dashed) correspond to the
hole doping axis.(c) Typical Raman spectrum from one of the maps.

149



B. Further data and discussions of strain tuning in graphene

the measured strain distributions quite well, which suggests a strong clamping
mediated by the edge contacts. We note, however, that quantitatively, εxx
alone resembles the Raman data more closely, which we tentatively attribute
to the Raman laser being linearly polarized along the uniaxial strain direction
(x-direction) [116, 118, 272].

0.16

0.18

0.20

0.22 Strain (%
)

Strain (%
)0.2

0.4

0.6

1 µm

(a) (b)

x

y

Figure B.3. FEM simulations of strain: for device A (a) and device B
(b) in section 5.4.

B.4. Discussions on transport measurements of the suspended
encapsulated device

The schematics of the encapsulated device discussed in section 5.4.6 is shown
in Fig. 5.1(b). The Pd support is used to protect the LOR from UV exposure
during the etching of the stack. In Fig. 5.12(c) of section 5.4.6, we note that
the conductance is generally lower on the electron side for the suspended device
compared to that of the on-substrate device. We attribute this to a region near
the contacts, which is screened by the Pd and cannot be tuned by the bottom
gate. It can form an additional p-n junction when the device is tuned to the
electron side, which then suppresses the total conductance of the device.

Usually, in our on-substrate encapsulated devices, the graphene is hole
doped at zero gate voltage. In the suspended encapsulated devices, the graphene
is electron doped (see Fig. 5.12(c)), which is usually the case in suspended
graphene devices fabricated with the LOR based suspension technique [135].
The electron doping might be attributed to LOR residuals.
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C Further data and discussions on mobility
enhancement experiments

This appendix contains additional information for the experiments presented
in chapter 6, including reversibility of the mobility change with decreasing
strain, the analysis of the mobility change on the hole side, another device
showing mobility increase with strain and the parameters used for Raman
measurements.

C.1. Geometry factor and reversibility of the strain induced
mobility increase

A micrograph of the device discussed in chapter 6 is shown in Fig. C.1(a).
The tapered geometry is intended for other experiments and is not relevant
for the conclusions of this study. The dimensions of the device are shown in
Fig. C.1(b). Assuming a homogeneous conductivity, the graphene can then
be modeled as a set of parallel strips. With this, the geometry factor α for
converting the conductance to conductivity can be calculated as:

G =
∫ W

0
σ

dx

L1 + 2x tan θ ,

where tan θ = (L2−L1)/2
W

, yielding σ = αG with α = L2−L1
W ln(L2/L1) . Plugging the

dimensions of this device, we obtain α = 1.28.
The two-terminal differential conductance G is also measured for decreasing

∆z, as shown in Fig. C.1(c). The conductance curves around the CNP be-
come less steep for smaller ∆z, indicating a decreasing mobility. The change
from ∆z = 0.6 mm (red curve) to ∆z = 0.4 mm (orange curve) is very small,
which can be attributed to the mechanical hysteresis of the setup when we
turn from increasing ∆z to decreasing ∆z. The observation of decreasing mo-
bility demonstrates that the mobility-increase effect presented in chapter 6 is
reversible.

151



C. Further data and discussions on mobility enhancement experiments

(a)

(b) L1

x
Wθ

L2

Figure C.1. Geometry factor and reversibility of mobility enhance-
ment. (a) Micrograph of the measured device, scale bar: 1 µm. (b) Sketch of
the device for calculating the geometry factor α, where L1 = 1 µm, L2 = 6.3 µm
and W = 2.25 µm. (c) Two-terminal differential conductance G plotted as a
function of gate voltage Vg for decreasing ∆z. “b” stands for “decrease back”.
The displacement ∆z is defined relative to the mounting position, so negative
value does not mean bending in the opposite direction. The inset shows the
zoom-in to the hole side.

C.2. Analysis of the hole side

Here we present the results of the fitting on the hole side of Fig. 6.2(a). The ex-
tracted µ, n0 and Rc are plotted for different ∆z in Fig. C.2(a-c), respectively.
When ∆z is increased from 0 to 0.6 mm, the mobility increases gradually
from ∼45 000 cm2 V−1 s−1 to ∼54 000 cm2 V−1 s−1 while the residual doping
decreases gradually from ∼2.9× 1010 cm−2 to ∼2.1× 1010 cm−2. The contact
resistance Rc is ∼1 kΩ (including ∼350 Ω line resistance), which is essentially
constant and is higher than that on the electron side (∼680 Ω). This is consis-
tent with a p-n junction forming near the contacts which makes the mobility-
increase effect less visible on the hole side. The (µ, n0) pairs are plotted as
1/µ versus n0 in Fig. C.2(d). A linear fit yields a slope of ∼ 0.102× (h/e) and
µ0 ≈ 102 000 cm2 V−1 s−1, both are consistent with the values extracted for
the electron side in chapter 6.
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C.2. Analysis of the hole side
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Figure C.2. Analysis on the hole side. Extracted (a) mobility µ, (b)
residual doping n0 and (c) contact resistance Rc (including ∼350 Ω line resis-
tance) from fitting plotted as a function of ∆z, respectively. The error bars are
the standard errors from fits. The mobility µ shows a gradual increase while
the residual doping n0 shows a gradual decrease with increasing ∆z. The con-
tact resistance Rc stays essentially constant. (d) Same data as those of (a) and
(b) plotted as 1/µ versus n0, showing a linear relation with a linear fit to the
data, 1/µ = (0.102±0.005)×(h/e)n0 +1/µ0, where µ0 ≈ 102 000 cm2 V−1 s−1.
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C. Further data and discussions on mobility enhancement experiments

C.3. Second device with mobility-increase effect

The electron mobility of this device is around 70 000 cm2 V−1 s−1, which shows
a slight increase with increasing ∆z, as plotted in Fig. C.3(a). The visibility of
this effect on the hole side is suppressed by the higher contact resistance on this
side and the additional conductance minimum at Vg ≈ 1 V, which originates
from a double moiré superlattice effect in encapsulated graphene when both
the top and the bottom hBN lattices are aligned to the graphene lattice [180].
In Raman measurements, the mean value of the center frequency ω̄2D and the
linewidth Γ̄2D of the 2D peak averaged over the whole device are plotted as a
function of ∆z in Fig. C.3(b,c), respectively. The value of ω̄2D shows a linear
decrease with increasing ∆z, indicating an increasing average strain. For Γ̄2D,
it decreases first with ∆z, implying reducing of the local strain fluctuations due
to increasing average strain. The increase of Γ̄2D appears when the externally
applied strain induced broadening of the 2D peak dominates. The overall large
values of Γ̄2D come from the superlattice effect [273], which is also observed in
transport measurements as shown in Fig. C.3(a).

C.4. Raman spectroscopy

After transport measurements at low temperature, we perform Raman mea-
surements at room temperature to determine the strain if the device is still
intact. The Raman setup is separate from the transport setup and sits in
ambient conditions [166]. We use the commercially available confocal Raman
system WiTec alpha300. All Raman spectra were acquired using a linearly
polarized laser at a wavelength of 532 nm and a power of 1 mW. The laser
spot size is ∼500 nm and the grating of the spectrometer is 600 grooves/mm.
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C.4. Raman spectroscopy
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Figure C.3. Second device with mobility enhancement. (a) Two-
terminal differential conductance G plotted as a function of gate voltage Vg
for different ∆z. The corresponding carrier density is shown on the top axis.
(b) Averaged center frequency ω̄2D and (c) linewidth Γ̄2D of the Raman 2D
peak plotted as a function of ∆z for the same device.
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D Additional information and discussions on
strain effects in various transport
experiments

This appendix shows further measurements that support the discussions in
chapter 7. First, strain effects on conductance fluctuations in gate voltage are
presented and discussed for Sample2 A and Sample2 B. Second, two-terminal
differential conductance of Sample3 B is shown for different ∆z, followed by
the discussion of the classical Hall effect and the effect of strain. Furthermore,
a comparison of the quantum Hall effect between Sample3 B and a square
device fabricated with the same stack is given.

D.1. Conductance fluctuations in gate voltage

The conductance fluctuations can be tuned by changing the charge carrier
wavelength with an electric gating, which shifts the Fermi level in graphene.
Strain can induce a scalar potential in graphene which acts effectively like
gating. However, the scalar potentials achieved in our devices are relatively
small and their effects on the conductance fluctuations are negligible, as can be
seen in Fig. D.1. Most of the features are parallel to the ∆z axis, suggesting
vanishing strain dependence. This is in stark contrast to the observations
shown in Fig. 7.3, where the conductance is plotted as a function of ∆z and
magnetic field. There it is found that within a similar ∆z range the fluctuation
patterns shift more than one full period.
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D. Additional information and discussions on strain effects in various
transport experiments

Sample2 A Sample2 B

Figure D.1. Conductance fluctuations in gate voltage (a,b) Conduc-
tance fluctuations measured for a certain gate voltage range with increasing
∆z for Sample2 A and B, respectively. A derivative in Vg is taken to remove
the large conductance background. (c,d) The same as (a,b) for decreasing
∆z. The mechanical hysteresis of the bending setup is marked with shaded
boxes. The green arrows indicate the bending direction.
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D.2. Classical Hall effect in Sample3 B

D.2. Classical Hall effect in Sample3 B

The two-terminal differential conductance of Sample3 B is plotted as a function
of gate voltage for different ∆z in Fig. D.2(a), where a mobility enhancement
is observed with increasing strain.

c1

c3 c4

c2

c5

Smaple3 B

Figure D.2. Classical Hall effect in Sample3 B. (a) Two-terminal dif-
ferential conductance G measured as a function of gate voltage Vg for different
∆z. Inset: optical image of Sample3 B with scale bar corresponding to 2 µm.
(b) Hall conductance at B = 0.3 T as a function of Vg for different ∆z.

The Hall conductance 1/RH = en/B [52] measured as IC1C2/VC3C5 at B =
0.3 T for different ∆z is shown in Fig. D.2(b). Assuming a homogeneous carrier
density regardless of the device geometry, a lever arm of ∼0.8× 1015 m−2 V−1

and ∼2.8× 1015 m−2 V−1 are extracted from the slope of the curves on the hole
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D. Additional information and discussions on strain effects in various
transport experiments

side for ∆z = 0 and 1.0 mm, respectively. Such a big change of the lever arm
with ∆z is inconsistent with the measurements at B = 0 shown in Fig. D.2(a),
where global transport through the whole device is measured. Since the Hall
effect measurement is a local probe measurement, we therefore speculate that
the carried density is inhomogeneous in the device, which might be caused by
the device geometry [226], as discussed in section 7.6.3. However, the lever
arm at ∆z = 1.0 mm extracted here matches very well the one estimated from
the plate capacitor model, which is consistent with the lever arm extracted
from the quantum Hall effect of Sample3 A (see later), suggesting that the
carrier density is homogeneous at ∆z = 1.0 mm.
It seems the device is “abnormal” at ∆z = 0 and the strain makes it “nor-

mal” at ∆z = 1.0 mm, but how strain makes this change is not clear so far.
This puzzling effect might also affect the quantitative interpretation of the
strain effect observed in the transverse magnetic focusing experiments.

D.3. Comparison in quantum Hall regime

The two-terminal differential conductance of a square device (Sample3 A)
fabricated from the same hBN/graphene/hBN stack of Sample3 B is shown as
a function of gate voltage in Fig. D.3(a), where no significant effect is observed
with ∆z. In Fig. D.3(b), a comparison at B = 9 T between Sample3 A and
Sample3 B is presented for different ∆z. No strain effect is observed on this
scale for Sample3 A, which is consistent with Sample1 A shown in section 7.6.1.
The strain effect for Sample3 B is already discussed in section 7.6.3. The
interesting finding here is that the curve of Sample3 B ∆z = 1.0 mm is almost
like that of Sample3 A, suggesting that Sample3 B really becomes “normal”
at ∆z = 1.0 mm, as discussed in the previous section.
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D.3. Comparison in quantum Hall regime

Sample3 A

Figure D.3. Comparison in quantum Hall regime. (a) Two-terminal
differential conductance G plotted as a function of gate voltage Vg for different
∆z. Inset: optical image of Sample3 A with scale bar corresponding to 2 µm.
(b) G of Sample3 A and Sample3 B as a function of Vg at B = 9 T for different
∆z.
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E Further data and discussions of
super-superlattice

This appendix provides supporting information for the experiments presented
in chapter 8. First, additional information about fabrication is given. Then,
further data of other devices from the first heterostructure (sample a) and
data of devices from the second heterostructure (sample b) are presented.

E.1. Fabrication

We align hBN to graphene by aligning the straight edges of each layer. The
probability for each alignment is 50%, because the straight edges can be along
either zigzag or armchair direction. Since we need to align both hBN layers to
graphene, the probability drops to 25%. We think that this is why only two
out of five samples exhibit 3L-MSL features in the experiment. The stack is
directly placed on the metallic gate, so the bottom hBN acts as the dielectric
layer which is usually about 20-40nm thick in our case, resulting in a high
gating efficiency.

E.2. Other devices of sample a

A flake with both monolayer and bilayer graphene as shown in Fig. E.1(a)
was chosen for sample a. We fabricated six fully encapsulated devices out
of this flake, with three monolayer devices and three bilayer devices. The
different device geometries are designed for other experiments. The main
device discussed in chapter 8 is device a2 in Fig. E.1(b). In the following we
show the gate traces of all devices and the Landau fan diagram of monolayer
device a3. Unfortunately, we do not have the complete data set for other
devices due to a gate leak that appeared during the measurements.
In Fig. E.2, two-terminal differential conductance is plotted as a function

of gate voltage for all devices. Each curve is offset by an individual V0 in
gate voltage in order to shift the MDP to zero gate voltage. All six devices
spread over 50 µm show extra conductance minima in addition to the MDP at
roughly the same gate voltage, suggesting an intrinsic lattice related origin of
these features.
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(a) (b)

monolayer

a1

a2

a3

a4

a5

a6
bilayer

4µm4µm

Figure E.1. (a) Micrograph of the graphene flake used for sample a. (b)
Micrograph of all six finished fully encapsulated devices. a1-a3 are monolayer
and a4-a6 are bilayer.

Figure E.2. Two-terminal differential conductance G as a function of gate
voltage Vg measured at 4.2 K for all three monolayer devices (a) and all three
bilayer devices (b). V0 is around 250 mV for all devices. Curves are shifted by
5e2/h sequentially in y direction for clarity.
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E.3. Other devices of sample b

E.2.1. Device a3

The two-terminal differential conductance of monolayer device a3 is plot-
ted as a function of charge carrier density n in Fig. E.3(a). In addition
to the MDP, two pairs of conductance minima occur symmetrically at n ≈
±2.4× 1012 cm−2 and n ≈ ±1.4× 1012 cm−2, respectively, exactly the same
as in device a2 in chapter 8. The Landau fan diagram (see Fig. E.3(b)) also
looks very similar as that of device a2.

-2     0     2   -2      -6    2      -2      0      2           6 -6          -2     0     2

Figure E.3. Electronic transport of device a3 at 4.2 K. (a) Two-terminal
differential conductance G as a function of charge carrier density n. (b) dG/dn
as a function of n and B of the same device. Filling factors are indicated on
top of the diagram. The dashed lines mark the indications of filling factors
fanning out from higher densities.

E.3. Other devices of sample b

The graphene flake used for sample b is shown in Fig. E.4(a). Ten fully
encapsulated devices were fabricated out of this flake as depicted in Fig. E.4(b),
with five monolayer devices, four bilayer devices and one trilayer device. The
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E. Further data and discussions of super-superlattice

second device shown in chapter 8 is device b2. Here, we show the gate traces for
all devices. Unfortunately, the gate started to leak during the measurements.

monolayer

bilayer

5µm 5µm
trilayer

(a) (b) b1
b2

b3
b4
b5

b6
b7
b8
b9
b10

Figure E.4. (a) Micrograph of the graphene flake used for sample b. (b)
Micrograph of all ten finished fully encapsulated devices. b1-b5 are monolayer,
b6, b7, b9, b10 are bilayer and b8 is trilayer.

Two-terminal differential conductance of all ten devices are plotted as a
function of gate voltage in Fig. E.5. The additional DPs occur at slightly
different gate voltages for different devices. One reason for that might be the
gate leak, resulting in different lever arms for different devices. The measuring
sequence is the same as the labeling, with device b1 measured first and device
b10 measured last. The second reason might be a tiny relative rotation of any
of the three layers at different locations due to bubbles or ripples formed in
the stack during fabrication [37], which leads to effectively slightly different
MSLs for different devices. In Fig. E.5(c), it seems the 3L-MSL DP is almost
absent in the trilayer device, which is expected due to the further separation
of the top 2L-MSL and the bottom 2L-MSL.

166



E.3. Other devices of sample b

Figure E.5. Two-terminal differential conductance G as a function of gate
voltage Vg measured at 4.2 K for all five monolayer devices (a), all four bilayer
devices (b) and one trilayer device (c). V0 varies from 20 mV to 220 mV for
different devices. Curves are shifted by 10e2/h sequentially in y direction for
clarity.
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