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1 Introduction

Physics is often divided between the macroscopic world and the microscopic
world. The macroscopic world contains things that we can see or touch and
is governed by Newtonian physics, while the microscopic world, governed by
quantum mechanics, contains the building blocks of nature such as quarks
or atoms. Bridging the macroscopic and microscopic world is the mesoscopic
world which addresses fundamental physical problems that arise when the di-
mensionality of a macroscopic object is reduced and the interaction and motion
of electrons in solid materials such as metals, semiconductors, and supercon-
ductors play a crucial role. Fueled by demand for smaller and more powerful
electronics from simple household appliances and electronics to quantum infor-
mation technology, mescoscopic physics has become one of the most exciting
forefronts of experimental physics.
One example of this are quantum bits, qubits, which are the basis of quan-

tum information technology where the information is carried by a superpo-
sition of quantum states. Realizations of qubits in low dimensional semicon-
ductors based on topologically protected particles [1], such as Majorana bound
states [2–9] or parafermions [10–13], have been at the forefront of research over
the past decade. These rely on combining one-dimensional semiconducting
wires with strong spin-orbit coupling and proximity-induced superconductiv-
ity.
Two material systems that have attracted significant attention over the past

two decades as possible qubit platforms are carbon nanotubes (CNTs) and III-
V semiconducting nanowires (NWs). CNTs are often described by being a true
one-dimensional mesoscopic system due to their exceptionally small diameters,
micrometer long lengths, and variable band gaps [14, 15]. Over the past two
decades, metallic and semiconducting CNTs have been used to investigate
charge transport in various device architectures [16–33]. On the other hand,
semiconducting NWs have received significant amount of attention due to their
strong spin-orbit interaction and possibilities for scalability [34]. Significant
progress has been made in the synthesis and band structure engineering of
III-V semiconductor nanowires, such as InAs or InSb NWs. For example, di-
rectly grown complex nanowire geometries such as crosses [35–37] and networks
[34, 38] have become feasible, as well as with in situ grown epitaxial super-
conducting shells [39–41] for hybrid devices [42, 43]. Furthermore, quantum
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1. Introduction

dots can be induced into nanowires by tunnel barriers that further confine the
quasi one-dimensional NW. For example by electrostatic gating [42, 44–47],
modification of the crystal phase [48–51], or by introducing a larger band gap
material in radial [52, 53] and axial [49, 54, 55] NW heterostructures.

Several theoretical proposals suggest using quantum dots as tunnel spec-
trometers in hybrid systems to probe the lifetime [56, 57], parity [58], or spin
texture [59] of the topological states. In ideal tunnel spectroscopy measure-
ments, the properties of the tunnel barriers can be fully disentangled from
the investigated sub-system and be directly compared to textbook transport
experiments of an ideal quantum wire defined by its reservoirs, leads, and scat-
tering regions. For this reason, tunnel barriers with deterministic properties
are highly sought after and would bring one-dimensional tunnel spectroscopy
measurements to the next level of control that could be used to unambigu-
ously differentiate trivial Andreev bound states from topological states [60].
For example, energetically large and spatially well-defined tunnel barriers with
a known potential profile form quantum dots that can be understood in great
detail [48, 61], which then can be weakly coupled to electronic states in the
nanowire leads without greatly changing their properties. Furthermore, by
knowing the precise location of the quantum dot, the region over which the
voltage drops in the system can be determined. For a high quality tunnel
spectrometer, very narrow line widths are required in order for the resolution
to not be fully determined by the features being probed. Therefore, the reso-
lution of such a tunnel spectrometer is directly related to the tunnel barriers
by how strong they confine the quantum dot.
Recent studies have shown that InAs NWs with crystal-phase defined tunnel

barriers result in well-defined QDs [48], and have been used to probe the evo-
lution of the superconducting proximity gap in an adjacent NW segment [50].
However, their relatively low and long tunnel barriers [48, 62] limit their spec-
troscopic range, while the large charge carrier concentrations in the zinc-blende
sections make studies of few mode quantum systems challenging. Therefore,
finding a suitable system with energetically larger deterministic tunnel barriers
is still an on-going investigation.

Aim of this thesis
The aim of this thesis is to form large deterministic tunnel barriers in a one-
dimensional system that result in spatially and energetically well-defined quan-
tum dots for systematic tunnel spectroscopy experiments. For example, to
probe quasi bound states in the lead regions coupled to normal metal and su-
perconducting reservoirs. To tackle this problem, two types of tunnel barriers
are studied in this thesis: electrostatic gate-defined tunnel barriers in CNTs
and InAs NWs, and in-situ grown tunnel barriers in InAs/InP heterostructure
NWs.
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Outline of this thesis
Chapter 2 begins with an introduction to relevant theoretical concepts for
the experiments presented in this thesis. A theoretical description of a de-
vice consisting of reservoirs, leads, and tunnel barriers is discussed in-depth.
In addition, single and double quantum dots are introduced, as well as su-
perconductivity. In Chapter 3, CNTs and InAs NWs are introduced as two
realizations of one-dimensional semiconductors used in this thesis. For each
system, their growth and electrical properties are thoroughly described. The
fabrication processes and measurement setup of electrostatic gate-defined and
in situ grown tunnel barrier devices is explained in Chapter 4. In Chapter
5, the results of locally tunable electrostatic gate-defined tunnel barrier de-
vices in carbon nanotubes and InAs nanowires is presented. We demonstrate
that electrostatic gates result in tunnel barriers that are energetically and spa-
tially ill-defined making them difficult for tunnel spectroscopy measurements.
Chapter 6 takes the other approach to forming deterministic tunnel barriers
by inducing band offsets in the nanowire by forming a InAs/InP heterostruc-
ture nanowire. An in-depth analysis of InAs/InP heterostructure nanowire
demonstrating their broad electrical tunability, as well as a comprehensive
characterization of the InP tunnel barriers, is presented. Afterwards, we im-
plement the QD formed by the integrated tunnel barriers in an InAs/InP het-
erostructure NW as a tunnel probe to investigate the quasi zero-dimensional
nanowire lead states coupled to normal metal and superconducting reservoirs
in Chapter 7 and Chapter 8, respectively. To conclude, a short summary of
the thesis and outlook of possible future experiments is presented in Chapter
9.
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2 Quantum transport in mesoscopic systems

This chapter provides the theoretical foundations for the experiments pre-
sented in this thesis. We begin with a description of an ideal one-dimensional
quantum wire by taking a scattering approach to describe transport through
the system. Then we introduce the physical phenomena of single quantum
dots: single electron tunneling, Coulomb blockade, and Coulomb blockade di-
amonds. Afterwards, a brief introduction to superconductivity is presented
and we conclude with transport processes at a normal-superconductor inter-
face. This chapter serves as an introduction to quantum transport in meso-
scopic systems, however interested readers should refer to Refs. [63–66] for a
more thorough treatment.

2.1. Quantum transport in one-dimensional quantum wires

One-dimensional quantum wires are mesoscopic systems with diameters com-
parable to their Fermi wavelength, λF. If the length scales of the system is
on the order of λF, the wave-partical duality of electrons becomes key and
their kinetic energies in the transverse directions become quantized. In mod-
ern semiconductors, typical values of λF are in the range of 10 nm to 100 nm,
depending on the doping. With the development of nanofabrication over the
past decades, electronic devices on the scale of a few nanometers to a few
micrometers can be fabricated. In this thesis, we investigate charge transport
through such quasi one-dimensional electronic devices.
Quantum transport in one-dimensional quantum wires is often described

by a series of scattering processes. For example, an electron impinges on a
potential barrier and is either reflected or transmitted with probability T .
The conductance through the system is given by the transmission of charge
carriers through the system [65]. To demonstrate this, we consider a long one-
dimensional rectangular semiconductor with lengths, Lx, Ly, Lz, as illustrated
in Fig. 2.1(a). We assume that the wire is extended in the x-direction and
energetically quantized in the y- and z-direction, i.e. Ly, Lz ≈ λF � Lx.
One important quantity of a wire is how far electrons transverse the wire

before being scattered described by the mean free path length, Le. If Lx � Le,
then electrons will experience scattering events in the wire. In this limit, the
quantum wire is called diffusive and electronic transport is governed by the

5



2. Quantum transport in mesoscopic systems
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Figure 2.1. One-dimensional quantum wire: (a) Illustration of a 1D
semiconductor quantum wire with length, Lx, and widths, Ly, Lz. The wire
is extended in the x-direction and energetically quantized in the y- and z-
direction: Ly, Lz ≈ λF � Lx, where λF is the Fermi wavelength. (b) Structure
of a two terminal one-dimensional quantum wire. Electrons travel from one
reservoir (yellow) to the other via waveguide-like lead segments and are either
reflected at the interface of a scattering region (red) or transmitted into the
opposite lead segment. Figure adapted from Refs. [63, 64].

Drude model [65]. In the opposite limit, Lx � Le, the system is in the so-
called quasiballistic regime where electrons scatter at the boundaries of the
wire and/or by diffusive processes [65].

In this section, we take a scattering approach to describe quasiballistic co-
herent electron transport in a one-dimensional quantum wire where the con-
ductance can be fully described by the Landauer-Büttiker formulism [65]. An
illustration of such a system is shown in Fig. 2.1(b). In view of the exper-
iments reported in this thesis, we divide the system into three regions: the
reservoirs with electrochemical potentials µS/D (Sect. 2.1.1), waveguide-like
lead segments (Sect. 2.1.2), and the potential barriers as a scattering region
(Sect. 2.1.3), and discuss charge transport through the system.

2.1.1. Quasielectrons in the reservoirs
Quantum transport begins with the source of charge carriers: the reservoirs.
Neglecting any screening effects for large electron densities, the reservoirs are
bulk metals where the electrons are confined to a crystal lattice and are made
up of many electrons that interact with each other via Coulomb repulsion.
However, these are not the electrons that contribute to electron transport. In-
stead, we focus on weakly interacting charged excitations of all the electrons
in the reservoir, so-called quasielectrons or quasiparticles. This can be under-
stood as a renormalization of the system where the interaction with the crystal
is taken into account. First, consider that the reservoir is in the ground state
then by adding one charge carrier, the system is driven into an excited state
corresponding to the creation of one quasielectron with a quasimomentum,
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2.1. Quantum transport in one-dimensional quantum wires

spin 1/2, effective mass m∗, and µS/D.
f(E

)

E 0
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EF 

e
e

e

Figure 2.2. Fermi-Dirac distribution of the reservoirs: Fermi-Dirac
distribution for temperature Te = 0 K (green), 0.1 K (blue), and 1 K (red).
Figure adapted from Refs. [63–65]

.

If the quasielectrons are in a thermal equilibrium state they can be charac-
terized at a given electrochemical potential, µS/D, and temperature, Te, which
is set by the Fermi-Dirac distribution [63–65]:

f(E) = 1
1 + e(E−µS/D)/kBTe

(2.1)

The Fermi-Dirac distribution for Te = 0 K, 0.1 K, and 1 K is shown in
Fig. 2.2. It has a value of f(E) = 1 for energies below µ, decays exponen-
tially with energy, and equals 1/2 at for EF = µS/D. The 10% - 90% width is
given by 4kBTe. For Te = 0, it equals a step function at µS/D.

2.1.2. Transverse modes in the leads
Electrons in the reservoirs then tunnel from eigenstates in the reservoirs into
eigenstates of the lead segments. The leads are typically assumed to be semi-
infinite waveguide-like regions of hard-wall transverse confinement between
the reservoirs and the scattering region. The waveguide can be understood as
impenetrable walls perpendicular the the y and z directions guiding electrons
along the x-direction. Therefore, when a wave is reflected from these walls, the
wave vector, ky,z, will change sign (ky,z → −ky,z), as illustrated in Fig. 2.3(a).
Since the hard-wall confinement of the waveguides repels the electron in the
transverse directions, the walls must be nodes of the standing wave. This only
happens when ky and kz become quantized, i.e. ky,z ∝ n, where n is called the
transverse mode. The wave function of an electron in the waveguide is given
by: Ψkx,n(x, y, z) = ψkx(x)Φn(y,z). This gives rise to a quantization of the
transverse motion of electrons. The transverse wave functions are illustrated
in Fig. 2.3(a).
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2. Quantum transport in mesoscopic systems
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Figure 2.3. Transverse modes and density of states of a one-
dimensional quantum wire: (a) Classical particle trajectories reflecting
at the impenetrable walls of the rectangular waveguide and corresponding
wave functions for the transverse directions. (b) Dispersion relation for three
discrete parabolic subbands: E1 (blue), E2 (red), and E3 (green). (c) One-
dimensional density of states of the quantum wire, D(E). Figure adapted from
Refs. [63–65].

Along the x-direction, the electron wavefunction is not confined and forms
a plane wave, φkx = eikxx. Therefore, an electron in a given transverse mode
(subband) only has one degree of freedom. This gives rise to an energy disper-
sion parabolic in kx, while quantization along the y- and z-directions creates
quantized energy modes of subband energy En. Within the channel, the dis-
persion reduces to n discrete parabolic subbands, En(kx), each with two-fold
degeneracy due to spin [63–65]:

En(kx) = ~2k2
x

2m* + En, (2.2)

where m* is the effective mass and En is the band bottom. The dispersion
relations for E1,2,3(kx) are illustrated in Fig. 2.3(b). For zero temperature, the
integer number of occupied modes, M , below the Fermi energy, EF, is given
by: M =

∑N

n=1 θ(EF − En), where θ is the Heaviside function. The density
of states within this region is given by: D(E) =

∑N

n=1

√
2πm∗

h2
1√

E−En
. This

is shown in Fig. 2.3(c) for the first three subbands.

2.1.3. Tunnel barriers as scatters

As an electron is traveling between the two reservoirs, it can experience a
scattering event and either be transmitted or reflected. The interaction of
the electron with the scatterer during the tunneling process can be described
entirely by the transmission probability per mode, T (E). This is the ratio of
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2.1. Quantum transport in one-dimensional quantum wires

the outgoing probability current density on one side of the structure and the
incoming probability density on the other.

(a)

(c)

E

V0

Single Barrier

V0

a

a a
bound
 states

Ψ(x)

x

x

Ψ(x)

incident

re�ected

transmitted

T(
E)

E-Ep
0

0

1

T(
E)

E (eV)

0

1

0 1

Double Barrier

(b)

(d)

V0 = 0.4 eV

a = 5.5 nm
a = 10  nm

m* = 0.04me

Γ1= 100 μeV
Γ2= 100 μeV

0.4

Figure 2.4. Quantum tunneling: Tunneling through a (a) single and (c)
double tunnel barrier with width(s) a and height(s) V0. The probability am-
plitude of the electron wave function Ψ, with energy E < V0, is exponentially
reduced due to the presence of a tunnel barrier. Corresponding transmission
probability, T , as a function of energy for a single (b) and double (d) tunnel
barrier centered around the single particle energy Ep. Figures adapted from
Refs. [63–65].

One type of scatter is a tunnel barrier. Tunnel barriers are regions of higher
potential, compared to the electron energy, within the one-dimensional quan-
tum wire that acts as a scattering region. The working principle behind tunnel
barriers is quantum tunneling. Quantum tunneling is a purely quantum me-
chanical phenomenon where an electron, with energy E, has a nonzero proba-
bility to tunnel through a potential barrier of height, V0, even though E < V0.
In other words, the wave function of the electron extends through the potential
barrier and has a finite amplitude on the opposite side. Figure 2.4(a) shows an
illustration of quantum tunneling through a single tunnel barrier with finite
width a and height V0. For simplicity, we assume that the leads on the left and
right of the scattering region each consist of a single subband. An incident
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2. Quantum transport in mesoscopic systems

particle impinges on the tunnel barrier and we would like to determine the
probability that the particle tunnels through the barrier, i.e. T (E). Due to
the simplicity of this tunnel barrier, the Schrödinger equation can be solved
for this system, resulting in [63–65]:

T (E) =
[

1 + V 2
0

4E (V0 − E) sinh2(κa)
]−1

(2.3)

where κ =
√

2m∗

h2 (V0 − E). Figure 2.4(b) shows the relation of the trans-
mission probability as a function of particle energy with V0 = 400 meV, a =
5.5 nm (green) and a = 10 nm (blue), and effective mass m∗ = 0.04me. In
the case of a long tunnel barrier (blue), T ≈ 0 for E � V0 while T ≈ 1 for
E ≈ V0. This corresponds to high tunneling probability for particle energies
close to the height of the tunnel barrier. However, this is different for a short
barrier (green) where T ≈ 0.2 for E ≈ V0 and T (E) ≈ 1 when E ≈ 0.7� V0.
A low transmission probability, T � 1, corresponds to a high and wide tunnel
barrier (κa � 1). In this limit, T ∝ exp(−2κa). The key point is that T
decays exponentially with tunnel barrier width as well as exponentially with
the square root of its height V0. From this argument, we can deduce that the
barrier decreases the amplitude of Ψ(x), meaning there is a reduced, but fi-
nite, probability to find an electron on the other side of the barrier. Therefore,
even though the energy of electron is smaller than the barrier height, quantum
mechanics predicts that the electron can nevertheless tunnel through it with
a finite probability.

By combing two tunnel barriers in series, separated by a distance, s, along
the 1D system, the electron wave functions between the two tunnel barriers
become confined and form quasibound states, as illustrated in Fig. 2.4(c). This
is a result of self-interference of coherent electron wave functions by multiple
reflections on the two barriers. This leads to a situation similar to the "par-
ticle in a box" and results in electron states with discrete energies, Ep, that
are bounded between the two tunnel barriers. For E ≈ Ep, the interference is
constructive and results in the cancellation of the reflected wave to the left of
the double barrier and an enhancement of the transmitted one. The transmis-
sion probability of such a system can be expressed by a Breit-Wigner function
[63–65]:

T (E) = Γ1Γ2

(E − Ep)2 + 1
4 (Γ1 + Γ2)2 (2.4)

where Γi = ~νTi denotes the coupling constant of barrier i with attempt
frequency ν and transmission probability Ti. In the semi-classical picture,
the attempt frequency ν = v/2s is the frequency at which the electron with
velocity, v, hits barrier i and attempts to tunnel through. Therefore, Γi/~
represents the tunnel rate: the number of tunnel events across barrier i per

10



2.1. Quantum transport in one-dimensional quantum wires

unit time. The transmission probability as a function of E−Ep for Γ1 = Γ2 =
100 µeV is shown in Fig. 2.4(d). At E = Ep, we find T = 1 for symmetric
tunnel barriers which decays over the scale of Γ.

Tunnel barriers can be experimentally formed in many different ways: by
Schottky barriers at a metal-semiconductor interface [67, 68], vacuum [69] or
dielectric gap [70], by electrostatic gates (see Chapter 5), or by band offsets
between different materials (see Chapter 6). They induce tunnel barriers in
the one-dimensional semiconductor that the electron must tunnel through and
consequently non-propagating states couple with propagating ones. This thesis
tries to achieve spatially and energetically well-defined and controllable tunnel
barriers that we can fully understand.

2.1.4. Conductance in a quantum wire

Now we can discuss the conductance of the quantum wire shown in Fig. 2.1(b).
We first consider the case of zero temperature (Te = 0). If no external voltage
is applied, µS is aligned with µD and the states with positive and negative
momentum are equally occupied up to the Fermi level, EF. However, a small
source-drain bias voltage, eVSD = µS−µD, opens up an energy window which
results in an occupation imbalance between forward and backward propagating
states. The current I through the system given by [63–65]:

I = e

N∑
n=1

∫ µS

µD

1
2ρn(E)νn(E)Tn(E)dE, (2.5)

where ρn(E) = 2
π

(∂E/∂kx)−1 is the 1D density of states and νn(E) =
1
~ (∂E/∂kx) is the effective electron velocity. The energy dependencies of ρn(E)
and νn(E) cancel out resulting in a conductance G = I/VSD given by:

G = 2e2

h

N∑
n=1

Tn(E). (2.6)

In the case of ideal transmission Tn(E) = 1, the conductance through the
quantum wire is G = 2e2

h
N where every occupied subband contributes one

conductance quantum, G0 = 2e2

h
.

The effect of finite temperature can be included by introducing the Fermi-
Dirac distribution of the reservoirs (Eq. 2.1) into Eq. 2.5, resulting in:

G = 2e2

h

N∑
n=1

∫
Tn(E) ∂f

∂E
dE (2.7)

11



2. Quantum transport in mesoscopic systems

2.2. Quantum Dots

In this section, we discuss the the properties of quantum dots (QDs). QDs
are semiconductor nanostructures where the motion of electrons in the con-
duction and valence band are confined in all three spacial dimensions. In one-
dimensional systems, the electronic wave function along the radial direction is
already quantized due to their small diameters. As illustrated in Fig. 2.4, by
introducing two tunnel barriers into the system, a zero-dimensional island of
quasibound states with a quantized energy spectrum for electrons is formed.
The level spacing, δE, depends on the dispersion relation for the system, which
in turn, is depends on the precise geometry of the QD.

Such nanostructures are usually very small, therefore in addition to the
kinetic energy, there is also a potential energy due to the Coulomb interaction
between the electrons on the island. The self capacitance of the island is small
and therefore it requires a lot of energy to add an additional electron onto the
island. This is called Coulomb blockade and is a universal defining feature
of QD nanostructures. Quantum dots have been formed in several different
types of solid state systems: electrostatic gating of two dimensional electron
gases [71–73], self-assembled during growth [74–76], nanowires [6, 46–48, 50,
53, 61, 77–95], carbon nanotubes [14, 16, 18, 21, 27, 96, 97], two dimensional
van-der-Waals materials [98, 99], and graphene nanoribbons [100, 101].

2.2.1. Single electron tunneling

When the island is made small enough, the Coulomb interaction between elec-
trons is not negligible and is the dominating energy scale at low temperatures
(e2/C � kBT ). The effects of the Coulomb interactions between electrons are
well described within the framework of the constant interaction model (CIM)
[102]. The CIM makes two assumptions: (a) electron-electron effects do not
alter the discrete energy spectrum of the QD and (b) the Coulomb interaction
energy of a particle is given by a mean electric field of all other electrons, which
can be described by a self-capacitance of the island, C, that is independent of
the charge state. This conceptually simple model is often used to describe the
physics of QDs with large electron populations, N .
Figure 2.5(a) illustrates a circuit diagram of a single QD weakly tunnel cou-

pled to a metallic source (S) and drain (D) contact. The QD island is capaci-
tively coupled to the source and drain reservoirs by capacitances, CS/D, while
the tunnel coupling, which allows for an exchange of particles, is described by
the coupling parameters, ΓS/D.
The two tunnel barriers are described by a capactive couplings between the

QD and the source and drain (D) contacts, CS/D, with coupling strengths
ΓS/D. In addition, a gate electrode, with capacitance CG tunes the electron
population on the QD. The total capacitance of the island is then given by the
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Figure 2.5. Quantum dot model: (a) Circuit diagram of a single quantum
dot coupled by two tunnel barriers with capacitive, CS/D, and tunnel coupling
strengths, ΓS/D, to a source (S) and drain (D) contact. A gate (G) couples
capacitively with capacitance, CG, to the QD tunes the electrochemical poten-
tial of the QD by a voltage VG. (b) Illustration of the energy levels of a single
QD with tunnel couplings ΓS/D, N electrons, and electrochemical potential
µN. Schematics adapted from Refs. [102–104].

.

sum over all individual capacitances: C = CS + CD + CG. The ground state
energy of the QD can be written as [105]:

U(N) = (Ne−Qext)2

2C +
N∑
j=1

Ej, (2.8)

where N is the number of electrons on the QD and Qext is the voltage
induced external charge on the QD given by Qext =

∑
i CiVi with i = S,D,G.

The first term in Eq. 2.8 is the electrostatic energy of the QD and the second
term is a sum over the single particle quantum mechanical energy levels Ej of
the QD due to quantum confinement.
The energy required to add the Nth electron to the QD is called the electro-

chemical potential µN = U(N)−U(N − 1), i.e. the energy difference between
two single particle energy levels. Combining this with Eq. 2.8 results in:

µN = e2

C

(
N −N0 −

1
2

)
− e

C

(∑
i

CiVi

)
+ EN (2.9)

This describes a ladder of energies in electron transport, as illustrated in
Fig. 2.5(b). Electron transport is allowed if µN aligns with occupied states of
the reservoirs. The difference between two consecutive electrochemical poten-
tial levels is the addition energy, Eadd, and is given by:
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2. Quantum transport in mesoscopic systems

Eadd = µN+1 − µN = e2

C
+ δE, (2.10)

where EC = e2

C
is the charging energy and δE = EN+1 − EN is the single

particle energy spacing or level spacing. By applying a gate voltage VG to
the QD the ladder of chemical potentials can be linearly shifted positive or
negative by eαG∆VG = CG/C, where αG is the lever arm of the gate.

μS μD

S D

QD
ΓDΓS

(a) (b)E

μN-1

μN

μN+1

μS μD

S D

QD
ΓDΓS

μN-1

μN

μN+1

EC EC + δE EC

N + 2N N + 4

dI
/d

V

eαVG

(c)

Figure 2.6. Coulomb blockade and Coulomb resonances: (a) Single
electron transport is allowed via a single quantum dot (QD) energy level when
the electrochemical potential of the QD is aligned with the electrochemical
potential of the source and drain contacts (µN = µS/D). (b) Single electron
transport is forbidden when µN 6= µS/D and the QD is in Coulomb blockade.
(c) Differential conductance dI/dV as a function of gate voltage VG. Coulomb
resonances are observed due to single electron tunneling through the QD.
Schematic adapted from Refs. [102–104].

Figure 2.6 illustrates a simplified model of single electron tunneling (a) and
Coulomb blockade (b) when the QD is coupled directly to metallic source and
drain contacts. In (a), the electrochemical potential of the source, µS, and
drain, µD, contacts are aligned with the electrochemical potential of the QD,
i.e. µS/D = µN. In addition, in the regime, kBT � δE � EC, only one
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2.2. Quantum Dots

energy level contributes to electron transport. This situation is referred to as
single level resonant tunneling, where an electron can tunnel from the source
contact onto the QD and subsequently into the drain contact. This results
in a positive step-like increase in the current I for µS = µD, thus a peak
in differential conductance, dI/dV . These peaks in conductance are called
Coulomb blockade resonances and are illustrated in Fig. 2.6(c). Coulomb
resonances are not infinitely sharp due to several effects, such as: a finite
temperature of the reservoirs, how long an electron stays on the QD (lifetime
broadening), and applied voltage bias. An in-depth explanation of the line
shape of Coulomb blockade resonances can be found in in Chapter 6.
However, if the electrochemical potential of the QD is not aligned with the

electrochemical potential of the source and drain contacts, i.e. µS/D 6= µQD,
electron transport is forbidden and the QD is in Coulomb blockade. Also if
the level spacing is large enough that first order tunneling is not energetically
favorable, the QD can be interpreted as a large tunnel barrier that the electrons
cannot overcome.
In addition to Coulomb blockade resonances being separated by Eadd, atomic-

like orbitals of the QD can play a role in electron transport. The energy re-
quired for an electron to tunnel into a new orbital is Eadd = EC + δE, but
the energy required to add the second electron to the same orbital is only
Eadd = EC.

2.2.2. Coulomb blockade diamonds
Instead of applying a gate voltage to shift the electrochemical potential of the
QD to be aligned with the chemical potential of the source and drain contacts
to overcome Coulomb blockade, a finite source-drain bias voltage VSD can also
lift Coulomb blockade. This is done by opening a large enough bias window,
−eVSD = µS − µD, such that µN enters the bias window, such that Coulomb
blockade is lifted and an increase in conductance is observed. By measuring
the differential conductance dI/dV as a function of gate voltage VG and source-
drain bias voltage VSD we observe a periodic pattern called Coulomb blockade
diamonds [102], as illustrated in Fig. 2.7. In this thesis, we assume asymmetric
voltage biasing, meaning the drain is kept grounded (µD = 0) and the voltage
is applied to the source contact (µS = −eVSD).

The boundaries of the Coulomb diamonds, which mark the onset of charge
transport, are determined when the chemical potential of the QD is aligned
with either the source or drain contact (µN = µS/D). When the slope of the
diamond edge is positive, indicated by β+, the chemical potential of the QD
is aligned with the source contact (µQD = µS), as shown in Fig. 2.7 III. In
comparison, when the slope of the diamond edge is negative, indicated by β-,
the chemical potential of the QD is aligned with the drain contact (µQD = µD),
as shown in Fig. 2.7 II. At the tip of the Coulomb diamond (Fig. 2.7 I), the
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Figure 2.7. Coulomb blockade diamonds: Differential conductance
dI/dV as a function of source-drain bias voltage VSD and gate voltage VG.
Coulomb blockade diamonds with two fold symmetry. The energy diagrams
represent different biasing conductions indicated in the Coulomb diamond
schematic. Schematic adopted from Refs. [102–104, 106–108].

bias voltage is a direct measurement of the addition energy Eadd. If a two-fold
periodicity in the Coulomb diamonds is observed, this can be used to extract
EC and δE by measuring the height of two sequential Coulomb diamonds.

From the slopes of the Coulomb diamonds, β- and β+, the gate lever arm αG
and all capacitances Ci can be determined. When the electrochemical potential
of the QD is aligned to the drain (µQD = µD = 0) the slope will be negative and
one finds from Eq. 2.9: 0 = −|e|CG

C
∆VG − |e|CSC ∆VSD. Therefore, we obtain

β- = −CG
CS

. From the positive slope, we can similarly determine β+ = CG
C−CS

.
From β- and β+, the lever arm can be expressed as [65]:

αG = β+|β-|
β+ + |β-|

(2.11)

Within the Coulomb diamond, the QD is in Coulomb blockade, therefore the
conductance in this region is zero. However, outside of the Coulomb diamond,
the electron number on the QD changes. This is due the chemical potential(s)
of one or more energy levels lies within the source-drain bias window.

2.3. Double quantum dots

By introducing a third tunnel barrier in the system, two regions along the wire
become energetically confined and two QDs in series are formed, known as a
serial double quantum dot (DQD). For an additional QD in series, an extra
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2.3. Double quantum dots

tunneling event takes place between one quantum state to another quantum
state. This dot-to-dot transition is governed by selection rules based on quan-
tum numbers such as spin and valley [109].
Fully tunable DQDs require at least five gates: three gates to form tunnel

barriers and two gates to adjust the electron population on each QD. A serial
DQD system can be modeled by either an electrostatic circuit diagram or
quantum mechanically by a tunnel coupling between the two QDs, as shown
in Fig. 2.8(a) and (b), respectively. The electrostatics are described by the
Poisson equation, which we approximate by capacitances leading to the circuit
diagram, and the transport and confinement by quantum mechanics.

S D
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QD2
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QD1

 

VG2

μS μD

S D

QD1ΓS ΓM ΓD
E
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 VG1

QD2

 VG2

(b)(a)

CG1 CG2

(N,M)

μ1(N-1,M)

μ1(N+1,M) μ2(N,M+1)

μ2(N,M)

μ2(N,M-1)

Figure 2.8. (a) Electrostatic circuit diagram of a double quantum dot (DQD):
The left quantum dot, QD1, is capacitvely coupled to the source (S) with
capacitance, CS, and to gate G1 with capacitance, CG1, by a gate voltage
VG1. Similarly, the right QD, QD2, is capacitvely coupled to the drain (D)
contact with capacitance, VD, and to gate G2 with capacitance, CG2, by a
gate voltage VG2. The two QDs are coupled via a mutal capacitance CM. (b)
Electrochemical potential diagram of a DQD. The electron population on QD1
and QD2 is denoted as N andM , respectively. The electrochemical potentials
of QD1, µ1, and QD2, µ2, are tuned by a voltage, VG1 and VG2, applied to
gates G1 and G2, respectively. QD1 is tunnel coupled to the source contact
with coupling strength, ΓS, and QD2 is tunnel coupled to the drain contact
with coupling strength, ΓD. QD1 and QD2 are mutually tunnel coupled with
coupling strength, ΓM. Figure adapted from Ref. [109].

First, we consider the case of the electrostatic circuit model where only
the discreetness of the electron charge is taken into account. The electron
population on QD1 is denoted as N and the electron population on QD2
is denoted as M . QD1 is capacitively coupled to gate G1 with capacitance
CG1 by a gate voltage VG1, as well as capacitvely coupled to the source (S)
contact with capacitance, CS. Similarly, QD2 is capacitively coupled to gate
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2. Quantum transport in mesoscopic systems

G2 with capacitance CG2 by a gate voltage VG2, as well as capacitvely coupled
to the drain (D) contact with capacitance, CD. In addition, QD1 and QD2
are mutually coupled with capacitance, CM.
In the quantum mechanical model, the QDs have discrete energy spectrums

due to confinement. QD1 and QD2 are tunnel coupled to the source and drain
contacts with coupling strengths ΓS and ΓD, respectively. In addition, the
QD1 and QD2 are mutually coupled with coupling strength ΓM. The elec-
trochemical potential to add an electron onto QD1 with N − 1 electrons is
denoted as µ1(N,M), where M is the number of electrons on QD2. Likewise
for QD2, µ2(N,M) denotes the electrochemical potential to add an electron
onto QD2 where N is the number of electrons on QD1. Therefore, resonant
tunneling through the DQD system is only allowed when all of the electro-
chemical potentials are aligned, i.e. µS = µ1 = µ2 = µD. For finite bias, the
condition for transport is given by: µS ≥ µ1 ≥ µ2 ≥ µD [109].
We now only consider the electrostatic picture where the two QDs being

capacitively coupled and neglect quantum mechanical effects. The total ca-
pacitance of QD1(QD2), C1(2), is given by: C1(2) = CS(D) + CG1(G2) + CM.
Cross capacitances between VG1 and QD2 and between VG2 and QD1 are ne-
glected. We consider transport through the system for small bias voltages,
VSD ≈ 0 and assume that there are only 1 or 0 electrons on QD1 or QD2.

2.3.1. Double quantum dot stability diagram
A double quantum dot stability diagram shows the charge configuration, (N ,M),
of the two QDs as a function of VG1 and VG2. The stability diagram also allows
for a qualitive description of each of the quantum dots total capacitance and
gate capacitance, as well as their addition energies [109]. The charge stabil-
ity diagram depends on the electrostatic interaction between QD1 and QD2.
Here, this is is governed by CM in this electrostatic model. Figure 2.8(a)-(c)
shows the charge stability diagram for three different regimes: two fully de-
coupled QDs (CM ≈ 0), two weakly interacting QDs (0 < CM < C1(2)), and
two strongly coupled QDs (CM ≈ C1(2)).
First we consider the case of two decoupled QDs, CM ≈ 0, where electron

transport through one QD is independent of the other QD. A schematic of this
situation is shown in Fig. 2.9(a). To enable transport through QD1, µ1 and
µ2 need to be aligned into bias window and to each other. Similarly for QD2,
this condition must be satisfied. Therefore, VG1(VG2) changes the charge on
QD1(QD2) without influencing QD2(QD1). These two processes are indepen-
dent of each other leading to a charge stability diagram that takes the shape
of rectangular pattern where transport is allowed at the intersecting points
indicated by black points, called triple points. Electrons travel through the
DQD system subsequently, resulting in two possible charge transfer processes:
(1) (1, 0) → (0, 1) → (0, 0) → (1, 0) or (2) (1, 0) → (0, 1) → (1, 1) → (1, 0).
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Figure 2.9. Double quantum dot stability diagrams: (a) Two fully de-
coupled quantum dots for CM ≈ 0 where transport occurs at the intersecting
points indicated by black dots. (b) Increasing CM causes a weak electrostatic
interaction between the two QDs and the stability diagram evolves into a
honeycomb pattern. The degeneracy points in (a) begin to split due to elec-
trostatic interactions and form so-called triple points. The dimensions of the
honeycomb pattern, ∆VG1 and ∆VG2, can be related to the gate capacitances,
CG1 and CG2, while the shift of the triple points is related to CM. (c) For
larger CM, the electrostatic interaction between the two QDs becomes strong
and the system acts as an effective single QD. Figure adapted from Ref. [109].

For two strongly coupled QDs, these processes are degenerate.
However, this degeneracy is lifted if the two QDs are not completely de-

coupled and there is a small electrostatic interaction between them such that
0 < CM < C1, C2. Now there is an energetic difference between charge trans-
fer process (1) and (2). This splits the degenerate triple points in Fig. 2.9(a)
into triple points that are energetically separated. This separation between the
triple points is governed by CM. In addition, the stability diagram evolves into
a honeycomb pattern, as illustrated in Fig. 2.9(b), reflecting the electrostatic
interaction between the two QDs. Within one honeycomb the total charge on
the DQD is constant. The dimensions of a honeycomb cell can be related to
the gate capacitances by:

CG = e/∆VG, (2.12)

where ∆VG is the spacing. In addition, the shift of the triple points,
∆VG1(2),M, can be related to CM by:

CM = C1(2) ·∆VG1(2),M/∆VG1(2) (2.13)

If the electrostatic interaction between the QDs is further increased such
that CM ≈ C1, C2, the two QDs will effective form a single QD. The resulting
charge stability diagram is shown in Fig. 2.9(c). Charge transport is allowed
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2. Quantum transport in mesoscopic systems

when Eadd(N) = α(VG1 +VG2), assuming equal coupling between the QD and
the two gates. Therefore, the stability diagram consists of diagonal resonances
when VG1 = −VG2 + Eadd(N)/α.

2.3.2. Bias triangles

So far, we considered transport processes for small VSD, but now we consider
the case of a finite bias |VSD| > 0. Therefore, we need to keep in mind the
electrochemical potential diagram shown in Fig. 2.8(b). We assume that the
bias is applied to the source contact and the drain is grounded. For a finite
bias, µS > µD, the triple points expand into larger triangular shaped regions,
called bias triangles, as seen in Fig. 2.10. The dimensions of the bias triangle,
δVG1 and δVG2 are given by [109]:

C1(2) =
CG1(2)

|eVSD|
· δVG1(2) (2.14)

Therefore by combining Eq. 2.12, 2.13, and 2.14, C1 and C2, as well as CM
can be extracted from the DQD stability diagram.
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Figure 2.10. Transport through a DQD at finite bias voltage: For a
finite bias voltage |VSD| > 0, the triple points in Fig. 2.9(b) expand into bias
triangles where transport is allowed through the DQD. The dimensions of the
bias triangles, δVG1 and δVG2, can be used to extract the total capacitance
of QD1 and QD2. The electrochemical potential diagrams (I)-(IV) show a
schematic of the the electrochemical potential energies for the source contact
(µS), QD1 (µ1), QD2 (µ2), and the drain contact (µD) at the boundaries of
the bias triangle. Figure adapted from Ref. [109].

Within the bias triangle electrons can freely travel through the DQD, as-
suming that the energy relaxation of the QDs is fast or have a dense spectrum
of excited states. The boundaries of the bias triangles are determined by the
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constraints: −|e|VSD ≥ µ1, µ1 ≥ µ2, and µ2 ≥ µD, indicated by the electro-
chemical potential diagrams (I)-(IV). To describe this, we follow the transport
process between points (I) and (IV). At (I), the electrochemical potentials are
given by µS = µ1 > µ2 = µD, thus transport is allowed. Following the boarder
of the bias triangle between (I) and (II), VG2 is decreased, therefore µ2 in-
creases until µS = µ1 = µ2 > µD. Within this region transport is also allowed.
If VG2 would decrease even further, then µ2 > µ1 and transport would be
prohibited. Going from (II) to (III), both VG1 and VG2 are simultaneously
increased, therefore µ1 and µ2 are decreased. Since µS > µ1 = µ2 > µD holds,
transport along this line is allowed until (IV) µS > µ1 = µ2 = µD [109].

2.4. Superconductivity

In this section, we discuss the principles of superconductivity and the effects
it has on electron transport in one-dimensional systems. Previously, we dis-
cussed single electron transport where electrons tunnel through the QD se-
quentially. However, in superconductors transport is mediated by electron
pairs, i.e. Cooper pairs. This creates a competition of transport mechanisms
when a superconductor is coupled to a QD. This interplay of single electron and
Cooper pair transport mechanisms results in a rich field of hybrid devices where
Cooper pair splitting [47, 81, 85, 93], Andreev bound states [17, 110, 111], and
Majorana bound states [6, 7, 9, 42, 86] can be observed.
Superconductors are a class of materials whose electrical resistance van-

ishes below a critical temperature TC, in comparison to a normal metal where
the resistance decreases as a function of temperature. In a superconductor
at a temperature above TC, the electrical resistance behaves similarly to a
normal metal. However, below TC the material undergoes a phase transi-
tion into the superconducting state where the electrical resistance is zero.
The first microscopic theory of superconductivity was developed in 1957 by
Bardeen–Cooper–Schrieffer (BCS theory) [112], who recieved the Nobel prize
later for their work. BCS theory can be thought of that at low tempera-
tures, i.e. below TC, the Fermi distribution of electrons become unstable
against any net attraction. This instability results in two electrons pairing
into Cooper pairs which do not follow typical Fermi-Dirac statistics, but rather
Bose-Einstein statistics. The origin of the attractive potential resulting in the
formation of Cooper pairs is attributed to electron-lattice interactions, how-
ever BCS theory only requires an attractive potential regardless of its origin
[112]. Cooper pairs can be continuously formed from two single electrons un-
til an equilibrium state is achieved where further pairing does not lower the
energy anymore. Since Cooper pairs have total spin 0, they form a coherent
bosonic ground state that can be described by a macroscopic wave function.
BCS theory further demonstrates that excitations from the ground state
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to unpaired electrons (quasiparticles) requires an energy of 2∆, where ∆ is
the superconducting order parameter. One can interpret this as the amount
of energy to break a Cooper pair. This results in the excitation spectrum
of the superconductor to have a gap of 2∆ around the Fermi level EF. The
quasiparticles energy dispersion is then given by: E(kx) =

√
ε(kx)2 + ∆2,

where ε(kx) = ~2k2
x

2m − EF is the kinetic energy of a free electron with respect
to EF [113]. From the quasiparticle dispersion relation, the density of states
(DOS) of the quasiparticles can be determined and reveals a gap of size 2∆
[114]:

DS(E) = DN(ε) dε
dE

=

{
DN(ε) · E√

E2−∆2
, if |E| > ∆.

0, if |E| < ∆.
(2.15)

where DN is the normal state DOS and is assumed to be constant. From
Eq. 2.15, we clearly see that there is a gap of ∆ around EF separating the
quasiparticles. If there is no tunnel barrier in the system then for subgap
energies |E| < ∆, the quasiparticle DOS is zero and transport is mediated
only by Cooper pairs. At |E| = ∆, the quasiparticle DOS diverges and for
higher energies |E| � ∆ the DOS recovers to the normal state DOS.

2.4.1. Andreev reflection and the proximity effect

In this section, we discuss the effects of electron transport at a normal - su-
perconductor (N-S) interface, as illustrated in Figure 2.11(a) and (b). The
normal metal (N) has a constant DOS, while the superconductor (S) has a
superconducting gap of 2∆.

Now we assume that an electron from the normal metal impinges on the N-S
interface. If the electron has a subgap energy |E| < ∆, transport through the
interface is prohibited since no quasiparticle states are available at this energy
and cannot form a Cooper pair at EF. In addition, for the electron to be
reflected at the interface, a momentum transfer of 2pF is required. However,
the tunnel barrier of height ∆ formed by the superconducting gap can only
transfer a momentum of δp = ∆/vF which is orders of magnitude smaller
than 2pF [116]. To circumvent this problem, a higher order processed called
Andreev reflection (AR) must be considered [117]. In AR, the impinging
electron is retro-reflected as a hole with opposite spin and momentum. The
electron and hole form a Cooper pair in the superconductor and a total of 2e
is transferred across the interface.
A theoretical description of such transport across an N-S interface is well de-

scribed by Blonder-Tinkham-Klapwijk (BTK model) [115]. The BTK model
describes the scattering potential at the N-S interface by a delta potential
V (x) = Z~vF δ(x) with a dimensionless barrier strength Z. For Z = 0, no
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Figure 2.11. Schematic of reflection of an incident electron at an N-S in-
terface for elastic scattering (a) and (b) Andreev reflection. (c) Normalized
differential conductance GS/GN as a function of the superconducting gap ∆
for an N-S interface based on the BTK model at T = 0 for different Z = 0
(blue), Z = 0.5 (green), Z = 1 (purple), and Z = 2 (red). Adapted from
[103, 115].

scattering events take place and transport through the N-S interface is gov-
erned by AR for electrons with |E| < ∆, as shown in Fig. 2.11(b). This results
in an increase of the current by a factor of 2. Experimentally, Z 6= 0 due to a
Fermi velocity mismatch between the two materials and elastic scattering at
the N-S interface, as shown in Fig. 2.11(a). Therefore, AR becomes surpressed
for increasing Z and the quasiparticle DOS begins to be observed in the super-
conductor for |E| > ∆. The normalized differential conductance S = GS/GN
as a function of ∆ for different Z values is shown in Fig. 2.11(c).
The time reversed process should also be considered. A Cooper pair can be

removed from the superconductor condensate by an incoming hole and retro-
reflected electron. The hole and AR hole remain phase correlated up to some
distance in the normal metal and there is a non-zero probability to find a
Cooper pair in the adjacent normal metal. The density of Cooper pairs decays
continuously as a function of distance inside the normal metal. For a metal,
this distance is on the order of the BCS coherence length ξ.
This means that the superconducting properties of the superconductor leak

into the normal metal. This is called the proximity effect where the super-
conductor proximitizes the adjacent material. The reverse situation where the
density of Cooper pairs is reduced in the superconductor by a adjacent normal
metal is possible. This is called the inverse proximity effect.
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3 Indium Arsenide Nanowires and Carbon
nanotubes

In this chapter we introduce two realizations of one-dimensional quantum wires
discussed in Chapter 2: indium-arsenide nanowires (InAs NWs) and carbon
nanotubes (CNTs). Both systems are natural one-dimensional semiconductors
due to their small diameters (few to tens of nanometers) compared to their
long lengths (few microns). Furthermore, we present the growth mechanisms
and electronic properties of InAs NWs and CNTs.

3.1. InAs nanowires

Semiconductor nanowires are promising one-dimensional systems for scalable
electronic devices and for investigating fundamental physics on the nanometer
scale. For example, they are used as possible hosts of Majorana fermions
[4, 6, 42, 58, 86, 118–122] and entangled electrons [81, 93] as building blocks
in topological quantum computation [5, 9, 56, 120], as well as in the fields
of spintronics [123–125], magnetotransport [88, 126, 127], and thermoelectrics
[128]. In addition, they are also widely used outside the realm of electron
transport, such as: sensors [129–133], solar cells [134–138], and light emitting
diodes [139]. InAs nanowires offer several unique characteristics such as their
small band gap [140], low effective mass [141], large and tunable g-factor [46,
142, 143], high mobility [144–146], and strong spin-orbit interaction [51, 125,
147].

Nanowire growth
The main growth technique of semiconducting nanowires is based on bot-
tom up vapor-liquid-solid (VLS) methods [148]. This includes: chemical va-
por deposition (CVD) [149], molecular beam epitaxy (MBE) [150], chemical
beam epitaxy (CBE) [55, 151, 152], and metal-organic vapor phase epitaxy
(MOVPE) [153, 154]. The working principle behind each of these processes is
similar, relying on the accumulation of gaseous atomic or metal-organic pre-
cursors inside of a metallic catalyst particle, however they mainly differ by
how the gas is fed to the catalyst particle. A typical material choice for the
catalyst particle of metal-assisted InAs NW growth is gold due to its inertness
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3. Indium Arsenide Nanowires and Carbon nanotubes

to oxygen [155]. Gold particles can be randomly formed on a substrate either
by: direct deposition [156], metal evaporation and subsequent annealing [157],
randomly deposited using aerosol techniques [158], or by first prepatterning
arrays by electron beam lithography and subsequent gold evaporation [159].

(a)

    Au 
catalyst In As

InAs

(b)
i ii iii

200 nm

Figure 3.1. InAs nanowire growth: (a) Illustration of the vapor-liquid-
solid growth process of InAs nanowires. (i) Predefined gold catalyst particles
(yellow) are formed on the InAs(111)B substrate (black). (ii) In (blue) and
As (red) are fed to the gold catalyst to initiate the growth of InAs (grey).
(iii) The gold catalyst supersaturates and begins to grow. (b) Transmission
electron microscope (TEM) image of InAs/InP heterostructure nanowires on
the growth substrate. TEM image courtesy of Lucia Sorba. Figure adapted
from Refs. [104, 106, 160].

During the growth process, the diameter, length, and crystal phase of the
InAs NW can be fully controlled. The diameter of the NW is determined by
the size of the gold catalyst particles. The length of the NW is dependent
on the growth time. Despit bulk InAs exhibiting a zincblende crystal phase,
typically the wurtzite crystal phase is observed in nanowires since the crystal
phase is highly dependent on the nanowire diameter [161]. However, single
crystal zincblende InAs can be realized in NW systems under the right growth
conditions [48, 49, 162].
The InAs NWs discussed in this thesis are synthesised by VLS growth in a

CBE chamber by Lucia Sorba (NEST Pisa). The growth process is illustrated
in Fig. 3.1(a). A thin gold film is evaporated onto an epiready InAs(111)B sub-
strate, then undergoes a thermal annealing step inside of the growth chamber
to to initiate the formation of randomly distributed gold nanoparticles with
a diameter of 40 nm to 50 nm (i) [157]. Next, trimethylindium(TMIn) and
tert-butylarsine(TBAs) are introduced into the system to initiate the growth
of InAs (ii). The TMIn and TBAs feed the gold catalyst particles until they
supersaturate and begin to grow (iii). This procedure has been shown to pro-
duce defect-free crystalline wurtzite InAs NWs [55]. The resulting growth chip
consisting of a "forest" of InAs NWs is shown in Fig. 3.1(b).

26



3.1. InAs nanowires

Significant progress has been made in the bandstructure engineering of III-
V semiconductor NWs. For example, directly grown complex multiple NW
geometries such as crosses and networks have become feasible [35–38], as well
as in situ grown epitaxial superconducting shells [39–41] for superconducting
hybrid devices [6, 42, 43, 163]. In addition, heterostructure and core-shell InAs
nanowires have been sucessfully realized in a varity of systems [48, 164–168].
One prime example are InAs/InP heterostructure nanowires where two short
in-situ grown InP segments are implemented into the InAs NW during growth
[54, 55, 61]. An in-depth description and analysis of InAs/InP heterostructure
nanowires can be found in Chapter 6, as this is one of the main work horses
of this thesis.

Electronic properties
InAs nanowires are an n-type III-IV semiconductor composed of indium (Is)
and arsenide (As) atoms. As illustrated in Fig. 3.2(a), the InAs NWs discussed
in this thesis exhibit a hexagonal wurtzite crystal structure with a lattice
constant of 4.25Å where the In and As atoms are covalently bonded [169–171].
Figure 3.2(b) illustrates the band structure around the Γ point in the Brilluoin
zone. The conduction (CB) and valence (VB) band are separated by a small
direct semiconducting band gap, Eg = 477 meV [140]. The conduction band
around the Γ point can be approximated by a parabola with an effective mass
m* = 0.04me, where me is the mass of a free electron, assuming a wurtzite
InAs crystal phase [141].
Electron transport takes place mainly at the surface of the InAs NW due to

the accumulation of electrons at the surface of the NW that pins the Fermi level
200 meV above the conduction band [172, 173]. This makes InAs NWs very
sensitive to any surface treatment [175–178] and electrostatic gating effects
[179], however it also allows for easy electrical contact to the NW [180]. One-
dimensional ballistic transport and control over the number of one-dimensional
subbands have been observed in InAs NWs [181]. The spin-orbit interaction
strength in InAs NWs has been found to be 250 µeV and vectorial control
over it has been demonstrated [51, 147, 182, 183]. Strong SOI and ballistic
transport in one-dimensional semiconductors are necessary in the formation
of a helical gap; a spin-orbit induced Zeeman gap essential for the creation of
topological superconductors with induced Majorana bound states. The first
signatures of a helical gap in an InAs NW have been reported by Heedt et. al.
[184].
Due to their small diameter, the electron wave function is constrained in

the radial direction. As discussed in Sect. 2.1.2, the electron states become
quantized and form transverse modes. To visualize the transverse modes in
an InAs NW, we assume a hexagonal confinement potential and numerically
solve the Schrödinger equation using Matlab 2D finite element solver for the
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Figure 3.2. Properties of InAs nanowires: (a) In (green) and As (blue)
form an InAs wurtzite crystal structure with a lattice constant of 4.25Å. (b)
Electron band structure around the Γ point. The conduction (CB) and valence
(VB) band are separated by a small band gap Eg = 477 meV [140]. The
Fermi level, EF is positioned 200 meV above the conduction band [172, 173].
(c) Analytically calculated wave functions of the five lowest subbands for a
nanowire with hexagonal confinement. We find orbital degeneracies between
E2 and E3 and between E4 and E5. Figures adapted from Refs. [106, 174].

wave functions. The wave functions of the lowest five subbands are shown in
Fig. 3.2(c). The main difference compared to a parabolic confinement potential
is the subband energy spacing. In Sect. 2.1.2, we showed that the subband
spacing is constant for rectangular confinement. Now, it is possible to have
additional orbital energy degeneracies, for example, between E2 and E3 and
between E4 and E5.

3.2. Carbon nanotubes

Single-wall carbon nanotubes (CNTs) are often referred to as a prime example
of a one-dimensional semiconductor due to their extremely small diameters on
the scale of (1 nm to 2 nm) and micron long lengths [14, 185]. CNTs are a
highly versatile material system with highly sought after electronic, thermal,
and mechanical properties that have been used over the past two decades to
investigate transport processes such as: quantum dots [16, 18, 21, 22, 27, 30, 97,
186–188], spin transport [31, 32, 189, 190], Andreev bound states [17, 33, 191–
195], and Cooper pair splitting [93, 196]. Metallic CNTs with uncorrelated
electrons are a perfectly ballistic system with room temperature mean free
path length of a several hundreds of nanometers [197, 198]. Furthermore, CNTs
also exhibit semiconducting features with a band gap inversely proportional
to its diameter, allowing for easily tunable electron and hole charge carrier
transport [19, 199]. In addition, CNTs synthesized from 13C atoms have been
proposed as hosts of helical spin-ordering where the electrons and nuclear spins
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3.2. Carbon nanotubes

of the system become helically ordered for temperatures below a few millikelvin
[200]. CNTs are extremely stiff with tensile strengths in the tens of gigapascals
without significant weight [201, 202].
All of these properties aspects make CNTs a fascinating system to study fun-

damental one-dimensional physics, as well as industry driven aspects of CNTs.
This section serves as an introduction to single-wall carbon nanotubes starting
from their growth and the basis of graphene to their electronic properties.

Carbon nanotube growth
The most common method of CNT synthesis is via chemical vapor deposition
(CVD), as illustrated in Fig. 3.3(a). A substrate is prepared with a layer of
metallic nanoparticles and catalyst support particles mixture. The substrate
is then placed into the center of the CVD oven and heated to a growth tem-
perature set by the nanoparticle/catalyst mixture. A precursor hydrocarbon
gas is then passed through the CVD oven and into a bubbler. Due to the
high temperature, the metal nanoparticles initiate the decomposition of the
hydrocarbon and the growth of CNTs.

catalyst

Temperature
   controller

Bubbler

CVD oven(a) (b)

A
r

CH
4

H
2

5 μm

Figure 3.3. Carbon nanotube growth: (a) Typical chemical vapor
deposition setup for carbon nanotube growth. (b) Scanning electron mi-
croscope image of carbon nanotubes after growth. Figure adapted from
Refs. [103, 203, 204].

In this thesis, we implement a recipe developed by Jürg Furer during his
PhD that produces reliable, high quality, and a large yield of single-wall CNTs
[203, 205]. We use iron/molybdium (Fe/Mo) catalyst dissolved in IPA [206].
A few mL of this solution is sonicated in a high power sonicator to breakdown
the iron clusters and form a homogeneous solution. Directly following the
sonication, the catalyst solution is spin-coated onto a substrate and placed
into the center of a CVD oven. Subsequently, the CVD oven is heated to
a growth temperature of 1100 ◦C under a constant argon/hydrogen (Ar/H2)
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3. Indium Arsenide Nanowires and Carbon nanotubes

flow. Once at the growth temperature, the flow of H2 is stopped and replaced
with methane (CH4) for 10 min to initiate the growth of CNTs. Afterwards,
the CVD oven is cooled to ∼200 ◦C under a constant Ar/H2 flow.

Electronic properties

Carbon nanotubes are understood as rolled up sheets of graphene. There-
fore to understand CNTs, we begin the discussion with the band structure of
graphene. Graphene is a two dimensional monolayer of graphite consisting of
carbon atoms with 6 electrons each. Two electrons occupy the inner 1s shell
and are tightly bound to the nucleus, while the other four electrons occupy
the 2s and 2p orbitals. These four electrons are weakly bound to the nucleus
and form four bonds; one σ bond with its three neighbors and one π bond in
the z-direction [207].
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Figure 3.4. Graphene lattice and bandstructure: (a) Honeycomb pat-
tern of graphene in real space with lattice constant a0 = 1.42Å. The primitive
unit cell consists of A and B atoms formed by basis vectors ~a1 and ~a2. (b)
First Brilluoin zone of the honeycomb lattice with reciprocal lattice vectors,
~b1 and ~b2. (c) Tight binding calculation of the electronic band structure of
graphene [207]. (inset) Zoom-in of the charge neutrality point. Figure adapted
from Refs. [207–209].

As shown in Fig. 3.4(a), the six carbon atoms are arranged in the well-
known 2D hexagonal honeycomb lattice with lattice constant, a0 = 1.42Å.
The primitive unit cell containing two atoms, A and B, is formed by two basis
vectors, ~a1 and ~a2, which span one unit cell consisting of two carbon atoms.
The corresponding first Brilluoin zone of the honeycomb lattice with reciprocal
lattice vectors, ~b1 and ~b2, is shown in Fig. 3.4(b). The reciprocal lattice vectors
given by the condition: ~ai · ~bj = 2πδij . This creates two inequivelent set of
valleys, K and K′, at the six corners of the Brilluoin zone [207].
Figure 3.4(c) shows a tight binding calculation of the electronic band struc-

ture of graphene by taking into account only nearest neighbor hoping [207].
At the valleys, K and K′, the conduction and valence band meet and are com-
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3.2. Carbon nanotubes

monly refereed to as Dirac points or charge neutrality points since the Fermi
energy, EF at this intersection is zero. The linear dispersion relation near the
Dirac points is given by:

E(q) = ±~vF(q), (3.1)

where q = k −K or q = k −K′ for |q| � |K| and vF ≈ 8× 105 m/s is the
Fermi velocity [199, 207]. Therefore, graphene is known as a zero bandgap
semiconductor, or semi-metal, with zero density of states (DOS) at the Dirac
points. Dirac cones, as shown in the inset of Fig. 3.4(c), are the low energy
approximation around K and K′. This gives rise to a new degree of freedom
called valley-spin or isospin [199, 207].
Figure 3.5(a) illustrates the rolling up process to form CNTs from a single

sheet of graphene. The resulting CNT has a cylindrical structure with a di-
ameter, d, of 1 nm to 5 nms [210]. However, if the CNT is made up of several
sheets of graphene, it forms a so-called multi-wall carbon nanotube (MWCNT)
and can have diameters up to 20 nm [210]. The structure of the CNT is char-
acterized by the chiral vector, ~c, given by: ~c = n~a1 +m~a2, where n and m are
integers and n ≤ m. There are three different sets of CNTs that are defined by
n and m: zig-zag, armchair, and chiral CNTs. When m = 0, the edge forms a
so-called zig-zag pattern. An armchair CNT forms when n = m and the edge
forms a so-called armchair. Other variations of n and m form chiral CNTs.

The electronic band structure of a single-wall CNT can be calculated by
applying a zone-folding approximation [199]. In this approximation, the axial
component of the momentum along the CNT axis, k‖, remains unaffected and
continuous. However, the perpendicular component of the momentum along
the circumference of the CNT, k⊥, becomes quantized with step size given by
the condition: ∆k⊥πd = 2π. Thus, the one-dimensional dispersion relation for
CNTs is a cut of the Dirac cone along k⊥, leading to one-dimensional subbands
with a dispersion relation given by:

El(k‖) = ±vF
√

(k‖)2 + (kl⊥)2, (3.2)

where l denotes the subband with a quantized momentum component, kl⊥ =
k0
⊥ + k∆k⊥. As shown in Fig. 3.5(b) and (c), we observe that the CNT can

either be metallic or semiconducting depending on k0
⊥. If k0

⊥ = 0, the lowest
subband cuts through the Dirac point and the linear dispersion relation with
zero bandgap and constant DOS is preserved. Therefore, the CNT has a
metallic structure. However, if k0

⊥ 6= 0, the Dirac point is missed and a
bandgap of Eg = 2~vF k0

⊥ is opened. In this case, the CNT has semiconductor
properties with a one-dimensional DOS.
The origin of the metallic and semiconducting CNTs is the formulation of

periodic boundary conditions and is governed by the chirial indicies, n and m.
The periodic boundary conditions of the electrons’ wavefunctions are given by:
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Figure 3.5. CNT lattice and bandstructure: (a) Honeycomb pattern
of graphene where the brown area is rolled up into a carbon nanotube with
chirality vector ~c. (b)-(c) Quantization of k⊥ along the circumference of the
carbon nanotube leads to 1D subbands. (b) If k⊥ = 0, then the lowest subband
cuts through the Dirac point leading to a metallic band structure and a finite
density of states. (c) If k⊥ 6= 0, then the lowest subband does not cut through
the Dirac point and a band gap Eg is opened where the DOS is zero. Figure
adapted from Ref. [103, 107, 211, 212].

φ(r + c) = eic(k+K)φ(r) = φ(r) (3.3)
Here, c ·K = 0 holds if (n−m) = 3l and the CNT is metallic. However, if

(n −m) = 3l, thus c · K 6= 0, the lowest subband misses the Dirac point by
∆k0
⊥ = 2

3d . This causes a bandgap to form with size inversely proportional to
the CNT diameter, i.e. Eg = 2~vFk

0
⊥ = 4~vF

3d ≈ 0.7 eV/d[nm]. A CNT with
these chiral indicies is therefore semiconducting. Following this approach, two-
thirds of all CNTs should be semiconducting while only one-third are metallic.

3.3. Summary

In this chapter, the fundamental structual and electronical properties of InAs
nanowires and carbon nanotubes were presented. Both materials offer unique
advantages to study one- and zero-dimensional electron transport. Carbon
nanotubes are often thought of as a true one-dimensional system due to the
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possibility of transport via a single electronic mode due to their very small
diameters and unusually long mean free paths, that is crucial in understand-
ing, for example, Andreev bound states that form in the system, whereas InAs
NWs have a larger diameter and multiple modes contribute to transport. An-
other major difference is where current propagates: in CNTs it is along the
circumference and in InAs NWs it propagates along the surface of the NW
due to Fermi level pinning. Selectively grown individual single-wall carbon
nanotubes has yet been realized, however InAs NWs can be readily grown
on prepatterned templates in a well-controlled manner. In addition, several
types of InAs NWs can be in-situ grown, such as core-shell and heterostructure
NWs, allowing for in-situ band modification. Carbon nanotubes have an extra
orbital degeneracy, valley and spin, that allows for richer physics. In addi-
tion, CNTs often have a narrow band gap, leading to the possibility to study
electron and hole transport, whereas in InAs NWs this regime is energetically
inaccessible. InAs nanowires offer strong spin-orbit interaction with a large g-
factor that are crucial ingredients of topological based quantum computation
and is not present in CNTs. Because to this, they have been in the forefront of
topological quantum computation due to being promising host materials for
Majorana bound states.
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4 Device fabrication and measurement setup

This chapter first focuses on the fabrication process of the carbon nanotube
(CNT) and nanowire (NW) devices presented in this thesis. Afterwards, the
experimental measurement setup used in this thesis is discussed. In the fol-
lowing sections, the most important fabrication steps are presented. How-
ever to completely fabricate one device, several techniques are used that are
not discussed in this thesis: electron beam lithography (EBL), reactive ion
etching, optical mask aligner, metalization with electron-gun and thermal
sources, as well as standard wet etch methods. More information about the
standard EBL process can be found in several PhD theses within our group
[103, 106, 108, 208, 211]. For the exact fabrication recipes discussed in this
chapter, please refer to the Appendix A.

4.1. Electrostatic gate-defined tunnel barrier devices

In this section, we discuss the fabrication of carbon nanotube (CNT) and
indium-arsenide (InAs) NW devices with electrostatic gate-defined tunnel bar-
riers that are presented in Chapter 5.

Bottom gate base structures
For electrostatic gate-defined tunnel barrier CNT and NW devices, we incorpo-
rated a grid of bottom gate structures, as shown in Fig. 4.1(a)-(c). To reduce
the risk of gate leaks due to the substrate oxide breaking down, we used an
undoped silicon wafer with 170 nm SiO2 caping layer. The wafer is then diced
into 2.5 x 2.5 cm pieces using a quartz-tipped scriber and the smaller pieces
undergo a cleaning consisting of 15 min sonication in aceton, 15 min sonication
in isopropanol (IPA), then 5 min UV ozone treatment to remove the organic
surface residues using oxygen radicals.
Afterwards, a very thin 80 nm resist was spin-coated onto the undoped sub-

strate and subsequently placed on a hot plate for 3 min at 180 ◦C to harden.
The thin resist helps to reduce the amount of undercut during EBL, however
it also limits how much metal can be evaporated and still have a proper liftoff.
The main challenge of thin and short bottom gate structures is combat-

ing the proximity effect during the EBL, where the electrons scatter a small
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4. Device fabrication and measurement setup

distance at the surface of the resist. This results in the unexposed resist be-
tween each individual gates to also become cross-linked. After development
and metalization, this section will also be covered in metal and all of the gates
will be shorted. To combat this, a very precise and reproducible fabrication
method must be implemented. A series of dose tests with different acceleration
voltages were performed to obtain the most optimal line dose with minimal
proximity effect.

90 μm 2 μm 450 nm

(b)(a) (c)

Figure 4.1. Bottom gate base structures: (a) Layout of the bottom gate
chip with large alignment markers and an 8x8 grid of bottom gate structures
within them. (b)-(c) One of the bottom gate structures within the 8x8 grid.
The bottom gate has five 30 nm metallic strips with a pitch of 100 nm.

The bottom gates were fabricated using standard EBL with an acceleration
voltage of 20 keV, high current mode, and a line dose of 1460 µC/cm. The chip
was then developed in methyl isobutyl ketone (MIBK) at −15 ◦C. The low
temperature was achieved by placing the beaker with the developer inside of
a bath consisting of dry ice and IPA. Afterwards, the chip was exposed to a
O2 plasma to remove any resist residues and subsequently metallized with a
bilayer of titanium/gold.
Figure 4.1(a) shows an outer 2x2 grid structure of alignment markers. In-

side this this grid, there is another 8x8 grid of bottom gate structures. One
example of a bottom gate structure can be seen in Fig. 4.1(b). The bottom
gate structure is made of up five 30 nm wide strips of Ti/Au with a center-
center(pitch) distance of 100 nm, as shown in Fig. 4.1(c). The total width of
the bottom gate structure where the gates are parallel is 450 nm.
In order to prevent the CNTs to directly contact the bottom gate structure,

an insulating layer must be placed on top of the gate structures to electri-
cally isolate them. In this thesis, we implemented a high quality 50 nm thick
Si3N4 layer as our insulating material. The Si3N4 layer was deposited us-
ing plasma-enchanced chemical vapor deposition (PE-CVD) externally at the
Paul Scherrer Institute (PSI) by Christoph Wild. The process is performed at
300 ◦C, thus making it difficult to use any kind of resist mask. Therefore, the
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4.1. Electrostatic gate-defined tunnel barrier devices

Si3N4 layer was evaporated on the entire substrate.
We use these electrostatic gates to modify the potential along either a CNT

or NW. However, the CNT or NW must be placed on top of the gate struc-
ture and subsequently metallized. In the following, we discuss the further
fabrication steps that are unique to each system.

4.1.1. Carbon nanotube devices
First, we focus electrostatic gate-defined tunnel barrier CNT devices which
differ in their growth, placement, and metallization steps.

Carbon nanotube stamps
Now that we estabilished the base structure, we introduce the method which
we use to transfer the CNTs to the base structure. We implement stamping
technique that was developed and optimized by Thomas Hasler [211, 212].
Carbon nanotube stamps are 50 µm× 50 µm large and 4 µm tall pillar-like
structures on which CNTs are grown. Then one presses the stamp chip with
CNTs and the bottom gate chip together. This mechanically transfers the
CNTs from the stamp to the bottom gate chip. The position of the CNTs
are random, however due to the amount of CNTs that are transferred and the
number of bottom gate structures are on device chip, it is likely that one lies
on top of the predefined bottom gates.

(a) (b)

500 μm

10 μm

  CNT
catalyst

Figure 4.2. Carbon nanotube stamps: (a) Large mesa structure of silicon
piller-like structures. (b) Zoom-in of one piller where the catalyst from the
CNT growth can be seen.

The stamps are fabricated on an undoped silicon wafer with a 170 nm
SiO2 caping layer. In order to achieve the pillar-like structure, as shown in
Fig. 4.2(a-b), we utilize a bilayer resist of poly(methyl methacrylate) (PMMA)
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and hydrogen silsesquioxane (HSQ). We first spin-coat a ∼1 µm thick PMMA
layer and let it bake for 3 min at 180 ◦C. Then we spin-coat a thin layer of
HSQ. After standard EBL to create the mesa structure, the chip is developed
for 25 s in tetramethylammonium hydroxide (TMAH). Since HSQ is a positive
resist, the HSQ development in TMAH only removes the unexposed HQS and
the PMMA remains everywhere.

Afterwards, a three step etching is performed to create the pillar-like struc-
ture. First, the PMMA that is not covered by the HSQ is removed with an
O2 plasma. Then the SiO2 layer, and all remaining HSQ, is removed by a
hydrogen fluoride (HF) wet etch. Subsequently, we etch deep into the silicon
using a sulfur hexafluoride (SF6) plasma and remove the rest of the PMMA
on the pillars with acetone. Following this, the desired mesa structure of a
square grid of SiO2 pillar-like structures with a size of 50 µm and height of
4 µm is obtained.

Stamping technique
Afterwards, we grow CNTs directly on top of the CNT stamps using the
method presented in Sect. 3.2. After the growth is complete, the CNTs on
the stamp need to be transferred to the device chip. This is done by using an
optical mask aligner. The CNT stamp is glued to a transparent glass slide us-
ing PMMA and mounted in the mask aligner. By using the optical microscope
for alignment, the device chip is placed directly underneath the CNT stamp
and the stamp is lowered until they press against each other. This causes
the CNTs from the stamp to be mechanically transferred to the device chip.
Figure 4.3 shows a device chip after being stamped with CNTs. The outline of
the meso structure of the stamp can be clearly seen from the catalyst particles
and CNTs being transferred. This technique usually results in a 3− 4 straight
CNTs to lie across the bottom gates structure. Afterwards, the device chip is
imaged in an SEM and the CNTs are precisely localized.

Continuously stamping the device chip with the CNT stamp results in a
rapidly decreasing yield. However, the stamps can be reused by wet etching
them in HF. This removes ∼10 nm of the SiO2 pillars and all of the CNTs and
dirt particles. Afterwards, new CNT catalyst can be applied to them again
and the growth procedure can be performed again.

Metallization
All that there to do now is to electrically contact the gates and the CNT by
a process called metallization. In order to contact individual gates, a window
in the Si3N4 must be etched to make the gates accessible. The windows were
created by standard EBL and the Si3N4 within the window was etched using
a CHF3/O2 plasma. Afterwards, the device undergoes another EBL step to
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440 μm
Lorem ipsum

Figure 4.3. Bottom gate base structures after CNT stamping: Op-
tical microscope image of the device chip after stamping. The imprint of the
meso structure of the stamp chip with CNTs on the device chip with a grid
bottom gate structures can be seen.

open windows in the resist where the individual gates as well as the CNT/NW
will be metallized. In this thesis, we use a Ti/Au bilayer.

4.1.2. InAs nanowire devices
Now we swap to electrostatic gate-defined tunnel barrier InAs NW devices
that use the same base structure and discuss the two main differences: the
placement of NWs and their metallization.

Placement of nanowires
For electrostatic gate-defined InAs NW devices, the NW is placed directly on
top of a bottom gate structure using a micromanipulator. The micromanipu-
lator consists of two glass needles with tampered ends that are controlled by
a hydraulic system, allowing for precise pickup and placement of NWs onto
the bottom gate structure that could otherwise not be achieved by other tech-
niques. The NW is first selectively picked up from the growth chip using a
fine tipped glass needle. Due to the van der Waals force between the tip and
the NW, the NW will become stuck to the glass tip. Once taken, the NW can
easily be transferred to a bottom gate structure on one of the base structures.
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Sulfur passivation and metallization

Now that the NW is on top of the bottom gate structure, the gates and NW
need to be electrically contacted. The gates are electrically contact similarly
to CNTs: by first etching away the SiN3 to expose the gold gates. However,
electrically contacting a NW not the same as a CNT. In order to make ohmic
contact to the NW, the NW must first be striped of its 2 nm to 3 nm native
oxide. This is done by first using standard EBL to open windows in the
resist where the NWs native oxide will be etched and subsequently metallized.
Sulfur passivation is a wet etch method where the device chip is submerged
into a diluted ammonium polysulfide:water solution, (NH4)2Sx:H2O, which
in addition to etching the nanowires native oxide, also creates a monolayer of
sulfur atoms that locally dopes the NW [213]. The InAs NWs presented in this
thesis have a wurzite crystal phase which has shown to have an intrinsically
low carrier concentration [214, 215], therefore the local doping is beneficial
to achieve ohmic contact to the NW. Since sulfur passivation is a wet etch
method, it must be performed in a cleanroom and cannot be done directly
in the evaporation chamber. This means that the NW will be exposed to air
during the time between the wet etch and evaporation chamber. If this time is
long enough (∼5 min), it is possible that the passivation layer will disintegrate
and the NW will reoxidize. In practice, this means running from the cleanroom
to the evaporator as quickly as possible. After sulfur passivation. the NW is
then metallized with either a Ti/Au.

Conclusion

Figure 4.4 shows a false colored SEM image of a typical electrostatic gate-
defined CNT device that is the end result of the fabrication steps presented in
this section. A CNT (red) is stamped on top of five (G1-G5) electrical bottom
gates (light blue) that are covered by Si3N4 (black).

To make electrical contact to the bottom gates, a region of Si3N4 above the
bottom gates was etched (dark contour). Consequently, the CNT and each
bottom gate was contacted by a Ti/Au (gold) metallization process. These
types of devices were designed to form single and double quantum dots by
electrostatic gating. Each of the five bottom gates (G1-G5) serves a unique
purpose. The two outer gates, G1 and G5, are used to form tunnel barriers
at each end of the CNT. G2 and G4, are used to tune the electron population
on each quantum dot individually. The middle gate, G3, is to form another
tunnel barrier in the center, therefore modifying the coupling between the two
quantum dots.
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Figure 4.4. Typical CNT device: Scanning electron microscope image of a
typical carbon nanotube (CNT) device. The CNT (red) is deposited using the
stamping method onto a grid of 5 bottom gates (light blue) that are covered
by Si3N4 (black). The dark contour is an etched region where the Si3N4 was
removed to make electrical contact to the bottom gates (G1-G5). The CNT
and the bottom gates are contacted using Ti/Au (yellow).

4.2. Integrated tunnel barrier devices

Next, we discuss the fabrication of indium-arsenide/indium-phosphide (InAs/InP)
heterostructure nanowire devices that are presented in Chapter 6.

Substrate preperation

The InAs/InP heterostructure NW devices presented in this thesis were fab-
ricated on a highly p-doped (boron) silicon wafer. The silicon wafer is capped
with a 400 nm thick layer of thermally grown silicon oxide (SiO2). The in-
sulating SiO2 capping layer also serves as a gate oxide for a global backgate.
Further wafer preparation is the same as in Sec. 4.1.

Base structure fabrication

First, standard EBL was used to create a marker grid such that the nanowires
can be easily and precisely localized. As shown in Fig. 4.5, the base struc-
ture consists of two sections: the outer structure (a) and the inner structure
(b-c). The outer structure consists of the the bond pads and the leads con-
necting the inner structure to the bond pads. The inner structure is an area of
500 µm× 500 µm consisting of a grid of unique small alignment markers with
a spacing of 20 µm, as shown in (c). After EBL exposure, the structure is
developed and metallized with a Ti/Au bilayer.
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(b)(a) (c)

40μm250μm500μm

Figure 4.5. Integrated tunnel barrier device base structure: Opti-
cal microscope images of the outer (a) and inner (b)-(c) sections of the base
structure. (a) The outer contacts and bond pads of the base structure can
be seen. (b)-(c) The inner structure of the base structure where the grid of
unique small markers is shown.

Nanowire placement and readout

The InAs/InP heterostructure NWs were grown on a separate substrate, as
discussed in Sect. 6.1. To transfer the NWs from the growth chip to our prepat-
terned base structure, we used the tip of a cleanroom tissue. First, we cut the
tissue into a small triangle that has a sharp tip, then carefully touch the growth
chip that is full of densely packed NWs with the sharp tipped triangular clean-
room tissue. NWs break off from the growth chip and attach to the tip of the
cleanroom tissue. By gently touching the base structure with the tip of the
cleanroom tissue that is covered in NWs, the NWs will be transferred from the
tissue to the base structure. Afterwards, the chip is once again cleaned using
a sequence of Aceton/IPA/UV ozone treatment to remove particles from the
cleanroom tissue and clumps of densely packed nanowires.

In order to precisely locate individual NWs, we image the base structure
with an scanning electron microscope (SEM). Figure 4.6 shows an example of
a localized SEM image of a nanowire. From the unique small markers that the
NW is positioned within, the exact location of the NW on the base structure
is known. It is important to note that not only the position of the NW is
important, but also on which end of the NW the gold catalyst is positioned.
The is due to the position of the InP segments being defined by the distance
from the gold catalyst. We find the distance from the gold catalysis to the first
InP segment is ∼440 nm. In addition, we find that the InP segments are each
∼6 nm long separated by ∼20 nm of InAs. These values are consistent with
the transmission electron microscopy (TEM) study performed by Valentina
Zannier on several NWs from this growth batch.

Using a python program developed by Olivier Faist, we can readout the
unique markers and the NW position from the SEM images and export the
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200 nm
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Figure 4.6. Nanowire readout: Scanning electron microscopy (SEM) im-
age of an individual nanowire within four unique markers used for nanowire
readout. (inset) High resolution SEM image of the nanowire and the gold
catalyst indicated by the white arrow.

NW position into our design program (Elphy). From there, the electrical
contacts and gates can be designed for the specific device.

Nanowire metallization

As with InAs NWs, InAs/InP heterostructure NWs have a 2 nm to 3 nm na-
tive oxide that must be removed prior to metallization. We implement a wet
etch sulfur passivation step, as discussion in detail in Sect. 4.1.2. After sulfur
passivation, the NW is then metallized with either a Ti/Au bilayer for normal
metal contacts or a titanium/aluminum (Ti/Al) bilayer for superconducting
contacts.

Conclusion

Figure 4.7 shows a false colored scanning electron microscope (SEM) image
of a typical InAs/InP NW device that is the end result of the fabrication
steps presented in this section. The InAs NW, with two short InP segments
indicated by white arrows, is electrically contacted with two Ti/Au (gold)
contacts. In addition, the doped substrate (black) acts as a global back gate
which electrostatically tunes the conduction band edge in the NW.

43



4. Device fabrication and measurement setup

200 nm

InP

InAs

SiO2

Ti/Au Ti/Au

Figure 4.7. Typical integrated tunnel barrier device: False color scan-
ing electron microscope image of a typial InAs/InP heterostructure device.
The InAs/InP heterostructure nanowire is contacted with two metal contacts
(gold). The two InP segments are indicated by the white arrows. The SiO2
substrate (black) acts as a global back gate.

4.3. Cryogenic measurement setup

Low temperatures are crucial in the observation of quantum mechanical ef-
fects, such as the formation of quantum dots and superconductivity. In order
to observe quantum dots, the thermal energy of the electrons has to be signif-
icantly lower than the charging energy, EC , and single particle level spacing,
δE, of the quantum dot. In addition, if the quantum dot is coupled to a
superconductor, the thermal energy of the electrons must be lower than the
superconducting gap, ∆, of the material. These energies are mostly above
400 µeV range. The lowest electronic temperatures in our lab are ∼50 mK.
This corresponds to ∼4 µeV which is two orders of magnitude lower than the
superconducting gap of aluminum.
By placing the sample into liquid 4He, one can cool the sample down to

4.2 K. By pumping on the surface of the liquid 4He, the latent heat is removed
due to evaporation and the temperature of the liquid 4He lowers to ∼1.4 K.
However, to reach even lower temperatures, such as in the mK range, more
advanced techniques need to be implemented using dilution refrigerators.
Dilution refrigerators function based on a mixture of 3He and 4He. At
∼870 mK, the 3He and 4He mixture spontaneously separates into a 3He-rich
and 3He-poor phase [216]. Cooling power is generated from the heat needed
for the 3H to cross the phase boundary from the rich to the diluted phases.
This phase transition can be continuously driven and base temperatures of
∼20 mK can be obtained.
On the measurement side, we implemented low frequency lockin-techniques

to measure the differential conductance and resistance. Figure 4.8 shows an
illustration of an typical measurement setup. We apply a voltage bias to one
end of the nanowire using a standard lock-in (Stanford SR830) and measure
the current using low-noise a I/V converter on the other end of the nanowire.
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Figure 4.8. Schematic of a typical low frequency voltage bias differential
conductance measurement at a base temperature of ∼20 mK. Adapted from
Refs.[103, 104, 107, 211].

We apply a small AC voltage that is stepped down using a 1:4 transformer,
transpose the signal with a DC voltage source (Yokogawa YK7651), then the
combined signal is further reduced using a 1:1000 voltage divider directly on
the breakout box. In addition, DC voltages were applied to electrostatic gates
using a 8 channel high resolution digital-to-analog converter (DAC) that was
built in-house by the electronics workshop. If voltages higher than 10 V were
required, the DAC was connected to a voltage amplifier that was also built
in-house.
The measurements were performed using QCodes, a python based program

that was developed in Delft, and QCTools which was developed by Dr. Joost
Ridderbos. Dr. Gergő Fülöp and Dr. Joost Ridderbos were heavily involved
in the setup, problem solving, and maintenance of these programs within our
group.
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5 Electrostatic gate-defined tunnel barriers in
carbon nanotubes and InAs nanowires

The first approach to form deterministic tunnel barriers is by electrostatic
gating of a carbon nanotube (CNT) and an InAs nanowire (NW). Tunnel
barriers formed via electrostatic gating have been shown to be a powerful tool
to enable the confinement and manipulation of individual charge carriers, as
well as spin, to form fully tunable single and double quantum dots where crucial
QD parameters can be freely tuned in situ by electric and magnetic fields [217,
218]. Furthermore, due to their straight forward top-down fabrication method,
electricostatic gate-defined QDs can be formed in a wide variety of material
systems like two-dimensional electron gases [73, 219], CNTs [14, 16, 18–20, 27,
30, 96, 97, 186, 187, 194], NWs [6, 44, 48, 50, 61, 80, 82, 83, 88, 89, 220], and
two-dimensional van der Waals materials [98, 221, 222].
In this chapter, we begin with an introduction to electrostatic gate-defined

tunnel barriers in a quantum wire. Then we present a realization of two elec-
trostatic gate-defined tunnel barrier devices incorporating either a CNT or
InAs NW. Afterwards, we present single and double QDs formed by electro-
static gating and extract their electrostatic properties. To conclude, a short
discussion of tunnel barriers formed via electrostatic gating is presented.

5.1. Electrostatic gate-defined tunnel barriers

We first begin with a brief introduction to how tunnel barriers are formed in
a one-dimensional wire by electrostatic gating. The working principle behind
electrostatic gate-defined tunnel barriers is a shifting of the band edge relative
to the Fermi level, EF, to higher or lower energies in specific regions along the
one-dimensional wire using gate electrodes in close proximity to the wire. If
the shift of the band edge is large enough, a potential barrier in the quantum
wire is formed that the electrons or holes must overcome by quantum tunneling
to contribute to transport (see: Chapter 2.1.3).
A schematic of a typical electrostatic gate-defined tunnel barrier device is

illustrated in Fig. 5.1 for two (a) and three (b) tunnel barriers. A series of
five metallic gates (red) are lying on top of the substrate (grey). The wire
(green) lies on top of five metallic gates (G1-G5) separated by a thin insulating
layer (turquoise) and is electrically contacted to metallic reservoirs (yellow).
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Figure 5.1. Electrostatic gate-defined tunnel barriers formed in a
quasi one-dimensional wire: Five gates (G1-G5) are prepatterned onto
a substrate (grey). The wire (green) is lying on top of five metallic gates
(G1-G5) separated by a thin insulating layer (turquoise). By applying negative
or positive voltages to one of the gates, the conduction band edge, ECBE in
close proximity to the gate shifts to higher or lower values relative to the
Fermi energy, EF. In (a) a negative voltage values are applied to G2 and G4,
shifting ECBE to higher values and confining the region between G2 and G4
and forming a quantum dot (QD). A similar situation is presented in (b), but
now an additional tunnel barrier is formed with G3. Now two regions along
the wire become confined which forms two QDs in series: QD1 and QD2.

Now, we first consider the case of Fig. 5.1(a). If a negative voltage is applied
to gates G2 and G4, an electric field is formed perpendicular to the gates.
The electric field couples to the semiconductor bands of the wire in close
proximity to the gates via the field effect [65] and shifts the conduction band
edge energies, ECBE, to higher or lower values relative to EF. If the shift of
ECBE is sufficiently large, tunnel barriers are formed by G2 and G4 and the
region along the wire between G2 and G4 becomes confined, resulting in the
formation of a QD. A similar situation is presented in Fig. 5.1(b), where now
three tunnel barriers are formed by applying negative values to gates G1, G3,
and G5. Consequently, the regions between G1 and G3, as well as between
G3 and G5 become confined, resulting in two axial QDs in series: QD1 and
QD2. Now for charge carriers to contribute to transport, an extra tunneling
event must take place between one quantum state to another quantum state.

Since the tunnel barriers are controlled by voltages applied to the gates,
their heights are easily controlled. Their widths are approximated by the
width of the gate electrodes. However, the potential profile for electrostatic
gate-defined tunnel barriers is often not well understood and highly depends
on the coupling between the gate and the wire.
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5.2. Electrostatic gate-defined tunnel barrier devices

5.2. Electrostatic gate-defined tunnel barrier devices

Now, we present two realizations of electrostatic gate-defined tunnel barrier
devices. We incorporate the bottom gate structure discussed in Sec. 4.1 with
two different material systems: an InAs NW and a CNT. Figure 5.2 shows a
false colored scanning electron microscope (SEM) image of a typical electro-
static gate-defined tunnel barrier device. The bottom gate structures consists
of a grid of five 30 nm wide metallic titanium/gold (Ti/Au) gates with a center-
center(pitch) distance of 100 nm. A 50 nm thick silicon nitride (Si3N4) layer
(black) covers the bottom gate structures that acts as an insulating layer. Af-
terwards, the Si3N4 layer near the edge of the bottom gate structure is etched
away, revealing the bare metallic gates (G1-G5). Subsequently, the NW or
CNT and all of the individual metallic gates are contacted by a 65 nm layer of
titanium/gold (yellow). The distance between source (S) and drain (D) con-
tacts is ∼700 nm. The electrochemical potential in the NW or CNT is tuned
by the gate voltages VG1 − VG5, which shifts ECBE, relative to EF, to higher
or lower values in the region of the NW or CNT close to the gate.

1.5 μm

G1

G5
G4

G3

G2
S

DSi3N4

InAs NW CNT

400 nm 1 μm

Figure 5.2. Electrostatic gate-defined tunnel barrier devices: False
colored scanning electron microscope (SEM) image of a typical electrostatic
gate-defined quantum dot device. (inset) InAs nanowire (NW) and carbon
nanotube (CNT) lying on top of the bottom gate structure (G1-G5).

Two different devices are presented: one InAs NW (NW1) and one CNT
(CNT1) device. The inset of Fig. 5.2 shows a false colored SEM image of device
NW1 and CNT1. All measurements were performed in at a base temperature
of 270 mK. The differential conductance, dI/dV = IAC/VAC, was measured
using standard low frequency lock-in techniques described in Sect. 4.3.

5.3. Formation of tunnel barriers

We first show that the bottom gates can induce tunnel barriers into the device
via electrostatic gating. For this, we demonstrate that the device can be
depleted with each gate. The measurements presented in this section are from
device NW1.
Figure 5.3 shows dI/dV as a function of VG for G1-G5 with a constant

source-drain voltage bias, VSD = 2 mV. The gates not being swept are kept
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Figure 5.3. Formation of tunnel barriers in device NW1: (a) Dif-
ferential conductance, dI/dV , as a function of gate voltages, VG1 − VG5, for
VSD = 2 mV. For each gate sweep, the other four gates are kept at 0 V.

at a constant voltage of 0 V. We observe that for VG = 0, dI/dV ≈ 0.8e2/h
is roughly constant. As VG is decreased, dI/dV decreases until dI/dV ≈ 0
for VG1, VG2, VG3 ≈ −8 V, VG4 ≈ −4 V, and VG5 ≈ −1.8 V. This gate voltage
value is commonly referred to as the pinch-off voltage and can be understood
as an increase in ECBE in the region of the NW in close proximity to the
gate is shifted to higher energies relative to the rest of the NW. This results
in the formation of a tunnel barrier and consequently lowers dI/dV until the
tunnel barrier is sufficiently large such that dI/dV ≈ 0. We speculate that the
difference in depletion voltages for the gates is attributed to different couplings
between the electric field produced by the gates and the NW, screening effects
from the metallic contacts, and gating effects by the source contact.
These measurements show that the electrostatic gates can induce tunnel

barriers along specific regions of the NW and that we can form large enough
tunnel barrier that the electrons cannot overcome and transport is blocked.

5.4. Single quantum dots

Now we focus on creating a single QD in the NW by forming tunnel barri-
ers with two gates. A schematic of the gating configuration is illustrated in
Fig. 5.4(a). Two tunnel barriers (red) are formed by applying negative gate
voltages to gates G1 and G5, thus increasing ECBE. Here, VG1 = −2.5 V
and VG5 = −1.3 V, respectively. Consequently, a QD (green) is formed in
LG1-G5 = 300 nm long NW segment between G1 and G5. The electrochemical
potential of the QD is tuned with applying a voltage, VG234, to gates G2, G3,
and G4 simultaneously (blue).
Figure 5.4(b) shows dI/dV as a function of VSD and VG234 for this gating

configuration. We observe a regular set of Coulomb blockade (CB) diamonds
over a gate range of 80 mV, corresponding to the addition of 12 electrons on the
QD. As discussed in Sect. 2.2.1,we can extract the addition, Eadd and charging,
EC, energies, as well as the single particle level spacing, δE, from the dimen-
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Figure 5.4. Single quantum dots in device NW1: (a) Schematic of the
gating configuration to define a single quantum dot (QD). Gates G1 and G5
are used to define tunnel barriers (red) between which a QD (green) is formed
in the LG1-G5 = 300 nm long NW region. Gates G2, G3, and G4 are used to
tune the electrochemical potential of the QD by applying a voltage, VG234, to
each of the gates simultaneously. (b) Differential conductance, dI/dV , as a
function of source drain bias, VSD and gate voltage, VG234, with VG1 = −2.5 V
and VG5 = −1.3 V. Regular Coulomb blockade (CB) diamonds are observed.

sions of the CB diamonds. From the height of the CB diamonds, we extract
Eadd = (1.2± 0.1) meV. No two-fold symmetry of the CB diamonds was ob-
served and Eadd is constant as a function of the QD population. In addition,
no visible excite state resonances were observed. From the slopes of the CB
diamond edges, we extract the QD lever arm, α = 0.128± 0.005. In addition,
using Eq. 2.11, we extract the total capacitance of the QD, C = (133± 10) aF
and QD gate capacitance CG234 = (17± 2) aF. We also observe that each CB
diamond exhibits an increase of dI/dV along one edge of the CB diamond.
This diamond edge corresponds to the transport process when the chemical
potential of the source, µS, aligns with the chemical potential of the QD, µQD.
Therefore, an increase in dI/dV is expected when the coupling between the
QD and the source contact is stronger than the QD and drain contact.

5.5. Double quantum dots

Now, we show that the by decoupling G3 from G2 and G4, and applying
negative values of VG3, we can split the single QD into a double quantum dot
(DQD). One QD will be confined between G1 and G3, while the second QD
is confined between G3 and G5. By lowering VG3, we form a tunnel barrier in
the middle of the single QD. If the tunnel barrier is sufficiently opaque, the
single QD will evolve into a DQD depending on the VG3. Figures 5.5(a)-(b)
show the stability diagrams for VG3 = −2 V and VG3 = −4 V with VSD = 1 mV,
respectively.
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For VG3 = −2 V, we observe a stability diagram that is typical for a single
QD. From the spacing between the diagonal CB resonances, ∆VG2 and ∆VG4,
we can extract the gate capacitances using Eq. 2.12. From Fig. 5.5(a), we
extract ∆VG2 = ∆VG4 = (22± 1) mV for G2 and G4. This corresponds to an
equal gate capacitance for both gates, CG2 = CG4 = (7.3± 0.3) aF. This is
in agreement from the single QD measurement, CG2 + CG4 ≈ CG234, further
indicating that the single QD spans the total distance between G1 and G5 as
expected.
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Figure 5.5. Transition from a single QD to a DQD in device NW1:
(a)-(b) Differential conductance dI/dV as a function of VG2 and VG4 for
VG1 = −2.5 V, VG5 = −1.3 V, and VSD. (a) For VG3 = −2 V and the result-
ing charge stability diagram takes the form of a single quantum dot. (b)
For VG3 = −4 V, the charge stability diagram evolves into one for a strongly
coupled double quantum dot.

By further lowering of the voltage applied to G3 to VG3 =−4 V, thus increas-
ing the interdot tunnel barrier, we observe that the stability diagram evolves
from diagonal CB resonances to a honeycomb pattern. From Fig. 5.5(e), we
extract ∆VG2 = (27± 1) mV and ∆VG4 = (22± 1) mV, resulting in CG2 =
(5.9± 0.2) aF and CG4 = (7.2± 0.3) aF. From the splitting of the triple points
and using Eq. 2.13, we extract a mutual capacitance of CM = (2.2± 0.2) aF.
The mutual capacitances of both of the QDs are roughly equal and on the
order of CG2 and CG4 which indicates that the two QDs are strongly coupled.
Similarly for the cross capacitance, we extract CG2,C = (1.0± 0.2) aF and
CG4,C = (0.7± 0.4) aF. This indicates that VG2 slightly tunes the chemical
potential of the right QD and similarly for VG4 and the left QD.
Further decreasing VG3 should result in a larger tunnel barrier between

the two QDs. Thereby decreasing their mutual capacitances further and the
system would transition into the weakly coupled DQD regime. In this region,
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the triple points evolve into bias triangles from which the total capacitances
of QD1 and QD2 can be extracted. However, in this device, decreasing VG3
further caused instability of the gates due to charge noise and no transition
into the weakly coupled DQD regime could be observed. Therefore, for this
device it was not possible to extract the total capacitances. Another method
would be to analyze the CB diamonds of QD1 and QD2 and extract the total
capacitance from the heights of the CB diamonds, but this measurement was
not performed.

Nonlinear transport regime
To investigate the nonlinear transport regime, we turn to device CNT1, as
shown in Fig. 5.2. In this device only one gate was used to induce a tunnel
barrier into the CNT, G3, while the other two tunnel barriers were formed at
the metal-CNT interface. The electrochemical potential of QD1 was tuned by
a voltage, VG12, applied to G1 and G2 simultaneously. Similarly, the electro-
chemical potential of QD2 was tuned by a voltage, VG45, applied to G4 and
G5 simultaneously. The coupling between QD1 and QD2 is tuned by VG3.
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Figure 5.6. Charge stability diagram in device CNT1: dI/dV as a
function of gate voltages, VG12 and VG45, for (a) negative and (b) positive
source-drain bias voltage, VSD = ±4.5 meV. The resulting charge stability di-
agram takes the form of two weakly coupled quantum dots. A regular pattern
of bias triangles were observed.

In Fig. 5.6, we show dI/dV as a function of VG12 and VG45 with
VG3 = −100 mV for negative (a) and positive (b) VSD =±4.5 meV. We observe
a stability diagram that features several bias triangles in a regular honeycomb
pattern that is characteristic for weakly coupled DQDs.
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Figure 5.7. Bias triangles in device CNT1: (a)- (c) Bias triangles
for three different source drain bias voltage values: (a) VSD = −1 meV,
VSD = −2 meV, and VSD = −4.5 meV. For increasing VSD, the fully separated
bias triangles in (a) begin to overlap (b) until they fully overlap (c).

Now, we investigate the dependence of VSD on the dimensions of the bias
triangles. As discussed in Sect. 2.3, the splitting of the triple points, thus the
bias triangles, is dependent on VSD. Figure 5.7 shows the bias triangles for:
(a) VSD = −1 mV, (b) VSD = −2 mV, and (c) VSD = −4.5 mV. We observe
that for VSD = −1 mV the two bias triangles are fully separated, similar to
triple points when VSD ≈ 0. For VSD = −2 mV, two bias triangles increase
in size and begin to overlap. Increasing the bias further to VSD = −4.5 mV,
causes the bias triangles nearly overlap fully.

From the measurements in Figures 5.6 and 5.7, all of the capacitances of
the DQD can be extracted. From the dimensions of the honeycomb pattern
in Fig. 5.6(a) and Eq. 2.12, we extract CG12 = 5 aF and CG45 = 6 aF. Simi-
larly, the total capacitances of QD1, C1, and QD2, C2, were extracted from
the dimensions of the bias triangles in Fig. 5.7(b) using Eq. 2.14. This yields
C1 = 10 aF and C2 = 18 aF. CM was determined using Eq. 2.13 by the di-
mensions of the honeycomb pattern in Fig. 5.6(a) and the dimensions of the
bias triangles in Fig. 5.7(a). This yields, CM ≈ 1.2 aF. Therefore, all of the
capacitances are accounted for in this device.
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5.6. Discussion

All of the devices in this chapter utilized electrostatic gating by metallic gates
below the CNT or NW to form tunnel barriers in the system. The tunnel
barriers confined the electrons along the CNT or NW such that single and
double QDs could be studied and their associated capacitances were extracted.
Electrostatic gate-defined tunnel barriers offer a the large experimental tun-

ability that is not easily achieved in other gating configurations. For example,
in our devices a single or double QD system can be fully tunable with three or
five gates, respectively. In the case of DQDs, this includes the tunnel barriers
that isolate the QD from the contacts (G1 and G5), the tunnel barrier that
tunes the interdot coupling (G3), and two gates that tune the electrochemical
potential of the two QDs (G2 and G4). This allows for comprehensive studies
of single charges and spins using QDs where each parameter is gate tunable.
This thesis tries to achieve deterministic tunnel barriers, meaning their phys-

ical and energetic properties are well-known. In an ideal electrostatic gating
device, only the local band structure of the wire that is in direct proximity of
the gate is tuned and the tunnel barrier formed has a well-defined position and
width given by the gate width. However, this is not what we observed in our
system and the tunnel barriers are far from deterministic, as this thesis tries
to realize. The tunnel barriers are defined by the electrostatic gates that have
well-defined widths, however it is unclear how this is related to the potential
profile of the induced tunnel barriers. Their potential profile is strongly de-
pendent on the electrostatic coupling between the gate and the NW or CNT,
as well as where the space charge density [179]. In addition, while the tunnel
barrier height can be tuned by applying a voltage to the gate, how this effects
the potential profile of the induced tunnel barrier is unknown.
An estimation of the confinement strength can be deduced from Fig. 5.4(b).

If there was strong confinement, one would expect highly symmetric QDs
with large addition and charging energies, as well as level spacings to observe
features of the density of states in the lead segments between the QD and
contacts. In our measurements, we observed small addition and charging en-
ergies without two-fold symmetry, characteristic of a small and wide tunnel
barriers resulting in weak quantum confinement [179]. In addition, no reso-
nances were observed outside of the CB diamonds, indicating that the QD
level broadening is too large to resolve them. We use these observations as
evidence that the electrostatic-gate defined tunnel barriers are not well-defined
nor deterministic, making it difficult to use them as tunnel spectrometers.
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6 Integrated tunnel barriers in InAs/InP
heterostructure nanowires1

In this chapter, we take an alternative approach to form deterministic tun-
nel barriers: integrated tunnel barriers in indium-arsenide/indium-phosphide
(InAs/InP) heterostructure nanowires (NWs). In this system, two short InP
segments are grown in-situ during the InAs NW growth, forming a heterostruc-
ture nanowire. The two InP segments cause a band realignment due to strain
at the InAs/InP interface resulting in a conduction band edge offset and con-
sequently form in-situ grown tunnel barriers in the NW [54, 61, 223, 224]. Due
to the strong confinement of tunnel barriers, a quantum dot (QD) is formed
in the InAs segment between the two InP segments. Similar heterostructures
have been used previously to investigate single [61, 80, 84, 90, 91, 95, 225] and
double [77, 226] QD physics, as well as thermoelectric transport [78, 92].
We present an in-depth analysis of an InAs/InP heterostructure NWs, demon-

strating their exceptional long term stability and broad electrical tunability.
We report a detailed and comprehensive characterization of the InP tunnel bar-
riers and the resulting Coulomb blockade (CB) resonance lineshapes, which
can be crucial, for example, to distinguish different single electron [227] or
superconducting subgap transport processes [93, 193]. We show that the in
situ grown InP barriers result in highly predictable, electrically tunable, and
symmetric QDs with level broadenings that are small enough for high resolu-
tion spectroscopy of subgap states in hybrid systems, demonstrated by distinct
spectral features in the lead segments.

6.1. Principles of integrated tunnel barriers

InAs/InP nanowire growth

To understand the integrated tunnel barriers in InAs/InP heterostructure
nanowires, we begin with their growth and geometric properties. They are
synthesised similarly to the InAs NWs presented in Sect. 3.1, i.e. by vapor-
liquid-solid methods via chemical beam epitaxy [55]. The growth process is
schematically illustrated in Fig. 6.1(a). First, a thin gold film was evaporated
1Parts of this chapter have been published in similar form in Ref. [87]
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6. Integrated tunnel barriers in InAs/InP heterostructure nanowires

onto an epiready InAs(111)B substrate, then underwent a thermal annealing
step inside of the growth chamber to to initiate the formation of randomly
distributed gold catalyst nanoparticles with a diameter of 40 nm to 50 nm
(Fig. 6.1(a)(i)). Next, trimethylindium(TMIn) and tert-butylarsine(TBAs) are
introduced into the system to initiate the growth of InAs by feeding the TMIn
and TBAs to the gold catalyst particle until it supersaturates and begins to
grow (Fig. 6.1(a)(ii)). After a sufficient amount of InAs has grown, the As
gas is shutoff and tert-butylphosphine(TBP) is introduced into the chamber
and similarly fed to the gold catalyst particle to initate the growth of InP
(Fig. 6.1(a)(iii)). Afterwards, the growth of InAs and InP is repeated to form
a short segment of InAs (Fig. 6.1(a)(iv)) and InP (Fig. 6.1(a)(v)). After the
growth of the second InP segment, a long segment of InAs is grown (vi). This
procedure has been shown to produce pure InAs and InAs/InP heterostructure
NWs with straight morphology, constant diameter, defect-free wurtzite crystal
structure, and atomically sharp interfaces between the InAs and InP [55].

i ii iii iv v vi
(a)

    Au 
catalyst In As

In P In As In P

In As

(b)

400 nm

Figure 6.1. InAs/InP heterostructure nanowire growth: (a)
Schematic of the vapor-liquid-solid growth process of InAs/InP heterostructure
nanowires. (i) Gold catalyst particles are formed on the InAs(111)B substrate.
(ii) In and As are fed to the gold catalyst to initiate the growth of InAs. (iii)
In and P are fed to the gold catalyst to initiate the growth of InP. (iv)-(v) A
similar process to grow another short segment of InAs and InP. (vi) A long
segment of InAs is grown. (b) Scanning electron microscope (SEM) image of
InAs/InP heterostructure nanowires on the growth chip. The schematic was
adapted from Refs. [104, 106, 160] and the SEM image was provided by Lucia
Sorba.

A scanning (SEM) and transmission (TEM) electron microscope image of
two InAs/InP heterostructure NWs are shown in Fig. 6.2(a) and (b), respec-
tively. The hexagonal NW has a diameter of 50±5 nm, with two InP segments
of widths `1, `2 ≈ 5.5 nm located 440 nm from the gold catalyst. Bounded by
the two InP segments, a QD is formed on an InAs segment of length s ≈ 19 nm.
The dimensions of the InP barriers were determined in a TEM analysis of NWs
of the same growth. Additional data for shorter InP segments (2 nm to 3 nm)
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can be found in Appendix B.

(b)

InAs InP
20 nm

ℓ1

ℓ2

(a)

InAs

InAs InP

InP
50 nm

Figure 6.2. Identification of the InP segments: Scanning (a) and
transmission (b) electron microscope image of two InAs/InP heterostructure
nanowires. The two InP segments, indicated by the white arrows, are clearly
seen by the change in contrast. From the SEM image, we find that the two
InP segments are located ∼ 440 nm from the gold catalyst particle, the two
InP segments are `1,2 ≈ 5.5 nm wide separated by ∼ 20 nm of InAs. TEM
image provided by Valentina Zannier.

The two InP segments can be clearly seen using only standard SEM tech-
niques with an in-lens detector. This enables us to know the exact location of
the tunnel barriers in our devices. Therefore, in this system, we can state with
high precision where the quantum dot is positioned relative to any electrical
contacts or gates. This is a valuable tool for spectroscopy measurements where
the geometric properties and length scales of the device plays a crucial role.
This is a great advantage over other integrated tunnel barriers, such as InAs
crystal-phase defined quantum dots, where more advanced techniques are re-
quired to know the precise location which is not feasible to perform for each
device [48, 50].

Formation of integrated tunnel barriers

Now, that we estabilished how InAs/InP heterostructure nanowires are grown,
we discuss the underlying physics behind the formation of integrated tunnel
barriers in this system. As stated earlier, integrated tunnel barriers are formed
by implementing two short in-situ grown InP segments in an InAs NW. The
working principle behind integrated tunnel barriers is a conduction band edge
(CBE) offset at the InAs/InP interface. This is well understood in the case of
bulk semiconductors where various semiconductor heterostructures have been
realized [228–230].
A schematic of an InAs/InP heterostructure NW is illustrated in Fig. 6.3(a).
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Figure 6.3. Formation of integrated tunnel barriers: (a) Schematic of
an InAs/InP heterostructure nanowire (NW) consisting of an InAs NW (grey)
with two in situ grown InP segments (blue) and gold catalyst particle (yellow).
(b) Schematic of the energy diagram for a nanowire with two in-situ grown
tunnel barriers. Strain from the lattice mismatch between two materials with
different band gaps results in a conduction band edge (CBE) offset, V0, relative
to the CBE, ECBE. The Fermi energy, EF, is indicated by the dashed line. (c)
V0 as a function of the ratio between the InP thickness, `1,2, to the NW radius,
R. For, `1,2/R > 1, V0 takes the bulk value of 600 meV, while for `1,2/R < 1,
V0 is decreased continuously to 400 meV due to the NW geometry. Figures
adapted from Refs. [104, 160, 224].

The system consists of an InAs NW (grey) with two in-situ grown InP seg-
ments of widths `1,2 (blue) and a gold catalyst particle (yellow). The systems
respective energy diagram is schematically illustrated in Fig. 6.3(b).
The first striking difference is the CBE becomes energetically offset at the

InAs/InP interface. To explain this CBE offset, we consider what happens
when the two materials are brought into contact with one another. The Fermi
levels of InAs and InP are forced to align, causing the CBEs of InAs and InP to
align with a bulk CBE offset, V bulk

0 , at the interface of the two materials. For
an atomically sharp interface, the potential profile takes the form of a hard-wall
potential barrier for electrons with height V bulk

0 = 600 meV in the bulk case
[224]. However, in a nanowire system one has to consider the effects of strain,
ε, and the InP widths, `1,2. The InP segments are put under biaxial strain
from the InAs which lowers the conduction band (CB) energy. This shift in
energy, δECB, can be described by: δECB = ac(2ε‖ + ε⊥), where ac = −5.2 eV
is the conduction band deformation of InP, while ε‖ = 3.23% and ε⊥ = −2.04%
are the amount of strain in the axial and radial direction, respectively [224].
The resulting CBE offset, or tunnel barrier height, in the 2D limit is given
by [224]: V0 = V bulk

0 + ac(2ε‖ + ε⊥). This results in a conduction band edge
offset of 370 meV, significantly lower than the bulk value of 600 meV. As stated
earlier, V0 is also highly dependent on the thickness of the InP segments. The
dependence of V0(`1,2/R) is given by [224]:
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6.2. Integrated tunnel barrier device

V0(`1,2/R) = V bulk
0 ·

(
1− 0.34

1 + 0.92(`1,2/R) + 4.15(`1,2/R)2.41

)
(6.1)

where `1,2/R is the ratio of the InP widths to the NW radius,R. This
is plotted in Fig. 6.3(b) for various NW geometries. For long InP segments,
`1,2/R > 1, V0 takes the bulk value of 600 meV. However, for shorter InP
segments, `1,2/R < 1, V0 is continuously lowered to the 2D limit of 400 meV
due to strain. For our NW geometry, `1,2/R = 0.22 and the barrier height
is predicted to be V0 ≈ 400 meV [224], providing a strong confinement to the
electrons in the axial direction.

6.2. Integrated tunnel barrier device

To investigate the properties of the integrated tunnel barriers, we implement an
InAs/InP heterostructure device. A false color scanning electron microscopy
(SEM) image of a typical device is shown in Figure 6.4. The electrical con-
tacts (yellow) to the NW are made of titanium/gold films with a thickness of
5 nm/65 nm. Before evaporating the contact material, the native oxide of the
NWs is etched with an (NH4)2Sx:H2O solution [213]. Further details about
the device fabrication can be found in Sect. 4.2. Due to the simplicity of this
system, it can easily be related back to the notation used in Chapter 2.1. The
InAs/InP heterostructure NW acts as a quasi one-dimensional quantum wire,
where the Ti/Au metallic contacts are the electronic reservoirs, the long InAs
segments are the leads, and the InP segments are scatter centers.
We explicitly refer to the regions of bare InAs between the QD and the

source or drain contact as the lead segments (LSs) [50]. The lead segment LS1
between the QD and the source contact is L1 ≈ 350 nm long, while the lead
segment LS2 between the QD and the drain contact is L2 ≈ 600 nm long. The
QD and the LSs are tuned simultaneously by the back gate voltage VBG, which
shifts the conduction band edge, ECBE(VBG), relative to the Fermi energy, EF,
to higher or lower values. For later, we define φ(VBG) = EF − ECBE(VBG).

The inset of Figure 6.4 shows a TEM image of the epitaxially defined QD
region in a similar NW. The two InP segments, indicated by black arrows, act
as tunnel barriers with a rectangular potential profile for electrons due to the
atomically sharp transitions in the material composition.
All measurements were performed in a dilution refrigerator with a base tem-

perature of ∼30 mK. We apply a DC voltage to the source electrode to correct
for small offsets (VDC ≈ 50 µV) from the I/V converter and superimpose an AC
voltage of typically 1 µVrms for lock-in detection, while the drain electrode is
grounded and used for the current (I) measurement. The differential conduc-
tance dI/dVSD = IAC/VAC was measured using standard lock-in techniques.

61



6. Integrated tunnel barriers in InAs/InP heterostructure nanowires
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Figure 6.4. InAs/InP device: False colored scanning electron micrograph
of a typical device consisting of an InAs nanowire with two in situ grown InP
tunnel barriers of length `1, `2 ≈ 5.5 nm. The nanowire segments between
the contacts (S/D) and the quantum dot (QD) are referred to as the lead
segments LS1/2 of lengths L1/2. A QD of length s ≈ 19 nm forms between the
two tunnel barriers due to the conduction band offset, V0, between InAs and
InP. VBG is the global backgate voltage that simultaneously tunes the QD and
the LSs. The inset shows a transmission electron microscopy image of two InP
segments pointed out by two black arrows and an energy diagram of the gate
tunable conduction band edge, ECBE. The Fermi energy, EF, is indicated by
a dashed line and the difference between EF and ECBE is defined as φ.

6.3. Characterization of the quantum dot

Figure 6.5(a) shows dI/dVSD as a function of VSD and VBG. We observe regular,
stable, and reproducible Coulomb diamonds (CDs) over the large backgate
range of 30 V, corresponding to the addition of ∼ 124 electrons. At VBG ≈ 1 V,
the number of electrons on the QD is close to zero, i.e. N ≈ 0. By increasing
VBG, electrons are added to the QD sequentially, which brings the QD into the
many electron regime. For the measurement sequence shown in Fig. 6.5(a), the
maximum number of electrons on the QD is N ≈ 124. When increasing VBG
beyond 40 V, thermal activation of carriers across the tunnel barriers begins
to considerably contribute to the transport. Similar behavior was observed in
another device and additional data can be found in Appendix C.

According to the constant interaction model [102], assuming two-fold spin
degenerate orbitals, the energy required to add an electron to a QD with an
even electron configuration is given by the addition energy Eadd = EC + δE,
with EC = e2/CΣ the charging energy, the total capacitance CΣ of the QD, and
δE the single particle energy spacing. To add a second electron to the same
QD orbital requires Eadd = EC. This gives rise to an alternating even-odd
pattern of large and small CDs, characteristic for spin-degenerate QD states,
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Figure 6.5. Coulomb blockade diamonds: Differential conductance,
dI/dVSD, as a function of the bias, VSD, and the back gate voltage, VBG. (a)
Regular and stable Coulomb diamonds over a gate range of 30 V, ranging from
near depletion with an electron population of approximately zero (N ≈ 0) to
N = 124. (b) High resolution Coulomb diamonds, where excited state (ES)
resonances of the QD and the resonances due to a modulation in the density of
states in the semiconducting lead segments (LSs) are pointed out by white and
orange arrows, respectively. (c) The addition energy, Eadd, as a function of the
number of electrons on the quantum dot, N . The inset shows the difference
of single particle energy spacing, δE, as a function of N in the many electron
regime extracted from the region indicated by the blue box in (a).
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and allows one to extract the corresponding energy scales. A region of the CDs
shown in Fig. 6.5(b) exhibits a clear even-odd pattern with Eadd = 5.5 meV
and EC = 4.2 meV, as indicated by the white arrows. From the difference
between Eadd and EC, we find δE = 1.3 meV, consistent with δE ≈ 1.6meV
from the corresponding excited state (ES) resonances outside the CDs, pointed
out by white arrows.
In Fig. 6.5(c) we plot Eadd as a function of N for the full VBG range of

Fig. 6.5(a). We find an overall decrease in Eadd(N) for increasing N due to
changes in the QD capacitance by electron-electron interactions [231]. From
the very regular even-odd pattern in the gate range indicated by the blue box
in Fig. 6.5(a), we extract δE(N), as shown in the inset of Fig. 6.5(c). We find
that δE strongly scatters and assumes values in between 0.2 meV and 4 meV,
suggesting that only single levels contribute to the transport.
In addition to the QD excited state resonances, we find several other features

outside of the CDs that cannot be attributed to the energy spectrum of the
QD. For example, the resonances indicated by orange arrows in Fig. 6.5(b) are
due to a non-constant DOS in the LSs, forming as standing waves in the LSs.
Since these waves are strongly reflected at the InP barrier, the widths of these
states are determined mostly by the coupling to the source and drain contacts,
respectively. In addition, we find negative differential conductance (NDC)
throughout the entire gate range, which we attribute to the simutaneous tuning
of the QD and the LSs with different lever arms. We note that the NDC is
more prominent in the few electron regime where the carrier concentration is
low. The NDC supports our notion that the DOS in the LSs is not constant,
which is typical for NW QD devices with semiconductor leads [61]. Further
analysis of these resonances and nonconstant DOS in the LSs is presented in
Chapter 7.

6.4. Resonance line shapes

By analyzing the Coulomb blockade (CB) resonance line shape, we can extract
the total tunnel coupling of the QD, Γ, and the electron temperature in the
LSs, T . The total tunnel coupling, Γ = Γ1 + Γ2, is given by the individual
couplings to the source and drain leads, Γ1 and Γ2. In the case of an ideal
measurement setup, the line shape only depends on Γ, T [232], and the asym-
metry A = Γ1/Γ2 ≥ 1 [233, 234]. However, there are also extrinsic broadening
mechanisms, such as noise in the source and drain contacts, and on the gate,
as well as the applied AC voltage.
For our analysis, we assume that only a single QD level contributes to the

transport, i.e. eVAC,Γ, 4kBT � δE,2 and account for the three main broad-
ening contributions: VAC, Γ, and T . VAC limits the smallest width of the
24kBT is the 10%-90% width of the Fermi-Dirac distribution
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line shape that can be reliably extracted, therefore eVAC should be chosen
such that eVAC < 4kBT,Γ. By tuning ECBE with VBG, we can access three
different regimes: thermally broadened (Γ, eVAC � 4kBT ), lifetime broadened
(4kBT, eVAC � Γ), or a combination of both (eVAC � Γ ≈ 4kBT ). These three
regimes are summarized in Fig. 6.6(a), (c), and (e), where the lifetime broaden-
ing is indicated by the width of the blue QD levels and the thermal broadening
by the width of the orange Fermi-Dirac distribution in the LSs.
We model the line shape of the CB resonances with the assumption that

the DOS in the LSs is constant and discuss effects due to a non-constant DOS
later. For a single energy level, the line shape of a conductance resonance is
described by a resonant tunneling model [65, 232, 235]:

I = g
e

h

∫
TQD(E)[fS (E)− fD (E)]dE, (6.2)

where g = 1 is the number of independent parallel transport channels, TQD(E) =
(Γ1Γ2)/(∆E2 + Γ2/4) the Breit-Wigner (BW) transmission function [65] with
∆E = E − E0 the detuning from the CB resonance centered at E0, and
fS/D(E) = 1/(1 + exp((E + eVS/D)/kBT )) are the Fermi-Dirac distributions
in the LSs. dI/dV is calculated numerically. The contribution of VAC is
accounted for by evaluating Equation 6.2 for a sinusoidal VS that also electri-
cally gates the QD. If not chosen properly, VAC can mask the "true" resonance
and the measured resonance width is then given by VAC.
In the regime where the broadening is mainly due to temperature,

Γ� 4kBT � δE, Equation 6.2 reduces toG/Gmax = cosh−2 (∆E/2kBT ), where
Gmax = e2/h · π/(2kBT ) · (Γ1Γ2/Γ) [232]. In this limit, T can be extracted
from the full-width at half maximum (FWHM) of the resonance by
FWHM ≈ 3.5kBT .
In the limit, where the broadening is mainly due to the electron lifetime

on the QD, 4kBT � Γ� δE, Equation 6.2 reduces to the BW formula [65]
G/Gmax = (Γ/2)2/(∆E2 + (Γ/2)2) with Gmax = e2/h · 4Γ1Γ2/Γ2. In this
limit, FWHM = Γ and A determines the maximum conductance Gmax =
e2/h · 4A/(1 +A)2. Note that A is defined such that A ≥ 1.

Evolution of the resonance line shapes

We now investigate how the line shapes of the resonances evolves with VBG and
the bath temperature, Tbath. Figures 6.6(b),(d), and (f) show high resolution
CB resonance measurements in the three broadening regimes. To show the
evolution of Γ, each of the three CB resonances was fit with the expressions
for a thermal, BW, and the convolution line shape, described by Equation 6.2.
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From the convolution fit, we extract Γ1, Γ2, T , and their corresponding stan-
dard error of the individual fits, shown as error bars in Fig. 6.6(g) and 6.7.3

Figure 6.6(b) shows a CB resonance near depletion (N ≈ 10) at VBG = 6.6 V,
measured with VAC = 0.1 µV. The convolution line shape agrees very well
with the experiment, as does the pure thermal broadening line shape, but
not the BW line shape. In this regime, the conduction band edge of the LSs
is near the Fermi level (φ� V0) and the electrons are strongly confined by
the large tunnel barriers, such that the width of the Coulomb resonance is
mostly determined by the electron temperature and not by the QD lifetime.
Only in this regime, we can accurately determine the electron temperature
of the LSs. From the convolution fit, the extracted total tunnel coupling,
asymmetry, and electron temperature are Γ = 2.51± 0.07 µeV, A = 1.05±0.04,
and T = 50.5± 0.2mK, respectively. We see that T is somewhat higher than
the bath temperature (Tbath = 30mK), probably due to noise and radiation
due to insufficient filtering. Since T is not expected to change with VBG, we
set T = 50.5mK for the following analysis of data at the same Tbath.
For the resonance at VBG = 13.5 V (N ≈ 50) a transition from the thermally

to the lifetime broadened regime begins. As shown in Fig. 6.6(c) and (d), only
the convolution line shape fits the data well. From the convolution fit, with
T = 50.5mK and VAC = 0.25 µV fixed, Γ = 18.1 ± 0.4 µeV and A = 6.2± 0.2
were extracted from the fit. Therefore, this resonance is in the regime where
the lifetime and thermal broadening contributes equally significantly with Γ ≈
4kBT .
By increasing the gate voltage further, the CB resonances transition into the

lifetime broadened regime with Γ� 4kBT . This can be seen for the resonance
in Fig. 6.6(f) at VBG = 24.99 V (N ≈ 100), where the data agrees very well
with the convolution fit, as well as with the BW fit, with T = 50.5mK and
VAC = 1 µV fixed. From the convolution fit, we extract Γ = 52.5±0.1 µeV and
A = 7.2 ± 0.1, which shows that the resonance is mostly lifetime broadened
(Γ� 4kBT ).
For each of the three resonances, the temperature dependence of the CB

resonances was investigated, as shown in Fig. 6.6(g). We used the convolution
fit with Γ1 and Γ2 fixed at the values determined at Tbath = 30mK, to extract
T for a series of different Tbath. For low Tbath, the CB resonances are either
thermally broadened for Γ � 4kBT , lifetime broadened for 4kBT � Γ, or a
combination of the two for Γ ≈ 4kBT , as discussed in the previous section.
For bath temperatures between 30 mK and 60 mK, the extracted T remains
constant. As we increase Tbath beyond 60 mK, T for two resonances (cyan and
orange) increases with a slope of 1.00± 0.05, in agreement with the thermally
broadened regime. This is indicated by the dashed black line with a slope of

3This error bar does not account for potential experimental errors in consecutive experi-
ments.
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Figure 6.6. Evolution of the resonance line shapes: Differential con-
ductance dI/dV as a function of VBG for three resonances (b,d,f) in different
regimes: (a) Γ � 4kBT , (c) Γ ≈ 4kBT , and (e) Γ � 4kBT . From (b), the
electron temperature, T = 50.5± 0.2mK, was extracted and was fixed in the
fits of (d) and (f). (g) T as a function of the bath temperature, Tbath, of
the three resonances in (b), (d) and (f), respectively. T remains constant for
Tbath < 60 mK, then increases with a slope of 1.00± 0.05, as expected for the
thermally broadened regime.
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1. However, for the blue resonance, which is mostly lifetime broadened, the
slope is 1.2 ± 0.1, likely due to the resonance not fully transitioning into the
temperature broadened regime. These experiments show that the electron and
phonon system equilibrate at ∼100 mK and that InAs/InP heterostructure
QDs can be used as in-situ thermometers. In contrast to typical Coulomb
blockade thermometers [236, 237], integrated QDs form an integral part of the
device, which does not require thermal coupling to a separate device. We note
that a series of thermal cycling takes roughly one week during which we did
not observe any charge rearrangements, demonstrating a unique stability of
this type of QD. Only tuning VBG on the scale of several tens of volts results in
a shift of the CB spectrum, which is reproducible and likely due to significant
charging of substrate states.

6.5. Properties of the tunnel barriers

By investigating the functional dependence of the total tunnel coupling Γ and
the asymmetry A on VBG, we estimate the height and symmetry of the tunnel
barriers formed by the InP segments. By fitting the CB resonances with
Equation 6.2 and using the previously determined T = 50.5mK, we extract Γ
and A as a function of VBG, as shown in Fig. 6.7(a) and (b), respectively. The
red data points correspond to the CB resonances from Fig. 6.6(b),(d),and (f)
measured with a high resolution in VBG, while the black data points stem from
resonances selected from a large gate sweep (∆N ≈ 150) over 50 V measured
with a lower resolution.

Γ(VBG) is plotted in Fig. 6.7(a) and shows a systematic increase of Γ with
increasing VBG. Close to full depletion, we find a tunnel coupling of Γ ≈ 1 µeV,
which increases up to ∼600 µeV for VBG = 42 V. Comparing the dependence
of Γ(VBG) to a resonant tunneling model allows us to estimate V0. For this, we
assume that an electron bounces back and fourth in the InAs segment between
the two InP barriers at an attempt frequency ν and escapes through either of
the barriers with a transmission probabilities, T1,2, given by the rectangular
tunnel barriers (see Eq. 2.3). Consequently, the total tunnel coupling Γ as a
function of VBG can be described by [238]:

Γ(VBG) = ~ν(T1 + T2) = 2~ν
(

1 + V 2
0 sinh2(κ(φ)l)
4φ(V0 − φ)

)−1

, (6.3)

with T1 = T2 for symmetric tunnel barriers, κ(φ) =
√

2mInP(V0 − φ(VBG))/~2,
mInP = 0.08me the effective electron mass in the InP segments [141], φ(VBG) =
eαLS(VBG − VP), αLS the lever arm of the LSs, VP the pinch-off gate voltage,
ν = vF/2s the attempt frequency with Fermi velocity vF =

√
2φ

mInAs
, and

mInAs = 0.04me the effective electron mass in wurzite InAs [239]. The values
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6.5. Properties of the tunnel barriers

Figure 6.7. Evolution of the total tunnel coupling and asymmetry:
(a) Total tunnel coupling Γ as a function of the back gate voltage, VBG. Γ
systematically increases with VBG in agreement with a double barrier model
described in the main text. We estimate a conduction band edge offset, V0,
between InAs and InP of 350± 50meV (solid blue line), while the upper and
lower solid gray lines are for V0 = 400meV and V0 = 300meV, respectively. (b)
Asymmetry, A = Γ1/Γ2, as a function of VBG. For low VBG, A ≈ 1, while for
larger VBG A scatters between 1 and 8 due to the modulation of the density of
states in the lead segments. The red data points were extracted from the CB
resonances in Fig. 6.6(b), (d), and (f) measured with a higher VBG resolution
than the black data points. Error bars smaller than the symbol size are not
shown.
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6. Integrated tunnel barriers in InAs/InP heterostructure nanowires

for the length of the InP segments and the QD were taken from the TEM
analysis, with ` = `1/2 = 5.5 nm and s = 19.0 nm, respectively.
From the best fit of Equation 6.3 to Γ(VBG) (solid blue), we obtain the free

parameters V0 = 350± 50meV, VP = 3 V, and αLS = 0.0053. V0 is in good
agreement with the calculated literature value of V0 = 400meV for strained
InP in InAs NWs with our geometry [224]. The upper and lower solid gray lines
are obtained using the same parameters and V0 = 300meV and V0 = 400meV,
respectively. VP agrees very well with the first CB resonances and αLS is 4.5
times smaller than the lever arm to the QD, in qualitative agreement with the
LSs being longer than the QD. Further discussion about αLS is presented in
Chapter 7.
Next, we investigate the asymmetry A as a function of VBG in Fig. 6.7(b).

The values of A scatter seemingly random between 1 and 8 for VBG > 10.5 V.
However, for VBG < 10.5 V, A ≈ 1 is constant, indicating highly symmetrical
tunnel barriers. These characteristics of A can be understood qualitatively
by the following argument. The modulation of the DOS in the confined LSs
is determined by the single particle level spacing in the LSs, δELS, and the
broadening of the energy levels in the LSs, ΓLS. At EF, δELS = π~vF/L1/2
for a parabolic dispersion relation and thus δELS ∼ δE/10. In addition, the
strong coupling between the LSs and the source or the drain contact gives rise
to a larger ΓLS than for the QD. With increasing VBG, vF also increases and
we suspect that for VBG > 10.5 V, δELS > ΓLS, leading to a weaker overlap
between the energy levels and thus to a stronger modulation of the DOS in
the LSs. In contrast, for VBG < 10.5 V, δELS decreases and the energy levels
in the LSs overlap stronger, resulting in a weaker modulation of the DOS.
Consequently, in the low gate regime, A reflects the asymmetry of the tunnel
barriers A ≈ 1, which are essentially equal in length and height.

6.6. Conclusion

In summary, we present an in-depth characterization of a QD formed by InP
tunnel barriers and connected to metallic contacts via NW lead segments. For
this system we demonstrate a nearly depletable QD with Coulomb diamonds
that are exceptionally robust against charge rearrangements over a large gate
range of 30 V, corresponding to ∼ 124 electron states, and several months mea-
surement time. By analyzing the line shapes of the CB resonances, we find
a continuous transition from the lifetime to the thermally broadened regime
and extract the electron temperature in the LSs. The QD shows a system-
atic and tunable increase in the tunnel coupling, based on which we estimate
the conduction band edge offset between the InAs and the InP segments as
V0 = 350± 50meV. The InP segments act like ideal tunnel barriers with an
asymmetry of A = Γ1/Γ2 ≈ 1, as targeted in the crystal growth. This is found
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for low VBG, where the modulation of the DOS in the LSs is negligible, while
at larger VBG the transport is modulated by the NW lead states. In conclu-
sion, we demonstrate that integrated InAs/InP quantum dots are a promising
platform for quantitative in situ electron tunneling spectroscopy and ther-
mometry for future superconducting hybrid devices and other electronic and
thermoelectrical applications.
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7 Spectroscopy of the local density of states
in nanowire leads

In the previous chapter, we investigated the fundamental properties of inte-
grated quantum dots (QDs) in InAs/InP heterostructure nanowires (NWs).
Now, we use the electrically and spatially well-defined integrated QD as a
tunnel spectrometer to probe the local density of states (DOS) in the finite
InAs nanowire segments between the QD and metallic reservoirs. We explic-
itly refer to these NW segments as lead segments. Evidence of a non-constant
local DOS in the lead segments becomes clear in bias spectroscopy measure-
ments such as Coulomb blockade (CB) diamond measurements where there
exists resonances outside of the CB diamond that cannot be attributed to QD
features such as excited states (ESs). These resonances are called lead states
(LSs) and originate in the nanowire lead segments. LSs have been observed
in InAs/InP heterostructure NWs [61], InAs crystal phase NWs [51], silicone
single electron transistors [240–244] and graphene transistors [245]. However,
a systematic study of them has yet been performed in a nanowire device with
an integrated QD acting as a tunnel probe.
In this chapter, we present the first steps to a systematic study of the lead

resonances. We begin with a brief description on how to distinguish states of
the QD and LSs, then introduce the three different InAs/InP heterostructure
NW devices that exhibit unique LS features. We focus on how the coupling
between the reservoir and the lead segment influences the observed LSs, such
as their slopes and broadenings depending on the chemical doping, as well as
global and local gating effects. Following this, we introduce a three site model
to explain the different slopes of the lead states then incorporate a resonant
tunneling model to quantitatively describe the broadenings of the LSs.

Distinguishing between resonances originating from the quantum
dot and the nanowire leads

Based on the previous results in Chapter 6, we first discuss what distinguishes
resonances originating from the QD and the nanowire leads. Figure 7.1 shows a
typical Coulomb blockade diamond measurement for an InAs/InP heterostruc-
ture NW. Outside of the CB region, we observe several resonances, but can
we attribute all of these to purely the QD?
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7. Spectroscopy of the local density of states in nanowire leads

To answer this question, we first assume that the system can be modeled as
a QD directly coupled to two reservoirs with a constant DOS. In this system,
one would expect that only resonances in the CB diamond measurement arise
from transport mechanisms via the QD, for example, transport via ESs of the
QD.

LS

ES

ES

Eadd EC

Figure 7.1. Coulomb blockade diamond: Differential conductance,
dI/dV , as a function of source drain bias voltage, VSD, and back gate volt-
age, VBG. We find several resonances outside of the CB diamond pattern
corresponding to excited states (ES) of the quantum dot indicated by a white
arrow, as well as the lead states (LS) arising from the nanowire lead segments,
indicated by an orange arrow.

We first consider where the excited state resonances are expected to ap-
pear by considering the quantum dot’s addition energy, Eadd, and charg-
ing energy, EC, to determine its level spacing, δEQD. As previously stated
in Chapter 6, the region in Fig. 7.1 exhibits a clear even-odd pattern with
Eadd = (5.5± 0.1) meV and EC = (4.2± 0.1) meV. From the difference be-
tween Eadd and EC, we find δEQD = (1.3± 0.2) meV. This value is consistent
with δEQD = (1.5± 0.2) meV from the corresponding resonance indicated by
ES (white) in Fig. 7.1. The ES resonances have a slope similar to the QD
ground state (GS) resonances (i.e. the CB diamond edge), large δEQD and
amplitudes, and can often be determined from cotunneling lines present in the
Coulomb blockade region. The ES resonances are indicated in Fig. 7.1 by ES
(white arrows). However we find this analysis only captures a small portion
of the features observed in Fig. 7.1 and there exists several resonances with
smaller level spacings and smaller slopes outside of the CB diamond that can
be clearly resolved. A few of these resonances are indicated in Fig. 7.1 by LS
(orange arrows).
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Excited State Lead State
Origin Quantum dot Nanowire leads
Slope Similar to QD GS slope Smaller than QD GS slope
Level spacing Large Small
Amplitudes Large Small

Table 7.1. Summary of features attributed to excited and lead states.

To explain the origin of the additional resonances, we now take into account
the finite InAs nanowire lead segments between the reservoirs and the QD. We
define LS1 (LS2) as the nanowire lead segment between the source (drain)
and the QD. In principle, these lead segments are quasi one-dimensional due
to confinement in the transverse directions, however further confinement in
the axial direction, e.g. due to tunnel barrier formation at the metal-NW
interface, can result in the formation of quasi zero-dimensional Fabry-Pérot
like bound states in the lead segments.

In general, the two lead DOSs are made up of several overlapping states
in each of the two NW lead segments with widths mainly determined by the
coupling to the reservoirs. If the states strongly overlap, the DOS of the lead
segments will be approximately constant resulting in a constant background
conductance outside of the CB diamond. However, if they weakly overlap there
is a strong modulation of the lead DOSs resulting in additional resonances and
strong negative differential conductance outside of the CB region. Lead states
outside of the CB blockade region are observed when the a peak in the lead
DOS enters the bias window and its electrochemical potential is aligned with
the electrochemical potential of the QD. From Fig. 7.1, we find two sets of lead
states with positive and negative slopes (∆VSD/∆VBG). We will later demon-
strate in Sec. 7.2 that lead states with positive (negative) slopes originate from
LS1 (LS2).

To explain the small level spacings, δELS1/2, observed in the measurement,
we consider the length of the lead segments. Since the lead segments are typ-
ically an order of magnitude longer than the QD, δELS1/2, are typically much
smaller, i.e. δELS1/2 � δEQD. In addition, unlike excited state resonances,
we find that their slopes are smaller compared to resonances originating from
the QD (CB diamond edges and QD excited states).

In summary, we observe two sets of resonances: ES resonances originating
from the QD and LSs resonances originating from the NW leads. Table 7.1
summarizes the main differences between them and can be used as a basis for
identifying whether a resonance originates from the leads or the QD.
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7.1. Devices and characterization

In this chapter, we present measurements from three different InAs/InP het-
erostructure NW devices: Device A, B, and C. All devices were fabricated
in a similar fashion, as discussed in Chapter 4. However, each device is not
identical and exhibit unique features allowing for a deeper understanding of
the LSs.

For the analysis later, we need to extract the QD and LS slopes for each
device. The positive and negative QD slopes, β+ and β−, are defined in
Fig. 2.7. The slope of lead states (∆VSD/∆VBG) with positive (negative) slopes
are defined as sLS1 (sLS2). The choice of this notation will become clear in
Sec. 7.2.
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L1 L2
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Figure 7.2. Schematic and Coulomb blockade diamonds for device
A: (a) Schematic of an InAs/InP heterostructure nanowire with an integrated
quantum dot (QD) (brown) coupled to two InAs nanowire (grey) leads, LS1
and LS2, of lengths, L1 ≈ 350 nm and L2 ≈ 600 nm, respectively. LS1 and
LS2 are electrically contacted to a either a source (S) or drain (D) reservoir
made of Ti/Au. The electrochemical potential in the entire NW (leads+NW) is
tuned by applying a back gate voltage, VBG. (b)-(c) Differential conductance,
dI/dV , as a function of back gate voltage, VBG, and source drain bias, VSD.
In (b), we find two sets of lead states, indicated by the green and red arrows,
with slopes not equal to the QD diamond edge and have smaller amplitudes.
In (c), we find effects due to discrete charge transport through one of the lead
segments, indicated by the white arrows.
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A schematic illustrating Device A is depicted in Fig. 7.2(a). The integrated
QD (brown) is coupled to two InAs lead segments (grey), LS1 and LS2, with
lengths L1 ≈ 350 nm and L2 ≈ 600 nm. LS1 and LS2 are further coupled
to either a source (S) or drain (D) reservoir made of Ti/Au (yellow). The
electrochemical potential of LS1, LS2, and the QD are tuned by a global back
gate (BG) with voltage, VBG. This is the same device presented in Chapter 6.
Figure 7.2(b) and (c) show high resolution Coulomb blockade (CB) diamond

measurements in this device exhibiting several LSs outside of the CB diamond.
First, we focus on the properties of the QD. The QD is characterized by its
single particle level spacing, slopes, and broadening. The single particle level
spacing for this CB diamond in (b) is δEQD ≈ 7 meV and in (c) δEQD ≈
2.6 meV. We estimate the broadening to be ΓQD ≈ 200 µeV from Fig. 6.7(a).

The positive and negative slopes of the CB diamond edge are equal in both
CB diamonds and are given by β+ = 0.038± 0.001 and β− = −0.050± 0.001.
In addition, we observe two sets of lead resonances in (b), corresponding to LS1
(green arrows) and LS2 (red arrows) with lead level spacings, δELS1/2 � δEQD.
We find that the resonances corresponding to LS1 and LS2 have slopes of
sLS1 = 0.033 ± 0.001 and sLS2 = −0.033 ± 0.001, respectively. The slopes of
the lead resonances are nearly parallel to the diamond edge, suggesting the
lead segments are well, but not perfectly, coupled to the reservoirs. In addi-
tion, we find regions of negative differential conductance (NDC), a feature of
weakly overlapping lead states. Furthermore, the conductance amplitude of
the LSs is a factor of 3− 10 smaller than that of the QD diamond edge.
In (c), we find that the lead resonances and the QD diamond edge exhibit

"jumps", indicated by the white arrows. We speculate this is due effects of
discrete electron charge transfer between the reservoir and LS2. At low VBG
values the nanowire lead segment is likely nearly depleted, meaning when one
electron tunnels onto the lead segment from the reservoir the capacitance of
the lead segment changes. This then induces a voltage in the QD, leading to
a change in its electrochemical potential. Therefore, the QD acts as a charge
sensor for the leads [246, 247].

Device B
In Device B, the effect of increasing the charge carrier concentration in the
NW is investigated. Figure 7.3(a) illustrates a schematic of an selenium doped
InAs/InP heterostructure NW. In this device, the source (S) reservoir (blue)
made of titanium/aluminum (Ti/Al) and the the drain (D) is Ti/Au (yel-
low). The NW region beneath the source reservoir consists of InAs with sele-
nium (Se) dopents (white). The Se dopants increase the carrier concentration,
thereby reducing the Schottky barrier at the interface, resulting in better elec-
trical contact [248]. We note that between the Se-doped region and the InP
tunnel barrier, there exists 100 nm of undoped InAs. The corresponding lead
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segment lengths for Device B are: L1 = 100 nm and L2 = 300 nm.
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Figure 7.3. Schematic and Coulomb blockade diamonds for device
B: (a) Schematic of a selenium doped InAs/InP heterostructure nanowire
(NW) device. In this device, LS1 consists of InAs with Se dopants to increase
the carrier concentration of the NW lead. There exists 100 nm of undoped
InAs between the quantum dot (QD) and where the doped region begins. The
corresponding lead segment lengths are: L1 = 100 nm and L2 = 300 nm. (b)
Two sets of lead states corresponding to LS1(green arrow) and LS2 (blue ar-
rows) outside of the Coulomb blockade diamond. (c) Same as (b), but with
higher contrast to see the LS indicated by the green arrow.

A Coulomb blockade diamond is shown in Fig. 7.3(b). Here, we find
δEQD ≈ 4.7 meV and β+ = 0.017 and β− = −0.024 for the QD. Now, only
one set of lead resonances, those corresponding to LS2, can be clearly re-
solved. The lead resonances in LS1 are still present (green arrow), however
they are broader than those corresponding to LS2. We speculate that this
is due to the increased carrier concentration in LS1 from the Se-dopants re-
sulting in better coupling to the reservoir. To better illustrate this, Fig. 7.3(c)
shows the same as (b), but with a larger contrast. By increasing the carrier
concentration, the lead states couple stronger to the source reservoir and ap-
pear to be broadened. The slopes of the LSs in the device are: sLS1 = 0.016
and sLS2 = −0.014. Now, we find that sLS1 ≈ β+, suggesting that LS1 is
strongly coupled to the source reservoir.
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7.1. Devices and characterization

Device C
Device C was used to investigate the gate dependence of the lead states in
one lead. Figure 7.4(a) illustrates a schematic of the device. In this device,
the source reservoir (S) consists of Ti/Al, while the drain (D) reservoir is
Ti/Au. In addition, there is a local metallic (Ti/Au) side gate (SG) that
tunes the electrochemical potential in LS2, as well as the QD. LS1 and LS2
have lengths L1 ≈ 50 nm and L2 ≈ 350 nm. While the device has a super-
conducting reservoir (Ti/Al) and a proximity induced superconducting gap is
observed (see Chapter 8), we restrict our discussion to features outside of the
superconducting gap (∆∗ ≈ 125 µeV).
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Figure 7.4. Schematic and Coulomb blockade diamonds for device
C: (a) Schematic of an InAs/InP heterostructure NW is coupled to one super-
conducting contact (blue) and one normal metal contact (yellow). The lengths
of the lead segments, LS1 and LS2, are L1 ≈ 50 nm and L2 ≈ 350 nm, re-
spectively. In this device, a side gate (SG) is positioned perpendicular to LS2
that tunes the electrochemical potential in LS2 and the QD. (b)-(c) Coulomb
blockade diamond measurements as a function of (b) back gate voltage, VBG,
and (c) side gate voltage, VSG. We find a clear difference between the slopes
of the lead states. The white arrow indicates a possible hybridization between
the lead state and quantum dot state.

Figures 7.4(b) shows the differential conductance, dI/dV , as a function of
VSD and VBG for VSG = 0. We observe several lead resonances with negative
slopes outside of the CB diamond that we attribute to bound states in LS2.
Figure 7.4(c) shows dI/dV as a function of VSD and VSG for VBG = 22 V. Once
again, we find lead resonances corresponding to bound states in LS2, however
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Device A Device B Device C
NW Type InAs/InP NW Se-doped InAs/InP NW InAs/InP NW
L1 (nm) 350 100 50
L2 (nm) 600 300 350
Reservoirs Ti/Au Ti/Al + Ti/Au Ti/Al + Ti/Au

Features

Two sets of LSs,
different LS slopes,
small level spacing,
charge sensing

Large broadening of lead
states

Gating effects in
LS2 by a side gate,
LS+QD hybridization

Table 7.2. Summary of devices A, B, and C.

now with different slopes than in (a). We attribute this to gating effects by VSG
that change the coupling between LS2 and the drain reservoir or the coupling
between the QD and LS2. In addition, we find three anticrossings in (b) that
suggest the lead states and QD states become hybridized despite the large
integrated tunnel barriers in the system. These anticrossings are not found in
(c). We perform a similar analysis as in device A and B to extract the slopes of
the QD and the lead states for later. From the slopes of the QD diamond edge
and lead resonances formed in LS2, we find in (b) β+ = 0.022, β− = −0.021,
sLS2 = −0.019. Similarly for (c), we find β+ = 0.017, β− = −0.017, sLS2 =
−0.0042. Therefore, we deduce that VSG leads to a large change in sLS2.
Table 7.2 summarizes devices A, B, and C presented in this chapter and the

unique features they exhibit. In the following, we discuss LSs and describe
how these conductance features arise from the resulting modulation of the
local DOS in the lead segments.

7.2. Lead states

We now turn our focus to the different slopes observed in the experiment. We
first introduce our general InAs/InP heterostructure nanowire system and its
corresponding electrostatic model then discuss what features our model can
capture.
As previously discussed, lead states originate from quantum confinement in

the lead regions, giving rise to a discrete energy spectrum in the lead segments
that we characterized by a non-constant DOS. We consider an InAs/InP het-
erostructure nanowire where the QD is not directly coupled to the reservoirs,
but rather to NW lead segments, as illustrated in Fig. 7.5(a). Here, an InAs
NW (grey) with a QD formed by two in situ grown InP tunnel barriers (black)
separates two lead segments, LS1 and LS2, that are electrically contacted to
either a source (S) or drain (D) reservoir (yellow).
We assume two tunnel barriers (brown) are formed at the lead-reservoir in-

terface, for example, by the presence of a Schottky barrier. If the tunnel barrier
at the LS1/LS2-reservoir interface is sufficiently large, the transmission be-
tween the wire and the reservoir will be reduced and in-bound electrons are not
perfectly transmitted into the reservoir, but are reflected at the lead-reservoir
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Figure 7.5. Model of the nanowire system: (a) Illustration of an inte-
grated quantum dot (QD) coupled to two InAs nanowire (grey) lead segments,
LS1 and LS2, of lengths, L1 and L2, respectively. LS1 and LS2 are further
electrically contacted to source (S) and drain (D) reservoirs (yellow). Four tun-
nel barriers (TB) are present in the system: two InP tunnel barriers (black)
and two tunnel barriers formed at the LS1/LS2-reservoir interface (brown).
(b) Electrochemical potential diagram of the system. The two InP tunnel bar-
riers confine the region between them forming a QD. Confinement from the
tunnel barriers at the lead-reservoir interface results in QD-like characteristics
in LS1 and LS2. The local density of states (DOS) is illustrated as strongly
modulated (green) or weakly modulated (red).

interface. This leads to the electron wave functions becoming confined in LS1
and LS2 and to the formation Fabry-Pérot- like bound states in these regions.
These bound states exhibit QD-like characteristics such as: discrete energies,
ELS1 and ELS2, single particle level spacings, δELS1 and δELS2, and tunnel
couplings, ΓLS1 and ΓLS2, respectively. Furthermore, since the electrons are
strongly reflected at the QD tunnel barrier, the widths of these states are de-
termined mostly by the coupling to the source and drain contacts, ΓLS1 ≈ ΓSLS1
and ΓLS2 ≈ ΓDLS2 respectively.
To describe the electrostatics of the system, we assume a three site model

to qualitatively and to some extent quantitatively understand the presented
experimental findings, as illustrated in Fig. 7.5(b). The source (S), back gate
(BG), and drain (D) all couple capacitively to LS1, the QD, and LS2. The
capacitances are denoted as CS/G/D,LS1/QD/LS2 where, for example, CS,LS1
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7. Spectroscopy of the local density of states in nanowire leads

means the capacitive coupling between the source and LS1. We apply a bias
to the source, VS, while keeping the drain grounded, VD = 0. We omit any
interdot coupling between LS1 and LS2 (red cross). However we observe
charging effects in Fig. 7.2(c) as well as hybridization between the LS and QD
in Fig. 7.4(c).
The electrochemical potential diagram for this system is illustrated in

Fig. 7.5(b). Here, the discrete energy states of the quantum dot, as well as
the energy states in the lead regions characterized by a non-constant density
of states, is shown. Two possible scenarios of the DOS in LS1(green) and
LS2(red) are illustrated. In LS1, δELS1 � ΓLS1, thus the electron states
in this region are weakly overlapping, leading to a strong modulation of the
DOS. However, in LS2, δELS2 � ΓLS2, resulting in strong overlap between
the electron states and thus a weakly modulated DOS forming a near constant
energy spectrum.

7.3. Lead state slopes

The slopes of the lead resonances give valuable information about the capaci-
tive coupling between the reservoir and the lead segment. To further describe
the transport properties via lead states, we consider an electrochemical po-
tential diagram of a QD. Here, we simplify the local DOS in LS1 and LS2
to a single peak that is otherwise constant in energy and restrict ourselves to
only positive VSD values. We also assume that the DOS of one lead segment
is constant.
Five electrochemical potentials play a role in the transport processes here:

the electrochemical potential of LS1 (µLS1), of the source reservoir (µS),
of the QD (µQD), of LS2 (µLS2), and the drain reservoir (µD). In addi-
tion, four lever arms are considered: the lever arm between the source and
LS1 (αS,LS1 = CS,LS1

CLS1
), the lever arm between the drain reservoir and LS2

(αD,LS2 = CD,LS2
CLS2

), the lever arm between the gate and LS1 (αG,LS1 = CG,LS1
CLS1

),
and the lever arm between the gate and LS2 (αG,LS2 = CG,LS2

CLS2
).

Strong coupling to reservoirs

We first consider the case where LS1 is capacitively strongly coupled to the
source reservoir (αS,LS1 = 1) or LS2 is strongly coupled to the drain reservoir
(αD,LS2 = 1). Figure 7.6 shows an illustration of a CB diamond for positive
VSD whose diamond edges are indicated by black lines and two lead states
originating from LS1 (LS2) are indicated by a dashed green (red) line. The
inset shows a sketch of the electrochemical potential at four positions along
the dashed green and red lines.
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Figure 7.6. Lead states when strongly coupled to the reservoirs:
Illustration of the lead states outside of the Coulomb blockade diamond for a
quantum dot (QD) coupled to two lead segments, LS1 and LS2, exhibiting
a single peak in its local density of states (DOS). (I)-(IV) Electrochemical
potential diagram of the lead resonances. The dashed green line corresponds
to a peak in the local DOS of LS1 entering the bias window (eVSD = µD−µS).
Similarly, the dashed red line corresponds to a peak in the local DOS of LS2
entering the bias window.

We begin with discussing transport along the dashed green line. Since
αS,LS1 = 1, the green resonance is always at the same energy distance to
µS, indicated by the black arrow in (I). At point (I), a finite bias is applied
such that µS < µD and the peak in µLS1 is aligned with µQD, while the DOS
in LS2 is constant. The QD is now acting as an energy filter and we only get
transmission if µQD and µLS1 align. Therefore, there is a net electron flow from
the drain to the source contact, resulting in a peak in differential conductance.
As we move along the dashed green line to point (II), the bias window is in-
creased, the latter requires that the µQD moves with µLS1 and thus with µS,
therefore the resonance has the same positive slope as QD diamonds. Since∑

i
αi,LS < 1, the states cannot move faster in energy than the bias.

A similar situation happens for transport along the dashed red line. Here,
αD,LS2 = 1, and the red resonance is always at the same energy distance to
µD, indicated by the black arrow in (III) and (IV). Starting from point (III),
now the DOS in LS1 is constant and a peak in µLS2 is aligned with µQD.
Transmission only occurs when µQD and µLS2 align and the QD acts once
again as an energy filter. Continuing along to point (IV), the bias window is
increased, therefore µQD moves with µLS2 and thus µD. This results in the lead
resonance having the same slope as the negative slope of the QD diamond.
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Weaker coupling to reservoirs

Previously, we assumed that the the lead segments and their corresponding
reservoirs were strongly coupled, meaning that µLS1/2 moves perfectly with
µS/D. This results in the slopes of the lead resonances running parallel with
QD diamond edge. However, in device A (Fig. 7.2(b)) we observe that the
slopes of the lead resonance are not parallel to the QD diamond. To explain
this finding, we now assume that the capacitive coupling between the lead
segments and reservoirs is weaker, i.e. αS,LS1 < 1 and αD,LS2 < 1.

VSD

VBG

αS,LS1 = 1αD,LS2 = 1

αS,LS1 < 1 αD,LS2 < 1

I
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μS
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μD

μLS1 μQD μLS2

μS
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Figure 7.7. Lead states when weakly coupled to the reservoirs:
Schematic to qualitatively explain gate dependence of lead state resonances
with respect to quantum dot Coulomb blockade diamond with finite bias volt-
age, VSD, and back gate voltage, VBG. The green(red) lines represent reso-
nances when a peak in the local density of states of LS1(LS2) is aligned with
the electrochemical potential of the quantum dot. The slopes of the resonances
depends on the coupling between the LS1(LS2) and the source(drain) reser-
voir, characterized here by αS,LS1(αD,LS2). For weak coupling, αD,LS2 < 1 or
αS,LS1 < 1, the slopes become shallower.

Figure 7.7 illustrates a schematic of the slopes of the lead resonances in LS1
(green) and LS2 (red) for strong coupling (dashed line) and weaker coupling
(solid line). First, we consider lead resonances in LS1 (dashed green line).
Since αS,LS1 < 1, µLS1 does not perfectly follow µS, but "lags" behind it.
Therefore, when the bias window is increased between (I) and (II), the distance
between the peak in the DOS in LS1 and µS becomes larger. This distance is
indicated by the black arrows in (I) and (II). In addition, less VBG is required
to shift µQD such that it remains aligned to µLS1. This results in the slope of
the LS becoming shallower and not parallel to the QD diamond. Similarly, for
LSs in LS2(dashed red line), the peak in the DOS does not perfectly follow
µD for increasing bias since αD,LS2 < 1. Therefore, the distance between µD
and the peak in the DOS becomes larger. Also, µQD is shifted less by VBG due
to the smaller shift in µLS2.
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7.3. Lead state slopes

Using this model, we can derive an expression for the slope of the lead states,
neglecting interdot couplings, by considering transport through the QD and
one lead segment. Here, we note again that a finite VSD is applied to the source
contact while the drain remains grounded. Therefore, current is allowed when
the electrochemical potential of the QD and lead segment are aligned:

µLS1/2 = µQD

⇒ −eαBG,LS1/2VBG − eαS,LS1/2VSD = −eαBG,QDVBG − eαS,QDVSD
(7.1)

By rearranging the equation and solving for sLS1/2 := VSD
VBG

, we find:

sLS1/2 = −
αBG,LS1/2 − αBG,QD

αS,LS1/2 − αS,QD
. (7.2)

Using this equation, we would like to extract all of the lever arms of the sys-
tem. This equation has in principle five unknowns, however sLS1/2, αBG,QD,
and αS,QD can be determined by analyzing the slopes CB diamond measure-
ment. Since this leaves two more unknowns and only one equation, we make
the assumption that αBG,LS = 0.005. We support this assumption by noting
similar values were reported in Chapter 6 and in Ref. [104] using the same
methodology.

Device A

From device A, we found the resonances in LS1 have a slope of sLS1 = |sLS2| =
0.033 ± 0.001. From the slopes of the QD, β+ = 0.038 ± 0.001 and β− =
−0.050± 0.001, we find αG,QD = 0.02 and αS,QD = αD,QD = 0.49. Therefore,
from Eq. 7.2, we find αS,LS1 = 0.97 and αD,LS1 = 0.025. Similarly, for the
resonances in LS2, we find αD,LS2 = 0.97 and αS,LS2 = 0.025. Therefore, both
lead segments do not perfectly couple to their respective reservoir, leading to
slopes that do not perfectly follow the QD diamond edge. The slopes and lever
arms for device A are summarized in Table 7.3.

QD LS1 LS2
Positive slope β+ = 0.038 sLS1 = 0.033 -
Negative slope β− = −0.050 - sLS2 = −0.033

Lever Arms
αG,QD = 0.02
αS,QD = 0.49
αD,QD = 0.49

αG,LS1 = 0.005
αS,LS1 = 0.97
αD,LS1 = 0.025

αG,LS2 = 0.005
αS,LS2 = 0.025
αD,LS2 = 0.97

Table 7.3. Summary of the slopes and lever arms found in device A.
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Device B

We apply the same method for device B. Previously, we found the resonances
in LS1 have a slope of sLS1 = 0.016 ± 0.001, while the QD has slope β+ =
0.017± 0.001. We expect that αS,LS1 ≈ 1, since sLS1 ≈ β+. The lever arms of
the QD were determined by the slopes of the diamond edges and are: αG,QD =
0.01, αS,QD = 0.43, and αD,QD = 0.56. Using Eq. 7.2, we find αS,LS1 = 1 and
αD,LS1 = 0. We note that it is physically impossible that αG,LS1 = αD,LS1 = 0,
however even a slight increase of αG,LS1 = 0.005 results in a change sLS1 =
0.016 to sLS1 = 0.007. Therefore, we can only state that the αG,LS1 � 0.005.
Similarly, for LS2, sLS2 = −0.014, we find αD,LS2 = 0.87 and αS,LS2 = 0.125
with αG,LS2 = 0.005. Now, we find a difference in couplings between the lead
segment with Se dopants (LS1) and the one without (LS2). We attribute the
strong coupling betweenn the source reservoir and LS1 to the larger carrier
concentration in the Se-doped InAs. The slopes and lever arms for device B
are summarized in Table 7.4.

QD LS1 LS2
Positive slope β+ = 0.017 sLS1 = 0.016 -
Negative slope β− = −0.024 - sLS2 = −0.014

Lever Arms
αG,QD = 0.01
αS,QD = 0.43
αD,QD = 0.56

αG,LS1 < 0.005
αS,LS1 ≈ 1
αD,LS1 ≈ 0

αG,LS2 = 0.005
αS,LS2 = 0.125
αD,LS2 = 0.87

Table 7.4. Summary of the slopes and lever arms found in device B.

Device C

In device C, a similar analysis was performed to determine the coupling be-
tween LS2 and the drain reservoir. For Fig. 7.4(b) with VSG = 0V, we find
αD,LS2 = 0.75 with αG,QD = 0.01, αG,LS2 = 0.005, and sLS2 = −0.019, sug-
gesting that LS2 couples weakly to the drain reservoir.
Further analysis of how the coupling changes in Fig. 7.4(c) is challenging

due to αD,LS2 and αG,LS2 changing simultaneously from the voltage applied to
the side gate. Therefore, we neglect to comment further on this, but speculate
that αG,LS2 will increase and αD,LS2 will decrease, leading to the shallower
slopes of the lead states in LS2 observed in the measurement. However, VSG
could also tune the interdot coupling between LS2 and the QD, which we do
not take into account in this simple model.

86



7.4. Broadening of lead states

7.4. Broadening of lead states

We now investigate the broadening of the lead resonance by numerically evalu-
ating the simplified model presented in Fig. 7.5(a), neglecting interdot coupling
between LS1/2 and the QD. We restrict our model for transport through a
single quantum dot energy level with a large EC. A dc bias voltage, VS, is ap-
plied to the source reservoir and the drain reservoir is kept grounded, VD = 0.
The current through the system, I, is given by the total transmission, T (E),
through the system [65, 232, 235]:

I = e

h

∫
T (E) · (fS(E)− fD(E))dE, (7.3)

where T (E) = TLS1(E) · TQD(E) · TLS2(E) is the product of transmission
probabilities for LS1, the QD, and LS2 in the weak tunnel coupling regime.
fS/D(E) = 1/(1 + exp((E + eVS/D)/kBTe)) are the Fermi-Dirac distributions
of the source (S) and drain (D) reservoirs at temperature Te.

The QD is characterized by its transmission probability, TQD(E), described
by the Breit-Wigner (BW) transmission function [65, 232, 235]:

TQD(E) = (Γ1Γ2)/((E − µQD)2 + Γ2/4), (7.4)

with QD level broadening Γ = Γ1 + Γ2 and electrochemical potential
µQD = −|e|αS,QDVS − |e|αG,QDVG − |e|αD,QDVD [65]. To implement the mod-
ulated DOS in LS1 and LS2, we model the transmission probability of the LSs,
TLS1/2(E), by the sum of N number of BW transmission functions:

TLS1/2(E) =
N∑
n=1

(
ΓnLS1/2

)2(
E − µLS1/2 − n · δEnLS1/2

)2
+ 1

4

(
ΓnLS1/2

)2 , (7.5)

where ΓnLS1/2 = Γn,1LS1/2 + Γn,2LS1/2 is the broadening of the nth LS in LS1
or LS2, δEnLS1/2 is the level spacing of the nth state of LS1 or LS2, and
µLS1/2 = −|e|αS,LS1/2VS − |e|αG,LS1/2VG − |e|αD,LS1/2VD are the electrochem-
ical potentials in LS1 and LS2. dI/dV is calculated numerically.
In this model, the capacitive coupling between the leads and the QD is

not taken into account. In addition, we assume that the leads are strongly
capacitively coupled to the reservoirs and only weakly capacitively coupled to
the gate, expressed here by the lever arms.
As stated previously, our goal is to extract the broadening of the resonances,

however this is not trivial, because we convolute three transmission functions
and two Fermi-Dirac functions, so that the amplitudes are not directly the
energies and transmission maximum of the individual sites. We expect that
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7. Spectroscopy of the local density of states in nanowire leads

the model captures the position, since we use capacitances to model the elec-
trostatics, except for hybridization of wave functions observed in Fig. 7.4(b),
which we do not take into account.

Device A
Figure 7.8 shows the (a) measured and (b) modeled Coulomb blockade dia-
mond. For the model, we used the QD and LS lever arms that can be found
in Table 7.3. In addition, each LS was added corresponding to their spac-
ings extracted from the experiment. Their individual energies, ELS1/2, slopes,
sLS1/2, and level spacings, δELS1/2, and broadenings, ΓLS1/2, can be found in
Table D.1. We find that our simplified model can qualitatively describe the
experimental measurement and capture the broadenings.
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Figure 7.8. Device A Model: (a) Coulomb blockade diamond measure-
ment and (b) results of model calculations with adjustable parameters given
Appendix D. The numbers denote the resonance number, n, for LS1 (green)
and LS2 (blue). (c) Line cut along the green dashed line in (a) for the mea-
surement (black) and (b) for the model (green). (d) Line cut along the dashed
blue line in (a) for the measurement (black) and in (b) for the model (blue).
We find that we are able to reproduce the positions and widths, but not the
amplitudes, of the resonances.

To find each resonances appropriate broadening, ΓnLS1 and ΓnLS2, we take
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a line cut along the green(blue) dashed line. Figure 7.8 shows dI/dV as a
function of VBG along the dashed (c) green and (d) blue line in (a) and (b).
This represents the local DOS of (c) LS1 or (d) LS2 where the peaks in
dI/dV correspond to peaks in the local DOS. By adjusting ΓnLS1/2 and their
amplitudes for each resonance, we fit the peaks in the model to the data. In
(c), we find that ΓLS1 in the model takes values between 0.15 meV to 1.3 meV
to accurately capture the broadening of the peaks, as well as the NDC found
in the measurement. Similar for (d), we find ΓLS2 varies between 0.2 meV to
0.4 meV.

Figure 7.9(a) shows the dependence of δELS1 and δELS2 on n. We find that
δELS1 and δELS2 have similar values that vary between 0.2 meV and 1.3 meV
over the 20 LSs. Similarly, Fig. 7.9(b) shows the dependence of ΓLS1 and
ΓLS2 on n. We find ΓLS1 and ΓLS2 are roughly constant with ΓLS1 ≈ ΓLS2 ≈
0.3 meV for the LSs probed by this QD resonance. In both cases, we do not
observe a systematic trend or dependence on n. We speculate that this is due
to the QD probing only a local DOS of LS1 and LS2, where large changes in
δELS1/2 and ΓLS1/2 are not expected. Further analysis as a function of VBG
would be interesting to see how the values change over a large change in the
electrochemical potential of the leads.
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Figure 7.9. Single particle level spacing and broadening in device
A: (a) Lead state level spacing, δELS, as a function of resonance number,
n for lead states (LSs) in LS1(green) and LS2(blue). We find that δELS1
and δELS2 remains roughly constant for increasing n. (b) Lead state level
broadening, ΓLS, as a function of resonance number, n for LSs in LS1(green)
and LS2(blue). Similar to (a), ΓLS2 remains roughly constant for increasing
n. All of the values for δELS2 and ΓLS2 were extracted from Fig. 7.8(b).
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Device B
Fig. 7.10 shows the (a) measured and (b) modeled Coulomb blockade diamond
for the lever arms given in Table 7.4. We find that the model Coulomb blockade
diamond is in good agreement with the measured diamond. From (a), we
find that δE1

LS1 = 3.1 meV and δELS2 = 0.6 meV to 1 meV. However, the
broadening of the resonances could not be extracted in a similar fashion as in
device A due to the low resolution of the measurement.
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Figure 7.10. Device B Model: (a) Measured and (c) modeled Coulomb
blockade diamond measurement showing one lead resonance corresponding to
LS1 (green) and four lead resonances corresponding to LS2 (blue). (b) The
same measurement as (a), but with adjusted contrast. We find that the lead
resonance corresponding to LS1 is very broad and its slope is parallel to the di-
amond edge, suggesting that the Se dopants increase the carrier concentration
enough to strongly couple the lead states to the source reservoir.

Nevertheless, we estimate ΓLS1 ≈ 3± 0.5 meV from the plot. This results in
ΓLS1 ≈ δELS1, consistent with stronger coupling due to the doping. However,
for LS2, we estimate ΓLS2 = 0.2 meV to 0.4 meV. Therefore, ΓLS2 < δELS2
and the local DOS of LS2 is strongly modulated, similar to device A. Thus,
we speculate that this discrepancy between the two lead segments is likely due
from the Se dopants present in the lead segment of LS1 that broaden the lead
states compared to the undoped lead segment of LS2.
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7.5. Conclusion

In this chapter, we demonstrated that the in situ grown QD in InAs/InP
heterostructure NWs can be used as a tunnel spectrometer to probe the local
density of states in the NW lead segments. The non-constant local density
of states appear as resonances in Coulomb blockade diamond measurements
that cannot be attributed to effects of the QD itself. These features could be
modeled using a capacitance model neglecting interdot couplings. Using this
simplified model, we could extract the lever arms between the lead segments
and the reservoirs, as well as the broadening of the bound states in the leads.
We find that the local DOS is heavily modulated, as expected from Chapter
6.
We find that in device A, both of the lead segments are equally weakly

coupled to their reservoirs, resulting in their resonances having slopes that
are shallower than the QD diamond edge and narrow broadenings. The weak
coupling likely arises from the low carrier concentration in wurtzite InAs. In
device B, we investigated how the capacitive coupling differs between a reser-
voir contacted to Se-doped InAs and undoped InAs. We find that chemical
doping results in strong coupling between the lead segment and the reservoir,
leading to lead resonances that are parallel to the QD diamond edge, as well as
a large broadening of the LSs. In contrast, the coupling between the undoped
InAs lead segment and its reservoir had weaker coupling, similar to device A,
that results in lead resonances with a shallower slope than the QD diamond
edge. In device C, we find that the slopes of the lead states can be described
by weak coupling between LS2 and the drain reservoir. However, the influence
of VSG on their slopes could not deduced. In addition, we find hybridization
effects between LSs and QD states.
Further investigation of the LS could be performed in the next generation of

experiments with these InAs/InP heterostructure NWs. Nevertheless, this in-
formation is valuable for further spectroscopy studies of how the quasi zero di-
mensionality of the lead segments effects transport studies in hybrid nanowire
systems [42, 50, 249].
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8 Spectroscopy of the superconducting
proximity effect

In this chapter, we use an InAs/InP heterostructure NW with one supercon-
ducting contact. The gives rise to new types of lead states due to the coupling
to the proximity induced superconducting NW lead segment (LS) adjacent to
the superconducting contact. Following a similar methodolgy to experiments
done on crystal-phase InAs NWs [50], we demonstrate that the integrated QD
can be used as a spectrometer to probe the quasiparticle density of states
(DOS) and sub-gap states in the LS. We show the results of two transport
regimes of the QD used to extract the proximity induced superconductin gap
size, ∆∗: the cotunneling regime and the sequential tunneling regime. Figure
8.1 illustrates the transport processes in each regime. In (a) the sequential
tunneling regime, the QD acts as an energy filter coupling to LSs only at the
energies of QD resonances, while in (b) the cotunneling regime, the QD can
be thought of as a tunable tunnel barrier.
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2Δ*
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Figure 8.1. Sequential and cotunneling regime: Schematic of the elec-
trochemical potentials for a proximitized nanowire lead segment (LS). The
quantum dot (QD) acts as a tunnel probe for the quasiparticle density of
states of the lead segments. Transport via the (a) sequential tunneling regime
and (b) the cotunneling regime is shown. Adapted from [50].

We assume most of the voltage across the NW drops over the QD, therefore
the differential conductance is proportional to the DOS and we can describe
the system with a resonant tunneling model. If electrons would tunnel directly
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8. Spectroscopy of the superconducting proximity effect

from the superconducting contact onto the QD, we would expect to see a BCS-
like gap with a sharp ideal BCS DOS and a gap size similar to the bulk value
(here: aluminum ∆ ≈ 210 µeV) [250]. In this chapter, we investigate whether
the DOS of the LS becomes more BCS-like for large tunnel barrier height in
InAs/InP heterostructure NWs compared to crystal-phase InAs NWs [50].

8.1. Device and characterization

In Fig. 8.2 (a) a schematic of the device along with (b) a false colored scanning
electron microscope image of an InAs/InP NW superconducting hybrid device
is shown. The NW is contacted by one superconducting (SC) Ti/Al contact
(blue) and one normal (N) Ti/Au contact (yellow). The deterministic prop-
erties of the integrated QD, defined by the in situ grown InP segments (red),
allows us to separate the NW into two lead segments: LS1 and LS2. LS1
and LS2 have lengths of L1 = 50 nm and L2 = 350 nm, respectively. A side
gate (SG) of width 100 nm is positioned 50 nm away from the NW between the
normal metal contact and the QD. Further fabrication details can be found in
Chapter 4.
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QD
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QD LS2LS1S D
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 VBG

 VSG
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Figure 8.2. Device and setup: (a) Schematic and (b) false color scan-
ning electron microscopy image of an InAs/InP heterostructure nanowire de-
vice. The NW is electrically contacted to a superconductor (SC) consisting
of titanium/aluminum (blue) electrode and to a normal (N) metal electrode
consisting of titanium/gold (yellow). A quantum dot (QD) is formed within
the bare InAs segment between two in-situ grown InP segments (red). The
distance between the superconducting contact and the QD is L1 = 50 nm and
L2 = 350 nm is the distance between the QD and normal metal contact. The
chemical potential of the entire NW is tuned with a global back gate VBG,
while the electrochemical potential of the QD and in the lead region near the
normal contact is tuned by side gate voltage, VSG.

The chemical potential in both the lead segments and the NW is tuned by a
back gate voltage, VBG, while the electrochemical potential of the QD and in
the lead region near the normal contact is tuned by side gate voltage, VSG. A
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perpendicular magnetic field, B, was used to suppress the superconductivity
of aluminum. The device was measured in a dilution refrigerator with a base
temperature of 20 mK. An AC and DC voltage was applied to the SC contact,
VSD, while the N contact was kept grounded and used for the current (I) mea-
surement. The differential conductance, dI/dVSD = IAC/VAC, was measured
using standard lock-in techniques.
We first show that the integrated QD and LSs in the normal state in this

device exhibits similar properties to the one discussed in Chapter 6. Figure 8.3
shows dI/dV as a function of source-drain voltage, VSD, and (a) VBG or (b)
VSG, in the superconducting state (B = 0). In (a), VSG = 0 and for (b),
VBG = 22 V. In both measurements, we observe very regular and reproducible
Coulomb blockade (CB) diamonds over several volts. In the gate range shown
in Fig. 8.3(a) and (b), we estimate the electron population on the QD to be
∼ 50.
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Figure 8.3. Coulomb blockade diamonds: Differential conductance,
dI/dV , as a function of source-drain voltage, VSD and either back gate volt-
age (a), VBG or side gate voltage (b), VSG. In (a), VSG = 0, while for (b)
VBG = 22 V. Regular Coulomb blockade diamonds are observed over a large
gate range. Further analysis were performed on the resonances indicated by
the dashed blue and green regions.
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8. Spectroscopy of the superconducting proximity effect

The QD is characterized by the addition energy, Eadd, charging energy, EC,
and single particle level spacing, δE, total tunnel coupling, Γ, and asymme-
try A = Γ1/Γ2, where Γ1 and Γ2 are the individual tunnel couplings. A
region of the CB diamonds exhibits a clear even-odd pattern from which we
can determine the characteristic QD energy scales [102]. From the even/odd
pattern of the first two diamonds in Fig. 8.3(a), we extract Eadd = 8 meV
and EC = 6 meV. This results in δE = 2 meV which is consistent with the
corresponding excited state resonances outside the CB diamonds. For the res-
onances indicated by the blue and green dashed box, Γ and A were determined
by fitting the line shape of the CB resonance in the normal state (B = 100 mT)
with Eq. 6.2 with the electron temperature fixed to T = 50 mK.1 For the res-
onance indicated by the blue dashed box in (a), we find Γ ≈ 140 µeV with
asymmetry A ≈ 23. Similarly, for the resonance indicated by the green dashed
box in (b), we find Γ = 48 µeV and A = 23. In addition, we observe several
lead resonances that arise from the modulated DOS of the InAs lead segments,
similar to the measurements in Chapter 6. We refer back to Chapter 7 for fur-
ther discussion on lead resonances. Now, we will look into the probing the
superconducting proximity gap in the lead region.

8.2. Sequential tunneling regime

The first transport regime we investigate is the sequential tunneling regime,
as shown in Fig. 8.1(a). To describe the system, we assume that the QD is
weakly coupled to the superconductor and strongly coupled to the normal
metal, i.e. ΓS � ΓN � ∆ � δE � EC. The normal lead is assumed to have
a constant DOS, while the superconducting contact has a BCS DOS. The
electron wavefunctions within the superconductor is extended into the NW
lead segment via Andreev reflection. This causes the lead segment to become
proximitized and exhibit superconducting properties [251, 252]. However, the
DOS of the superconducting lead segment is unknown, but we characterize
it by the proximity induced superconducting gap, ∆∗ and suppression factor,
S = GS/GN. Here, GS and GN is the differential conductance in the gap and
outside of the gap, respectively.
Figure 8.4(a) shows the expected effects on the single electron transport for

an N-QD-S device in the sequential tunneling regime. Here, we plot dI/dV
as a function of VSD and gate voltage VG. We observe two clear effects, each
marking the onset of quasiparticle transport: a shift in bias and gate voltage
of the Coulomb blockade diamond "tips" by ∆VSD = 2∆∗/e and ∆VG = 2∆∗

e|β−|
,

respectively. Here, we assume the bias is applied to the superconductor, there-
fore β− is the negative slope of the CB diamond. The purple panel indicates
the effect of a finite DOS within the superconducting gap (eVSD < |∆∗|). Since
1See Chapter 6 for more information on Coulomb blockade resonance line shape analysis.
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Figure 8.4. Proximity gap in the sequential tunneling regime: illus-
tration of the expected (a) and measured (b) Coulomb blockade diamonds in
a S-QD-N device. (a) A diagram of the alignment of all the involved electro-
chemical potentials in relation to the CB diamond are shown where the normal
metal (gold) and a superconductor (blue) coupled to a QD. (b) Differential
conductance as a function of source-drain voltage bias VSD and gate voltage
VSG for back gate voltage VBG = 22 V. Transport is blocked within the super-
conducting gap ±∆, indicated by the dashed line, and the Coulomb diamond
tips are shifted in gate voltage by ∆VG = 2∆

eβ−
. (c-e) Another CB diamond

in the (c) superconducting state (B = 0) and (d) normal state B = 100 mT.
(e) Magnetic field dependence of the superconducting gap. Schematic adopted
from Ref. [103].

the DOS is nonzero, transport can still be mediated by quasiparticles within
the gap.
We now focus on the two CB diamonds in Fig 8.3(a) and (b) indicated by

a blue and green box, starting with the resonance indicated by the green
marked region. In Fig. 8.4(b), we plot dI/dV as a function of VSD and VSG for
VBG = 22 V and B = 0. As expected from (a), we find that the CB diamond
tips are shifted in VSD and VSG. From the shift in VSD, we extract ∆∗ ≈
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8. Spectroscopy of the superconducting proximity effect

125 µeV. The CB diamond tips are shifted in gate voltage by ∆VSG = 0.01 V.
Using |β−| = 0.02 from the negative slope of the diamond edge, we extract
∆∗ ≈ 115 µeV, in agreement with the shift in VSD. S ≈ 0.4 was determined by
dI/dV inside and outside of the gap along the CB diamond edge. As stated
earlier, Γ = 48 µeV for this resonance, therefore, the proximity induced gap
larger than the broadening of the energy level, i.e. Γ < ∆∗.
Now, we look into the magnetic field dependence of ∆∗ and focus on the

resonance indicated by the blue marked region in Fig. 8.3(a). Figure 8.4 shows
dI/dV as a function of VSD and VBG for VSG = 0 in (c) the superconducting
state (B = 0) and (d) normal state (B = 100 mT). In the superconducting
state, we find ∆∗ ≈ 125 µeV and S ≈ 0.5. Now, we observe a gap size similar
to the broadening of the energy level, i.e. ∆∗ ≈ Γ. In the normal state, the
superconducting properties are suppressed and the system acts a typical QD
coupled to two normal metals. In Fig. 8.4(e), we show the evolution of ∆∗ as
a function of B at VBG = 21.24 V (green line in Fig. 8.4(a) and (b)). We find
that the gap closes at 25 mT.
To extract the characteristic values of this system, we implement a resonant

tunneling model for an S-QD-N system. We use a simple resonant tunneling
model to approximate the current as [193, 253]:

I = e

h

∫
DN(E)DS(E+ eVSD) ·TQD(E, VBG, VSD) · [fN(E)− fS(E + VSD)] dE,

(8.1)
where DN(E) is the constant DOS of the normal lead. The DOS of the

superconducting lead is given by Eq. 2.15. The transmission through the QD,
TQD(E, VBG, VSD), takes the form of a Breit-Wigner function and accounts for
resonant tunneling through the QD which we assume to be independent of the
lead DOS. The Fermi distribution of the contacts are taken into account in
fS/N. To reproduce the suppression observed experimentally, Eq. 2.15 can be
modified by introducing the phenomenological Dynes parameter δ [254]. The
DOS of the lead segment is then given by
DS(E) =

∣∣∣<(E − iδ/√(E − iδ)2 − (∆∗)2
)∣∣∣.

By fixing the the QD parameters and ∆∗ to the values determined previ-
ously, we get conductance maps as shown in Fig. 8.5(a)-(b) (model). To quan-
titatively compare the measurement to the model, we take a line cut along
the QD diamond edge indicated by the arrows. In (a), we set ∆∗ = 125 µeV,
Γ1 = 46 µeV, and Γ2 = 2 µeV. We find that we can reproduce the characteris-
tics of the CB diamond and S ≈ 0.4 with δ = 0.15. Similarly for (b), we set
∆∗ = 125 µeV, Γ1 = 133 µeV, and Γ2 = 19 µeV, and find δ = 0.15 results in
S ≈ 0.5, similar to that observed in the experiment. We note that Γ2 extracted
from the Coulomb resonance in the normal state is Γ2 = 7 µeV, leading to a
change in A from 23 to 7. We found no value of δ with A = 23 that could

98



8.2. Sequential tunneling regime

Γ<∆

V S
D
 (µ

V)

21.3021.24

Data

Model

0.100
dI/dV (e2/h)

0.30.1
dI/dV (e2/h)

Γ≈∆

-500
-250

0
250
500

V S
D
 (µ

V)

V  (V)SG

Data

-4.28 -4.26 -4.24

dI/dV (e2/h)

dI
/d

V 
(e

2 /h
)

(a)

(b)

0-2.5 2.5

0.16

0.10

0.06

Model

dI
/d

V 
(e

2 /h
)

V  (10   V)BG

0
V  (V)BG

-500
-250

0
250
500 0.6

0.4

0.2
0.1

2 4-2-4
-4

dI/dV (e2/h)
0.30.1

V  (10   V)SG
-4

0.100

Figure 8.5. Modeling of the proximity gap in the sequential tun-
neling regime: (a)-(b) Comparison of the measurement to the resonant tun-
neling model. To qualitatively compare the model to the measurement, we
compare dI/dV as a function of gate voltage along the Coulomb blockade di-
amond edge. From the Coulomb blockade diamond measurement, we extract
∆∗ = 125 µeV, Γ1 = 46 µeV, and Γ2 = 2 µeV. Using a Dyne’s parameter,
δ = 0.15, reproduces the features of the CB diamond measurement and the
suppression, S ≈ 0.4, observed in the experiment. Similarly in (b), we extract
∆∗ = 125 µeV, Γ1 = 133 µeV, and Γ2 = 19 µeV and find δ = 0.15 results in
S ≈ 0.4 observed in the experiment.

reproduce the suppression observed in the measurement. We speculate that
this is a result of lead states being present in the region between the QD and
the normal metal that is not taken into account in the model.
In both cases, we observe a proximity induced gap in the NW lead segment

smaller than ∆. This can be understood by considering Andreev bound states
(ABSs) forming in the lead with energy, EABS, in either the long or short
junction limit. In the long junction limit, the length of the priximitized lead
segment, L, is longer than the characteristic coherence length of the supercon-
ductor in the ballistic limit, i.e. L > LC = ~vF/∆∗, where vF is the Fermi
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8. Spectroscopy of the superconducting proximity effect

velocity in the NW lead segment [255]. In this limit, EABS is determined by
the phase picked up in the lead segment which scales with vF and can take
smaller values, thus filling the gap with ABSs which mimicks a closing of the
gap when observed in transport experiments [50, 255]. As a result, ∆∗ is re-
duced by ABSs moving into the gap. In the short junction limit, L� LC, the
energies of the ABSs are pushed to the gap edge, EABS ≈ ∆, resulting in the
superconducting proximity gap similar to ∆, i.e. ∆∗ ≈ ∆.

In our case, we have a proximitized region of length L = L1 = 50 nm. If
the system would be in the long junction limit, then vF < 1× 104 m s−1 is
required for L1 > LC. We estimate vF =

√
2φ
m∗ , where φ = eαLS(VBG − VP)

is the difference between EF and ECBE with the gate lever arm of the lead
segment, αLS, and the pinchoff voltage, VP, and m∗ = 0.04me is the effective
mass of wurtzite InAs. From Chapter 7, we estimate αLS ≈ 0.005. The
exact value of VP is not known for this device, however we estimate it to be
VP ≈ 5 V by the onset of CB resonances at VSD = 0. For VBG = 21 V, we
find vF ≈ 5× 105 m s−1. Therefore, we find that the system is in the short
junction with values similar with the work done in crystal-phase defined QDs
even though EF is positioned closer to ECBE in our case [50].

8.3. Cotunneling regime

Now, we investigate is the cotunneling regime, as shown in Fig. 8.1(b). In the
cotunneling regime, the QD is in Coulomb blockade and transport is mediated
via higher order elastic tunneling processes often referred to as elastic cotun-
neling where an electron can tunnel off of the QD if another electron tunnels
onto the QD within a time window ∼ h/EC given by Heisenberg’s uncertainty
principle. For ECBE ≈ EF, the effective tunnel barrier is large and higher
order tunneling processes are suppressed.

Cotunneling lines are expected to form around the gap edge, VSD = ±∆∗,
which mark the onset of quasiparticle transport. Figure 8.6 shows the cotun-
neling regime for large VBG. The dashed lines indicated where the cotunneling
lines are expected to form, i.e. at VSD = ± 125 µV. We observe no clear
evidence of cotunneling in our measurements. We attribute this to the large
tunnel barrier height, V0 = 350± 50 meV, in InAs/InP heterostructure NWs.
Compared to crystal-phase QDs, V0 is ∼ 3.5 times larger [48, 50], which makes
it difficult to tune ECBE such that ECBE � EF due the the small gate level
arm, α = 0.01, for this device. We observed no evidence of cotunneling up to
VBG = 40 V.

100



8.4. Summary and discussion

-400
-200

0
200
400

V S
D
 (m

V)

22.822.422.021.621.2
VBG (V)

0.2

0.0

dI/dV (e
2/h)

+∆

-∆
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line marks ±∆∗ ≈ 125 µeV extracted in the sequential tunneling regime.

8.4. Summary and discussion

In this chapter, we presented a systematic study of proximity induced su-
perconductivity in a nanowire lead segment. We implemented an integrated
InAs/InP heterostructure QD as a tunnel probe for a proximity induced su-
perconducting nanowire lead segment by investigating the sequential and co-
tunneling regime. In the sequential tunneling regime, we observed a clear shift
of the CB diamond tips as a function of bias and gate voltage, characteristic
of one nanowire lead exhibiting proximity induced superconductivity. From
the CB diamonds, we extract ∆∗ ≈ 125 µeV, consistent with an S-N system
in the short junction limit. This provides further evidence that proximity in-
duced gap values are heavily modified from their corresponding bulk values,
i.e. ∆∗ < ∆, when coupled to a finite nanowire lead segment. The character-
istics of the CB diamonds and suppression could be replicated with a resonant
tunneling model of a QD coupled to a "soft" superconductor with δ = 0.15. In
the cotunneling regime, we observed no evidence of transport via cotunneling
processes at the gap edge. This could be understood by the large tunnel bar-
rier height in InAs/InP heterostructure NWs making it difficult to allow higher
order tunneling processes energetically favorable. In contrast to crystal-phase
InAs NW QDs, we observed no evidence of ABSs forming in the LS [50, 51].
However, this is not a consequence of the larger tunnel barriers, but rather the
weaker coupling to the superconductor. In InAs/InP heterostructure NWs, the
superconductor is contacted to wurtzite InAs which intrinsically has a lower
electron density than zinc-blende InAs in crystal-phase InAs NWs. There-
fore stronger coupling to the superconductor in crystal-phase InAs NWs is
expected. Efforts have been made to strengthen the coupling to the super-
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8. Spectroscopy of the superconducting proximity effect

conductor by increasing the carrier concentration in InAs/InP heterostructure
NWs by intrinsically doping one wurtzite InAs lead segment with selenium
atoms during growth [248], however no clear evidence of proximity induced
superconductivity was observed. The measurements presented in this chapter
provide further support that integrated InAs/InP heterostructure QDs can
be used as a novel spectroscopic tool to probe topological bound states in
superconducting hybrid systems [57, 59, 121, 249, 256, 257].
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9 Summary and Outlook

In this thesis, we successfully demonstrated that in situ grown InP segments
in InAs nanowires form large deterministic tunnel barriers that can be used for
systematic tunnel spectroscopy experiments. We found that the deterministic
nature of the tunnel barriers allows us to divide the device into well understood
sub-systems and that the integrated quantum dot acts as a high resolution
tunnel spectrometer that can be used to probe the fine structure of the density
of states (DOS) in the leads.
We began with investigating electrostatic gate-defined tunnel barriers in

Chapter 5. In this system, we implemented a grid of bottom gates that were
used to electrostatically gate specific regions along an InAs nanowire and a
carbon nanotube to study the physics of single and double quantum dots. We
showed that electrostatic gates can be used to form single and double quantum
dots in these quasi one-dimensional semiconductors. However, we observed
that the electrostatic gates only weakly confine the quantum dots and there-
fore are spatially ill-defined with broad line widths and exhibit uncontrolled
barrier characteristics. These ill-defined tunnel barrier characteristics likely
stem from their unknown geometries, interactions between the gate and the
charge carriers in the system, and being susceptible to charge noise from the
environment. These observations make it challenging to use electrostatic gates
as a building block for tunnel spectroscopy measurements.
An alternative method to form deterministic tunnel barriers was taken in

Chapter 6. Here, we investigated the properties of in-situ grown InP tunnel
barriers in an InAs nanowire. We showed that the in situ grown InP segments
strongly confine the region between them, resulting in highly predictable and
perfectly symmetric QDs with level broadenings small enough for high resolu-
tion spectroscopy measurements. We observed a continuous transition of the
Coulomb blockade line shapes from the lifetime to the thermally broadened
regime. This showcases that the linewidth of the tunnel probe is not limited
by weak confinement, but rather by the electronic temperature of the system.
In addition, we observed a systematic increase in the tunnel coupling from
which we extracted a conduction band edge offset between InAs and InP of
350 ± 50 meV, in agreement with theoretical calculations. Thus showing the
InP tunnel barriers behave as the large deterministic tunnel barriers we aimed
to achieve in this thesis.

103



9. Summary and Outlook

Furthermore, we demonstrated two experiments where we used the inte-
grated QD to investigate the DOS in the nanowire when coupled to normal
metal (Chapter 7) and superconducting (Chapter 8) reservoirs. In Chap-
ter 7, we showed that the QD exhibits high enough resolution to resolve the
fine structure of the local DOS in the leads. From Coulomb blockade dia-
mond measurements, we observed several additional features that cannot be
attributed to the QD and demonstrated that these additional features origi-
nate from a modulated DOS of the NW leads. From the slopes of the lead
states, we quantified the coupling between the lead and its respective reser-
voir. We found that by implementing a three site resonant tunneling model,
we could analytically extract the broadening of the lead states. By comparing
their broadenings to their level spacings, we could deduce that the local DOS
in the leads is strongly modulated, providing further support to the analysis
presented in Chapter 6. In addition, we compared the coupling for a typical
InAs/InP heterostructure NW and a InAs/InP heterostructure NW with one
lead containing selenium dopants to increase the carrier concentration. We
found that the increase in carrier concentration results in stronger coupling
between the lead and reservoir, which, in turn, broadens the widths of the
lead states. Furthermore, we found evidence of hybridization between the QD
and the LSs, as well as clear affects due to electrostatic gating of LSs, that
requires further investigation. This type of systematic study has yet been
shown, however this paves the way to further understanding the entire NW
system and not just the QD.
In Chapter 8, we used the integrated QD as a tunnel probe for a supercon-

ducting proximitized lead region by coupling the QD to one superconducting
contact and showed that these types of integrated QDs are excellent tools to
probe subgap features. In the resonant tunneling regime, we could clearly
resolve a superconducting proximity gap that arises when the bulk supercon-
ductor proximitizes the NW lead region. We extracted a proximity gap less
its bulk value, providing further evidence that the proximitized gap is heavily
modified from its corresponding bulk value, likely due to many overlapping
Andreev bound states in short junction regime. The proximity gap was also
studied in the cotunneling regime, however we found that the strong confine-
ment from the in situ grown tunnel barriers makes studies in the cotunneling
regime difficult.
In summary, we have successfully established a new platform where in-situ

grown InP segments in InAs NWs form highly deterministic tunnel barriers.
Throughout this thesis, we have shown their remarkable textbook-like proper-
ties and a potential platform for next generation nanowire devices for studying
tunnel probe experiments, as well as fundamental QD physics. This thesis
laid the ground work for future tunnel spectroscopy measurements in one-
dimensional wires to probe exotic states of matter such as Majorana bound
states, as well as play a crucial role in spin-readout in topological scaleable
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qubit architectures.

Future experiments

Several interesting experiments could be immediately realized by combining
the two systems studied in this thesis: electrostatic bottom gates and an
InAs/InP heterostructure nanowire. In this setup, independent control over
the QD, leads, and the doping beneath the reservoirs could be achieved. In
this next generation of devices, a more thorough and systematic study of the
normal or superconducting state lead DOSs could be performed. For example,
by keeping the QD charge state fixed, thus a constant tunnel probe, and in-
vestigating the evolution from single to many mode transport by independent
electrostatic gating of the lead regions and/or the doping beneath the super-
conducting reservoir. This experiment would lead to a better understanding
of how the modes in the leads contribute to transport processes and would be
one step towards unambiguously differentiating trivial Andreev bound states
from topological states formed in a proximitized nanowire region.
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A Fabrication Recipes

The fabrication techniques used in this thesis are discussed in Chapter 4. This
appendix provides details of the fabrication recipes.

A.1. Bottom gate structures

Wafer Characteristics
• Substrate: Undoped silicon

• Resistivity: >5000 Ω m

• Caping Layer: 170 nm thick thermally grown SiO2

Wafer Cleaning
1. Dice the wafer into 2.5 x 2.5 cm pieces

2. Sonicate in acetone for 15 min.

3. Sonicate in IPA for 15 min.

4. Dry with N2

5. 5 min min UV cleaning

E-beam Lithography
• Resist: PMMA 950K dissolved in Chlorobenzene

• Spin Coating: 4000 RPM for 40 s results in a thickness of ∼300 nm

• Hardening: 180 ◦C on a hotplate for 3 min

• Area Dose: 230 µC/cm2 at 20 kV and high current mode

• Development: 3 : 1 IPA/MIBK at −15 ◦C for 60 s
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A. Fabrication Recipes

Evaporation
• Evaporator: Sharon

• Material: 5 nm Ti and 45 nm Au

• Liftoff: in Aceton at 50 ◦C for 1 h

Si3N4 deposition
• Material: 50 nm of Si3N4

• Deposition: Plasma enhanced CVD (PE-CVD) at PSI.

Si3N4 etching
• Resist: PMMA dissolved in Chlorobenzene

• Spin Coating: 4000 RPM for 40 s results in a thickness of ∼500 nm

• Hardening: 180 ◦C on a hotplate for 3 min

• Area Dose: 200 µC/cm2 at 20 kV

• Development: 3 : 1 IPA/MIBK for 60 s

• Plasma etching in Oxford RIE:
– Parameters: CHF3 25 sccm, O2 4 sccm, 50mTorr, 50 W, 2 min

A.2. Carbon nanotube stamps

Wafer Characteristics
• Substrate: Undoped Silicon

• Resistivity: >5000 Ω m

• Caping Layer: 170 nm thick thermally grown SiO2

Patterning pillers
• Electron beam lithography with PMMA/HSQ bilayer:

– Spin-coat 1 µm PMMA
– Bake at 180 ◦C for 3 min
– Spin-coat HSQ (6000 rpm for 60 s)
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A.2. Carbon nanotube stamps

– Bake at 90 ◦C for 5 min
– Use 20 kV acceleration voltage and 120 µm aperature
– Area dose: 200 µC/cm2

• Development:
– 25 s in TMAH (25% solution)
– Stop in H2O and blow dry with N2

Pillar etching
• PMMA removal in RIE

– Parameters: O2 16 sccm, 250mTorr, 100 W, 10 min

• SiO2 etching
– Wet etch in buffered HF (5%) for 7 min
– Etch rate: 35 nm min−1

• Si etching in RIE
– Parameters: SF6 13 sccm, O2 5 sccm, 75mTorr, 100 W, 5 min
– Resulting pillar height: 4 µm

Carbon nanotube growth
• Catalyst solution:

– 30 mg of Al2O2, 93 mg of Fe(NO3)3-9H2O, and 27 mg of MoO2Cl2
disolved in 60 mL of IPA

– Sonicate in high-power cell disrupter for 1 h
– Spin-coat one droplet of the solution onto the CNT stamps at 4000

rpm for 30 s. Repeat this five times.

• CNT Growth:
– Place stamps into CVD oven and heat to 950 ◦C under Ar (1500

sccm) and H2 (500 sccm) flow.
– Growth: replace Ar by CH4 (1000 sccm) for 10 min
– Cooldown CVD oven under Ar and H2 flow

• Carbon nanotube stamping:
– With the mask aligner, align the bottom gate structure chip with

the CNT stamp chip using the optical microscope
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A. Fabrication Recipes

– Bring both chips into contact and press them together
– Repeat until a sufficient amount of CNTs are on the bottom gate

structure

Nanowire placement
• Micromanipulator: Narishige MMO-202 ND

A.3. Integrated tunnel barrier devices

Wafer Characteristics
• Substrate: Highly doped silicon

• Dopant: Boron (p-doped)

• Resistivity: 0.003 Ω m to 0.005 Ω m

• Caping Layer: 300 nm thick thermally grown SiO2

Wafer Cleaning
1. Dice the wafer into 2.5 x 2.5 cm pieces

2. Sonicate in acetone for 15 min.

3. Sonicate in IPA for 15 min.

4. Dry with N2

5. 5 min min UV cleaning

E-beam Lithography
• Resist: PMMA 950K dissolved in Chlorobenzene

• Spin Coating: 4000 RPM for 40 s results in a thickness of ∼230 nm

• Hardening: 180 ◦C on a hotplate for 3 min

• Area Dose: 230 µC/cm2 at 20 kV and high current mode

• Development: 3 : 1 IPA/MIBK for 60 s

• Liftoff: 1 h in 50 ◦C acetone
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A.3. Integrated tunnel barrier devices

O2 Plasma Etching
• Parameters:

– O2 Flow: 60%
– RF Power: 30 W
– Process Pressure: 250Torr
– Time: 60 s

• Etch Rates:
– SiO2: negligible
– PMMA: ∼20 nm/min

Sulphur passivation
Sulpfur passivation was used for all InAs nanowire devices presented in this
thesis.

1. Dilute 0.961 95 g sulfur in 10 mL of 20% NH4Sx

2. Mix for at least 12 h at 35 ◦C

3. Heat 25 mL of H2O on hotplate at 40 ◦C for minimum 10 min

4. Add NH4Sx mixture to the warm H2O

5. Etch for 2 min

6. Stop etching by rigourously stirring in H2O for 15 s

7. Blow dry with N2

8. Build into vacuum chamber within 5 min

Metalization
• Ti/Au contacts:

– Evaporator: Sharon (e-beam)
– Pressure: 2× 10−7 Pa
– Thickness: 5 nm Ti and 55 nm Au

• Ti/Al contacts:
– Evaporator: Balzers (e-beam)
– Pressure: 2× 10−7 Pa
– Thickness: 5 nm Ti and 55 nm Al
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B Additional data of InAs/InP
heterostructure nanowires with short InP
segments

This section shows the results of a InAs/InP heterostructure nanowire devices
with shorter InP segment widths, `1,2 ≈ 2 nm to 3 nm. The nanowire growth
batch is NW68340.
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Figure B.1. Pinch-off and Coulomb blockade diamonds: (a) Differ-
ential conductance, dI/dV , as a function of back gate voltage, VBG for zero
source-drain voltage, VSD, and at a temperature of 4.2 K. The nanowire be-
comes depleted around 0 V and opens around 30 V. (b) dI/dV as a function
of VSD and VBG. Regular and stable Coulomb diamonds over a gate range of
6 V.
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B. Additional data of InAs/InP heterostructure nanowires with short InP
segments

FigureB.1(b) shows the differential conductance, dI/dV , as a function of
back gate voltage, VBG for zero source-drain voltage, VSD, and at a temper-
ature of 4.2 K. We observe that the nanowire becomes depleted around 0 V
and opens with dI/dV ≈ 1.4 e2/h at 30 V. FigureB.1(b) shows dI/dV as a
function of VBG and source drain bias voltage, VSD. Similarly, to the InAs/InP
heterostructure devices with `1,2 ≈ 5.5 nm, we observe very regular Coulomb
blockade diamonds over a gate range of at least 6 V.

Further analysis on the integrated InP tunnel barriers was not conducted.
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C Additional data of InAs/InP
heterostructure nanowires

This section shows the results of another InAs/InP heterostructure nanowire
device with similar geometry as the one included in Chapter 6.
FigureC.1 shows the differential conductance, dI/dV , as a function of source

drain bias voltage, VSD, and back gate voltage, VBG. Similarly, to the previ-
ously reported device, we observe very regular Coulomb blockade diamonds
over a large gate range of ∼15 V.
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Figure C.1. Coulomb blockade diamonds: Differential conductance,
dI/dV , as a function of the bias, VSD, and the back gate voltage, VBG. Regular
and stable Coulomb diamonds were observed over a gate range of 15 V.

Further analysis on the integrated InP tunnel barriers was not conducted.
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D Additional data of spectroscopy of the
local density of states in nanowire leads

This section shows the model parameters for device A included in Chapter 7.

LS1 resonances ELS1 (meV)
(Meas.)

sLS1
(Meas.)

δELS1 (meV)
(Meas.)

ΓLS1 (meV)
(Model)

1 0.750 0.033 0.750 0.15
2 1.30 0.035 0.55 0.40
3 2.40 0.032 1.1 0.80
4 3.30 0.034 0.9 0.50
5 4.30 0.034 1.0 1.30
6 5.40 0.034 1.1 0.10
-1 -0.45 0.031 0.45 0.15
-2 -0.80 0.033 0.35 0.4
-3 -1.20 0.035 0.40 0.2
-4 -1.70 0.034 0.50 0.2
-5 -3.0 0.032 -1.30 0.2

LS2 resonances ELS2 (meV)
(Meas.)

sLS2
(Meas.)

δELS2 (meV)
(Meas.)

ΓLS2 (meV)
(Model)

1 1.0 -0.031 1 0.2
2 1.30 -0.033 0.3 0.1
3 1.70 -0.035 0.4 0.4
4 2.1 -0.034 0.4 0.4
-1 -0.70 -0.033 0.70 0.1
-2 -0.90 -0.031 0.2 0.02
-3 -1.70 -0.034 0.6 0.2
-4 -2.10 -0.031 0.4 0.1
-5 -3.30 -0.032 1.2 0.4

Table D.1. Table of each resonance in Fig. 7.8(b) with the extracted values
of the absolute energies, ELS1/2, slopes, sLS1/2, level spacings, δELS1/2, and
level broadening, ΓLS1/2, for lead resonances in LS1 and LS2.
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