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1 Introduction

In today’s fundamental research many groups at universities and companies
around the globe dedicate their time, knowledge and efforts to study quantum
physics in electronic structures on the nanometer scale. One very practical rea-
son is to explain the performance and limitations of classical processors and
transistors in the future, which undergo a steady miniaturization according to
the phenomenological Moore’s law. But besides this, much more fundamental
questions are asked and want to be answered, like: What is the underlying
physics of these quantum devices? How can we explain the behavior of elec-
trons on the nano scale and low dimensional systems? How can we control
and engineer quantum states? How can we make use of the quantum nature?
Can it be used for computation? These questions are driving the field of con-
densed matter physics, nano scale fabrication, and electron transport further
and further. New insights are gained day by day, new materials are developed
and the limits are pushed beyond the state of the art.
As indicated by the previous questions, a major goal is to find a way to

realize computation using quantum mechanical states instead of classical bits.
While a classical bit can be either in the state 0 or 1, a quantum bit can be in
a superposition of both states. This will allow to perform certain calculations
much faster than on a classical computer, to encrypt and communicate infor-
mations, and to simulate quantum mechanical systems like molecules, which
can be used to design new materials or medicine [1, 2]. The quantum bit is not
only an object in the studies of universities but also enterprises like Google,
IBM, and Microsoft investing time and money in this technology due to its
huge potential.
Most of the approaches towards the quantum computer include supercon-

ductors [3]. A superconductor is a material, which loses its electrical resistance
and shows perfect diamagnetic behavior when cooled below a certain tempera-
ture [4, 5]. The combination of superconductor and low dimensional quantum
devices is expected to generate new quantum mechanical states in condensed
matter that are unaffected by external influences, which is in general not the
case. Often these studies include the investigation of low-dimensional super-
conducting hybrid devices in a magnetic field. The interaction between super-
conductivity and magnetic fields is everything else but trivial, which makes
this field an interesting play ground to learn more about the individual com-
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1. Introduction

ponents and their interplay.
In the center of this thesis stands graphene, a true two-dimensional con-

ductor, in contact with superconducting materials. Graphene itself is an one
atom thick layer of carbon atoms arranged in a honeycomb lattice and was
extracted the first time in 2004 by Novoselov et al. [6]. Before its discovery, it
was even questioned, if a two-dimensional crystal can even exist due to ther-
modynamical instability [7, 8]. Since then an entire family of two-dimensional
materials was found and every member brought its own unique physical prop-
erties into play, like boron-nitride an insulator, which can serve as a substrate
[9] or tunnel barrier [10], tungsten-diselenide a semiconductor, which shows
a strong spin-orbit coupling [11], tungsten-diteleride a topological insulator
hosting conductive hinge states [12–14], niobium-diselenide a superconductor
[15] or chromium-triiodide a ferromagnetic insulator [16], just to mention a
few to show the extreme diversity of two-dimensional materials. Soon after
the exfolation of graphene, it was realized that novel materials with combined
or new properties can be engineered by pairing different 2D materials in lay-
ered structures [17–22] and control the alignment of their crystal structures
[23–25].
In this thesis we used the ability of stacking different 2D material to cre-

ate high quality electronic devices and to engineer counter propagating edge
states in multilayer graphene structures. The coupling of the structures to
superconductors is then studied in the scope of magnetic field dependence,
crystal orientations, and device structures.

Outline of the thesis

In the beginning of the thesis the theoretical background of the investigated
physical phenomena is given in Ch.2. In Ch.3 the fabrication of the nano
structures is described and some of basic properties of graphene based Joseph-
son junction with superconducting molybdenum-rhenium contacts are sum-
marized. In the end of the chapter the applied methods for processing the
data are explained. Afterwards the results of the supercurrent transport in
superlattices of graphene and boron-nitride are summarized, which reveal the
existence of van Hove singularities and satellite Dirac points in the band struc-
ture. In Ch.5 different realized approaches to create a helical quantum Hall
state in graphene are described using the engineering of van der Waals het-
erostructures. The potential coupling of the helical states to superconductors
was investigated. In the last experimental chapter, Ch.6, we focus on the mag-
netic field dependence of a double layer graphene heterostructure and show by
current-phase relation measurements, that highly transparent superconduct-
ing modes exists within both graphene layers. In Ch.7 a summary of the thesis
is given and possibilities of future experiments are sketched.

2
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2 Theoretical background
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In this chapter we give the theoretical background regarding the physical phe-
nomena investigated through out this thesis. It starts with a brief overview
about superconductivity with a following introduction on superconducting
proximity effects. Especially, the physical properties of Josephson junctions
are described. Then, the graphene’s linear bandstructure is discussed using
the tight binding approximation and its change under the presence of a hBN-
graphene superlattice is shown. After an overview of ballistic and diffusive
electron transport in graphene, the concept of electrostatically defined Fabry-
Pérot cavities is introduced and how they influence the electron transport.
Furhter, we take a look at the quantum Hall effect in graphene and discuss
the extraordinary properties of the 0th Landau level and its possible ground
states. The last part of the chapter is dedicated to recently observed super-
conducting correlations in graphene based superconducting hybrid devices in
the quantum Hall regime and the major findings are summarized.
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2. Theoretical background

2.1. Superconductivity and the Josephson effect

In 1911 Kamerlingh Onnes surprisingly observed that the electrical resistance
of mercury, lead and tin vanishes at low temperatures [4] (see Fig.2.1 a). Later
it was found that these materials not only carry a dissipationless current,
but that they show as well a perfect diamagnetic behavior, such that any
magnetic field is screened and its magnitude inside the materials is zero [5],
except in a small region, given by the London penetration depth (λL), at
the material’s boundaries. These materials are called superconductors. Both
phenomena appear when the superconductor is cooled down below its specific
critical temperature (Tc). Just like the Tc, a critical magnetic field (Bc) exists.
When the value of the applied magnetic field exceeds Bc the superconductivity
breaks down, since expelling of the external magnetic field needs energy, which
will overcome the condensation energy of the superconducting state. It was
found that two kinds of superconductor exist with distinct different behavior in
magnetic field. While type I superconductors fully expel the external magnetic
field up to Bc, type II superconductors can host vortices of one magnetic
flux quantum. These Abrikosov vortices appear at magnetic fields above B1

c

without destroying the perfect conductivity, which vanishes as soon as the
value of the second critical magnetic field B2

c is exceeded. A current flowing
in a conductor creates as well a magnetic field, such that there exists a upper
limit for the amount of dissipationless supercurrent, the critical current (Ic).
Even though current is carried perfectly below Tc, it was observed that the
heat conduction vanishes and decays exponentially with temperature below Tc
attributed to a gap in the quasiparticle density of states [26].

A microscopic model to explain the phenomena of superconductivity was de-
veloped in 1957 by Bardeen, Cooper and Schriefer: the BCS theory [27]. They
proposed an attractive interactions between electrons mediated by phonons,
which pair electrons of opposite momentum and spin to Cooper pairs. These
pairs of electrons condense around the Fermi energy (EF ) into the same quan-
tum mechanical state. The pairing happens in an energy window given by the
superconducting gap ∆, which creates a gap in the density of states (DoS).
The quasi-particle, unpaired electrons, DoS was calculated to be equal to

DoSq(E) = DoSn(EF ) |E − EF |√
(E − EF )2 −∆2

if |E − EF | > ∆

and 0 otherwise,
(2.1)

where DoSq is DoS of the quasi-particles in the superconducting state, DoSn
is the DoS in the normal state, and E the energy of the particle. A schematic
drawing of DoSq and DoSn is shown in Fig.2.1 b.

Already before the BCS-theory, Ginzburg and Landau developed a phe-
nomenological description by introducing the superconducting wave function

4
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EEF

DoS

DoSn

q

∆−∆

a) b)

Figure 2.1. a) Resistance as a function of temperature for mercury. The
figure is adapted from Ref.[4]. b) Density of states of the quasi-particles in
the superconducting state shown in blue (Tc > T ) and in the normal state
shown in yellow (Tc < T ). A gap of 2∆ manifests itself around EF in the
superconducting state.

ψ(~r, t) =
√
ns(~r, t)eiϕ(~r,t), where ns(~r, t) corresponds to the local Cooper pair

density and ϕ to the macroscopic phase of the superconductor. Within this
model the coherence length (ξs) of the superconducting state, λL, Bc, and the
spatial variation of the superconducting order parameter ψ could be described
successfully. For further reading and detailed derivations I would like to re-
fer to Tinkham’s book "Introduction to superconductivity" [28] and Heikkilä’s
book "The Physics of Nanoelectronics" [29].

2.1.1. Superconducting proximity effects

In this thesis we studied the interplay between superconductors and graphene,
i.e. a two-dimensional (2D) conductor. It has been shown that supercon-
ducting correlations can be found in a non-superconducting material, if it is
brought into electrical contact with a superconductor. One of the most promi-
nent consequence of this fact is the Jospheson effect [30], where dissipation-less
current is carried through a tunnelling junction. Even though, he made his
calculation for a superconductor-insulator-superconductor (SIS) junction, it
has been shown that it is valid in more general cases and also apply to junc-
tions, where the insulator is replaced by another weak link, like a metal (N),
graphene [31], a semiconductor, a ferromagnet or a constriction [32].
In the following we will discuss the electron energy dependent reflection at a

NS interface, from which we derive the energy of possible states in the normal

2

5



2. Theoretical background

part of a SNS Josephson junction (JJ). Depending on the number of states and
their transparency one can then derive the relation between the supercurrent
and the superconducting phase difference across the junction. In the end the
influence of a magnetic field on the supercurrent flowing in a SNS junction is
explained.

Andreev reflection

An important first step to understand the physics of a SNS device is to explore
the effects taking place at a single NS interface. Especially, we will now discuss
the energy dependent reflection of an electron approaching the NS interface
coming from the normal conductor.

The electron has a certain energy ε, which is measured with respect to
EF . If this energy is smaller than ∆, the electron can not enter into the
superconductor since DoSq is gapped. The electron can now be reflected as
an electron off the interface, but what also can happen is that the electron
forms a Cooper pair with an other electron from N with an energy of −ε and
opposite momentum and spin as shown in Fig.2.2 a for the bandstructure of
graphene. This pair can enter the superconductor and a charge of 2e, where e
is the electron charge, is transmitted via the interface. If the electron’s energy
is larger than ∆, it could enter the superconductor as a quasi-particle with the
same energy.
However, we will focus on the situation when ε < ∆. As mentioned the

electron can not just be transmitted across the interface, but has to form a
Cooper pair with a second electron. This can also be seen as it undergoes a
so called Andreev reflection meaning that the incoming electron is reflected as
a hole with opposite propagation direction (see Fig.2.2 b). The probability to
undergo this kind of reflection depends strongly on the interface transparency.
The influence of the transparency was investigated by Blonder et al. [33] by
introducing a repulsive potential given by Hδ(x), where H is the barrier height
and δ the Dirac function. The transparency (t) is then given by t = 1/(1+Z2),
where Z = H/~vF with ~ the reduced Plank constant and vF the Fermi
velocity. For perfect transmitting interfaces it was found that the conductance
should double for ε < ∆ compared to ε > ∆, since every electron is reflected
as a hole leading to a charge transfer of 2e into the superconductor. However,
for a small t the conductance is suppressed in the gap, since the Andreev
reflection processes have a probability of t2, and in the tunneling regime the
conductance mimics the DoS of the SC electrode.
The Andreev reflection problem can be solved by matching the wave func-

tions, which are solutions from the Bogoliubov-de Gennes equations, at the NS
interface [29, 33]. An Andreev reflection is a phase coherent process, in which
the reflected hole picks-up a phase difference δφ with respect to the electron

6
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2.1. Superconductivity and the Josephson effect

given by ε and ϕ.
δφ = − arccos(ε/∆)± ϕ, (2.2)

where the + sign describes the phase difference, when an electron reflects as a
hole, and the - sign the case of a incoming hole being reflected as an electron
[34] .
The previous discussion was made under the assumption that EF � ∆,

which leads to retroreflection of the hole within the same electronic band. In
graphene, a zero band gap semiconductor (see Sec.2.2), an additional process
is possible close to the Dirac point (DP), when EF < ∆. Instead of being retro
reflected, which is an intraband process, the hole can be reflected specular, e.g.
an electron of the conduction band is reflected as a hole in the valence band.
In the latter case, which is an interband process, the velocity parallel to the
contact is the same for the incoming electron and the reflected hole [35, 36]
(see Fig.2.2 b & c), which means that the electron and hole do not counter
propagate as in the previous case.

Andreev bound states

Lets consider now the situation where two superconductors are connected by a
normal material of length L. As shown in Fig.2.3 a a right moving electron can
undergo an Andreev reflection at the right superconductor. The reflected hole
may reach again the left superconductor and is then converted into an electron
moving to the right. This process is sketched in Fig.2.3 a. The electron and
the hole pick-up a phase of ke/hL, while moving in the normal material from
one superconductor to the other, where ke/h is the wave vector of the electron
or the hole, respectively. In addition, as discussed in the previous section, a
phase difference δφ is obtained during the two Andreev reflections. This leads
to a total phase of

φtot = (ke + kh)L+ ∆ϕ− 2 arccos(ε/∆), (2.3)

picked-up by the Andreev pair during one cycle, where ∆ϕ is equal to the phase
difference of the two superconductors. It is also possible that the electron and
hole travel in the opposite direction as described before, which would lead
to a minus sign in front of ∆ϕ, ke and kh. For perfect NS interfaces the
reflected hole has the opposite momentum of the electron, and in the case of
graphene is reflected into the other valley [37]. The sum of ke = kF + ε

~vF
and

kh = −kF + ε
~vF

can be written as ke +kh = 2ε
~vF

= 2
ξ
ε
∆ , where ξ = ~vF

π∆ is the
superconducting coherence length in the weak link for the ballistic electron
transport in N and kF the wave vector at EF . To obtain a bound state the
total phase difference has to be equal to zero modulo 2π. This leads to the
condition

− 2 arccos(ε/∆) + ∆ϕ+ 2Lε
ξ∆ = 0 [mod 2π]. (2.4)

2
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2. Theoretical background

a)

b)

c)

Figure 2.2. a) Electron (filled circle) and hole (empty circle) excitations in
the bandstructure of graphene. During an Andreev reflection they convert
into each other at the superconductor. b) (Left) Andreev retro-reflection at
a NS interface. (Right) Specular Andreev reflection between the undoped
graphene and the superconductor. The arrows indicate the direction of travel
and solid or dashed lines, whether the particle is a negatively charged electron
or a positively charged hole. c) Dispersion relation of graphene for two values
of EF for the case of normal incidence (δky = 0, δkx = δk). The blue and
red lines correspond to the electron band and the hole band, while the solid
(dashed) lines stands for the conduction (valence) band. In the left panel
the electron-hole conversion is shown for the case of retro-reflection at the NS
interface and on the right the conversion of an electron in the conduction band
into a hole in the valance band is shown. This figure is adapted from Ref.[35]

8
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2.1. Superconductivity and the Josephson effect

Two distinct different cases are now given depending on the ratio of ξ and
L. If L � ξ the junction is in the short regime, such that the additional
phase coming from the propagation in the normal conductor can be neglected.
While in the long junction limit L > ξ the additional phase has to be taken
into account. Note, that the ξ depends on the transport nature, ballistic or
diffusive, of the weak link and is given by ξ = ~vF

π∆ for the ballistic case and
ξ =

√
~D
∆ for the diffusive case [28], where D is the diffusion constant.

Long and short junction limit

Now, we will discuss the difference between the short and long junction limit
in more detail. If L is smaller than ξ the JJ is in the short junction limit.
This means that the phase picked-up by the electron and hole, while passing
the normal region, can be neglected and Eq.2.4 simplifies to 2 arccos(ε/∆) =
∆ϕ. The solution of this equation gives then the Andreev bound state energy
(EABS) as a function of the phase difference between the two superconductors.

EABS = ±∆ cos(∆ϕ/2). (2.5)

This means that besides the gaped DoS in the normal region caused by the
induced superconducting correlations, a discrete state exists within ∆, which
carries the supercurrent. At zero temperature only states with EABS < 0 are
occupied. This is also true for the long junction limit described below.

a)
N

L

SS
e

h
ϕ=ϕ ϕ=ϕ

L R

-1.0

-0.5

0.0

0.5

1.0

 ∆
co

s(
 π

Lε
/ξ

∆)

-1.0 -0.5 0.0 0.5 1.0
ε  (meV)

b)

Figure 2.3. a) Schematic drawing of a JJ. The filled (empty) circle corre-
sponds to an electron (hole) moving to the right (left). The electron and hole
are converted into each other at the NS interface forming an Andreev pair. b)
Graphic solution of Eq.2.6 for ε ∈ (−∆,∆), where ∆ is equal to 1meV. The
junction length is chosen to be 8 times larger than ξ and ∆ϕ = 0.

In the long junction limit, where L > ξ, the solutions for the possible An-

2
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dreev bound state are determined by

ε = ±∆ cos
(

∆ϕ/2 + L

ξ

ε

∆

)
. (2.6)

In this case there exists more than one solution for ε. The graphical solution
of Eq.2.6 is shown in Fig.2.3 b for ε ∈ (−∆,∆), ∆ϕ = 0 and ∆ = 1meV.
It can be seen that in the long junction limit several solutions for Andreev
bound states exist in energy, which number depends on the ratio of L and ξ.
By assuming ε is small, i.e. ε� ∆, the solutions are given by setting the right
side of Eq.2.6 equal to zero, which leads to

∆ϕ
2 + Lε

ξ∆ = π

2 + jπ, (2.7)

where j is a integer number. The spacing in energy of different solutions is
given by 1/2 times the Thouless energy Eth = ~vF

L
. A gap of Eth exists for

∆ϕ = 0 in the normal conductor, while it closes for ∆ϕ = π. The super-
conducting gap ∆ is therefore filled with many Andreev bound states, which
all contribute to the supercurrent transport [38]. During all previous discus-
sions we assumed prefect transmission, which leads to states at zero energy
at ∆ϕ = π. For imperfect NS interfaces a gap in the Andreev bound state
spectrum is also present at this phase point.

Situation for imperfect NS interface

Let’s consider for now the situation of a short JJ. In contrast to the previous
case, we assume that the transparency (t) of the NS interface is not perfect,
i.e. t 6= 1. In the presence of normal reflection at the contacts it can be shown,
that EABS depends on t [34] and given by

EABS = ±∆[1− t sin2(∆ϕ/2)]1/2. (2.8)

A channel with t � 1 only varies slightly its energy as a function of ∆ϕ
and sticks to the gap edge, while a channel with t ≈ 1 shows a strong phase
dependence (see Fig.2.4 a). The spacing between the Andreev bound states can
be probed with tunneling spectroscopy [39, 40] or by microwave spectroscopy
[41, 42], from which the number of Andreev bound states, their transparency
and sources of dissipation in the system can be measured [43, 44]. The phase
dependent Andreev bound states and the supercurrent carried by them are
directly related to each other, which is the subject of the next section.
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2.1. Superconductivity and the Josephson effect

The current phase relation

The supercurrent in a SNS junction is carried by the Andreev bound states,
which energies depend on ∆ϕ. During one cycle including two Andreev reflec-
tions one Cooper pair is transported from one superconductor to the other.
The supercurrent, which is carried by the bound states in a short Josephson
junction, is given by

Is = 2π
Φ0

∑
n

δEABSn

δ∆ϕ = e∆
2~
∑
n

tn sin(∆ϕ)√
1− tn sin2(∆ϕ/2)

, (2.9)

where Φ0 is the flux quantum and tn the transparency of the nth channel [34].
This expression determines the dependence of Is with respect to the phase
difference between the superconductors known as the current phase relation
(CPR). Note, that the CPR is 2π periodic in the phase and is an odd function
in ∆ϕ with respect to 0. Only if the chiral and time reversal symmetry are
broken a supercurrent was observed even at ∆ϕ = 0 [45]. In the case of
t� 1 as for a tunnel junction we find the equation for the dc-Josephson effect,
Is = Ic sin(∆ϕ), which was proposed by Josephson [30]. If t � 0 the EABS
depends strongly on ∆ϕ as mentioned. The current phase relation is then not
longer sinusoidal but contains higher harmonics, i.e. sin(j∆ϕ), where j is an
integer number. This leads to a deviation of the CPR’s maxima from π/2 to
a value between π/2 and π. How much this maxima is shifted away form π/2
can be either measured by the relative contribution of the higher harmonics
to the CPR or by the skewness S = ∆ϕmax−π/2

π/2 , where ∆ϕmax is the position
of the maximum of the CPR in the phase. Therefore, S characterizes the
contribution from high transmissive channels.
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Figure 2.4. a) Andreev bound state energy normalized to the supercon-
ducting gap as a function of phase difference. EABS was calculated for three
different transparencies using Eq.2.8. b) Normalized supercurrent as a func-
tion of phase difference for a single channel calculated from Eq.2.9 for three
different transparencies.
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2. Theoretical background

Ambegaokar-Baratoff relation

Ambegaokar and Baratoff derived the relation between the normal state resis-
tance (RN ) and Ic for a superconducting tunnelling junction [46], which also
immediately follows form Eq.2.9

Ic = π∆
2eRN

, (2.10)

where RN =
∑

n
tn2e2/h. In the long junction regime Eth, which becomes

the relevant energy scale, will replace ∆ in Eq.2.10, such that RNIc = αEth.
The prefactor α depends on the diffusive or ballistic nature of the JJ [47–50].

In the following we will discuss the influence of a magnetic field on the
Josephson effect and how it can be used to measure the CPR or the supercur-
rent distribution in a JJ.

2.1.2. Magnetic field interference effects

The magnetic field dependence of the superconducting phase is a fundamental
property and also shows its effect in the supercurrent carried by a JJ or in a
superconducting quantum interference device (SQUID). In the previous dis-
cussions we referred to the phase difference across a JJ by ∆ϕ. This quantity
is not gauge-invariant meaning that it can not determine Is for a general situ-
ation like in a magnetic field, while Is is actually gauge-invariant. Therefore,
∆ϕ has to be redefined as a gauge-invariant, which can be done by replacing
the original expression of ∆ϕ with ∆ϕ = (ϕL − ϕR) − 2π

Φ0
~A(~r, t), where φL

is the phase of the left and φR the phase of the right superconductor. The
gauge-invariant form is needed to investigate the influence of magnetic fields
on the supercurrent, since it introduces the vector potential ~A with ~B = ~∇× ~A.
For the magnetic field being equal to zero we obtain the original expression,
which was used in the previous discussions.

We will start the description of the magnetic field dependence of Is by con-
sidering a superconducting loop intersected by two tunnelling junctions, i.e. a
SQUID as shown in Fig.2.5. If a magnetic field is applied a magnetic flux (Φ)
penetrates though the area enclosed by the loop. We assume that the dimen-
sions of the superconductor is larger than 2λL. The total supercurrent carried
by the device is equal to I1

c sin(∆ϕ1) + I2
c sin(∆ϕ2), where I1/2

c denotes the
critical current of JJ number 1, respectively 2, and ∆ϕ1/2 the phase difference
across the individual JJs. By integrating the magnetic field over the enclosed
area, it follows that [28]

∆ϕ1 −∆ϕ2 = 2πΦ
Φ0

[mod 2π]. (2.11)
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B

Φ

∆ϕ2

∆ϕ1

Ic
1

Ic
2

Figure 2.5. Schematic drawing of a SQUID. The superconductor is indicated
by light blue and the Josephson junctions by dark blue. If a magnetic field is
applied perpendicular to the loop, a magnetic flux is induced in the SQUID’s
area given by the orange dashed lines.

Therefore the phase difference between the two JJs is given by the induced Φ.
The total critical current carried by the device is given by

Ic(Φ) = max
∆ϕ1

{
I2
c sin

(
∆ϕ1 −

2πΦ
Φ0

)
+ I1

c sin(∆ϕ1)
}
. (2.12)

If I1
c = I2

c it follows that Ic = 2I1
c | cos(πΦ/Φ0)| as shown by blue in Fig.2.6 b.

Note, that if the two junctions are not tunnel junctions, but junctions with high
transmission, that the critical current does not reach zero at Φ = Φ0(j+ 1/2),
where j is an integer number.

y

x

S S 1.0

0.5

0.0

I c 
(a

.u
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-4 -2 0 2 4
φ/φ0

a) b)

Figure 2.6. a) Schematic drawing of a graphene based JJ. b) Interference
pattern for a symmetric SQUID (blue) and a JJ with a constant supercurrent
density (red).
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2. Theoretical background

With the same principle one can derive the maximum supercurrent that can
be carried by a single JJ in a magnetic field. In an extended JJ the current is
carried by several trajectories. The critical current density (jc) is here assumed
to be homogeneous along the x-direction (see Fig.2.6 a). Given by Eq.2.11, a
phase difference will be induced between two superconducting paths given by
the flux enclosed. For a sinusoidal CPR this leads to a dependence of the local
supercurrent density, js = jc sin(∆ϕ(x)), where ∆ϕ(x) = ∆ϕ(x = 0) + 2πΦ(x)

Φ0
.

Here, Φ(x) is equal to the product of the magnetic field times the area S(x) =
(L+2λL)×x. By integrating now the obtained expression over the JJ’s width
and maximizing the expression for ∆ϕ(x = 0) one obtains

Ic(B) = Ic

∣∣∣∣ sin(πΦ/Φ0)
πΦ/Φ0

∣∣∣∣ , (2.13)

the so called Fraunhofer interference pattern. Note, that the obtained result
depends on the chosen critical current distribution and CPR. In contrast one
would obtain a SQUID-like interference pattern if the supercurrent transported
via two channels localized at the edges of the JJ. Therefore, the dependence
of Ic in B gives an insight into the supercurrent distribution, which can be
calculated from Ic(B) via a Fourier transformation as proposed by Dynes and
Fulton [51] and explained in Sec.3.3.3.

All the previous discussion are under the constrain that the voltage across
the junction is zero. Some of the effects, when a finite voltage is applied, are
described in the following.

ac-Josephson effect

Besides the dc-Josephson effect, Josephson predicted that if a voltage (V ) is
applied over a Josephson junction the phase difference evolves in time resulting
in an ac-supercurrent across the junction. This is called ac-Josephson effect:

d∆ϕ
dt

= 2eV
~
. (2.14)

The oscillation frequency is given by νJ = 2eV/h, where 2eV is the energy
change of a Copper pair transported across the junction and h the Plank con-
stant. The tunnelling of a Cooper pair with finite energy can experimentally
observed by measuring Shapiro steps or the radiation of a JJ [52, 53]. An-
other phenomenon called multiple Andreev reflection can be observed in dc
measurements of the resistance, which is described in the next section.

Multiple Andreev reflection

Here, we discuss the appearance of multiple Andreev reflections, which arise
due to applying a finite voltage V at the JJ. If eV ≥ 2∆ the current is carried
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by quasi-particles from one superconductor to the other, because of free states
in the DoSq of the superconductor as shown in Fig.2.7 a. When eV < 2∆
the quasi-particle’s energy is below the gap where the DoSq is zero, but still
a current is observed. Note, that this is not a supercurrent, which appears
only at V = 0. This phenomenon is explained by multiple Andreev reflections
[54]. An electron, which is crossing the junction, gains an energy equal to
eV . As explained previously, the electron is then Andreev reflected at the
superconducting gap as an hole, which travels the opposite direction and gains
again eV in energy. Also the hole undergoes an Andreev reflection, if it does
not have enough energy to enter the quasi-particle continuum, and so forth
(see Fig.2.7 a). As soon the electron or hole acquired an energy of neV ≥ 2∆,
where (n − 1) is the number of Andreev reflections, the electron or hole will
be transmitted from the normal conductor into the superconductor as a quasi-
particle. If now the differential resistance is measured as a function of V one
observes decreased values in differential resistance whenever eV = 2∆/n. This
is due to the transmission of a quasi-particle after (n− 1) Andreev reflections
into the coherence peaks at the gap edge of DoSq. During the process n charges
are transported across the junction and the probability of such a process scales
with tn, which means that the observation of higher order multiple Andreev
reflections indicates transparent NS interfaces. From the positions of these
dips in bias voltage one can extract ∆ as will be discussed in Sec.3.2.2.

As mentioned in the beginning graphene JJ were studied though out this
thesis, therefore the next section will give an overview of its intrinsic properties.

2.2. Properties of graphene

Graphene is a 2D material, i.e. one atom thick layer of carbon (C). The C
atoms are arranged in a honeycomb lattice (see Fig.2.8 a). The most common
isotope in nature is 12C, with six protons and six neutrons in the nucleus. Its
proportion is 99%, while the deposit is only 1% for 13C. The six electrons of
the C-atom are in the configuration 1s22s22p2 for the atomic ground state.
The inner shell 1s is close to the nucleus with its two electrons and irrelevant
for chemical reactions, whereas the 2s and the 2p orbitals mix in the present of
other atoms. In the case of graphene this leads to three valence electrons in the
sp2 orbitals forming σ-bonds to neighbouring C atoms and therefore defining
the graphene plane. The fourth valence electron is in the unperturbed pz
orbital, which is perpendicular to the graphene plane and yields a delocalized
π-bond.

2.2.1. Band structure of Graphene
In the following we discuss the band structure of graphene at low energy under
the scope of a tight-binding approximation, where it is assumed that the atomic

2
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Figure 2.7. a) Schematic drawing of two electron transport processes at
finite voltage bias across a JJ. The black lines indicate free quasi-particle
states, whereas the dark blue area shows the filled quasi-particle states in the
superconductor. The blue arrow corresponds to a transmission of an electron
from one superconductor to the other for a bias voltage larger then 2∆. The
purple arrows show a multiple Andreev process when the bias voltage is equal
to 2∆/3e. The solid lines correspond to electrons and the dashed ones to holes.
During this process three charges (solid circles) are transported via the JJ. b)
Differential resistance as a function of voltage bias for a graphene JJ. Dips in
the differential resistance are observed at Vbias = 2∆/ne up to n=5.

orbitals remain intact and the electron wave function of a particular band is
given by a linear combinations of degenerate states located on the atoms of
the graphene lattice.

Crystal structure of graphene

The unit cell spanned by the basis vectors ~a1 and ~a2 of the graphene crystal
lattice contains two carbon atom as shown in Fig.2.8 a. Therefore, graphene
can be described as a hexagonal Bravais lattice with two basis atoms (A and
B). Here, the basis vectors are chosen as

~a1 = a0

2

(
3√
3

)
and ~a2 = a0

2

(
3
−
√

3

)
, (2.15)

where a0 = 1.4 Å is the inter-atomic distance between the A and B in the
basis. Each A atom sits at the sites ~R = n1 ~a1 + n2 ~a2, with n1 and n2 being
integer numbers. The same is true for the sublattice given by the B atoms,
such that ~R is just shifted by ~d1. The positions of the nearest neighbours of
an A atom are given by
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ΜΓ

Figure 2.8. a) Schematic drawing of a graphene lattice. The solid (empty)
circles correspond to carbon atoms in the B (A) sublattice. The vectors ~d1,
~d2, and ~d3 point to the nearest neighbours in the A sublattice. The unit cell
(red area) is spanned by ~a1 and ~a2, which are the unit vectors. b) Schematic
drawing of the first Brillouin zone given by the reciprocal lattice vectors ~b1 and
~b2. Two inequivalent points, K and K′, exists at the corners of the Brillouin
zone corresponding to different valleys. Figure adapted from Ref.[55]

~d1 = a0

(
1
0

)
and ~d2 = a0

2

(
−1
−
√

3

)
and ~d3 = a0

2

(
−1√

3

)
. (2.16)

These three vector as illustrated in Fig.2.8 a point from the A atom at the
origin to the three closest B atoms surrounding it.
The reciprocal lattice is spanned by is primitive lattice vectors given as

~b1 = 2π
3a0

(
1√
3

)
and ~b2 = 2π

3a0

(
1
−
√

3

)
, (2.17)

which fulfill the relation ~ai ~bj = 2πδij by definition. Further they define the
Brillouin zone (BZ), which includes a set of inequivalent points, that are not
connected by a reciprocal lattice vector. After the definition of the relevant
lattice vectors, the electron wavefunction can be written as a linear combina-
tions of the atomic orbitals. A simplified solution can be found by the tight
binding approximation.

Tight binding model

In the following section we derive the dispersion relation of graphene using the
tight binding model and taking only nearest-neighbour hopping into account.

2
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Higher order contributions like next nearest-neighbour hopping are usually
neglected, since they mainly contribute to corrections at high energies. In this
model the atoms of the lattice are only weakly interacting, such that the pz
orbital of graphene stays intact. We write then the electron wave function as

ψk(~r) = 1√
N

∑
~R

ei~q
~R[aφA(~r) + bφB(~r)], (2.18)

where N is the number of lattice sites, ~q is the wave vector, ~R denote the
positions of the A, respectively the B, atoms in the lattice, and a & b are the
unknown amplitudes of φa and φb. The wave function φA = φ(~r − ~R) and
φB = φ(~r − ~R + ~d1) are equal to the wave function φ corresponding to the
pz-orbital of sp2 hybridized carbon atoms at the locations of A and B atoms in
the graphene lattice. Note that ψ(~r) fulfills the Bloch theorem. For the crystal
lattice of graphene with two basis atoms, we can write the Hamiltonian as

H =
~p2

2me
+
∑
~R

[Vat(~r − ~R) + Vat(~r − ~R+ δ1)], (2.19)

where ~p is the momentum operator, me is the electron mass, and Vat the
atomic potential. By applying now φA(~r) on the H, we obtain

HφA(~r) =
[
~p2

2me
+ V0(~r)

]
φA(~r)

+ Vat(~r + δ1)φA(~r) +
∑
~R 6=0

[Vat(~r − ~R) + Vat(~r − ~R+ ~δ1)]φA(~r)

:= εφA(~r) + ∆VAφA(~r).
(2.20)

Here, ε stands for the on-site energy and can be set to zero without loss of
generality. The similar result is obtained, when H is applied to φB(~r).

HφA(~r) = ∆VAφA(~r)
HφB(~r) = ∆VBφB(~r),

(2.21)

where ∆VB = Vat(~r) +
∑

~R 6=0[Vat(~r − ~R) + Vat(~r − ~R + ~δ1)]. To solve now
the eigenvalue problem of Hψq(~r) = Eψq(~r), we calculate the projection onto
φA(~r) and φB(~r). By considering only nearest neighbour hopping, one can
rewrite the two obtained equations as shown in Ref.[56] to
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(
σ − E α∗(~q)(γ − Es)

α(~q)(γ − Es) σ − E

)(
a
b

)
=
(

0
0

)
with

σ = 3
∫
d3rφ∗A(~r)Vat(~r + ~δ1)φA(~r)

α = 1 + ei~q(
~d2− ~d3) + ei~q(

~d1− ~d3)

γ =
∫
d3rφ∗A(~r)Vat(~r)φB(~r)

s =
∫
d3rφ∗A(~r)φB(~r).

(2.22)

The solution for the eigenvalue of the energies are then given by setting the
determinate of the matrix in Eq.2.22 to zero. By assuming further that the
overlap integral s is small, one obtains the dispersion relation

E(~q) = σ ± γ|α(~q)|

= σ ± γ
√

3 + 2 cos[~q( ~d2 − ~d3)] + 2 cos[~q( ~d1 − ~d3)] + 2 cos[~q( ~d1 − ~d2)].
(2.23)

The value of σ is constant and corresponds to a energy shift due to the influence
of the neighbouring atoms and can be absorbed by a redefinition of the energy
offset. Now we use the definition of ~d1, ~d2, and ~d3 to obtain the final result

E(~q) = ±γ
√

1 + 4 cos[3/2qxa0] cos[
√

3/2qya0] + 4 cos2[
√

3/2qya0]. (2.24)

The dispersion relation E(~q) given by Eq.2.24 is plotted as a function of qx
and qy in Fig.2.9. The conduction and the valance band touch at zero energy in
the K and K′ points, the so called Dirac points, which are located at the edge
of the BZ. Sometimes graphene is also called a zero band-gap semiconductor,
since the conduction and valance band are touching at the K-points, where
EF lies at zero temperature for charge neutral graphene, such that the valence
band is fully filled and the conduction band is fully empty. Therefore, this
point is also called charge neutrality point (CNP). Further, it reveals a linear
dispersion relation at low energies as can be seen in Fig.2.9.
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Figure 2.9. Dispersion relation calculated with the tight binding model and
nearest neighbour approximation. The conduction and valance band touch at
K and K′. On the right side a magnification of the dispersion relation at low
energy is shown.

Valleys and linear dispersion relation

As mentioned, the K and K′ points are two distinct different points of the
reciprocal lattice, since they can not be connected with a reciprocal lattice
vector ~G = n~b1 + m~b2, where n and m are integer numbers. In general,
one refers to this degeneracy as the valley degree of freedom. As we see in
Fig.2.9 the dispersion relation around the K-points can be described by a
linear relation. This can be seen by Taylor expanding Eq.2.24 and replacing ~q
with the quasi momentum ~k, where ~q = ~K + ~k, one obtains

E±(~k) = ±~vF |~k|, (2.25)

The plus and minus signs stand for the valence and the conduction band. The
DoS in graphene is then given by

DoS = gsgvE

2π(~vF )2 , (2.26)

where gs = 2 and gv = 2 are the spin and valley degeneracy. The linear
relation of the DoS and the energy is a direct consequence of the dispersion
relation and the 2D nature of graphene (see Eq.2.25).
Interestingly, the above described bandstructure can change drastically when

the graphene is placed on a hexagonal boron-nitride (hBN) substrate by align-
ing the crystallographic axis of the materials forming a superlattice.
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2.3. hBN-graphene moiré superlattice 1

If graphene is placed in contact with hBN a moiré superlattice can form
by aligning their crystallographic axes. This is due to the similarity in the
graphene’s and hBN’s hexagonal lattices and lattice constants (see Fig.2.10 a).
This induces a periodic potential of wavelength λ of the order of 10 nm, lead-
ing to the modification of the bandstructure of graphene [58] (see Fig.2.10 a).
λ defines new Brillouin zone boundaries, where satellite Dirac points (sDPs)
may appear [59, 60]. In addition, van Hove singularities (vHSs) emerge in the
DoS at saddle points in the bandstructure due to the flattening of the mini-
bands. These vHSs appear at much lower energy than in standard graphene,
where they are only reachable by chemical doping [61]. In Ch.4 we will dis-
cuss how these vHSs can be probed in long diffusive JJs by measuring RN
and Ic [57]. Because the DoS diverges and charge carriers of different sign
coexist, rich physics is expected, such as the formation of charge/spin-density
waves [62, 63] or unconventional superconducting pairing mediated by electron-
electron interaction [61]. Moreover, the Chern number is predicted to change
from subband to subband [64], leading to valley Hall effect and topological
edge current when the DoS is gapped at the CNP [65, 66].

2.3.1. Superlattice bandstructure

As mentioned above the additional periodic potential leads to a modification
of the graphene’s band structure. The band structure of pristine graphene was
discussed in Sec.2.2.1. The exact modification of the band structure depends
on the interplay of different parameters such as the potential modulation, 2D
charge modulation, graphene-hBN hopping and point charge lattice [67]. An
example for a possible band structure is shown in Fig.2.10 b. With the change
in the band structure also the DoS changes, which is plotted in Fig.2.10 b.
A well pronounced vHS and sDP are observed for negative energies. At the
vHS as well as at the sDP the charge carrier type in the superlattice changes,
which has been shown in a transverse magnetic focusing experiment [68]. As
we will discuss in Ch.4, this change of the charge carrier type at the vHS can
be observed in Fabry-Pérot resonances in Ic, when the superlattice acts as a
ballistic weak link. From the position of the sDP in n one can extract the
value of λ and the misalignment angle. The procedure will be discussed in
Sec.3.3.2 of this thesis.
Since we studied the electron transport in graphene and hBN-graphene su-

perlattices, some of the important quantities are introduced in the next section.

1This section is partially adapted from Ref.[57]
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Figure 2.10. a) hBN-graphene superlattices are sketched with a periodic
modulation in the order of the wavelength λ for two different angles. The
hBN lattice is shown in green and the graphene lattice in black. b) Numerically
calculated moiré minibands (top) and the corresponding DoS (bottom). The
dashed lines in the DoS indicate the DoS of pristine graphene. The figure is
adapted from [67].
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2.3.2. Charge transport in graphene
In the following we discuss the diffusive and ballistic electron transport in the
scope of graphene. The relevant scales for the description are the dimensions
of the 2D conductor, i.e. the width (W ) & length (L), and the mean free path
(lmfp), which gives the distance a charge carriers travels before momentum
scattering takes place. If lmfp �W,L the transport regime is called diffusive,
since the charge carriers scatter many times during the transport in the con-
ductor. In the case of lmfp �W,L the electrons are carried ballistic, without
any scattering events across the junction and keep their original momentum.

Diffusive transport, Drude model and Einstein relation

In the diffusive regime the conductivity (σ) given by the Drude model can be
expressed as,

σ = ne2τ

me
, (2.27)

where τ is the average scattering time and n the electron density per unit
area. This equation can be derived from the assumption, that two forces act
on the free electrons in a conductor. These are on one hand an applied electric
field and on the other the scattering of electrons in the material by phonons,
charged impurities and random strain fluctuations [69–74]. The mobility of
the charge carriers is then defined by µ = eτ/me. Therefore the conductivity
can be expressed as

σ = neµ. (2.28)
Experimentally, the mobility can be extracted by measuring the conductivity
as a function of n. In the case of a two terminal junction a contact resistance
(Rc) has to be added in series with the device resistance. This additional
resistance leads to a saturation of the device’s conductivity at large doping. To
obtain a value for µ and Rc assuming them to be constant in n the conductivity
can be fitted by

σ−1 = 1
enµ+ σ0

+ ρc, (2.29)

where σ0 is the residual conductivity at the CNP and ρc the contact resistivity.
An example is shown in Fig.2.11.
An other important relation for diffusive transport is the Einstein relation.

This relation describes the connection between the diffusion constant D, σ
and the DoS. This relation is a consequence from the cancellation of the
drift current given by an electric field and the diffusion current coming from
a difference in n in thermodynamic equilibrium, when the electro-chemical
potential is equal to zero. One can write

σ = e2 DoS(EF )D, (2.30)
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Figure 2.11. Conductivity as a function of charge carrier density for two
different two-terminal graphene junctions (red and blue). The black lines
correspond to a fit with Eq.2.29.

where D = 1
2v

2
F τ for a two dimensional conductor [56]. In the following we

switch to the case of ballistic electron transport and will discuss certain phase
coherent transport effects in more detail.

Ballistic transport

As mentioned above, the device enters the ballistic regime when lmfp exceeds
the length and the width of the transport channel. In this case scattering takes
only place at the contacts and the sample edges, which is distinctly different
form the diffusive transport described above. For a ballistic graphene junction
every mode carries, due to the valley and spin degeneracy, a conductance (G)
of 4e2/h. Whereas the number of modes is given by the width of the junction
and the Fermi wavelength (λF = 2π/kF ) as shown in Eq.2.31.

G = 4e2

h

W

λF /2
= 4e2

h
W
√
n/π (2.31)

Quantized conductance has been shown for ballistic graphene devices with
a narrow constriction [75, 76] or for gate defined quantum point contacts in
bilayer graphene [77]. In the following we will discuss another phenomenon,
which appears due to phase coherent, ballistic transport, namely Fabry-Pérot
oscillations.

Fabry-Pérot oscillations

Similar as in optics, Fabry-Pérot (FP) interferometers can be build out of
graphene, but instead of light, the electrons interfere. A cavity can be induced
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by varying doping within the graphene layers using multiple electrostatic gates
[78, 79]. In the bipolar regime, when one region is hole (p) doped and another
electron (n) doped, the interface of the pn-junction acts like a partially trans-
parent mirror meaning that electrons can be transmitted or reflected with a
certain probability. This probability depends on the angle (θ) of the incident
electron and shows a dependence proportional to cos2(θ) for a step like poten-
tial [80]. At zero angle the transmission is perfect, which is known as Klein
tunnelling [81, 82]. Therefore, a FP cavity can be created in graphene by us-
ing two pn-junctions. In such pnp-doped and npn-doped graphene clear signs
of FP oscillation were observed manifested in an oscillation of the junction
resistance as a function of electron density [79]. Note, that besides electro-
statically defined pn-junctions also contact doping can lead to the formation
of FP cavity [83–86].
An example of FP resonances in graphene is shown in Fig.2.12. The graphene

was contacted by normal metal. The electron density in the outer regions
(nout) and the inner region (nin), which is cover by the top gate, could be
adjusted separately to form a bipolar FP cavity (nin > 0 and nout < 0) using
a global back gate and a local top gate. An additional oscillation was observed
in the unipolar regime when both regions were p-doped due to pn-junctions
at the contacts arising because of the contact doping.
An important condition to observe FP oscillation is that the phase coherence

length (lφ) is larger than the sample dimensions L and W . If the electrons
travel from one contact to the other, their wave functions pick-up a phase given
by φ = kFL. Therefore, the phase difference between different trajectories can
be expressed as ∆φ = kF (L1 − L2), where L1 and L2 are the length of the
first and second trajectory, respectively. In the simplest case one can assume
for ballistic transport and small angles such that the electron’s path, which is
reflected once back and forth, differs by 2L. For constructive interference ∆φ
has to be equal to 2π, which leads to the condition that

kF 2L = 2π [mod 2π]. (2.32)

In graphene the wave vector at the Fermi energy is given by
√
πn. Therefore,

the resonance condition depends directly on the electron density and a in-
creased conductance is observed whenever

√
πnL = π [mod 2π]. It is possible

to extract the cavity length from the position of the maxima in conductance
by

L =
√
π

√
ni+1 −

√
ni
, (2.33)

where ni denotes the position of the ith maxima in n.
In the next section we turn towards the transport behavior in a 2D mate-

rial at large out-of-plane mangetic fields and discuss the quantum Hall effect
discovered by Klitzing et al. in 1980 [87].
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Figure 2.12. a) A false colored SEM image of the device. Yellow indicates
the normal metal contacts, red the local top gates and cyan the graphene
encapsulated in hBN. The white scale bar is equal to 500 nm. b) Numerical
derivative with respect to nin of the conductance as a function of nin, the
electron density in the top gate covered graphene, the electron density in
the top gate uncovered graphene and nout. The arrows show the densities
dependence of the oscillations in different electrostatic and contact doping
created FP cavities, which are sketched in the insets. c) Conductance as a
function of gate voltage along the red, blue and green arrow in b). This figure
is adapted from Ref.[83].

2.3.3. Quantum Hall effect in graphene
When electrons are moving through a magnetic field, they experience a deflec-
tion from their straight trajectory due to the Lorenz force. It was found, that
this leads to the Hall voltage (UH), which appears in the direction perpendic-
ular to the magnetic field and the current flow.

UH = RHBI, (2.34)
where RH is the Hall coefficient, B the magnetic field, and I the current.
Therefore, UH/I is proportional in B, while the longitudinal voltage does not
show any magnetic field dependence for small values of B. Using the Drude
model, one can derive [56], that RH for a 2D conductor as graphene is related
to n by

R2D
H = 1

en
. (2.35)
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When the magnetic field is increased the states become quantized in high
mobility 2D conductors due to the cyclotron motions of the electrons in closed
loops as soon ωcτ > 1, where ωc = eB

me
is the cyclotron frequency. If the

phase picked up during one cycle is equal to 2π the particle interferes with it
self constructively, which leads to a quantization of the energy spectrum. In
this, so called quantum Hall state, the states in the bulk of the conductor are
localized and the bulk is gapped, while a discrete numbers of edge channels are
carrying the dissipationless current. In this regime the longitudinal resistance
Rxx vanishes, whereas RH = Rxy = h/(e2ν) shows a quantized behavior with
ν = 1, 2, 3, ..., which is called the filling factor. The filling factor is given by
n/nL, where nL = eB/h is the number of allowed states per unit area. Further
one refers to the value of h/e2 as the resistance quantum.

The energies of the quantized states in graphene can be calculated by finding
the Hamiltonian’s eigenvalues and eigenstates of graphene in a perpendicular
magnetic field. These states are called Landau levels (LL) with

EN = sgn(N)vF
√

2e~B|N |, (2.36)

where N is an integer number. Each of these states is fourfold degenerate due
to valley and spin. As a consequence one observes quantized conductance at
low temperatures, namely when the thermal broadening of the states given
by kBT , with kB the Boltzmann constant and T the temperature, is smaller
than the LL gap (ωcτ �1 as mentioned above). From Eq.2.36 one can see
that a LL at zero energy exists, which is a consequence of the graphene’s band
structure. Half of its states belong to the conduction band and half to the
valence band, respectively. This means, when starting from zero energy, that
the first plateau in conductnce is observed as soon as 2nL electrons are in the
conduction band. This leads to the half integer quantum Hall effect and to
conduction plateaus of

σxy = 4e2

h

(
i+ 1

2

)
, (2.37)

with i an integer number. While the Hall conduction is constant, the value
of Rxx goes to zero and appears only during the transition from one LL to
another, i.e. when the bulk is not gapped.
In a two terminal device the Rxy and Rxx can not be measured separately.

Depending on the aspect ratio one observes an oscillation behavior of the
resistance. Plateaus are only expected for a junction width to length ratio of
around L/W ≈ 1 [88].
In the following section we will focus on the 0th LL and its possible ground

states. Especially, the case of a helical QH ground state will be discussed and
how it was realized in various expermiments.
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Helical edge states in graphene

At high magnetic fields a lifting of the LL’s degeneracies was observed [89, 90],
which is attributed to exchange interactions [91–93] that lead to valley and spin
polarized LLs. The order of the LLs is then determined by the influence of
the interactions on the spin and valley degeneracy. As mentioned before the
0th LL has electron and hole like states. When the valley splitting is larger
than the Zeeman energy [90, 93, 94] the electron like states are hosted by one
valley and the hole like by the other valley [95], which opens a gap at charge
neutrality. A schematic drawing of this situation is shown in Fig.2.13 a. While
valley polarization is linked to the charge carrier type, each valley hosts a
spin-up and spin-down state. If instead the Zeeman energy dominates, it is
possible to change the ground state. This results on one side in a conductance
of 2e2/h, due to counter propagating edge channels and on the other hands in
a ferromagnetic ordering in the bulk of the graphene [91, 96, 97]. Note, that
the counter propagating edge states form a 1D helical state given by their
opposite spin polarization.

K
K
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K’

0  LLth

bulk

edge

E

0

K

K

K’

K’bulk

edge

a) b)

Figure 2.13. a) Schematic drawing of the lifting of the 0th LL degeneracy.
The states in the K’ valley are hole like and the one in the K valley electron like.
The red and blue color indicate spin-up and spin-down polarized bands. b)
Schematic drawing of the LL ordering if the Zeeman energy exceeds the valley
splitting. In this case the edge conducts and the bulk has a ferromagnetic
ordering.

Regarding this phenomena, the 0th LL attracted great interest due to the
proposition of creating Majorana zero modes, when graphene is in electrical
contact with a superconductor, while it is gapped and hosts a helical QH state
[100]. The helical QH state at ν = 0 has been experimentally observed in large

28

2



2.3. hBN-graphene moiré superlattice

a) b)

gate voltage (mV)

co
nd

uc
ta

nc
e 

(e
 /h

)
2

0 50 100
0

1

2

c) d)

Figure 2.14. a) Observation of helical QH state in large magnetic fields.
Left: Schematic diagram of four distinct two-terminal measurement topolo-
gies available in a four-terminal device. Open circles indicate floating contacts
whereas filled, coloured circles indicate measurement contacts. Each varia-
tion probes two parallel conductance paths between the measurement contact
with a variable number of segments on each path, indicated by black edges.
Right: Two-terminal conductance measurements , colour-coded to match the
four different measurement configurations. Dashed curves correspond to an
applied out-of-plane magnetic field of 1.4T and solid curves to magnetic field
in-plane of 34.5T with an out-of-plane component of 1.4T. Inset: Atomic mi-
croscope picture of the device. The scale bar is equal to 1µm. This figure
is adapted from Ref.[97]. b) Two terminal conductance as a function of back
gate voltage at different magnetic fields for graphene placed in proximity with
SrTiO3. The first conductance plateaus of the quantum Hall effect at 2e2/h
and 6e2/h are well defined. The helical quantum Hall plateau of conductance
e2/h clearly emerges at the charge neutrality point (Vbg = 0V ) for the mea-
surement configuration shown in the inset. This figure is adapted from Ref.
[98]. c) Two-terminal conductance as a function of νtot and displacement field
D for a large angle twisted bilayer graphene. The conductance is given by
νtot × e2/h for all configurations except for (±1,∓1) state, indicated by the
dashed white circles. d) Schematic map of possible filling factor combinations.
The figures c) & d) are adapted from Ref.[99].
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in-plane magnetic fields of about 30T [97] (see Fig.2.14 a), when the Zeeman
energy exceeded the valley splitting as shown in Fig.2.13 b.

A different route to establish a ferromagnetic ground state is to screen the
long-range Coulomb interaction in the graphene, which was realized by using
a SrTiO3 substrate. This substrate has a large dielectric constant at low
temperatures. When the graphene is brought in close proximity with it, i.e.
below the magnetic length lB =

√
~/eB, long-range interactions are screened

and a helical ground state establishes as shown in Fig.2.14 b [98].
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Figure 2.15. a) Schematic drawing of two decoupled graphene layer at large
out of plane magnetic field hosting each one QH edge channel. The top (red)
layer’s chemical potential is set to ν = 1, while the bottom (blue) layer is set
to ν = −1. The edge states are counter-propagating and have opposite spin
polarization. b) Schematic drawing of the valley and spin degeneracy lifted
0th LL. The chemical potential of the top layer (red dashed line) is placed to
be at ν = 1 and the chemical potential of the bottom one (blue dashed line) to
ν = −1. Since the electro-chemical potential will be the same for both layers
the red and the blue solid line will cross in energy at the edges.

In this thesis we will discuss in more detail a third way to realize helical states
in graphene, which uses two decoupled graphene layers tuned to opposite filling
factors of ν = ±1. It has been shown by Sanchez-Yamagishi et al. [99], that the
QH state assigned to ν = −1 in one and ν = 1 in the other graphene layer form
a helical state. This state was engineered by stacking two graphene layers with
a large twist angle together, which decouples the two graphene layers, due to a
large momentum mismatch. The electron densities of the individual layers can
be controlled by two gates, namely a global top and a global bottom gate. This
makes it possible to tune the layers independently to different filling factors
within the 0th LL. At opposite sign but same magnitude of the filling factor. It
was observed that a conductance plateau establishes with a conductance value
between 1 and 2 e2/h for ν = ±1 and ∓1, whereas the conductance vanishes
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for other values of the filling factors (see Fig.2.14 c). This was attributed to
the fact, that the states assigned to ν = ±1 are spin polarized with opposite
spins, which prohibits backscattering from one QH edge state to the other.
Since the decoupling is not perfect due to the direct contact of the two layers,
one still observes backscattering for higher magnitudes of ν, when a counter
flowing channel with the same spin is available in the other graphene layer
leading to insulating states.
We applied the same principle to engineer a helical quantum Hall (hQH)

states in a double layer graphene heterostructure, where the graphene layers
are decoupled by a thin hBN spacer inserted between the layers [101]. In
contrast to previous works, the graphene layers are fully electrically decoupled
in the bulk and the edges, while they are shorted at the contacts. By tuning the
chemical potential individually to different filling factors one observes therefore
every combinations of conductance plateaus, since backscattering from one to
the other layer is absent, as will be discussed in Ch.5 of this thesis. Still the
full lifting of the degeneracy in clean devices leads to the formation of helical
states at ν = ±1 (Fig.2.15 a) when the chemical potentials are set as shown in
Fig.2.15 b.
Coupling of these helical QH states ot a superconductor could lead to the

formation of Majorana zero modes in graphene, as proposed by San-Jose et
al. [100]. In the past several experiments were carried out to investigate the
coupling of the QH edge channels to superconducting electrodes. In the next
section an overview of the latest study is given.

2.4. Superconducting correlations in the quantum Hall regime

A key ingredient towards Majorana zero modes in graphene is the coupling of
the helical edges states, which were discuss in Sec.2.3.3, by a superconductor.
This would couple a forward moving electron in one channel to a hole moving
backwards in the other by Andreev reflection within the layer or crossed An-
dreev reflection between the layers. Majorana zero modes similar to the ones
in 1D semiconducting nanowires are then expected [102–105]. Superconduct-
ing correlations in the QH regime were observed in various graphene based
structures, which will be discussed in the following section and the coupling
has to be carried by a hybrid electron-hole state long the superconductor.

2.4.1. Observation of superconducting correlations
Recently it was observed by Lee et al.[106], that a superconducting correla-
tion can be induced in the QH edge states of graphene. The device, which
was fabricated for this experiment is shown in Fig.2.16 a. It is a Hall bar
with several normal metal contacts and one narrow superconducting contact
extending into the Hall bar. The width of the superconducting electrode made
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of NbN is kept smaller than the its coherence length, such that the counter
propagating QH states along the electrode can be coupled by crossed Andreev
reflection. By measuring the downstream resistance (RD) between the super-
conductor and a normal electrode at the bottom edge, a negative resistance
value was detected for ν = 1 and 2 at low temperatures (see Fig.2.16 b). This
negative resistance is attributed to a conversion of an incoming electron into a
outgoing hole at the superconductor-graphene interface and demonstrates the
possibility of coupling QH edge channels in graphene by a superconductor.

a) b)

Figure 2.16. a) False color SEM image of the device with the measurement
configuration. Ti/Au electrodes are indicated by yellow, the superconducting
electrode made of NbN in green and the graphene in blue. The inset show the
1D NbN side contact, which has a width of approximately 50 nm. Vu is the
upstream chemical potential; VD the downstream chemical potential and I the
current. b) Filling factor dependence of the downstream resistance (RD) at
different temperatures with B = 14T. The figure is adapted from Ref.[106].

2.4.2. Reduced resistance of graphene JJ in the QH regime

It was reported by Refs.[107, 108], that so called superconducting pockets
randomly appear as a function of gate voltage and magnetic field in the QH
regime for graphene based JJs. These pockets manifest themselves as reduced
resistance at zero bias current (see Fig.2.17 a & b). Note, that no helical
states are expected for graphene on a SiO2/hBN substrate at several Teslas
[99]. Due to the chirality of the edge states the Andreev reflected hole has to
be carried by the opposite edge given by the propagation direction of the edge
states. Since the Andreev reflection takes place within ξs, the direct Andreev
reflection is not possible.
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Device geometry

To exclude bulk contributions and show that both edges are involved in obser-
vation of superconducting pockets, further investigations towards the enlight-
enment of the nature of this novel Andreev process were done by Finkelstein et
al. The strength of the superconducting effect in the QH regime was studied
in dependence of the length and width of the JJ. While a dependence was
observed with the length of the junction, namely a disappearance of the su-
perconducting pockets when L exceeds 2µm [109], a change of the junction’s
width seems to have no influence, even when the graphene channel was etched
down to 30-40 nm [109, 110], where one would expect a stronger coupling of
the edges due to the similar order of magntiude of the width compared to the
coherence length of the superconductor. Further, it was found that the JJ do
not carry any supercurrent if one edge is extended out of the region of the
superconducting contacts, which lead to the conclusion that both edges has
to be involved in the Andreev process. This points in the direction that the
perimeter of the device plays a significant role for the strength of the super-
current and the placement of the superconducting electrodes is irrelevant as
proposed by Refs.[111–113]. Recently, it has been shown by Seredinski et al.
[114] that supercurrent can be induced at each edge of JJs individually using
a side gate to control the filling factor at the edges, which can be different
from the bulk. In this case the Andreev reflected hole can be carried by the
counter propagating state at the same edge, which leads as well to supercon-
ducting pockets in the QH regime. This results differs from the previous ones,
since the Andreev reflection can take place within the coherence length of the
superconductor and does not need a coupling of the Andreev pair at opposite
edges.

Hybrid electron-hole state

As mentioned, the coupling of the edges is attributed to a hybrid electron-hole
state arising from several Andreev reflections at the contact, which mediates
the hole to the other side of the junction as pictured in Fig.2.17 c. The existence
of this state was shown by Refs. [115, 116]. In their experiment they measured
the non-local voltage in a three terminal measurement, for which they observe
positive and negative voltages attributed to the probability to inject a hole or
an electron in the edge states at the end of the superconductor.

Interference of the superconducting pockets

Surprisingly, the interference pattern in magnetic field of the supercurrent in
the QH regime, showed the same h/2e periodicity as the Fraunhofer pattern at
small magnetic fields [108]. This points rather in the direction of supercurrent
flowing at both edges individually, which interfere. Because, a h/e periodic
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a)

b)

c)

Figure 2.17. a) Differential resistance dV/dI measured at 45mK as a func-
tion of bias current I and gate voltage VG at constant B = 1.4T. Filling
factors are indicated in bold white font on top of the map. QH plateaus are
clearly visible as stripes of different colors around filling factors ν=4(n+1/2)
with integer n. Pockets of superconductivity appear as dark regions close to
zero current. b) Line cuts of dV/dI, measured in the same range of VG at zero
DC current (gray) and 3 nA (black). The dashed curve is obtained by scaling
the black curve by a factor 0.2 to demonstrate the ν =2 plateau. Inset: dV/dI
versus I for a prominent superconducting pocket, which is indicated in a) by a
vertical dashed line. c) Right: Schematics of the Andreev bound states, made
of counter propagating electron and hole states on the opposite sides of the
sample, which couple through the hybrid electron-hole modes running along
the superconductor-QH interfaces. Left: these chiral hybrid modes are made
of electron and hole edge states mixed through the Andreev processes [108].
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modulation would be expected, if the hole is indeed reflected into the other
edge [117–119]. Therefore, the observations are sill not conclusive and need
further investigations. Instead of narrow tranches to increase the coupling of
the edges, one can use a double layer graphene structure, in which the two
graphene layers are separated by a hBN thinner than ξs. It has been recently
shown in a double bilayer graphene system that crossed Andreev reflections
take place [120]. By inducing opposite charge carriers in the graphene layers
the edge channels on the same edge counter propagate in the different layers
and could be couple directly by a crossed Andreev process, such no hybrid
electron-hole like state is needed. This may increase the coupling and leads to
supercurrent in the QH regime due to the direct coupling of the edge channels.
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3 Device Fabrication and Experimental
Methods

3um

In the following chapter the basics of the device fabrication and data treat-
ment are described. It starts from the ex-foliation of the different 2D materials
and the stacking of van der Waals heterostructures and ranges to the estab-
lishment of superconducting contacts to graphene. Then, the basic properties
of graphene Josephson junction with molybdenum-rhenium side-contacts are
summarized. We describe different methods, which were applied through out
the thesis, for the data processing, e.g. electrostatic models. In the end the
measurement of the critical current using a counter is described in detail.
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3.1. Fabrication of van der Waals heterostructures

The assembly of so called van der Waals heterostrucures (vdWh), which con-
sist of layers of different 2D crystals, is the basic fabrication step for all devices
discussed in this thesis. The variety of 2D materials is huge and expands from
insulating materials like hBN to 2D superconductors such as NbSe2 [15], from
WTe2 a topological insulator [12–14] to graphene a zero-band gap semicon-
ductor [6]. The combination of crystals with different electronic and physical
properties can be used to engineer new materials with their own intrinsic and
novel features [17–20, 22–25, 121–123]. In this section we describe the principle
of extracting and stacking 2D materials into wdWh.

3.1.1. Exfoliation

Thin crystals even down to an atomic level, e.g. graphene, can be extracted
from their bulk material using mechanical exfoliation [6]. This method is based
on the cleaving of a bulk crystal, e.g. graphite, along single crystal planes.
Therefore, the vdW interaction between two layers has to be overcome by the
applied mechanical force to separate the planes. To obtain single layers and
thin flakes we proceeded as described in the following.
In a first step the bulk crystal is placed on the tape and pressed down until

it is well in contact. Then the crystal is removed and thick pieces remain on
the tape as shown in Fig.3.1 a. By folding and unfolding the tape several times
the crystals are cleaved and their thickness is reduced. This step is repeated
4-10 times until a homogeneous coverage is obtained (see Fig.3.1 b). With a
new strip of tape, we create a copy of the first tape. In the ideal case all
the crystals cleave again, such that their surfaces are clean, since they were
never in contact with the exfoliation tape. In the end the copy tape is cut into
pieces and brought in contact with a silicon wafer as can be seen in Fig.3.1 c.
This wafer is covered with silicon oxide, which thickness was optimized for the
optical contrast of the different materials [65, 124]. Then the tape is removed,
which cleaves the crystals again and leave back flakes of different thicknesses
on the silicon oxide. The monolayer graphene can then be identified by its
contrast of 4% in the green channel of an optical image. Further informations
about the used tape and the crystal sources are given in App.A.

3.1.2. Stacking of vdW heterostructures

In this section we describe the fabrication of vdW heterostructures consisting
out of layers of different materials. It has been shown, that the encapsula-
tion of graphene in various materials enhances its electronic quality [22, 125]
and further that the close proximity to other crystals influences its intrinsic
properties like inducing spin-orbit coupling [19, 20, 121, 123, 126] or exchange

38

3



3.1. Fabrication of van der Waals heterostructures

a) b) c)

Figure 3.1. a) Bulk material is placed on the low adhesion tape and is cleaved
for the first time. b) The bulk crystal is cleaved several times, which covers the
tape homogeneously by thin flakes. c) The thinned down crystal is brought in
contact with a silicon wafer, which leaves back crystals of various thicknesses.

interactions [17, 18]. Not only the stacking order of the different layers mat-
ter, but also the alignment of the crystal axes of the materials. For different
angles between different materials and graphene it was reported that the band
structure changes drastically [23, 127, 128].
In this thesis we will discuss vdWh made from hBN and graphite, respec-

tively graphene. In the following, the stacking process is described, where
we followed the recipe of Wang et al. [125] and Zomer et al. [129]. Fur-
ther, the procedure for fabricating twisted graphene structures is summarized
[25, 127, 130].

Preparing of the stamp

To pick up the different vdW materials a stamp is used, which consists out of
a thin (1-3mm) PDMS pillow covered with a polycarbonate (PC) film. While
the glass slide is used as a carrier for the PDMS/PC pillow and to mount the
stamp into transfer setup, the PC with its strong adhesion is used to pick up
the different 2D materials from the silicon oxide covered wafer.
The PDMS/PC pillow is fabricated as now described. A solution of PC is

applied on a glass slide (see App.A), which is then partially removed with an
adhesive tape having a window in its center as shown in Fig.3.2 a. The PC
film, which is suspended in the window, is placed in contact with the PDMS
pillow (Fig.3.2 b) and fixed with additional tape at the edges. The stamp is
now mounted in to the transfer set-up, which has movable stage in xyz, that
can be heated up to 180 ◦C.

Pick-up procedure

As shown in Fig.3.2 c, the substrate with the crystal is placed below the
PDMS/PC pillow. After identifying a clean area of the PC interface, it is
brought in contact with the desired crystal, here hBN. It will be picked-up by
a thermal cycle. The details of the procedure are sketched in Fig.3.2 d1 to d3.
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To describe this procedure we start from the situation, where a hBN flake is
already attached to the PC film and a graphene flake has to be picked up in
the next step. The hBN is aligned optically with the graphene on the silicon
wafer. The PC is brought in contact with the silicon substrate at 40 ◦C, but
such that the flakes do not touch yet. Then, the stage is heated to 80-90 ◦C.
This leads to a thermal expansion of the PDMS such that the PC interface
starts to move towards the graphene (see Fig.3.2 d1) and the hBN goes slowly
in contact with it. The flakes are kept in contact for ∼5min at 80 ◦. By setting
the temperature back to 40 ◦ the PDMS contracts and the PC interface moves
again over the location of the graphene flake (see Fig.3.2 d2), which is picked-
up due to the vdW forces, respectively due to the adhesion of the PC, which
is stronger than the adhesion to the SiO2 (see Fig.3.2 d3). This procedure is
repeated for every layer of the heterostructure.

Deposition of the stack

If the assembly of the heterostructure is completed, it has to be placed on the
desired substrate. To do so we adapted a procedure proposed by Purdie et al.
[131]. Before the stamp is in contact with the substrate, the later is heated
to 160 ◦C. While lowering the stamp, the PC interface get in contact with the
substrate and will move again due to the thermal expansion of the PDMS,
which brings the heterostructure into contact with the substrate. Because of
the high temperature enclosed dirt between different layers of the heterostruc-
ture can move and is pushed at the edges of the stack while the PC interface
creeps over the vdWh. This leads to large flat and clean areas. As soon as the
entire stack is in contact with the substrate, we heat the stage to 180 ◦C. The
PC tears off at the edges of the PDMS and detaches from it, such that the
PC covers the stack on the substrate. After removing the glass slide with the
PDMS, the substrate is backed for another 5min at 180 ◦C to relax potential
stress in the PC film. It was observed, that stacks were lifted off the substrate
during the removal of the PC, if the additional backing was not done.

Removal of PC and annealing

The PC was dissolve in dichlormethane for 1 h. To remove remaining polymer
residues, the stacks were annealed in forming gas at 300◦C. The recipe is given
in App.A.1.2.

3.1.3. Fabrication of twisted bilayer graphene

Twisted bilayer graphene (tBLG) are two layers of graphene in contact with
each other under a certain misalignment of their crystallographic axes given by
the twist angle. To control this angle during the stacking process we followed
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glass slide + PC
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exfol. hBN

pick-up hBN
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SiO2
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Figure 3.2. a) PC film (pink) on a glass slide, which is locally lift-off by an
adhesive tape. b) The suspended PC film is placed on a PDMS pillow (blue).
c) Set-up before picking-up the first hBN layer. d) Set-up to pick-up graphene:
d1)-d3) microscope images of the pick-up process. The graphene is shown in
black, the hBN in green. The light brown (light blue) area corresponds to the
regions, where the PC is in contact (out of contact) with the silicon wafer. e)
Set-up before picking-up an additional hBN layer. f) Finalised stack, which is
placed on the substrate. This figure was adapted from [55]
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the ansatz from Rickhaus et al.[130]. The idea is to fabricate the tBLG from
the same graphene flake by tearing it apart and stack the two pieces together.
Since the two pieces have a priori the same orientation of the crystal axis, the
twist angle can be controlled by a rotation of the transfer stage between the
pick up of the individual pieces.

Tearing graphene

To tear the graphene the PDMS/PC stamp is prepared as describe in the
previous section. After a hBN was picked-up, the stage temperature is set
to 30◦ and the substrate with the graphene is placed below the stamp. Now
the PC is brought in contact with the substrate, until the hBN covers the
half of the graphene flake. The movement of the PC is stopped at the hBN
edge as shown in Fig.3.3 a & b. If done like this, the transfer remains polymer
free since the neither half of the graphene layer gets in contact with the PC,
which protects them from contaminations. Now the stage is heated to 40 ◦C.
The stamp has to be continuously lifted to keep the PC interface in place,
because of the thermal expansion of the PDMS. As soon as the temperature
is reached, the stamp is fully retracted and the graphene tears apart. This is
schematically shown in Fig.3.3 c. Now the stage can be rotated by the desired
angle and the second half of the graphene can be picked-up as described in
Sec.3.1.2.

With these different procedure we realized the vdW heterostructures, which
build the bases of the studies discussed in this thesis. The electronic devices
were then further completed by electron lithography defined electrodes of nor-
mal metal or superconductor and placing different gate structures. The details
of the fabrication are summarized in the App.A.

3.2. 1D MoRe contacts

One key element of this thesis are the one-dimensional superconducting side
contacts out of MoRe, which were used to fabricate graphene based Josephson
junctions. Here, we summarize the basic properties of a superconducting MoRe
film, like critical temperature (Tc), critical magnetic field (Bc), the kinetic
inductance (Lk), and the London penetration depth (λL). Further we give an
overview of some basic properties of graphene base Josephson junction with
MoRe electrodes.

3.2.1. Fabrication of MoRe thin films
Before we start with the physical properties of superconducting MoRe thin
films, the fabrication of those is briefly described. The shape and the dimen-
sions were controlled by standard electron beam lithography. PMMA 950k
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PDMS
PC
hBN
graphene
SiO2

a)

b)

c)

d)

Figure 3.3. a) Schematic drawing during the pick-up process for twisted
bilayer graphene. The hBN is in contact with one half of the graphene flake.
b) Microscope image of the situation shown in a). The PC interface is kept
at the edge of the hBN flake. The graphene is encircled by a black dashed
line, the hBN in green and the PC interface is indicated by the pink line.
c) Schematic drawing of tearing the graphene in two pieces by retracting the
stamp. d) Microscope image of the situation sketched in c) after the graphene
was torn.
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was employed for the evaporation mask with a varying thickness between 300-
450 nm. The details can be found in App.A.3.1.

Sputtering of MoRe

The MoRe films were sputtered in a AJA ATC Orion system. In this system
it is possible to sputter not only from one target but multiple ones at the same
time. For the fabrication of the superconducting films we used two approaches.
One approach is to co-sputter the film from separate Mo and Re targets. This
allows us study some of the basic physical properties as a function of the Mo
and Re ratio. For the other, we sputtered from a single target with a one to
one Mo:Re composition, which was mainly applied for the superconducting
contacts to graphene. The exact recipe is given in App.A.4.1.

3.2.2. MoRe characterization

The results in this section are a summary of the main findings of my project
work supervised by Dr. Markus Weiss [132], where the superconducting prop-
erties of MoxRe1−x was studied for various compositions, where the index x
denotes the percentage of Mo in the alloy. As priorly mentioned these films
were fabricated by co-sputtering the Mo and the Re from different targets.
The investigated structures were 50 nm thick, 10µm long and 1µm wide metal
stripes.

Critical temperature and magnetic field

We found that the Tc varies between 6 and 9K before it decreases below 1.8K
for higher Mo concentration (see Tab.3.1). The critical field B2

c at which
the superconductivity fully breaks down was usually larger than 8T at 1.8K
and therefore above the maximal field reachable by the measurement set-up.
By applying the Slisbee rule [133], which describes the relation between the
applied magnetic and the critical current density we extrapolated the values
for B2

c . The results are shown in Tab.3.1. This fields are larger compared to
previous published results of ∼8T [85, 134]. The difference of serveral teslas is
maybe a consequence that MoRe is a type-2 superconductor, that hosts vortex
of one flux quantum in the film above a certain magnetic field, which is not
taken into account in the model of Slisbee [133].

Kinetic inductance and London penetration depth

The kinetic inductance (Lk) of a superconducting material originates from the
kinetic energy of the Cooper pairs and can be seen as energy invested to create
a magnetic field. Its value given by Lk = ml/(nAe2), where m is the charge
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MoxRe1−x 0 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1
Tc (K) 1.7-2.4 [134, 135] 6 8.3 8.8 8.3 7.7 7.3 8.5 8.3 <1.8 0.92 [136]
B2
c (T) 0.25 [137] 5.2 11.3 11.9 12.1 16.5 11.8 9.9 8.9 - 0.01 [136]

Table 3.1. Critical temperature and critical magnetic field for different ratios
of Mo and Re thin films with a thickness of 50 nm.

carrier mass, n the charge carrier density, l the lengths of the conductor, A
the cross section of the conductor, and e the elementary charge.

To determine Lk, we fabricated a λ/4-resonator out of MoRe (1:1), where
λ is the wavelength. The coplanar wave-guide had a thickness of 70 nm, a
length of l=12µm, and the width of the central conductor respectively the gap
between the central conductor to the ground plane were 12µm and 6.5µm. It
was fabricated on a intrinsic silicon wafer with an silicon-oxide thickness of
170 nm. The resonance frequency (fres) is given by,

fres = 1
4l
√

(Lm + Lsk)Cm
, (3.1)

where Lm is the geometrical inductance per unit length [138], Lsk the kinetic
inductance per unit length, and Cm the resonators capacitance per unit length
[139]. The kinetic inductance is varying with temperature and its dependence
is given by Lk(T ) = L0

k
1−(T/Tc)4 , where L0

k is the kinetic inductance at zero
temperature. By measuring the temperature dependence of fres, L0

k can be
estimated by a fit with Eq.3.1. We obtain a value of 355.2 nH/m.

London penetration depth

From the L0
k we can calculate λL. It is shown in Ref.[138] that for a super-

conducting co-planar waveguide with a thickness smaller than twice λL

L0
k = µ0

λ2
L

dw
g(s, w, d), (3.2)

where µ0 is the vacuum permeability and g(s, w, d) a geometrical factor de-
pending on s, w, and d, which are defined in Fig.3.4. The geometrical factor
is further given as

g(s, w, d) = 1
2k2K(k)2

[
− ln

(
d

4w

)
− w

w + 2s ln
(

d

4(w + 2s)

)
+ 2(w + s)

w + 2s ln
(

s

w + s

)]
,

(3.3)
where k = w

w+2s and K(k) is the complete elliptic integral of the first kind.
For the dimensions of the resonator d = 70nm, w = 12µm, and s = 6µm and
the extracted kinetic inductance of 355 nH/m, we obtain that λL = 180nm
for MoRe.
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ws s
d

Figure 3.4. Schematic drawing of a segment of a co-planar wave guide. Blue
indicates the superconducting material forming the wave guide and purple the
dielectric substrate. The width of the central conductor is given by w. The gap
between the central conductor and the ground plane by s and the thickness of
the film by d.

1D MoRe contacts

If the MoRe is used as a contact material for in hBN encapsulated graphene,
the hBN has to be first etched away in the contact regions before the MoRe
deposition. After the writing of a PMMA mask by electron beam lithography
the hBN is etched with a CHF3/O2 plasma using reactive ion etching. Af-
terwards the MoRe is sputtered, which leads to self aligned, one-dimensional
MoRe side contacts [125].

Long or short junction?
It is important to know if our junctions are in a short or a long junction
regime regarding the superconducting proximity effect. In a short junction,
one can neglect the phase acquired by the Andreev pair during the propagation
through the junction in the calculation of the Andreev boundstate energy, since
its value is much smaller than the phase acquired in the Andreev reflection.
This short junction regime corresponds in the ballistic case for graphene to

L� ξS = ~vF
π∆ ≈ 170 nm (3.4)

with ∆ = ∆MoRe = 1.25meV and vF = 1 × 106 m/s. In the long junction
regime (L � ξS) one finds that the phase acquired during the propagation
can not be neglected and several solutions for the Andreev boundstates exist
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(see. Sec.2.1.1). Further the induced superconducting gap is reduced to the
Thouless energy. In the diffusive limit, the coherence length is actually given
by ξS =

√
~D/∆.

Multiple Andreev reflection and ∆MoRe

The superconducting gap of MoRe was measured in a different graphene stacks.
To do so, the differential resistance was measured with a standard lock-in tech-
nique as a function of voltage bias (Vbias). A clear decrease of the differential
resistance is observed at eVbias=2.4meV, that we attribute to twice ∆MoRe.
Additional dips of the differential resistance inside the gap arise due to multi-
ple Andreev reflection (MAR) at Vbias equal to ∆/e, 2∆/3e and 2∆/5e. These
positions are indicated by the dashed dark blue line in Fig.3.5. The gap size is
determined by taking the average over all extracted values of the gap including
the MAR. We obtain that ∆MoRe = 1.25meV, which is similar as measured
by Borzenets et al. [50] (∆MoRe=1.2meV). In the region around Vbias=0, the
dV/dI drops to 0 because of a supercurrent flowing through the JJ as soon as
Vbias/RL<Ic, where RL is the line resistance. This effect is caused by the finite
value of RL (RL=137Ω) leading to an effective current bias of the sample.

100

90

80

70

60

50

dV
/d
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O
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)

-3 -2 -1 0 1 2 3
 Vbias (mV)

 40V

DIst17 JJB

2∆∆2∆2∆
5e 3e e e

Figure 3.5. Differential resistance as a function of Vbias at a Vbg=40V mea-
sured with an ac-voltage amplitude of 20µV at 377Hz. The vertical blue
dashed lines are indicating the positions of the gap edge and the MAR at
Vbias = ∆/e, 2∆/3e and 2∆/5e.
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3.3. Data processing
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Figure 3.6. a) Two terminal conductivity of a graphene junction as a function
of charge carrier density. The curve was fitted with Eq.2.29, once for the elec-
tron side (n > 0) shown in red and once for the hole side (n < 0) shown in blue.
The values of the mobilities and contact resistance were µe = 11000 cm2/Vs
and Rec=92Ohm for electrons and µh = 30000 cm2/Vs and Rhc=80Ohm for
holes. b) Schematic of a encapsulated graphene stack. The back gate is in-
dicated by gray, the graphene by black and the hBN by green. The distance
between the back gate and the graphene is given by the bottom hBN’s thick-
ness d. c) Calculation of n as function of gate voltage. As gate dielectric we
assumed a hBN crystal with a thickness of 10 nm. The green line is calculated
by Eq.3.5 with VDP to be zero. The purple line is obtained by Eq.3.7 and
therefore includes cq.

3.3.1. Electrostatic models - How to convert gate voltage to density
From many applications it is important to know the dependence of a quantity
with respect to n, which is usually tuned by electrostatic gates. This section
summarized the various gate structures used for the measurements in this
thesis and explains the electrostatic models, which were used to convert the
gate voltages into charge carrier densities.

Plate capacitor model

If a single back- or topgate is used to gate the graphene transport channel, a
plate capacitor model can be assumed to convert the applied gate voltage (Vg)
to n. The carrier density can then be calculated by

n = ctot(Vg − VCNP )
e

, (3.5)
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where VCNP is given as the position of the CNP in Vg, which can differ from
zero due intrinsic or external doping [6, 140], i.e. absorbed solvents, and ctot is
the total capacitance per unit area. In the simplest case ctot = εrε0/d, where
εr (ε0) is the relative (vacuum) permittivity of the dielectric material and d
the distance between the gate and the graphene, i.e. the dielectric’s thickness
(see Fig.3.6 b). If a layered structure is used, e.g. hBN encapsulated graphene
on a silicone gate, the capacitors have to be successively added in series:

1
ctot

= 1
cSiO2

+ 1
chBN

, (3.6)

where cSiO2 = ε0εSiO2/dSiO2 and chBN = ε0εhBN/dhBN with εSiO2 ≈ 3.9 /
εhBN ≈ 4. The limit in charge carrier density by electro static gating is in the
order of 1016 m−2 and is given by the dielectric constant and the breakdown
voltage of the dielectric, which was measured to be .95/1.2/0.5V/nm for SiO2,
hBN and aluminium oxide [141–143]. We could reproduce the breakdown field
of 0.5-0.6V/nm for the aluminium oxide grown by atomic layer deposition
(see A.5). Empirically, the hBN obtained from Taniguchi et al. (A.1.1) can
sustain safely 0.5V/nm without the observation of any leakage current. For
the 300 nm thick SiO2, which was used for some the applications, the voltage
was limited by the maximum voltage the measurement lines can sustain (∼80-
100V). But sometimes leakage currents at much lower values then 0.3V/nm
were observed. This observation is attributed to a damage of the SiO2, during
wire bonding to connect the sample.
Nevertheless, the plate capacitor model is a simplification, since it is assumed

that only the electric potential changes. In reality the change of n induces also
a change in the chemical potential. This effect has to be taken into account for
materials with a small DoS. Therefore, the charge carrier density in monolayer
graphene depends on the gate voltage as

e(Vg − VCNP ) = e2nd

ε0εr
+ µc(n), (3.7)

where µc = ±
√
πn~vF is the chemical potential of graphene, ~ the reduced

Plank constant, and vF the Fermi velocity of graphene. By expressing µc by
the DoS of graphene and use the relation k =

√
πn, we obtain

(Vg − VCNP ) = q
(

d

ε0εr
+ 1
e2 DoS

)
= q/ctot, (3.8)

where q = n ∗ e the charge density. From Eq.3.8 we see, that this effect can
be taken into account by adding a capacitance with a value of e2DoS, the
so called quantum capacitance (cq), in series with the gate capacitance given
by cg = ε0εr/d. This quantum capacitance comes into play when the DoS is
especially small, i.e. at the CNP, or cg is large. In Fig.3.6 c, we calculated n as
a function of Vg with and without taking cq into account. hBN was assumed
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as a gate dielectric with a thickness of 10 nm. A clear deviation between the
two curves is observed, which shows the importance of taking the full picture
into account, especially around the CNP and for thin dielectrics.

Extract charge carrier density for a single graphene with top- and backgate

If a single layer of graphene is partially cover by a local top gate (see Fig.3.7)
the charge carrier density in the top gate covered inner region (nin) can be
tuned independently form the outer regions, which is uncovered (nout). But
both carrier densities depend on the applied top (Vtg) and back gate voltage
(Vbg), due to a finite cross capacitance between the gates. Instead of calculat-
ing the exact electric fields, which also depend on the geometry of the sample,
we chosed a different, simpler ansatz to obtain the values of nin and nout as a
function of Vbg and Vtg.
In first step the lines of charge neutrality of the inner and outer regions were

extracted. These lines are given by clear maxima in the resistance since one
or the other region is at the CNP. Note that these lines are depending on both
gate voltages and are an expression for nin or nout equals to zero. Therefore,
we obtain the ratio between the lever arms given by the slopes of the gray and
black dashed lines, since the effect of one gate has to be compensated by the
other to stay at charge neutrality. Assuming that we can neglect the quantum
capacitance, the charge carrier density as a function of Vbg is given by Eq.3.5.
Then we can multiply the value by the ratio of the lever arms to obtain the
charge carrier density as a function of Vtg. We take the back gate as a starting
point for this estimation knowing the thickness of the SiO2 and its dielectric
constant, since it can be modelled by a plate capacitor. For the top gate and
especially the outer regions, one would have to take the distance dependence
as well as direction of the electric field into account. This two reasons are also
the cause of the imperfection of the described procedure. Since we only obtain
an average lever arm for the top gate, the local charge carrier density variation
in the inner and outer regions are unknown. Nevertheless, it gives a good first
estimation of nin and nout.

Double layer graphene with top- and backgate1

The structure, which we consider is a double layer graphene (see Fig.3.8),
consisting of the following layers listed from bottom to top: 1) graphite bottom
gate 2) bottom hBN 3) bottom graphene layer 4) middle hBN 5) top graphene
layer 6) top hBN 7) aluminium oxide 8) metal top gate. The charge carrier
density in the top (nt) and the bottom (nb) graphene were calculated from Vtg
and Vbg using the electrostatic model described in the following section.

1This section has been published in the SI of [101]
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Figure 3.7. Normal state resistance of a graphene based JJ as a function of
a local top and global bottom gate. The black (gray) dashed line indicates the
position of zero charge carrier density of the graphene covered (uncovered) by
the top gate. Inset: right: A false coloured SEM picture show the measured
JJ (scale bar 1.5µm). The superconducting contacts are blue, the local top
gate yellow and the location of the graphene is indicated by brown. left: A
schematic drawing of a cut along the red line. The hBN is coloured green,
aluminium oxide lilac and graphene black.

The top gate is electrically separated from the top graphene by an aluminium
oxide layer with a thickness of dAl2O3 and a dielectric constant εAl2O3

r = 8.5
and the top hBN with a thickness of dt and εhBNr = 4. A hBN with a thickness
of dgg between the two graphene sheets electrically disconnects the two layers,
which are shorted at two common 1D edge contacts. hBN was also used as
a dielectric material between the bottom graphene plus electrodes and the
bottom gate. The thickness of the bottom hBN layer is given by db. Since the
two graphene layers, which are connected in parallel, are electrically shorted at
the contacts, they are at the same electro-chemical potential, which is chosen
to be equal to zero, i.e. ground, for the following calculation. From this follows
that,

µtc − eVt = µbc − eVb = 0, (3.9)
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Figure 3.8. Schematic side view of the double layer graphene stack.

where µtc, µbc are the chemical potential and Vt, Vb are the electrical potential
of the top, respectively the bottom graphene and e is the elementary charge.
For graphene the chemical potential is given as,

µic = sgn(ni)~vF
√
π|ni|, (3.10)

where ~ is the reduced Planck constant, vF = 106 m/s the Fermi velocity
of graphene and ni the charge carrier density in the i-th graphene layer. The
sgn(ni) function is such that it is positive for electron doped and negative for
hole doped graphene.
To describe the electrostatic situation we look carefully at the electric fields

Ei, where the index i denotes the different dielectrics, which are a consequence
of applied gate voltages, quantum capacitance and charge carrier density on
either graphene. The electric fields are defined as shown in Fig.3.8. In a first
step we express EAl2O3 in terms of Et. If we consider the interface between
the two dielectric materials to be charge free, it follows directly from the
Maxwell equations that normal components of the two electric fields times
their dielectric constant have to be the same at the interface. In this case
EAl2O3 is given by,

EAl2O3 = εhBNr

εAl2O3
r

Et. (3.11)
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Using Gauss law we can write down nt and nb as a function of the electric
fields.

− ent = ε0ε
hBN
r (Egg − Et) (3.12)

− enb = ε0ε
hBN
r (Eb − Egg) (3.13)

where the vacuum permittivity is given as ε0 = 8.854 ∗ 10−12 F/m. Further
the electric fields are given by the voltage differences between the layers and
leads to the following sets of equations:

Ebdb = Vb − Vbg (3.14)

Eggdgg = Vt − Vb (3.15)

Etdt + EAl2O3dAl2O3 = Vtg − Vt. (3.16)

The magnitude of the electric field between the two graphene sheets follows
from Eq.3.15 and 3.9,

Egg = Vt − Vb
dgg

=
√
π~vF
edgg

(
sgn(nt)

√
|nt| − sgn(nb)

√
|nb|
)
. (3.17)

From Eq.3.14 we obtain that Vbg = Vb−Ebdb, while Eb can be expressed as
a function of nb and Egg using Eq.3.13. Therefore it follows that Vbg(nt, nb)
is given as,

Vbg = Vb + db

(
enb

ε0εhBNr
− Egg

)
= sgn(nb)

√
π~vF

e

√
|nb|+

enbdb
ε0εhBNr

−
√
π~vF db
edgg

(
sgn(nt)

√
|nt| − sgn(nb)

√
|nb|
)
.

(3.18)

The same can be done for Vtg = Vt + Etdt + EAl2O3dAl2O3 starting from
Eq.3.16. By using the relation between the two electric fields one obtains that,

Vtg = Vt + Et

(
dt + εhBNr

εAl2O3
r

dAl2O3

)
(3.19)

For simplification we define defft = dt+ εhBN
r

ε
Al2O3
r

dAl2O3 . Again we can replace
Et with Eq.3.12 and in the and we obtain the result,
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Vtg = sgn(nt)
√
π~vF

e

√
|nt|+

entd
eff
t

ε0εhBNr

−
√
π~vF defft

edgg

(
sgn(nb)

√
|nb| − sgn(nt)

√
|nt|
)
.

(3.20)

Eq. and 3.19 are giving the relation between the gate voltages and the
charge carrier densities. To obtain now the charge carrier densities for two
given voltages the equations were inverted numerically.

3.3.2. Determination of the superlattice twist angle 2

As described in Sec.2.3 the alignment of the crystallographic axis of graphene
and hBN leads to a moiré superlattice (see Fig.3.9 a). This new lattice has
a wavelength λ, which corresponds to a wavevector of |G| = 4π√

3λ [23] gives
rise to a modification of the graphene’s bandstructure, e.g. secondary Dirac
points (sDP), due to an additional periodic potential. The sDPs manifest
themselves as resistance peaks at densities away from the charge neutrality
point of graphene as shown in Fig.3.9 b). From the position of the sDPs in
density we can determine the twist angle between the hBN and graphene,
since they are expected to appear at the edges of the new Brillouin zone.
The edge is given for k = |~k| = |G|/2, while ~k is related to the density n by
k =

√
4πn/(gvgs), where gs and gv are the spin respectively valley degeneracy.

In the case of graphene, gs and gv are both equal to two. Therefore,

λ =
√

4π
3nsDP

. (3.21)

where nsDP is the density at which the sDP is appearing. Further, |G| can be
determined geometrically [67].

|G| = 4π√
3a

√
δ2 + θ2, (3.22)

where a=0.246 nm is the lattice constant of graphene, δ=1.8% is the mismatch
of the lattice constant of graphene and hBN [58], and θ is the misalignment
angle between the two crystals. From Eq.3.22 it follows that λ = a/

√
δ2 + θ2,

which then can be used to solve Eq.3.21 with respect to θ. This leads to

θ =
√

3a2nsDP
4π − δ2. (3.23)

2This section is similarly published in Ref.[57]
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Figure 3.9. a) Schematic drawing of a moirée superlattice for a rotation angle
of 0◦ and a lattice mismatch of 6%. λ is determining the typical wavelength
of the appearing hexagonal lattice. b) Two terminal resistance of a graphene-
hBN superlattice junction as a function of gate voltage. From the gate voltage
the carrier density was calculated using an simple plate capacitor model. One
peak in resistance is observed at the charge neutrality point (n=0) and two
others at around ±3.3×1012 cm−2 (blue line).

3.3.3. Analysis of interference patterns: extraction of the current
distribution

In this section, we describe the procedure used to extract the current distribu-
tion js(x) from the interference pattern of the critical current Ic as a function
of magnetic field B, following [51, 144, 145]. We choose the graphene sheet to
lie in the x-y plane with contacts along x from -W/2 to W/2, a length of L
and an out of plane magnetic field in z-direction.

L
S

S

W

y

xz

B

Figure 3.10. Model of a graphene based Josephson junction with contacts in
x direction, a supercurrent flowing in y. To measure the interference pattern,
a perpendicular magnetic field in z direction is applied.
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3. Device Fabrication and Experimental Methods

3.3.4. Extracting j from interference pattern
We assume that the supercurrent in graphene can be described approximately
with a sinusoidal current-phase relation (CPR), i.e.

js(x) = j(x) sin(ϕ(x)), (3.24)

where j is the maximum supercurrent density and ϕ the superconducting
phase difference between the two superconductors.

If a perpendicular magnetic field is applied, two supercurrent paths flowing
through the junction pick up an additional relative phase with respect to
each other, which depends on the enclosed flux by the two paths. Therefore,
the superconducting phase at position x is given by the integration of the
perpendicular magnetic field B over the penetrated area S added to a reference
phase ϕ0 = ϕ(x = 0) and is expressed as

ϕ(x) = ϕ0 + 2π
φ0

∫
S

Bds = ϕ0 + 2πΦ(x)
φ0

, (3.25)

where φ0 = h/2e is the flux quantum and Φ = B ∗ S(x) the magnetic flux.
The area is given by S(x) = (L + 2λL) ∗ x, where λL is added twice to the
junction length to take the magnetic focusing of the contacts in to account.

Therefore the total mediated supercurrent Js can be calculated by the inte-
gration along the junction width W.

Js(β, ϕ0) =
∫ W/2

−W/2
dxj(x) sin(ϕ0 + βx)

= Im

[
eiϕ0

∫ W/2

−W/2
dxj(x)eiβx

]
,

(3.26)

with β = 2πB(L+ 2λ)/φ0. Note that j(x) is in general a sum of the even part
je(x) and the odd part jo(x) of the current distribution. For a fixed magnetic
field, one can vary ϕ0 to obtain the maximum current Jc known as critical
current of the JJ. We assume now an even current distribution, such that the
problem simplifies and the measurable quantity Ic can be express as

Ic(β) =
∣∣∣Jc(β)

∣∣∣= ∣∣∣∫ W/2

−W/2
dxje(x)eiβx

∣∣∣. (3.27)

The measurement, represented in blue in Fig.3.11 a, is actually |Jc|, such
that we have to reconstruct Jc. This is done by inverting the sign of every
second lobe of Ic (see Fig.3.11 a). To prevent discontinuities, we subtracted
a constant background from Ic to shift its value to 0 nA for magnetic fields
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Figure 3.11. a) Measurement of critical current (blue) and reconstructed su-
percurrent (red) as a function of magnetic field. b) Calculated and normalized
current density as a function of x. The black dashed lines are indicating the
position of the junction edges along the contacts.

of 6mT. This background arises partly due to the used measurement method
described in Sec.3.4.
By calculating the inverse Fourier transform of Jc the current density in real

space can be determined as

j(x) ≈
∫ βmax

βmin

dβJc(β)eiβx. (3.28)

The result of the described procedure is shown in Fig.3.11b.

3.4. Measure Ic with a counter

To measure the critical current or to be more precise the switching current
of a JJ is an important task in various experiments. The switching current
is defined as the current where a JJ undergoes the transition from its super-
conducting state to the normal state. Due to thermal fluctuations and the
junction dynamics the switching current has a stochastic behavior [146] and is
smaller than the critical current. Here, we describe a method to measure the
switching current fast and to take care of its stochastic nature by employing
a counter.
Through out this thesis we used a FCA 3100 counter. With this instrument

one can measure the time intervals and obtain their mean value, the standard
deviations, the minimum and maximum value, as well as the histogram of the
time intervals.
To measure the switching current one can proceed as the following. A saw

tooth ac-current is created using a signal generator, which applies an ac-voltage
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3. Device Fabrication and Experimental Methods

(Vbias) with a certain peak-to-peak voltage (Vpp) and frequency (f) on a pre-
resistor (Rpre) in series with the JJ. Then the voltage across the junction is
measured and feeded to the counter. The time is detected between t0, the
starting time where Vbias is at 50% of the falling slope, and tmeas, where a
voltage equal to Vtrig arises over the junction (see Fig.3.12). The average
of several hundred switching events is taken resulting in tmean. From tmean
the critical current can be calculated since the shape of the applied current is
known. Ic is given by

Ic = 1
Rpre

(
Voff + Vppf

z
(tmean −

1
2f )
)
, (3.29)

where Voff is a dc-offset voltage and z is the ratio of the rising slope of one
period T = 1/f .

0

V

t

1/f

Vtrig

0 meast t

Vo� (50%) Vpp

Figure 3.12. Applied (black dashed line) and measured voltage across at the
JJ. t0 denotes the starting time of the measurement.

In general, this sounds like an easy task, but there are some important de-
tails to consider to prevent measurement errors. To apply the counter method
one has to use a quasi-four terminal measurement meaning that each supercon-
ducting contact has to be connected by two electrodes. Like this it is possible
to measure zero voltage over the junction when it is in the superconducting
state. If the measurement would be only two terminal the line resistance (RL)
in series with the JJ would lead to a finite slope in the superconducting state.
As soon as RLIbias = Vtrig the counter would stop the measurement even
tough Ibias < Ic. Another important point is to have a sharp switching be-
havior from the superconducting to the normal state, such that the switching
is clearly detectable. By filtering the measurement setup the noise level for
Vmeas = 0 can be reduced and therefore Vtrig, which has to be placed well
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above the noise level to minimize the number of wrong trigger events, that
appear when the voltage noise exceeds Vtrig. The smallest switching current
that can be measured is then given by Vtrig divided by the sample resistance in
the normal conducting state. An important point is to check the measurement
setup with an oscilloscope to check the applied voltage and measured voltage
across the junction. By doing so, one can set in first place the right value
of Vpp, which has to be larger than 2RpreIc, such that the junction actually
switches to the normal state with in one period. Further, f has to be set such
that there is no phase shift between Vbias and Vmeas or any other disturbance
of the signal caused by the filtering of high frequency signals. Nevertheless
the frequency should be set as high as possible to average as many switching
events as possible in a short time. The frequencies used in this thesis were
typically between 177-277Hz. As indicated by Eq.3.29, one can set a dc off-set
voltage to shift the saw-tooth like Vbias with respect to zero. The important
condition is that Voff has to be smaller than Vpp/2, such that the bias current
turns negative at the minima to ensure that the junction switches into the
superconducting state.
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4 Signatures of VHS probed by supercurrent
in graphene-hBN moiré Josephson
junctions1
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Graphene placed on hexagonal boron-nitride can form a moiré superlattice,
if the twist angle between their crystallographic axis is small because of the
only slight mismatch of their lattice constant. This additional periodic poten-
tial strongly modifies the graphene’s bandstructure and manifests itself by new
minibands and additional Dirac points accompanied by van Hove singularities.
In this chapter we summarize the results of probing the van Hove singular-
ities by supercurrent measurements in long diffusive and ballistic Josephson
junctions. Clear signs of these singularities were observed in the density of
states calculated from the normal state resistance and the critical current, an
appearance of increased edge current due to a reduced Fermi velocity in the
bulk, as well as in the Fabry-Pérot oscillations in a electrostatically formed
cavity.

1Parts of this chapter were published in a similar form in Ref.[57]
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4. Signatures of vHS probed by supercurrent in graphene-hBN moiré
Josephson junctions

4.1. Introduction

The combination of graphene with other 2D materials is a powerful means to
engineer its electronic properties as described in the introduction and Sec.3.1.2.
In particular, if graphene is placed on top of a hexagonal boron-nitride (hBN)
substrate, by aligning their crystallographic axes, a moiré superlattice is formed
as described in Sec.2.3 & 3.3.2. This superlattice gives rise to new minibands
forming satellite Dirac points (sDP) and van Hove singularities (vHSs).

Graphene-hBN superlattices [23, 24, 83] and the induced vHSs [63, 147,
148] have been widely studied with normal metal leads, but only few exper-
iments have focused on the consequences of this rich physics for the Joseph-
son effect. The investigation of the non-dissipative current induced in a non-
superconducting system using a Josephson junction (JJ) geometry is a pow-
erful tool to investigate its physical properties, since the supercurrent is sensi-
tive to the transport regime (ballistic/diffusive) [48–50, 84, 149], interactions
[150, 151] and to the current distribution within the sample. For example,
Josephson interferometry has been used recently to detect the presence of
edge current in quantum spin Hall systems [117, 145] and in graphene where
an edge current was observed close to the charge neutrality point (CNP) due
to guided wave states [144] or, in bilayer graphene, due to the opening of
a gap in the bulk using an electric field [66]. In Ref.[66], edge current in a
graphene/hBN superlattice at the CNP is reported, where it is claimed that a
gap opens due to sublattice symmetry breaking [24, 152]. In contrast to these
previous works, we investigate the supercurrent over the full range of energy,
in order to probe the superlattice bandstructure.
We investigate the superconducting transport in long, diffusive as well as in

a long, ballistic JJs made from graphene/hBN superlattice and show that the
supercurrent carries, in this transport regime, the signature of its very specific
bandstructure, in particular of the vHSs. First, by measuring both the normal
state resistance (RN ) and the critical current (Ic), we estimate the density of
states (DoS) of the diffusive JJs. It is then compared to theoretical calcula-
tions for a moiré superlattice. Further, we extract the current distribution in
the sample as a function of the charge carrier density from the magnetic field
dependence of Ic and show that edge currents appear at the vHSs, where the
DoS diverges. We show that this edge current corresponds to a suppression of
the supercurrent in the bulk, associated with the reduction of the Fermi ve-
locity at the singularity that globally localizes the electrons. This suppression
is not observed in the edges probably because of edge defects or doping, which
reduce the influence of the superlattice. Second, we measured the charge car-
rier dependent oscillations of RN and Ic of a gate defined Fabry-Pérot (FP)
cavity in a long, ballistic JJ. The sudden appearance of an oscillation in Ic
close to the sDP is indicating a change of the charge carrier type in the FP
cavity, namely from holes to electrons, when the vHS is crossed.
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4.2. Fabrication

The measured samples are hBN-graphene-hBN stacks, where the crystal axis
of one hBN is aligned with the one of graphene. The heterostructures are
contacted with superconducting edge-contacts [125]. We fabricated the elec-
trodes by co-sputtering of MoRe (1:1) from separate molybdenum and rhenium
targets for device one. For device two the sputtering was performed using a
single MoRe (1:1) alloy target (A.4.1). Several JJs are realized in both stacks
and the overall charge carrier density can be tuned by a global doped silicon
backgate using 300 nm of SiO2 as a dielectric. In the following we refer to
the i-th JJ on device one by JJ1

i , respectively by JJ2
i for the second device.

Multiple junctions of device one were studied with different lengths L ranging
from 0.45 to 1 µm and a width of W=3µm (see Fig.4.1 a). For device two we
focus on JJ2

D with L=550 nm and W=1.5µm. For this junction a local metal
topgate, which extends about 350 nm, was placed over the entire width of the
graphene transport channel (see Fig.4.3 a) to electrostatically define a FP cav-
ity. Aluminium oxide was used as the dielectric material between the top gate
and the device grown by atomic layer deposition. Details of the fabrication
are described in Ch.3 and in the App.A. All measurements are performed in
a dilution refrigerator at a base temperature of ∼70mK.

4.3. Normal state resistance

RN as a function of the back gate voltage (Vbg), i.e. charge carrier density (n),
can be used to determine the transport nature, e.g. ballistic or diffusive, in
the graphene junction. In a superlattice, the sDPs are appearing as a peak in
resistance [23, 152] and the misalignment angle between the hBN and graphene
can be calculated from their position in n. Since the critical magnetic field
of MoRe (8-9T) is too large to suppress the superconductivity in the leads
without tuning the graphene into the quantum Hall regime, we estimate RN
at B=0T from the quasiparticle current, measured when the JJ is voltage
biased with |eV | > 2∆MoRe, with ∆MoRe=1.25meV the superconducting gap
of MoRe (see Sec.3.2.2). The measurement was performed in a two terminal
configuration, such that RN contains the resistance of the graphene channel
RG together with twice the contact resistance Rc (RN=RG+2Rc). The line
resistance of the measurement setup was subtracted.

4.3.1. Device one: long and diffusive JJs

In the four junctions investigated on device one, we observe an enhancement of
resistance around the CNP (Vbg=0V) and in addition around Vbg=±50V, cor-
responding to a charge carrier density nsDP=±3.3×1012 cm−2 (see Fig.4.1 b).
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Figure 4.1. a) Top: Schematic side view of the device. Bottom: False colored
SEM image. The graphene (brown) is encapsulated between hBN (green) and
contacted with MoRe (blue). The white scale bar corresponds to 5 µm. b)
Normal state resistance as a function of gate voltage Vbg for JJ1

D.

These additional resistance maxima are attributed to sDPs in the bandstruc-
ture. From nsDP , we estimate the misalignment angle between the graphene
and the hBN lattice to be around 0.7◦ (see Sec.3.3.2). Further, the resis-
tance for positive gate voltages is significantly larger than for negative volt-
ages, which is attributed to the formation of a hole doped (p) region of the
graphene close to the contact, i.e. contact doping. This leads to a reduction
of the contact transparency if the graphene is electron doped (n), due to the
formation of a pn-junction. Note that in previous works and also device two
(see Sec.4.3.2) the reverse behavior was observed, namely an electron doping
of the graphenes contact region [50, 85]. This difference may be attributed
to the similar work functions of graphene and MoRe [153, 154] and that the
MoRe was co-sputtered from individual targets for device one, which gives rise
to the possibility, that the contact layer has a different composition, i.e. not
1:1.

The gate dependence of the resistance is one way to determine if the electron
transport in the junction is ballistic or diffusive. The mean free path (lmfp) of
the electrons is given by lmfp=2D/vF for a diffusive system, where D is the
diffusion coefficient and vF is the Fermi velocity. Together with the Einstein
relation, σ=De2 DoS(EF ), where σ is the conductivity, e the electron charge
and EF the Fermi energy, we can express the lmfp as a function of n and RN
for the DoS of graphene as shown in Eq.4.1.

lmfp = 2D
vF

= L
√
π~

RNWe2√n
. (4.1)

The lmfp in Tab.4.1 was calculated at n=±1 × 1012 cm−2, where we assume
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that the bandstructure of graphene close to the CNP is only slightly affected
by the superlattice. At higher electron densities the DoS is not linear in
energy such that this assumption breaks down [67] and Eq.4.1 does not hold
any more. For device one the lmfp is smaller than L for all junctions, from
which we conclude that they are in the diffusive regime. As discussed in
Sec.2.1.1, the superconducting coherence length of a diffusive JJ is given by
ξs=
√

~D/∆MoRe. The calculation of ξs for n=±1 × 1012 cm−2 leads to the
conclusion, that all JJ of device one are in the long regime (ξs<L). Note,
that lmfp and ξs are smaller than L for every value of n, if no change of the
bandstructure and the Fermi velocity is assumed. Further, the mobility (µ)
and Rc were obtained from the fitting parameters using Eq.2.29. The results
are summarized in Tab.4.1.

junction L (nm) lmfp(nm) ξs(µm) 2Rc(Ω) µ(cm2/V s)
JJ1
B 450 60/35 0.1 315/350 7’500/4’000

JJ1
C 640 115/85 0.15 137/193 14’000/12’000

JJ1
D 820 190/120 0.2 80/92 30’000/11’000

JJ1
E 1000 230/150 0.2 102/137 37’000/22’000

Table 4.1. Summary of the transport properties of the four junctions on
device one. The mean free path was calculated by Eq.4.1 at a charge carrier
density of -1012 cm−2/+1012 cm−2. The coherence length was then estimated
from lmfp assuming the Fermi velocity of 106 m/s. µ and Rc are the resulting
fitting parameters, when the charge carrier dependent conductivity is fitted
with Eq.2.29.

Thermally activated gap?

In some monolayer graphene hBN superlattice works, a gap opening has been
predicted and observed at the CNP [24, 67, 155], leading presumably to edge
currents [66]. In order to determine if there is a gap opening in the DoS of our
sample, we measure the resistivity as a function of temperature, represented in
Fig. 4.2 a. One can see that, below 100K, the resistivity only slightly varies.
Note as well that the value of the resistivity is not as high as one would expect
if there would be a gap [24].
If there is a gap, it should be equal to twice the thermal activation energy

EA extracted from an Arrhenius plot [155]. Namely, by plotting the logarithm
of the resistivity as a function of 1/T , where T is the temperature, one expects
a linear behavior as soon the electron transport is thermally activated with a
slope of EA/kB , with kB the Boltzmann constant. From Fig.4.2 b, this linear
behavior is not observed in our sample, except at large temperature (T >
100K) corresponding to an activation energy of 110K, and thus a gap of 220K
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Figure 4.2. a) Temperature dependence of the resistivity as a function of
Vbg measured for JJ1

C . b) Arrhenius plot: resistivity at the sDP for n<0 (red)
and at the CNP (blue) as a function of 1/T.

(∼ 19meV). The extracted energy has to be compared with the disorder energy
at the CNP. This disorder is caused by electron and hole charge puddles and
manifests itself in a finite region close to the DP [156, 157], where the resistance
can not be tuned any more by the gate voltage. This appears in device one at
charge carrier densities smaller than 3× 1010 cm−2, corresponding to a energy
of 20meV. It is thus possible that there exists a gap at the DP induced by the
superlattice, but it would not be observed at low temperature due to disorder.
Therefore, it will not affect the results discussed in the following parts, since
the measurement were taken at around 70-100mK.

4.3.2. Device two: long and ballistic JJ

Device two has, besides a global back gate, a local top gate on JJ2
D (see

Fig.4.3 a). If the junction is in the ballistic regime, one can study the depen-
dence of RN on electrostatically induced Fabry-Pérot cavities as we will show
in the following. Further, we will show that also device two carries the typical
signature of a superlattice, i.e. the appearance of sDP.
In Fig.4.3 b the normal state resistance of JJ2

D is shown as a function of top
gate (Vtg) and back gate voltage (Vbg). The black dashed line corresponds to
a configuration where the middle region of the graphene below the topgate
is at the CNP and the gray dashed line corresponds to a situation, when the
top gate uncovered regions of the sample is at the CNP. The dependence of
both CNP with respect of the two gates is given by the cross capacitance.
We calculated the charge carrier density below the top gate (nin) and of the
outer, uncovered regions (nout) using the procedure described in Sec.3.3.1. RN
is plotted as a function of these densities in Fig.4.4. Four different quadrants,
which are separated by the charge neutrality points of the inner and outer
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Figure 4.3. a) False colored SEM image of device two (scale bar 3µm). The
superconducting electrodes are shown in blue, the topgate in yellow, which is
insulated by Al2O3 from the hBN-graphene-hBN stack in brown. b) Normal
state resistance as a function of top- and back gate voltage of JJ2

D. The black
(gray) dashed line corresponds to charge neutrality in gate-gate voltage of the
top gate covert (uncovert) graphene. Two lines of increased resistance are
observed for positive and negative gate voltages.

regions, are labelled by pnp, nn’n, np’n, and pp’p. The first and the third
letter indicate whether the outer regions n or p doped, while the middle letter
stands for the doping of the inner region. The apostrophe on the middle letter
indicated that the magnitude of the doping may vary to the outer ones. We
observed that the resistance is significantly higher in the pp’p regime compared
to the nn’n regime, which is due to contact doping and the formation of a pn
junction as discussed in Sec.4.3.1 and observed by Refs. [77, 83].

Two lines of increased resistance exist for large |nin| extending parallel to
nin = 0 and correspond to sDPs (see Fig.4.4). Note that the range of nout is
too small to observe the sDPs in the outer regions. The twist angle between the
hBN and graphene was determined from the position of the sDP for positive
and negative nsDP . Since their absolute value was slightly offset with respect
to zero density, the average of the obtained angles was taken. We obtained
a misalignment angle between 1.3◦ to 1.4◦. The difference in nsDP can be
attributed to the uncertainty of the exact position of the charge neutrality
lines and the simplified electrostatic picture to convert the gate voltages in to
nin and nout.
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Figure 4.4. Normal state resistance of JJ2
D as a function of nin and nout.

Two line cuts at nout = ±2.5×1016 m−2 are shown in the right part of the
figure. Two peaks in resistance at large values of nin = ±nsDP are indicated
by black arrows.

Investigation of Fabry-Pérot oscillations

In Fig.4.5 we plot RN as a function of nin and nout for nout < 0. Several sets
of oscillations of RN with different frequencies and dependencies in charge
carrier densities were observed, which are due to the coherent, ballistic trans-
port inside different FP cavities 2.3.2 formed between pn-junctions induced by
gating and contact doping.

The FP oscillations in graphene-hBN superlattice was studied extensively
by Refs. [83, 158], where they showed, that FP oscillations also take place,
when the pn junction is created by the low energy band and the first miniband.
Here, we will focus only at oscillations appearing at energies below the sDP
and when nout<0, namely p doped. Three sets of FP oscillations are observed
and shown in Fig.4.5. Each set corresponds to a different cavity, which can be
determined by the different dependence of nin and nout. In the pn’p regime
two distinct oscillations were observed. The finer oscillation (green) depends
mainly on the change of nin, which we attribute to the cavity formed between
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the two gate induced pn-junctions. Whereas, the appearance of the resistance
maxima of the more prominent oscillation (blue) depends on both densities and
arise due to reflections between the n-doped contact region and pn-junction
created by gating. The fact that this oscillation depends not only on nout, can
be explained by the finite cross capacitance between the top gate and the outer
graphene region, which was not taken into account when the gate voltages were
converted to density. Further we observe an oscillation (purple), when both
layers are p doped. This variation of RN is due to a finite reflection possibility
at the n doped contact regions. Since the coherence has to be preserved over
twice the junction length to observe this effect in the pp’p regime, it leads us
to the conclusion of ballistic electron transport in JJ2

D.
From the period in density one can estimate the different cavity lengths

using

Lc =
√
π

√
ni+1 −

√
ni
, (4.2)

where ni is the position of the i-th maxima of the FP oscillation. For
every set of oscillations we estimate Lc by taking an average of the results
for several pairs of ni+1 and ni. For the purple oscillation we obtained a
length of Ltotc ≈550 nm, for the blue ones Loutc ≈75 nm, and for the green ones
Linc ≈350 nm. The dimensions of this cavities fit roughly the dimensions of the
sample (L=550 nm, width top gate 350 nm, and width outer regions 100 nm).

4.4. Probing of DoS in a long, diffusive JJs

Now we will focus on the supercurrent measurements of device number one.
We measure Ic, defined as the maximal current that can be passed through
the junction before a voltage appears and the junction becomes resistive. To
do so, we current bias the sample and measure the differential resistance as
a function of bias current I and Vbg as shown in Fig.4.6 for JJ1

D (see 4.A for
junctions JJ1

B , JJ1
C , and JJ1

E). The switching from the zero resistance state
to the normal resistance state is detected as a sharp transition at I = Ic, as
presented in the right panel of Fig.4.6 and plotted as a function of Vbg on
Fig.4.15 c. No hysteresis was observed between the retrapping and switching
current (see Fig.4.6 right), therefore the junction is in the overdamped regime.
At the first order, Ic is inversely proportional to RN , and is thus strongly
reduced at the CNPs, beyond the resolution of the measurement. For device
one Ic is globally smaller for electron doping (Vg > 0) than for hole doping.
This reduction of Ic can be attributed to a p-doping of the graphene by the
MoRe as previously discussed, which reduces the contact transparency.
All the junctions of both devices we investigated are rather in the long

junction limit since the superconducting coherence length ξS < 200nm< L
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N

pn’p

pp’p

Figure 4.5. Normal state resistance as a function of the densities nin and
nout. Three sets of distinct oscillations in RN are observed. Some of their
maxima are indicated by coloured lines. To enhance the visibility of the green
and purple oscillations, the derivative of RN with respect to nin is shown
for two different regions in densities. The inset on the bottom right shows
a schematic drawing of the device, where the superconducting electrodes are
light blue, the topgate position is indicated by yellow and the dark blue region
is indicating the n doped contact regions. The coloured arrows relates the
interference in each cavity to the oscillation in the density-density map.

(see Sec.2.1.1). Combining the expression of the Thouless energy of a diffusive
JJ, Eth = ~D

L2 , with the Einstein relation, L/WRG = De2 ×DoS, we find that
the DoS as a function of the charge carrier density n can be determined from
the measurement of both RN and Ic:

DoS(n) = α
~

RN (n)RG(n)e3LWIc(n) . (4.3)

Note that this formula involves RG, the graphene resistance, which is ob-
tained by subtracting the contact resistance Rc from the measured resistance
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Figure 4.6. Differential resistance as a function of Vbg and dc current bias I
for JJ1

D. Right: line cut at Vbg=-26V.

RN and α is a proportionality factor. In agreement with Refs. [48, 49], we
assume that the finite reflection probability at the contacts leads to an increase
of τ , the time spent by the particle in the junction, and therefore a reduction
of the Thouless energy. This can be observed as a reduced value of α, which
is expected to be 10.82 for a diffusive junction [47].
The DoS expected in the graphene-hBN superlattice was calculated in col-

laboration with J.R. Wallbank using the method described in Ref. [67]. The
DoS on the hole side vHS is quite robust to small changes of the moiré pa-
rameters used in the theoretical model, while on the electron side it depends
significantly on their choice. We chose here parameters similar to those ex-
tracted in Ref. [68], adapted to θ = 0.7◦, but slightly modified to produce a
vHS on the electron side similar to previous measurements [60].
To compare our data with the theoretical calculated DoS, we have to make

several assumptions: (i) the measurement of Ic is not affected by the finite
temperature, (ii) the coefficient α is constant over the investigated gate range
and (iii) Rc is constant respectively for electron and hole doping. For the
electronic temperature T = 100mK, we estimate that hypothesis (i) is correct
for measured critical currents higher than 30 nA 4.A, which excludes the gate
regions around the CNP and the sDP at the hole side from the analysis (see
App.4.A). Concerning (ii), Refs. [48] and [49] have shown that α is indeed
constant for a long diffusive graphene JJ, even if the measured value of 0.1-0.2
is substantially lower than the one expected for an ideal SNS junction [47].
(iii) is the strongest hypothesis, since Rc can actually depend on Vbg and vary
within a factor of two around the CNP [159, 160], but since our observation
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is stated at high charge carrier density a gate dependent contact resistance
would not change the qualitative picture outlined below.
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Figure 4.7. Density of state estimated from measured RN and Ic (Eq.4.3) (in
red, blue, yellow and green respectively for JJ1

B , JJ1
C , JJ1

D and JJ1
E) compared

to a calculation for θ = 0.7◦ (black), as a function of the charge carrier den-
sity. The moiré superlattice parameters (defined in Ref [68]) used to produce
the theoretical DoS are U+

0 =8.5meV, U+
1 =-8.5meV, U+

3 =-14.7meV. The gray
shaded areas correspond to regions where the critical current was too small to
be reliable extracted due to the finite temperature of the measurement.

Then, by taking Rc and α as fitting parameters, we are able to reproduce the
calculated DoS using Eq.4.3 for α ∈ [0.3, 0.8] and Rc ≈ 40−160 Ω. The result
is plotted in Fig.4.7. For the four junctions, this analysis matches qualitatively
with the calculated DoS over a large gate range and reproduces well the vHs.
As theoretically expected, the superlattice features are less pronounced on
the electron side. As a whole, despite some strong assumptions and some
uncertainty in the precise value of the contact resistance, we show that the
combined measurement of Ic and RN allows to estimate the DoS, providing
information about the specific bandstructure of the superlattice. In particular,
we see a clear signature of the vHSs, which was not explicitly present in either
RN or Ic.
The values of Rc are consistent with the contact resistance estimated from

the gate dependence of the resistivity (see Tab.4.1). The values of α are
consistent as well with the ones that can be found in Refs. [48, 49].

It can be noted that the vHS at negative Vbg is more pronounced for junction
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Junction L (µm) 2Rc(Ω) α

JJ1
B 0.45 275-320 0.75-0.7

JJ1
C 0.64 115-150 0.4

JJ1
D 0.82 80-100 0.45

JJ1
E 1 75-110 0.3-0.27

Table 4.2. Values of α and of the contact resistanceRc, the fitting parameters
used to adjust our data to the calculated DoS (see Fig.4.7). These values are
known with an uncertainty of the order of 10%.

JJ1
B , JJ1

C and JJ1
E than for junction JJ1

D. In order to understand this discrep-
ancy, we look now into the current distribution in junction JJ1

D (see Sec.4.4.1
for junction JJ1

C) by measuring the interference pattern of Ic in magnetic field
[66, 144].

4.4.1. Device 1: Supercurrent density distribution
As discussed in Sec.3.3.4, Ic as a function of magnetic field reveals the current
distribution in the weak link, e.g. graphene, of a JJ. This method is widely used
to detect edge currents of JJ established various systems [117, 144, 145, 149].

Edge current at vHSs in JJ1
D

Here, we discuss a different kind of edge current appearing around the vHSs
instead of the CNP as described in Refs.[24, 67, 155], which we attribute to
localization of the electrons in the bulk due to a reduced Fermi velocity at the
vHS and the simultaneously presence of disorder at the edges.
Typical interference patterns of JJ1

D are represented in Fig.4.8 a and com-
pared to the Fraunhofer interference pattern, expected for a homogeneous cur-
rent distribution [161] and a sinusoidal CPR. Note that, in a ballistic graphene
JJ, high transparent channels can lead to a non-sinusoidal CPR [38, 84]. But
since we do not expect this high transparency for a long, diffusive junction, we
conclude, that the assumed sinusoidal CPR is reasonable for our evaluations.
At Vbg = −20V (n1 = −1.4× 1012 cm−2), between the CNP and the vHS, the
interference pattern matches a Fraunhofer pattern for the first few lobes, with
a periodicity consistent with the junction dimensions taking the finite field
penetration into the superconductor into account [144]. At slightly higher
fields (B > ±1.5mT), one can see some missing lobes and a non-vanishing
supercurrent, indicating that the current is not perfectly homogeneous. The
pattern at Vbg = −40V (n2 = −2.7 × 1012 cm−2), close to the vHS, is strik-
ingly different, since the first lobes and the central peak are of comparable
amplitude, which is an indication of enhanced edge current [145].
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Figure 4.8. a) Differential resistance as a function of current bias and mag-
netic field at n1 = −1.4 × 1012 cm−2 (blue star) and n2 = −2.7 × 1012 cm−2

(red star). White dashed line: expected Fraunhofer pattern for a homogeneous
current density. b) Normalized critical current as a function of magnetic field
B and carrier density n measured in junction D, superimposed with the cal-
culated DoS in green. c) Calculated current density as a function of n and
position along the contacts. d) Linecuts of panel c) at n1 and n2. The black
dashed lines indicate the junction edges.

In order to understand the gate dependence, we measure the interference
pattern between Vbg = ±60V. We bias the sample with a linearly increasing
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current, at a rate 0.17mA/s. Ic is obtained from the time at which the junc-
tion turns normal, averaged 200 times (Sec.3.4). The interference pattern can
then be plotted as a function of gate voltage (Fig.4.8 b). In order to compare
the shape of the interference patterns, for each Vbg the critical current is nor-
malized by its maximum value, Ic(B = 0) for each gate voltage. Note that
this kind of measurement cannot detect currents smaller than a few tens of
nA, given by Vtrig/RN with Vtrig the threshold voltage for the switching to
normal conducting state.
We can distinguish two different regimes for the interference pattern: far

from the vHSs, the interference pattern is gate independent and similar to the
one described in Fig.4.8 a left. In contrast, around both vHSs, the pattern is
similar to Fig.4.8 b right, where the side lobes become more prominent. The
effect is stronger for hole doping, where the vHS is more pronounced.
To be more quantitative, we calculate the current distribution in the junction

by the inverse Fourier transformation of the interference pattern for each point
Vbg. The exact procedure is described in Sec.3.3.3 and follows the ansatz given
in Refs. [51, 144, 145]. The full map of the current density jc as a function of n
is shown in Fig.4.8 c, where jc was normalized by the maximal current density
of each trace similar to Fig.4.8 b. Two representative distributions are plotted
in Fig.4.8 d for n1 (blue) and n2 (red), showing that in the whole junction
the current partially accumulates on the edges, and that the proportion of
edge to bulk current is significantly larger at the vHSs. This change in the
proportion is attributed to disorder at the junction edges, which affect the
periodic superlattice, such that the electrons are less localized at the edges
compared to the bulk at the vHSs.

Adding an odd component to the current distribution

The previous calculation was done by assuming an even current distribution
along the contacts. The non vanishing critical current at the minima of the
interference pattern indicates, that also an odd part exists in the current dis-
tribution jo(x). Therefore, the expression for Jc(β) has to be written as,

Jc(β) =
∫ W/2

−W/2
dxj(x)eiβx

=
∫ W/2

−W/2
dxje(x)cos(βx) + i

∫ W/2

−W/2
dxjo(x)sin(βx),

(4.4)

where β = 2πB(L + 2λL)/φ0. The critical current can now be written as
Ic = |Jc| =

√
J2
e + J2

o , where Je and Jo are calculated from even and odd part
of the current distribution. From the measured interference pattern we see the
even part dominates most of the time, since the overall dependence of Ic(B)
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follows the Fraunhofer interference pattern expected for a constant j(x). But,
from Eq.4.4, it follows that the odd part dominates where Je vanishes, i.e. at
the minima of the Fraunhofer pattern. Since only the absolute value of Jc(β)
is measured, the Jo has to be reconstructed. To obtain its contribution we
followed the Ansatz in Ref.[145] by interpolating between the minima of Ic(B)
and flipping the sign between each lobe (see Fig.4.9 a). Jc(β) is then equal to
Je + iJo and the current distribution is calculated from

j(x) = | 1
2π

∫ b/2

−b/2
dβJc(β)e−iβx|, (4.5)

where b is the measured range of β. The result of j(x) is shown in Fig.4.9 b.
We observe that one edge is contributing more to the supercurrent transport
than the other.
In the next section we will discuss the overall gate dependence of Ic at the

edges and the bulk of JJ1
D and the influence on the DoS. For this evaluation

we focus on the result obtained by assuming only an even current distribution,
since no qualitative difference of j(x = 0) was observed between the calculation
with or without the odd component jo. Since the analysis with jo contains
even more assumptions, especially the determination of Jo, we rather limit
ourselves to the even component, as describe in Sec.4.4.1.

Recalculation of DoS for subtracted edge current

From the non-normalized map of the supercurrent distribution, we are able
to extract separately the gate dependence of Ic on the edges of the junction
(Iedgec ) and in the bulk (Ibulkc ) defined as shown in Fig.4.10. In order to
elucidate the nature of the edge current, we use the same procedure as for the
result shwon in Fig.4.7 to estimate the DoS of the bulk. For that, we use Ibulkc

instead of Ic and the same resistances RN and Rc assuming that the normal
state resistance is dominated by the bulk . The result is shown in Fig.4.10.
We find a very good agreement between the DoS extracted from Ibulkc (blue)
with the theoretically determined DoS (dotted). In particular, the vHS is
now better reproduced than using the total current Ic (plotted in yellow for
comparison), meaning that the edge current doesn’t carry the signature of the
vHS. On the other hand, due to the flat band at the vHS, the Fermi velocity
is expected to be globally reduced in the superlattice. This tends to localize
the electron by increasing the traversal time τ of the electron in the junction
and leads therefore to a reduction of the supercurrent. This localization acts
weaker on the electrons at the edges, which leads to an increased edge to
bulk current ratio at the vHS for JJ1

D. Since the vHS is probed for the other
junctions without separating the bulk and edge current, no increased edge to
bulk current ratio is expected at the vHSs.
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Figure 4.9. a) Measured critical current (green) as a function of magnetic
field at a gate voltage of -40V. In blue (red) the even (odd) part of the re-
constructed supercurrent as function of B is shown. b) Current density at
-40V as a function of position. c) Calculated and normalized current density
including the asymmetric part of Jc as a function of Vbg and position. An
enhancement of the edge to bulk current density is observed around the van
Hove singularities at ≈ ±40V.

Supercurrent distribution in JJ1
C

We performed the same measurement and data analysis for JJ1
C as described

in Sec.4.4.1. As discussed we do not expect any increase of the edge to bulk
current ratio in this junction, since the DoS calculated from RN and Ic already
probes the vHS at negative Vbg without further data processing.
The interference pattern as a function of gate voltage and magnetic field

was measured and normalized as described for JJ1
D (see Fig.4.11 a). It shows

a similar behaviour over the entire gate range. Small changes appear at the
sDPs at positive gate voltage, which are probably due to the strongly reduced
amplitude of the critical current, such that small features can not be resolved
anymore due to the limited measurement resolution. The calculation of the
current density, which is shown in Fig.4.11 b, does not carry any indication of
a increased edge to bulk current ratio around the vHs. This behaviour is con-
sistent with the observation that the estimated DoS from RNIc of JJ1

C probes
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Figure 4.10. DoS as a function of charge carrier density n in junction D,
estimated from the bulk current (blue, see inset) and the total current (yellow).
Inset: current distribution at the vHS at negative charge carrier density.

the van Hove singularities without additional data processing like for JJ1
D,

where a finite current contribution by the edges had to be subtracted. This
suggests, that in JJ1

C the edges are more affected by the superlattice potential
than in JJ1

D, and show that both measurements of current distribution and
DoS from RN and Ic are consistent and complementary.
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Figure 4.11. a) Interference pattern of critical current of JJ1
C as a function

of Vbg and magnetic field B. b) Calculated current density as a function of Vbg
and position x for JJ1

C . The white areas correspond to gates voltages, where
the critical current was to small to be measured.
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Origin of the edge current
It remains to understand why the edges behave differently from the bulk in
JJ1
D. One can rule out the hypothesis of topological edges states due to the

valley Hall effect at a gap opening as proposed in Ref.[64] and measured in
Ref.[162], because the current at the edges appears far from any band crossing.
It has been shown that edge current can be induced as well by guided-wave
electronic states due to the band bending at the sample edges [144], but only
close to the CNP, where the edge potential is unscreened. Our measurement
would be more consistent with previous works reporting edge current induced
by electrostatic or chemical doping of the edges [66, 155, 157, 163]. This may
induce disorder that can affect the superlattice potential, such that the vHS
may be smoothed [164]. This alteration could originate from the exposure
of the graphene edge to ambient condition during the fabrication or from
contamination during the reactive ion etching used to shape the graphene
sheet.

4.5. Signatures of charge carrier change at vHS

In this section we discuss the results of the supercurrent measurements of a
long ballistic JJ with a global back gate and a local top gate used to electro-
statically define FP cavities. Its normal state resistance as a function of the
gate voltages, and the observation of different oscillations in RN attributed to
various FP cavities were described in Sec.4.2. Here, we show that Ic is inversely
proportional to the normal state resistance as expected from the Ambegaokar-
Baratoff relation [46]. Further, a new set of oscillations were observed in Ic,
which was absent in RN . This appearance of oscillations can be attributed to
a change of the carrier type in the FP cavity, when the Fermi energy is tuned
over the vHS.
To measure Ic over the entire gate-gate range we applied the counter tech-

nique described in Sec3.4. The ramping speed of the current was 2.124mA/s,
the trigger voltage was set to 15µV. An average over 50 switching events was
taken to determine Ic.
Ic as a function of nin and nout is shown in Fig.4.12 b. RN and Ic are plotted

as a function of nout for nin = 3.5 ∗ 1016 m−2 in Fig.4.12c and as a function
of nin for nout = −2.5 ∗ 1016 m−2 in Fig.4.12d. In Fig.4.12c Ic shows further
clearly an oscillation, which is shifted by half a period with respect to the one
in RN . Both originate from the FP cavity formed between the pn junction at
the contact and the pn junction formed by electrostatic gating (see blue arrows
in inset of Fig4.5). If we take now a closer look at the pnp regime, we observe
also a set of finer oscillations indicated by the green lines in Fig.4.13b. As
discussed in Sec.4.3.2, this modulation corresponds to FP interference effects
in the central cavity formed by gating.
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a)

b)

c)

d)

Figure 4.12. a) RN of JJ2
D as a function of nin and nout measured at aVbias

of 4meV. b) Ic of JJ2
D as a function of nin and nout. The value of Ic is given

by the average of 50 switching events. c) RN and Ic as a function of nout
for nin = 3.5 ∗ 1016 m−2. The gray dashed lines indicate the minima of the
oscillation in Ic. d) RN and Ic as a function of nin for nout = −2.5∗1016 m−2.

Surprisingly, we noticed another set of oscillations close to the sDP in the
unipolar p-doped region, which was not observed in the measurement of RN .
It appears right before the top gate covered region of JJ2

D is tuned to the
sDP (see Fig.4.13c) and is accompanied by clear and sudden decrease of Ic.
This decrease is observed on a line parallel to the sDP (white dashed line
in Fig.4.13c) and defines together with the sDP the region in gate voltages,
where the additional oscillations occurs. In Fig.4.13 c the oscillations extend
form 0V to -40V in back gate and blur for higher values. If we extract the
cavity length form the maxima in nout for nin = −5.25∗1016 m−2 using Eq.4.2,
we obtain Lc ≈60 nm. This length corresponds roughly to the dimension of
the top gate uncovered regions. Therefore, we attribute the reduced critical
current and the appearance of oscillations with a similar period as in the pnp
regime to the change of charge carrier type, when Fermi energy is tuned above
the vHS [165]. This leads to a n-doped region below the top gate, which forms
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a FP cavity. In similarity, the change of the charge carrier type while crossing
the vHs was observed by Lee et al. [68] in a transverse magnetic focusing
experiment.
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Figure 4.13. a) Critical current of JJD2 as a function of top and bottom gate
voltage. b) Critical current as a function of top and back gate voltages in the
bipolar regime. Two sets of oscillations were observed. The oscillation of Ic
indicated by blue lines is due to a Fabry-Pérot cavity between the gate and
contact doping induced pn-junctions. The green set corresponds to the central
cavity (see Fig.4.5). c) Critical current measured around the sDP. The white
dashed line indicated the position of the sDP in the normal state resistance.
Inset: Line cut from Fig.4.12 b, which corresponds to the direction of the gray
arrow and shows the critical current as a function of nout. An oscillation in Ic
is observed and its maxima are indicated by black arrows. The corresponding
densities were used to calculate the FP cavitiy length.

4.6. RN Ic of a ballistic graphene JJ

In a last step we calculate the product of RN and Ic for the long, ballistic
junction. This value is expected to be proportional to the Thouless energy,
which is given by ~vF /L. If one simply assumes the junction’s length for
L=550 nm for JJ2

D and vF = 106 m/s to be the Fermi velocity of graphene, the
obtained value is Eth ≈1.2meV, which is comparable to ∆MoRe. Therefore, the
junction is in an intermediate regime between the long and the short junction
limit. The measurements are shown in Fig.4.14. Nevertheless, the obtained
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value from the measurements is at least a factor of two smaller than the value
of Eth. This can be a result of a reduction of the Fermi velocity [166] by the
hBN-graphene superlattice or that the effective trajectories contributing to the
supercurrent transport are in average longer than L, due to reflections at the pn
interfaces [86, 167]. The obtained value is not even reduced, but also depends
on the doping of the different regions. For example the value of the Thouless
energy in the nnn regime is around 0.5meV and it shrinks to 0.25meV in the
pnp regime. This can be attributed to the finite normal reflection probability
at each pn-interface leading to an increase of the trajectory length, exceeding
L. Noticeably, the value is not constant in the pnp configuration, which would
be expected. A possible explanation can be given by the fact, that RN was
measured at a finite voltage bias of 4meV, while Ic is measured at zero bias.
This voltage bias may lead to a decrease of the amplitude of the FP oscillations
as shown in [83, 168], such that they are not fully compensated in the product
of RnIc.

-5

0

5

V
tg

 (V
)

-60 -40 -20 0 20 40 60
V bg (V)

0.6

0.5

0.4

0.3

0.2

0.1

R
N Ic  (m

V)

Figure 4.14. Product of RN and Ic as a function of top and back gate voltage
for JJ2

D.

4.7. Summary

In conclusion, we demonstrate in this chapter that the supercurrent carries the
signature of the graphene bandstructure modified by the moiré superlattice.
First, from the combined measurement of the normal resistance and the critical
current and taking advantage of the diffusive regime, we estimate the DoS in
device one and find a very good qualitative agreement with the DoS calculated
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theoretically. In addition, Josephson interferometry reveals the presence of a
gate dependent edge current in JJ1

D and its proportion is strongly enhanced
at the vHSs. By estimating the DoS for the supercurrent carried only by
the bulk, we show a good agreement of it with the theoretical calculation.
We conclude, that in this device the edges are less affected by the superlattice
potential, probably due to edge disorder or chemical doping. We show further,
that one can use electrostatically defined FP cavities to determine the charge
carrier type in a two terminal configuration. Close to the sDP, reappearing of
oscillations in the ppp regime similar to the ones observed in the pnp regime
points into the direction of a change of the charge carrier type inside the cavity,
namely form holes to electrons, when the Fermi energy crosses the vHs.
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4.A. Supporting Informations

RnIc for device one

Here, we show RN and Ic as a function of backgate voltage for all four junctions
of device one (see Fig.4.15 a-d).
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Figure 4.15. Normal state resistance and critical current for junctions
B,C,D,and E of device one as a function of backgate voltage.

Further we show the calculated product of RNIc, which is proportional to
the Thouless energy. The results are plotted in Fig.4.16. A sudden change of
RNIc is observed around the vHSs.

This product was as well used in Eq.4.3 to calculate the DoS. As described
above this is possible due to the long and diffusive character of the Josephson
junctions. The a priory unknown proportionality factor α and Rc are taken
as fitting parameters, which were adjusted to fit the theoretically calculated
DoS. The obtained values are summarized in Tab.4.2.

Note that this calculated DoS is obtained by setting some parameters that
we cannot determine experimentally and may be altered by the disorder in the
sample. For these reasons, added to the fact that our measurement of Ic is not
reliable close to the CNP, the agreement is more qualitative than quantitative.
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Figure 4.16. Normal state resistance and critical current for junctions
B,C,D,and E of device one as a function of backgate voltage.

Consequently, we estimate the uncertainty on the given values of α and Rc to
be of the order of 10%.

Switching/critical current

In a finite temperature measurement, one doesn’t measure exactly the crit-
ical current of the Josephson junction but rather what is called a switching
current, resulting from the thermal activation of the switching to the non-
superconducting state. This point is important for the estimation of DoS as
described in the main text, where we assumed that the measurement repre-
sented the real critical current. To quantify this thermal effect, we use the
resistively and capacitively shunted junction (RCSJ) model. It consists in
modelling the Josephson junction as a perfect Josephson element with a si-
nusoidal current-phase relation I = Ic sin(ϕ) (for diffusive graphene, this is
a reasonable assumption), in parallel with a resistance and a capacitor. The
whole system is biased by a current I and V is the voltage across it.

Using the Josephson relation dϕ
dt

= 2eV
~ and Kirchhoff’s current law, we

write [28]:
d2ϕ

dt2
= −ω2

p sin(ϕ) + ω2
p
I

Ic
− ωp
Q

dϕ

dt
(4.6)

with ωp =
√

2eIc/~C and Q = ωpRC. This is formally the equation of motion
of a particle, whose position is given by ϕ, in an effective potential (Fig. 4.17):

U(ϕ) = −EJ cos(ϕ)− ~I
2eϕ (4.7)

and subjected to a frictional force ~
2e

2 1
R
dϕ
dt
, with EJ = − ~

2eIc.
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4. Signatures of vHS probed by supercurrent in graphene-hBN moiré
Josephson junctions
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Figure 4.17. (a) The phase dynamics is equivalent to the movement of a
particle in the effective potential U, and submitted to a frictional force (see
text). This potential is a cosine, tilted proportionally to the current I. (b)
Ratio between the estimated switching current and the critical current as a
function of the critical current. This ratio corresponds to the current at which
the switching probability reaches 0.5. (c) DoS extracted from the measurement
of RN and Ic for junction D (see main text). In orange, the value of Ic used is
the one directly measured, the switching current Isw. In green, the switching
current has been corrected using the ratio plotted on fig. (b) to obtain the
real Ic. In blue is recalled the DoS theoretically expected.

At zero temperature T = 0, while I < Ic, the phase is trapped in a local
minimum of potential, where it oscillates at frequency ωp. When the current
is increased to I = Ic, there is no barrier preventing the phase from increasing
leading to a rapid onset of voltage V = ~

2e
dϕ
dt

across the junction. The current
becomes dissipative.

At finite temperature, thermal activation allows the fictitious particle to
leave its local potential minimum for I < Ic. This current at which the particle
tunnels across the barrier while increasing I is called the switching current Isw,
and is always lower than the critical current. To estimate the ratio between
the measured switching current and the "real" critical current, we calculate
the barrier [169]:

∆U = ~Ic
2e

(
I

Ic
(2 sin−1 I

Ic
− π) + 2 cos(sin−1 I

Ic
)
)

(4.8)

According to Arrhenius law, the probability of switching (i.e. the probability
of overcoming the barrier) is then Psw = e−∆U/kBT [170]. For each value of Ic,
the value of the current needed to reach a switching probability of 0.5 has been
extracted, and is plotted on Fig. 4.17 b for an estimated electronic temperature
of 100 mK corresponding to our measurements. We see qualitatively that, if
the critical current is higher than 30 nA, this ratio is roughly constant.

To figure out to what extent the temperature affects our conclusions, we
plot on Fig.4.17 c a figure similar to Fig.4.7 of the Ch.4, where we compare the
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DoS extracted from the measurement with and without taking into account
the finite temperature. Far from the Dirac points, the difference between the
two quantities is very tiny, below the uncertainty of the measurement. This
is why, in the main text, we used the measured current without applying any
correction and called it Ic. At the CNP, where the supercurrent cancels, tem-
perature effect may explain the unexpected increase of the DoS, even though
our simple model is not able to explain it fully.

Note that, in this qualitative estimation of the effect of finite temperature,
we neglected the influence of quantum macroscopic tunnelling [171] and as-
sumed that the sweep velocity of the bias current was infinitely slow.
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5 Helical states in graphene van der Waals
heterostructures1

Two-dimensional systems that host one-dimensional helical states are a poten-
tial route for scalable topological quantum computation when coupled with a
superconductor. Graphene is particularly promising thanks to its high elec-
tronic quality, versatility in van der Waals heterostructures and its electron
and hole-like degenerate zeroth Landau level. In this chapter, we study two
graphene based systems hosting helical quantum Hall states at their edges.
These edge states were then tried to be coupled to superconductors in a
Josephson junction geometry. Even though superconducting correlations in
the quantum Hall regime could have been expected, we show that so far no
signature of supercurrent at large magnetic fields was observed, which opens
up the discussion for possible reasons and motivation for further investigations.

1Parts of this chapter were published in a similar form in Ref.[101] and in Fabian
Oppliger’s project work "Coherent Fabry-Pérot interference in twisted bilayer graphene"
(2019) supervised by D. I. Indolese.
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5. Helical states in graphene van der Waals heterostructures

5.1. Introduction

The coupling of one-dimensional (1D) helical states to a superconductor is ex-
pected to generate zero energy Majorana bound states [100, 172, 173], which
are potential candidates for topoligical quantum computation [172, 174, 175].
Currently, the most popular approach to engineer Majorana zero modes is to
use 1D semiconducting nanowires with large spin orbit coupling in contact
with a superconductor exposed to large magnetic fields [102–105]. However,
braiding of Majorana fermions is a necessary component to perform quantum
computation operations [176]. This exchange is usually difficult to realize in
1D system due to the constrain on the magnetic field direction and device di-
mension, such that special device geometries may be needed [177]. Therefore,
2D systems may be necessary to realise scalable architectures for topologi-
cal quantum computation, and some efforts have been made in this direction
using semiconducting quantum well structures [117, 145, 178, 179] hosting nat-
urally a quantum spin Hall state. Nevertheless, these materials are difficult
to fabricate and often suffer from a bulk contribution to the current transport
[180, 181]. Graphene, on the other hand, exhibits extremely high electronic
quality and can be assembled into versatile heterostructures along with other
van der Waals (vdW) materials to create novel device characteristics [182].

Graphene, by itself, is neither a topological insulator nor does it posses
helical states at zero magnetic field. However, engineering of helical states
has been achieved by creating vdW heterostructures from graphene. Previ-
ous experiments have shown the manifestation of this state by applying large
magnetic fields up to 30T to increase the Zeeman energy [97], by gating large
angle twisted bilayer graphene to opposite filling factors of ±1 [99], or by us-
ing SrTiO3 with its large dielectric constant as a substrate to screen the long
range Coulomb interactions [98]. All these approaches rely on the electron and
hole-like, four fold (spin and valley) degenerate 0th Landau level in graphene.
In the quantum Hall (QH) regime, the ground state at charge neutrality is de-
termined by the splitting of the four-fold degenerate Landau level into spin or
valley polarised states, which depends on the details of the interaction terms
[90, 91, 93, 183, 184] (see Sec2.3.3). Another necessary component towards
topological superconductivity is the coupling of the helical states to a super-
conductor in such a way, that an electron (hole) propagating forward in one
state is reflected as a hole (electron) propagating backwards in the other. That
superconducting correlations can exist in the QH edge states of a single layer
graphene, has been recently reported [106, 108, 115].

Here, we follow the approach of two decoupled graphene layers tuned to
opposite filling factors of ±1 to create a helical state (see Fig.5.1 a). As we
will discuss, this was realized in a double layer graphene (DLG) heterostruc-
ture, where a thin hBN spacer decouples the two layers electrically and in a
large angle twisted bilayer graphene (tBLG), where a large momentum mis-
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match in the Brillouin zone causes the decoupling of the layers [185]. The two
graphene layers in both heterostructures are electrically shorted by common
1D molybdenum-rhenium (MoRe) side-contacts defining two terminal Joseph-
son junctions (JJ). With a global top and a global back gate the electron
density in both graphene layers can be controlled independently and therefore
also their resistance. The interlayer capacitance is given by the thickness and
the dielectric constant of the dielectric. In the case of the DLG heterostructure
both quantities are know and therefore it can be calculated directly, while for
the tBLG it can be extracted experimentally from the top (Vtg) and the back
(Vbg) gate voltage dependence of the charge neutrality points (CNP) of the
two graphene layers. At large magnetic field LL are formed and we observed
a conductance plateau of 2e2/h in the DLG and the tBLG device, where e is
the elementary charge and h the Plank constant. This plateau corresponds to
counter propagating edge channels with an opposite spin polarization. This
helical state is realized by tuning the layers to opposite filling factors of ±1.

We investigate the transport properties of this state in dependence of the
bias current. If a superconducting correlation between the counter propagat-
ing QH states exists, the resistance around zero bias should be suppressed
[108]. This behavior was not observed in none of the structures, even though
the interlayer spacing is comparable or smaller [120] than the superconduct-
ing coherence length of MoRe (ξMoRe=10-20 nm [186]). In the end, possible
reasons for the absence of superconducting correlations and potential device
improvements are discussed.

E

0
EF
t

EF
b

bulk edge

b)a) B

Figure 5.1. a) Schematic drawing of a double layer graphene device. The
top graphene layer (red) carries a electron like edge channel with a spin up
polarization. This corresponds to a filling factor of 1. The bottom layer (blue)
hosts a hole like channel with a spin down polarization, which corresponds to
ν = −1. b) Schematic drawing of the 0th LL, when all the degeneracies are
lifted. The EF of the top (bottom) layer is drawn by a red (blue) dashed line.
It crosses the state with ν=1 (-1) at the edge.
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5. Helical states in graphene van der Waals heterostructures

5.2. Device structure and fabrication

The DLG as well as the tBLG van der Waals (vdW) heterostructure was
stacked using a standard polycarbonate assisted pick-up technique [129], which
is described in Ch.3. The full encapsulation in hBN protects the graphene from
contaminations during the fabrication. While in the DLG a hBN was stacked
between the two graphene layers for their decoupling, a large angle between
the graphene layers had to be created in the tBLG. This was realized by the
so called tear and stack method [127, 130, 148]. This relies on the strong
vdW forces between hBN and graphene. After the pick-up of the first half
of the graphene the stage was rotated by ∼30◦ before the second half was
picked-up as well (see Sec.3.1.3). Self-aligned 1D side-contacts were fabricated
by etching the hBN away with CHF3/O2, before MoRe was sputtered (see
App.A). Like this, JJs were realized with the DLG and tBLG as a weak link.
After shaping the mesa, an aluminium-oxide (Al2O3) layer was grown over the
entire structure in a atomic layer deposition process. This Al2O3 acts as an
insulator between the global metal top gate and the rest of the device, e.g.
the contacts (see Fig.5.4 a). The global top gate in addition to the global back
gate allows to control the electron density (n) of both layers separately, as it
will be shown in the next section, where the normal state resistance of both
devices is characterized.

5.3. Normal state resistance

The resistance of single layer graphene as a function of gate voltage exhibits
a peak around the charge neutrality point (CNP), where n = 0. In the case
of DLG and tBLG we expect therefore a peak, when both layers are at their
CNP, and two lines of increased resistance as a function of top (Vtg) and back
gate voltage (Vbg), which correspond the CNP of one or the other graphene.
The electron density of each layer is affected by both Vtg and Vbg, due to
capacitance between the two graphene layers and between the gates. First we
will show, that by knowing the interlayer capacitance the gate voltages can be
converted into an electron density of the top (nt) and the bottom (nb) graphene
layer using the electrostatic model described in Sec.3.3.1. From the density
dependence we estimate the mobility and the contact resistance for the DLG
JJs and show the appearance of Fabry-Pérot oscillations. In a second step we
measure the resistance of the tBLG JJs. From the splitting of the CNPs as a
function of gate voltages we estimate an interlayer capacitance of 7.5µF/m−2,
which is similar to the previously found values [185, 187]. Furthermore, a line
of increased resistance at large gate voltages indicates the existence of a moiré
superlattice as discussed in previous chapters.
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Figure 5.2. SEM images of a DLG SQUID with a schematic of the cross-
section. The image on the top left shows the top view of JDLG1 lying in the xy-
plane with a length of 580 nm and a width 1µm. Scale bar is equal to 500 nm.
On the right a cross-section of the JDLG1 with a dgg of 12 nm. The sample is
cut parallel to the x axis. Scale bar represents 200 nm. The schematics on
the bottom shows a sketch of the cross-section. The thin (thick) black lines
corresponds to the graphene (graphite gate), the green areas to the hBN, blue
to the MoRe contacts, pink to the Al2O3 and yellow to the gold top gate.
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5. Helical states in graphene van der Waals heterostructures

5.3.1. Characterization DLG device

Now we will characterize the transport properties of the DLG device. Since
the DLG JJs are contacted by superconducting electrodes, Rn was measured
at a constant voltage bias of 4mV over the junctions, which is well above
2∆, where ∆=1.25meV is the superconducting gap of MoRe [57]. At this
voltage bias the current is only carried by quasi particles and any influence
of the superconductivity of the contacts can be neglected. The Rn for three
junctions as a function of top gate voltage (Vtg) and back gate voltage (Vbg) is
shown in the Fig.5.3. Lines of an increased resistance correspond to the CNPs
of one of the layer. For JDLG1 and JDLG3 we observe two DPs in a cut along
Vtg (see Fig.5.3 a and c), while for JDLG2 only one peak exists. We attribute
this behavior to a laterally inhomogeneity of residual charge carriers in the top
graphene layer in JDLG1 and JDLG3 . Since the two lines of increased resistance
have the same dependence on the gate voltages, we exclude the possibility
of inhomogeneous gating, which would result in different lever arms, i.e. a
different slope of the CNP lines. The splitting of the CNP as a function of the
back gate voltage (Vbg) around charge neutrality (see Fig.5.3 a) can then be
explained by the different offset doping, which results in a different screening
of the top gates electric field. For JDLG2 , this behavior is less pronounced, but
the CNP of the top graphene is broadened in nt compared to the CNP of the
bottom graphene with respect to nb. Since the Vtg dependence is the most
homogeneous for JDLG2 , Rn measured as a function of Vtg and Vbg is plotted as
a function of nt and nb for this junction (see Fig.5.4 a) using the capacitance
model described in Sec.3.3.1). We assumed the dielectric constant hBN to be
4 [188] and the one of Al2O3 to be 8.5 [189].
Two clear lines of enhanced resistance at nt and nb equal to zero, corre-

sponding to the CNPs of the individual layers, split the Rn(nb, nt) into four
quadrants. The quadrant with the overall smallest resistance is the one when
both layers are electron (n) doped (top right), while we observe an overall
higher resistance in the quadrant, where both layers are hole (p) doped (bot-
tom left). This is the result of the workfunction mismatch between graphene
and MoRe, which dopes the graphene near the contacts to n-type [85]. This
pn-junction at both electrodes, when the graphene layer is p-doped, also leads
to a charge carrier dependent reflection probability, i.e. Fabry-Pérot oscilla-
tions, if the mean free path (lmfp) is larger than the junction length (L)[79, 85].
For a higher visibility of the oscillations, the derivatives of Rn with respect
to nb and to nt are shown in Fig.5.4 a. As described in Sec.4.3.2 the cavity
length (Lc), i.e. the size of the p-doped region, at large nt and nb is ex-
tracted from the location of neighbouring resistance maxima in charge carrier
density using Eq.4.2 [83]. We obtain a length of around 550 nm. The compar-
ison to the designed junction length L=650 nm of JDLG2 indicates that the n
doped region at each contact is of the order of 50 nm for large densities. To
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Figure 5.4. a) Rn of JDLG2 as a function of top and bottom electron density.
The red (blue) framed graph shows the derivative of Rn in the white dashed
enclosed region with respect to nt (nb). b) Cuts of the Rn measurements at
nt = 0 (blue) and nb = 0 (red) are shown. The black lines are fits of Eq.2.29,
which relates the conductivity to n as a function of the mobility and contact
resistance.
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5. Helical states in graphene van der Waals heterostructures

determine the mobility (µ) and the contact resistance (Rc) of the junction,
we calculate the conductivity σ and extract the values in dependence of nt for
nb=0, respectively nb for nt=0. The conductivities are plotted in Fig.5.4 b and
were fitted by Eq.2.29. From the fit we obtain an electron mobility of around
53’000 cm2/Vs (33’000 cm2/Vs) and a hole mobility of around 27’000 cm2/Vs
(14’000 cm2/Vs) for the bottom (top) graphene. A Rc of 170Ω (190Ω) and
440Ω (490Ω) is extracted for the bottom (top) graphene for the n-doping and
the p-doping, respectively. The relatively high µ values and the observation of
Fabry-Pérot oscillations indicate ballistic electron transport in both graphene
layers with the lmfp larger than L.

5.3.2. Interlayer capacitance of tBLG
We measured the Rn for two JJs with a tBLG as weak link, but instead of
applying a large bias voltage to overcome any influence of the superconduc-
tivity of the contacts, the sample was heated to 10K, which is well above the
critical temperature (Tc =∼8K) of MoRe. The normal state resistance as a
function of Vtg and Vbg for junction one (JtBLG1 ) with L=250 nm and junction
two (JtBLG2 ) with L=650 nm is shown in Fig.5.5 a and b, respectively. Sev-
eral lines of increased resistance are observed. The one indicated by the green
arrow in Fig.5.5 a corresponds to the gate voltages, where the two layers have
low charge carrier density, i.e. are close to charge neutrality. The resistance
is the largest around zero gate voltages, where the EF of both layers is tuned
to their CNPs. At high positive and negative gate voltages two parallel lines
appear, pointed out by the white arrows. These are due to a moiré superlat-
tice between the top hBN and the top graphene, which modifies the graphenes
band structure [23] as discussed in Ch.4 and leads to the existence of satellite
DPs. The orange dashed line in Fig.5.5 a shows an increased resistance, which
strongly depends on Vbg. We attribute this observation to a difference of the
top gates lever arm between the bulk and the contact regions of the tBLG.
Close to the contacts the lever arm is reduced due to the profile of the MoRe
contacts (see Fig.5.2), which leads to a upwards bending of the top gate at
the contacts. Therefore, Vbg dominates the charge carrier concentration in
the contact region of the tBLG. The same feature is observed for JtBLG2 (see
Fig.5.5 b). It is less pronounced due to the longer junction length, such that
the overall resistance is more dominated by the bulk.
By taking a closer look at the line of enhanced resistance around the CNPs

(green arrow), one observes as for the DLG device a splitting of the line of
increased resistance corresponding to one ore the other layer being at charge
neutrality (see Fig.5.5 c & d). This splitting is way less pronounced as in
the DLG case since the interlayer capacitance is way larger, due to the small
interlayer distance. The opposite sign of Vtg and Vbg leads to an electric field,
i.e. a displacement field (D = e(nt−nb)

2 ), between the two graphene layers,
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Figure 5.5. a) Resistance of JtBLG1 measured as a function of top and back
gate voltage at 10K. The green arrow indicated the line were both graphene
layers are doped close to charge neutrality. The white arrows are pointing at
lines of increased resistance corresponding to satellite DPs due to the existence
of a hBN-graphene moiré superlattice. The orange dashed line indicates the
dependence of the DP of the tBLG graphene close to the MoRe contacts. b)
Resistance of JtBLG2 measured as a function of top and back gate voltage at
10K. c) Derivative of Rn shown in a) with respect to Vtg. d) Derivative of Rn
shown in a) with respect to Vtg for negative values of Vbg. The dashed light
green, black, and dark green lines correspond to the position of the CNPs of
the top and bottom graphene layers for an interlayer capacitance of 5µF/cm−2

(dark green), 7.5µF/cm−2 (black), and 10µF/cm−2 (light green) for nb = 0
and for nt = 0, respectively.

such that nt 6= nb. The difference in nt and nb increases with an increased
D and therefore the separation of the CNPs in gate-gate voltages is larger for
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5. Helical states in graphene van der Waals heterostructures

large gate voltages as a consequence. In Fig.5.5 d the derivative of Rn with
respect to Vtg is shown. The red (blue) color indicates negative (positive)
changes in Rn, which is used to determine the position of the CNP of the top
and bottom graphene layer. From the evolution of the DPs we estimate the
interlayer capacitance between the two graphene layers. For this we calculated
the charge neutrality lines once for nt = 0 and once for nb = 0 as a function
of gate voltages using the equations:

Vbg = sgn(nb)
√
π~vF

e

√
|nb|+

enbdb
ε0εhBNr

−
√
π~vF dbcgg
eε0εhBNr

(
sgn(nt)

√
|nt| − sgn(nb)

√
|nb|
)
.

(5.1)

Vtg = sgn(nt)
√
π~vF

e

√
|nt|+

entd
eff
t

ε0εhBNr

−
√
π~vF defft cgg

eε0εhBNr

(
sgn(nb)

√
|nb| − sgn(nt)

√
|nt|
)
,

(5.2)

where vF is the Fermi velocity of graphene, db is the thickness of the bottom
hBN, while defft is the effective thickness of the top dielectric consisting of
the hBN, Al2O3, and the interlayer capacitance is given by cgg. This equation
arise from the same derivation as discussed in Sec.3.3.1 by replacing the hBN
based interlayer capacitance by cgg. The best agreements is found for a cgg =
7.5µF/cm−2. This result is plotted as black dashed lines in Fig.5.5 d. In
addition we show the results for cgg = 5µF/cm−2 (dark green) and cgg =
10µF/cm−2 (light green) for comparison. Never the less, the extracted value
of 7.5µF/cm−2 is in good agreement with the values published for large angle
tBLG [185, 187]. Note, that this capacitance is about 50 times larger than the
interlayer capacitance of the DLG device and as a consequence the splitting
of the CNPs is less pronounced.
Using the knowledge of independent control of each layers charge carrier

density, we proceed to investigate helical states in the presence of out-of-plane
magnetic fields in the DLG and the tBLG structure.

5.4. Helical states in graphene based vdW heterostructures

At large out-of-plane magnetic fields, the four-fold spin and valley degeneracy
of the 0th LL is lifted in the DLG and the tBLG devices. Besides an insulating
ground state at zero energy, conductance plateaus of 2e2/h at ν ± 1 arise and
correspond to two counter propagating edge channels. These channels are spin
polarized and form a quasi 1D helical state delocalized over the two graphene
layers.
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5.4. Helical states in graphene based vdW heterostructures

5.4.1. Helical states in double layer graphene
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Figure 5.6. a) Conductance as a function of top and back gate. Clear
plateaus of constant conductance are observed. The white numbers indi-
cate the filling factors of the top (upper number) and bottom (lower number)
graphene layer within the conductance plateau. b) Cuts of the conductance
map shown in a) along equal nb=nt (blue) and opposite nb=−nt with nt > 0
(orange) as a function of the sum of the absolute filling factors.

To explore the presence of the engineered helical state in the DLG device,
we measure the conductance (G) in an out-of-plane magnetic field of 5T (see
Fig.5.6 a). By voltage biasing JDLG2 , well defined conductance plateaus arise
as a function of Vtg and Vbg, visible as regions of well defined homogeneous
colors in Fig.5.6 a. In the QH regime the current is carried by a discrete
number of edge channels and the number of channels is given by the filling
factor [190]. For hBN separated double layers of graphene, the edge channels
of the two layers can be counted independently, and G of each plateau is given
by the sum of the absolute filling factors in both layers, G = e2

h
(|νb| + |νt|)

with νi = ±2,±6,±10, ..., when none of the degeneracies is lifted, where i is
the index for the bottom or the top layer. For increasing but equal charge
carrier density in both layers νtot, defined as |νb| + |νt|, is equal to 4,12,20,...
In Fig.5.6 b the blue curve corresponds to the cut along νt = νb, where the
edge channels in the two graphene layers are electron like and propagate in
the same direction. We observe plateaus at 4 e2

h
, 12 e2

h
and 20 e2

h
as expected.

Exceptionally, an additional plateau with G=2 e2

h
exists, which appears due

to high quality of the device, that leads to a degeneracy lifting of the 0th
Landau level due to many-body correlation [89]. This plateau corresponds to
νtot=2 with νt=νb=1 meaning that two electron like edge states propagate in
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5. Helical states in graphene van der Waals heterostructures

the same direction, one in each layer. The same value of G is observed for
νt = −νb with νt > 0, but in this case the top layer is electron doped while the
bottom is hole doped creating counter propagating edge channels in the two
layers. The presence of an insulating ground state at charge neutrality and
the lifting of the valley and spin degeneracy indicates that edge channels for
ν = 1 and ν = −1 are spin polarized with opposite spins, and together form
a 1D helical state [99], which is delocalized over the two graphene sheets by a
distance given by the hBN spacer between the layers.

5.4.2. Helical states in tBLG
The transport properties of JtBLG2 at large out-of-plane magnetic field (6T)
was probed by applying a voltage bias. We observe well defined plateaus of
constant conductance as function of Vtg and Vbg as shown in Fig.5.7 a. In
this figure we also marked the lines along which νtot = 0 (red dashed line)
and where νt = νb (blue dashed line), which divide the gate-gate map in four
quadrants labelled as I − IV . As in the case for DLG, the conductance value
is in general given by the sum of the filling factors. The conductance plateaus
are spread out parallel to ntot = 0, which means that ntot is constant on each
plateau, but the individual filling factors of each layer are may changed by
the displacement field. A schematic drawing of the possible combinations of
νt and νb is shown in Fig.5.7 b). The conductance in quadrant I and III are
equal to 2e2/h, 4e2/h, and 12e2/h. In the quadrants II and IV the plateaus
are less pronounced and do not match the expected magnitude for a constant
νtot. As discussed in Sec.5.3.2 the electron density in the tBLG differs at the
contacts from the electron density in the bulk attributed to a inhomogeneous
gating. This results in a pn-junction at the contacts over a large gate range
in these particular quadrants. The QH edge states at the pn-junctions are
co-propagating and mix depending on their spin [93, 191, 192] and valley [83]
polarization, which gives rise to a deviation of the expected sequence. An
equilibration of the edge states can also take place in the unipolar regime,
when electron density in the bulk is larger than close to the contacts, which
leads to circulating states in the bulk connecting the tow edges [193].

Now we focus on the line, where νtot=0 and therefore νt = −νb and therefore
the edge channels of the top and bottom graphene layers are counter propa-
gating. A cut of Fig.5.7 a along the red dashed line (νtot = 0) is shown as
an inset. At charge neutrality (Vbg = 0.4V and Vtg = −1.2V) the junctions
conductance goes below e2/h. At νt = νb = 0 the Fermi energies are within
the gap between the electron and hole like bands of the 0th LL, which leads
to an insulating state. If the displacement field is increased the conductance
rises up to 2e2/h before it decreases again. This decreasing of G in the bipolar
regime is distinctly different from the observations in the DLG device, where
we found the same sequence as for νt = νb. The explanation of this phenom-
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ena can be found by taking the spin polarization and scattering between the
edge channels into account. Even though, the graphene layers are decoupled in
the bulk of the tBLG junction, there may exist a finite scattering probability
form one layer to the other. At νt/b = ±1 and ∓1 the counter propagating
edge states have the opposite spin polarization. This polarization prohibits
the backscattering of an electron from one layer to the other, since the spin
has to be flipped. If D is increased each layer hosts two edge states, one with
spin-up and one with spin-down. Therefore, an electron can now be scattered
from one layer to the other without a spin flip process, which leads to equili-
bration of the edge channels and a reduction of G. This means in conclusion,
that the 2e2/h plateau arises due to a helical state formed by the first electron
and hole band of the 0th LL [99].
As mentioned the creation of a helical state is only one requirement to realize

Majorana zero modes in graphene. The second one is the coupling of this state
to a superconductor, which we will investigate in the next section.

5.5. Superconducting correlations in the QH regime?

Superconducting correlations were observed in the QH regime for various
graphene based electronics as discussed in Sec.2.4. Amet et al. [108] reported
the appearance of so called superconducting pockets in the QH regime, i.e.
regions in gate and magnetic field of suppressed resistance . In Fig.2.17 we
show some of their findings. The superconducting pockets are attributed to
the coupling of the counter propagating QH edge channels on either edge of
the graphene (see Fig.2.17 c). This leads to the formation of a delocalized An-
dreev bound state involving a hybrid electron-hole mode along the contacts,
which couples the QH channels of both edges. It has been shown that such a
hybrid state indeed can exist along a graphene-superconductor interface [115],
but recent findings point into the direction that the correlated states are due
to inhomogeneities at the edges, such that the Andreev reflection takes place
locally at the same edges, and are not caused by the Andreev reflection from
one edge to the other [110, 114]. In another experiment it was shown that the
QH edge states can be coupled by a superconducting electrode, which width
is narrower than the coherence length of the superconductor. This leads to
crossed Andreev reflection between the incoming and out going channel at
ν = 1 [106].
In our devices the propagation direction of the edge channels can be chosen

for each layer separately, just given by their doping. Like this it is possible to
create counter propagating edge states on both sides of the junction. Further,
the interlayer distance is in the DLG of the same order and in the tBLG much
smaller than the coherence length of MoRe of 10-20 nm [186]. Therefore, a
superconducting correlation can be expected in the QH regime, when the edge
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Figure 5.7. a) Conductance at 6T as a function of top and back gate for
JtBLG2 . The red dashed line corresponds to νtot = 0 and the blue dashed line
corresponds to νt = νb. Inset: Conductance as a function of displacement field
at νtot = 0. b) Schematic drawing of the plateaus in the QH regime shown in
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5.5. Superconducting correlations in the QH regime?

channels are counter propagating like in a helical state, which was discussed in
Sec.5.4. Nevertheless, no sign of suppressed resistance was observed in neither
of the samples, as will be shown in the following section. Afterwards we discuss
possible explanations for the absence of of any superconducting correlations,
which will need further investigations in the future.

5.5.1. Investigation of CAR in the QH regime
To observe potential superconducting correlations in the QH regime the JJs
were current biased by a small ac-current of ≤ 50pA, since the potentially
expected signs of a reduced differential resistance are small (<1 nA)[108]. The
measurement were taken around ν = ±1.

Double layer graphene JJ

Fig.5.8 a to c show the results for JDLG2 (dgg=25nm) and b to f the one for
junction JDLG1 (dgg=12nm). The magnetic field was set to 5T, which is
well below the critical magnetic field of MoRe (Bc=∼8T). The resistance was
measured as a function of Vtg and Vbg, once at zero bias (see Fig.5.8 a and
d) and once at a finite bias of 5 nA (see Fig.5.8 b and e). We do not observe
any signs of superconducting pockets, nor any other large difference between
the two measurements for any doping combination of the two layers. For
comparison, line cuts of the gate-gate maps are taken and shown in Fig.5.8
c and f. The value of the resistance as a function of Vbg shows only minor
differences in the noise level.

Twisted bilayer graphene JJ

As shown in Sec.5.4 a plateau of 2e2/h was observed, which corresponds to
νt = ±1 and νb = ∓1. As discussed the edge channels are counter propagating
in this regime and form a helical state. To investigate the possibility of induced
superconducting correlations, we swept the top gate voltage in a finite range
(V rangetg ) around νtot = 0 for every Vbg to resolve the conductance plateau at
νt = 1 and νb = −1. The measurements are shown in Fig.5.9 were taken at
an out-of-plane magnetic field of 6T, for which the plateau of νt/b = ±1 was
clearly observed. As for the DLG JJs we do not observe a significant difference
between the dc-current biased (5 nA) measurement and the one at zero bias
current measurement. Fig.5.9 c shows two measurements of the resistance at
Vbg = −1 as a function of V rangetg for different bias. For some particular values
of the gate voltage we observe a significant difference in the resistance, but
in contrast to the expectation, where we would expect a dip at zero bias, the
measurement at 5 nA shows the smaller values. Therefore, no sign of induced
correlation between the QH edge states by the superconducting contacts, even
though the interlayer spacing is reduced to a minimum.

5
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current bias (a) and a dc-current bias of 5 nA (b). c) Resistance as a function
of Vbg. The line cuts are taken from a and b at Vtg=0.8V, indicated by the
dashed lines. d)-e) Resistance of JDLG1 as a function of Vtg and Vbg at zero dc-
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5. Helical states in graphene van der Waals heterostructures

5.6. Conclusion and Outlook

In conclusion we realized helical states in DLG and tBLG vdW heterostructure.
By converting the gate voltages to electron densities using a complete electro-
static model, we extracted an estimation for the mobility and the contact
resistance. The high mobility value together with the appearance of Fabry-
Pérot oscillations indicate ballistic electron transport in both junctions and
a high device quality. A plateau of 2e2/h manifest itself in both structures
in the QH regime close to charge neutrality, which corresponds to counter
propagating edge states in the two graphene layers. The spin polarization can
be observed in the tBLG structure, where the spin prohibits backscattering
from one state to the other even though the graphene layers are placed in di-
rect contact [99]. The investigation of superconducting correlations in the QH
regime revealed that neither in the DLG JJ, where the layers are separated
by a hBN with a thickness of the order of ξMoRe, nor in the tBLG JJ, where
the layers are in direct contact decoupled by a twist angle induced momentum
mismatch, superconducting pockets due to CAR were observed. In the case of
the DLG JJ the absence of any superconducting correlations is maybe given
by the fact that the interlayer spacing was still to large to couple the edge
states of the two layers strongly, even though it was reduced to 12 nm. For the
tBLG JJ this explanation does not hold, which rises the question, if the mo-
mentum mismatch between the layers suppresses crossed Andreev processes.
In graphene it is expected that at zero field and for perfect interfaces an in-
coming electron is reflected as a hole in the other valley [37]. In the tBLG
the only possible state is found in the same layer. The later argument can
also be applied to the DLG JJ, since the structure was fabricated out of two
individual graphene crystals by not knowing their alignment. For the future it
would be interesting to study if the coupling of the two layers can be observed
if on one side the interlayer spacing in DLG JJ is reduced and on the other
side the crystallographic axes of the two graphene layers are aligned.
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6 Current phase relation of long graphene
Josephson junctions 1
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In this chapter we discuss a compact double layer graphene SQUID, which
consists of two graphene layers separated by a hBN and shorted by two com-
mon superconducting electrodes. This forms two Josephson junctions in paral-
lel. The size of the superconducting loop is therefore reduced to the interlayer
distance of the graphene layers at the electrodes. We show, that it is possible to
gate control the supercurrent in each graphene Josephson junction separately.
This allows to change the SQUID in situ from an asymmetric to a symmetric
configuration and to study its magnetic field response in both regimes. In the
symmetric case the SQUID acts as a sensor for the magnetic field direction.
In the asymmetric regime, it is possible to measure the current phase relation
of both graphene layers and we will show that high transparent modes exist
in the long, ballistic limit. This device structure and the possibility to ob-
serve the interference pattern at large, in-plane magnetic field paves the way
to study crossed Andreev reflection as a function of well defined interlayer
spacing given by the thinkness of the hBN spacer.

1Parts of this chapter were published in a similar form in Ref.[101]
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6. Current phase relation of long graphene Josephson junctions

6.1. Introduction

Two Josephson junctions (JJ) integrated in parallel into a superconducting
loop form a superconducting quantum interference device (SQUID). In this
work, we create a SQUID by separating two graphene layers with a thin hBN
spacer. Superconducting, one-dimensional, molybdenum-rhenium (MoRe) elec-
trodes connect the double layer graphene (DLG) and from two graphene
Josephson junctions (JJ) in parallel as shown in Fig.5.2. The measurements of
the normal state resistance (RN ) and in the quantum Hall regime are described
in Ch.5. With global top and back gates the Ic of each layer can be individu-
ally adjusted, which opens the opportunity to change the SQUID configuration
from symmetric to asymmetric in situ. In the symmetric case the SQUID is
sensitive to the magnetic flux through the SQUID cross section, but as well
to the flux through the graphene sheets, which makes it an ideal candidate
for the calibrations of the magnetic field direction. In the asymmetric case we
show that we can measure the CPR of the JJs, which reveals high transparent
modes contributing to the supercurrent transport in both of layer. Further,
the SQUID does not suffer from any screening of the superconducting loop,
due to its small and compact structure resulting in an negligible inductance
(� 1 pH).

6.2. Device fabrication

We fabricate the DLG SQUID, a six-layered van der Waals (vdW) heterostruc-
tures, shown in Fig.5.2 by a standard polycarbonate assisted pick-up technique
[129]. The self-aligned MoRe side contacts were sputtered after etching the
contact region with CHF3/O2 [125]. The hBN on the top and the bottom were
used as gate dielectrics. Aluminium oxide (Al2O3) with a thickness of 30 nm
was grown by atomic layer deposition to electrically insulate the top gate from
the contacts as well as from the etched edges of the stack that define the mesa.
The fabrication details can be found in Sec.3.1 and App.A. The top gate to-
gether with the global graphite back gate allows a independent control of the
top (nt) and the bottom (nb) electron densities. These are calculated from the
gate voltages by taking into account the finite capacitance between the layers
and the quantum capacitance of each layer, see Sec.3.3.1. The hBN between
the graphene sheets, has three atomically well defined thickness steps. There-
fore, SQUIDs with different loop size were defined by the distance between
the graphene layers (dgg), which could be fabricated on the same vdW het-
erostructure. The thicknesses of the hBN were measured with an atomic force
microscope before the stacking process. For junction one (JDLG1 ) the thickness
is 12 nm, for junction two (JDLG2 ) it is 25 nm and for junction three (JDLG3 )
50 nm. Scanning electron microscope (SEM) pictures of the top view and the
cross section made by a focused ion beam after the measurements are shown
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6.3. Gate control of the total supercurrent

in Fig.5.2. We assign the xy-plane to the graphene plane, where the x-axis
(y-axis) is perpendicular (parallel) to the edge contacts. The z-axis is defined
in the direction of the normal vector of the graphene sheet.

6.3. Gate control of the total supercurrent

Next, we characterise the superconducting properties of our junctions at zero
magnetic field by measuring the Ic, which is defined as the current at which
the junction undergoes the transition from its zero to a finite resistance state.
Figure 6.1 a shows the measured Ic for JDLG2 as a function of nt and nb. Here,
Ic was measured by triggering the appearance of a finite voltage (Vtrig) over
the junction, while sweeping the bias current. For the triggering we used a
FCA3000 counter (see Sec.3.4). The value of Vtrig was set to 6µV to be able to
measure the Ic over the entire gate range, since the smallest detectable value is
given by the maximum of the resistance RCNPn , here the resistance at the CNP,
and therefore Iminc = Vtrig

RCNP
n

= 2.5 nA. We set Vtrig just above the noise floor
of the voltage signal, such that the measurement is sensitive to the voltage
noise. This can cause random triggering events, when the noise exceeds Vtrig,
which results in a reduced, wrong value for Ic. Due to this, Ic was measured
hundred times for each pair of Vtg & Vbg and only the maximum value is
taken. The maximum Ic deviates not more than 10% from the mean value,
which also includes the trigger errors. The critical current of the bottom (top)
layer Ibc (Itc) extracted at nt = 0 (nb = 0) shows the similar dependence of
nb (nt) as the conductivity (see Fig.6.1 b), as expected from the Ambegaokar-
Baratoff relation (Ic ∝ 1/Rn)[46]. The observed minimum value of the Ic is
around 40 nA, when both layers are at their DPs. Here, the superconducting
coherence length of the Cooper pairs in graphene is given by ξs = ~vF

π∆ =160 nm
[28], with ~ the reduced Planck constant, and vF=106 m/s the Fermi velocity
of graphene, which defines the JJs in the long junction regime.

6.3.1. RnIc of JDLG
2

For such a long junction (ξs < L) the product of Rn and Ic is proportional to
the Thouless energy [50] instead of ∆, where Eth is given by 1/τ , where τ is
the time the qusiparticles spend in the graphene, which is equal to L/vF in
the case of a ballistic JJ. The plot for RnIc of JDLG2 is shown in Fig.6.2 a. We
observe a constant value in each quadrant apart from the CNPs, i.e. nn, np,
pn, and pp, which indicates a constant value of Eth. While we find eRnIc to
be a factor of two smaller than Eth = ~vF /L ≈ 1meV when both layers are
n doped (0.4meV), its value is even reduced if they are p-doped (0.25meV).
This is likely due to reflection at the contact doping induced pn-junction,
which reduces the contact transparency and causes the charge carriers to stay
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Figure 6.1. a) Ic as a function of nt and nb. b) Cuts of a) along nt = 0 (blue)
and nb = 0 (red). c)Interference pattern of the DLG JJ as a function of out-
of-plane magnetic field Bz. The white star in Fig.6.1 a indicates the position
in nb and nt, where the interference pattern is measured. The interference
pattern is overlaid with a Fraunhofer interference pattern (white dashed line)
given by Eq.6.1.

longer in the graphene. Also trajectories, which are longer than L or include
a reflection at the sample edges as shown in Fig.6.2 b, result in an increased
dephasing of the supercurrent carrying trajectories [167]. The reduced value
of Eth was already discussed in Sec.4.6, where we obtained similar values.

6.3.2. Josephson interference pattern in a small out-of-plane
magnetic field

The Ic also depends strongly on the magnetic flux Φ threading through the
JJs in z-direction, as it creates a phase difference between the different su-
perconducting channels of the JJ. The dependence of Ic on the out-of-plane
magnetic field Bz (perpendicular to graphene layers) was measured by apply-
ing a dc current over JDLG2 with a ac modulation of 10 nA and detecting the
differential resistance, while Vtg was set to 2V and Vbg to 3V. The result is
shown in Fig.6.1 c. If the current distribution is homogeneous and constant
along the y-axis, Ic can be expressed as a function of Bz as,

Ic(Bz) = Ic(0)
∣∣∣∣ sin(πΦ(Bz)/Φ0)

πΦ(Bz)/Φ0

∣∣∣∣ , (6.1)

where Φ0 is the magnetic flux quantum given by h/2e and Φ(Bz) = W (L +
2λL)Bz [28] with λL ≈ 180nm. Since the measured Ic is well described by this
Fraunhofer like interference pattern, we conclude that the supercurrent density
is indeed constant in both layers. The period of the oscillation in magnetic
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Figure 6.2. a) Product of Rn and Ic as a function of Vtg and Vbg. If both
layers are n doped we observe a value of 0.4mV. This value reduces to 0.25mV,
if both layers are p doped. b) Schematic drawing of a Josephson junction
and possible ballistic trajectories of the supercurrent carrying channels. The
superconducting leads are indicated by blue, while the graphene is black. The
white arrow corresponds to the shortest trajectory between the leads, while
scattering at the physical edge of the graphene, reflection at the imperfect
contacts or a finite angle distribution can lead to increased length of the paths.

field is given by the flux through the graphene and the extracted area matches
the sample dimensions.

6.3.3. Suppressed resistance in moderate out-of-plane magnetic
fields

At magnetic fields large enough to suppress the supercurrent in the JJ accord-
ing to Eq.6.1, but smaller than the field needed to be in the quantum Hall
(QH) regime, irregular oscillations of the resistance around zero current bias
are observed in JDLG2 (see Fig.6.3). The gate voltages were set to Vbg=-1.5V
and Vtg=1.5V, while the resistance as a function of out-of-plane magnetic
field (Bz) was measured with a standard lockin technique. The ac-current
amplitude was set to 50 pA. The appearance of these random oscillations were
already observed by Ben Shalom et al.[86] and are attributed to the ballistic
transport nature of the junction, which leads to billiard like trajectories at the
edges of the sample. These trajectories are suspected to form irregularly An-
dreev states, while the ones in the bulk are fully suppressed by the magnetic
field. Therefore, it is another indication of the ballistic transport nature of
JDLG2 . Nevertheless, these superconducting pockets disappear at fields larger
than 440mT and were not observed in the QH regime within our resolution
of 50 pA, which is in contrast to Ref.[108].
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Figure 6.3. Resistance as a function of current bias and out-of-plane magnetic
field of JJDLG2 . A suppression of the resistance around zero bias current was
observed up to fields of 440mT. The gate voltages were set to Vbg=-1.5V and
Vtg=1.5V.

6.4. Symmetric SQUID

The measurements shown in Fig.6.1 can not distinguish between the currents
that flow in the top or the bottom layer of the DLG. To prove the indepen-
dent flow and tunability of Ic in both layers, we apply an in-plane magnetic
field By (y-axis) and measure the SQUID response, which is sensitive to the
position and the magnitude of the supercurrent, for various combinations of
gate voltages. Thanks to the full gate-tunability of the supercurrents, we are
able to access different regimes of the SQUID asymmetries. For this measure-
ment, the alignment of the magnetic field is crucial, since a small out-of-plane
component can lead to a fast decay of Ic (see Fig.6.1 c). The calibration of the
magnetic field direction is described in the following section.

6.4.1. Calibration and alignment of the in-plane magnetic field

To measure the in-plane magnetic field dependence of such a DLG SQUID
device, one has to carefully calibrate and adjust the direction of the magnetic
field. The Ic is more sensitive to an out-of-plane magnetic field than to an
in-plane field, due to the large ratio between the JJs area and the area of
the SQUID loop, e.g. 35:1 for JDLG2 . If the alignment is imperfect, which
results in a finite out-of-plane component, the SQUID pattern decays due to
the suppression of the supercurrent in the individual junctions given by Eq.6.1.
Further we will show that also a component of the magnetic field in x-direction
(see Fig.6.4 c) leads to a reduction in Ic as well.
The calibration was performed using a 3D vector magnet with the magnetic

fields B1, B2, and B3, which are perpendicular to each other. While the
graphene plane was roughly lying in the plane of the first and second magnet
with B1 and B2, the magnetic field of the third one is pointing out-of-plane. In
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a first step we had to measure three different points, that are in the xy-plane
of the sample from which one corresponds to B = 0. This was done by setting
B1 and B2 to the values given in the inset of Fig.6.4 a. At each point the
out-of-plane magnetic field (B3) was swept and a Fraunhofer like interference
pattern was measured. The point in B3, where Ic is at the maximum reflects
the best compensation of the out-of-plane magnetic field, i.e. correspond to
a magnetic field in the plane of the JJs. With these three point we defined
two vectors, which have to lie in-plane of the graphene layers. To define now a
coordinate system we took the cross product of these two vectors to obtain the
normal vector ~n of the plane. Then one of the original vectors was normalized
and defined as the temporally x-axis ( ~ex). By taking now the cross product of
~ex and ~n we obtain the unit vector in y-direction ( ~ey). The two unit vectors ~ex
and ~ey span now the plane of the graphene layers and allows us to sweep the
magnetic field in this plane. Note, that the direction of the defined vectors are
arbitrary and not related to any alignment with the device, e.g. contacts, yet.
To calibrate the magnetic field direction with respect to the device structure,
we rotated the magnetic field from -360◦ to 360◦ for two different magnitudes
(see Fig.6.4 b). Curves with a periodicity of 180◦ were observed as expected,
but the origin of their shape was not fully clear in the beginning. Therefore
the magnetic field direction was fixed at an angle of a maximum of either curve
shown in Fig.6.4 b. By sweeping the magnitude of the magnetic field in these
two direction we observed the interference pattern plotted in Fig.6.4 c and d,
from which we could determine the in-plane field direction perpendicular to
the SQUID (By). Note, that Ic also strongly depends on the magnitude of the
magnetic field which is applied parallel to the SQUID’s cross section, i.e. in
supercurrent direction. This suppression by Bx is attributed to the Meissner
effect, which expels the magnetic field out of the superconducting contact
leading to a finite and inhomogeneous out-of-plane magnetic field through the
graphene planes. In the direction of By we find the modulation of Ic typical for
a SQUID. A small decay of the maximal value is observed at higher fields [194].
This can either come from a magnetic field component in x or z-direction due
to an imperfect alignment or due to out-of-plane corrugations of the individual
graphene layers [195–197].

6.4.2. Interference pattern in in-plane magnetic field

The in-plane field results in a magnetic flux threading through the loop formed
by the two vertically stacked graphene layers and the superconducting elec-
trodes. This flux induces a phase difference between the two JJs, given by
ϕt = ϕb + 2πΦ

Φ0
, where ϕt is the phase difference over the top JJ and ϕb is the

phase difference over the bottom one. The interference pattern is modulated
in Φ with a periodicity of h/2e. In general, the total supercurrent (Is) of the
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Figure 6.4. a) Critical current as a function of B3 for three pairs of B1 and
B2. b) Critical current as a function of the direction of the in-plane field for
two fixed magnitudes of the in-plane magnetic field. c) Dependence of the
critical current as a function of Bx. d) Critical current as a function of By.

SQUID is given by

Is(ϕt, ϕb) = Itcf
t(ϕt) + Ibcf

b(ϕb), (6.2)

where f i is the CPR of the i-th JJ and ϕi the phase drop over it. As mentioned,
ϕt can be express in terms of ϕb and therefore can be replaced in Eq.6.2. The
critical current as a function of Φ is obtained by maximizing Is(ϕb,Φ) over ϕb
for a given magnetic field.

When the two junctions form a symmetric SQUID (Itc = Ibc ), one obtains
for a sinusoidal flux-dependence, i.e. f i = sin(ϕi), that

Ic(By) = 2Itc| cos(πΦ/Φ0)|. (6.3)

Indeed the measurements for all three SQUIDs formed by long JJs show
a | cos | like behavior (see Fig.6.5 a), when they are tuned to Itc ≈ Ibc [146].
From the periodicity of the interference pattern in magnetic field we extract
the cross sectional area, which is given by L× dgg, and find a good agreement
with their physical size for the all three junctions [J1: (580 nm×12 nm, J2:
(650 nm×25 nm, J1: (530 nm×50 nm)]. Note, that the minimal vlaue of Ic
never reaches zero, revealing a small difference between the critical currents
of both layers or a non-sinusoidal CPR of the junctions. We show in the
next section that even for Itc = Ibc the total critical current does not vanish
indicating a non-sinusoidal CPR.
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Figure 6.5. a) Interference pattern of DLG JJ as a function of in-plane mag-
netic field By. The different colors correspond to different dgg. b) Schematic
cross-section of the different JJ. The coloured dots are related to the interfer-
ence pattern in a). The flux through the striped areas has to be considered to
calculate the period in magnetic field

6.4.3. Minima of Ic(By) as a function of Vtg

For a symmetric SQUID (I1
c = I2

c ) with a sinusoidal CPR, one expects a
| cos(πΦ/Φ0)| like interference pattern of Ic versus magnetic field. Therefore
one would observe that Ic fully vanishes at a magnetic flux equal to Φ0/2. But
if the SQUID is not fully symmetric, the supercurrent flowing in the two JJs
will not compensate each other at Φ0/2, leaving a finite Ic. A non-vanishing
critical current can also arise, when the CPR is not sinusoidal, even if the
JJs are symmetric. To show that the non-vanishing Ic in the interference
pattern in Fig.6.5 a, is not fully due to an asymmetry of the JJ, but rather
given by a non-sinusoidal CPR, we measured Ic of J2 as a function of Vtg,
while Vbg was fixed at 5V and the in-plane magnetic field at -181.6mT, which
corresponds to a minimum of the interference pattern (see Fig.6.5). When
Vtg is tuned, mainly the critical current carried by the top graphene layer
changes. Therefore, it is possible to change between a symmetric and an
asymmetric SQUID configuration. At the CNP of the top layer (Vtg ≈ 0V)
the supercurrent is carried only by the bottom layer and the critical current
is therefore only given by Ibc . When the gate voltage is increased, Itc increases.
Since there is a phase difference of roughly π/2 between the JJs due to the
magnetic flux, the supercurrent flows in the opposite direction, which leads to
a decrease of SQUID’s Ic. This trend continues until Itc = Ibc , where Ic will
reach its minimum in Vtg before it starts to increase again due to opposite
asymmetry (Itc > Ibc ). Note, that also for negative Vtg we observe a decrease
of Ic, but due to the contact doping Itc stays always smaller than Ibc . The
non-vanishing Ic in the symmetric SQUID indicates a non-sinusoidal CPR,
which is further discussed in Sec.6.5. This can be seen by taking a look at how
Ic for a particular Φ is calculated. First, the total supercurrent is given by
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Is = Itcf
t(ϕt) + Ibcf

b(ϕb) with ϕt = ϕb + πΦ/Φ0. For a given magnetic field
the phase difference between the junction is fixed but not the value of ϕb. To
obtain now Ic, one has to maximize Is over ϕb. Therefore, to obtain a Ic of
zero, Ic has to be zero for all ϕb. This is the case for two sine curves shifted
by π/2 and is never the case if the CPRs are skewed sinusoidal functions.
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Figure 6.6. Ic as a function of Vtg for Vbg=5V. The critical current was
measured for a in-plane magnetic field (By) of -181.6mT.

6.4.4. Absence of CAR
In the DLG SQUID, the interlayer distance between the graphene is in the
order of the coherence length of MoRe (ξMoRe=10-20 nm [186]). It has been
shown in a double bilayer graphene, that the small distance leads to a cou-
pling of the two layers via crossed Andreev reflection (CAR), where an electron
(hole) in one layer is reflected as a hole (electron) into the other one [120]. In
Josephson interferometry experiments this CAR contribution leads to an ad-
ditional period with h/e in the interference pattern [117–119]. This would
alter the value of every second maxima of the interference pattern shown in
Fig.6.5 a. We, however, observe no signs of a CAR contribution in our mea-
surements, which might be attributed to the fact that dgg is not shorter but
comparable to ξMoRe. Further we note that the graphene edges are not lying
exactly on top of each other due to the etching profile, which increases the
effective distance between the layers. This profile can be seen in the shape of
the interface between the MoRe and the vdWh shown Fig.5.2.

6.5. Asymmetric SQUID and CPR

Finally we measure the CPR of each JJ employing the high individual tun-
ability of the switching currents. The CPR gives an insight into the Cooper
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pair transport across the junction, e.g. transparency of Andreev bound states.
In the following we discuss how an asymmetric SQUID allows the measure-
ment of the CPR of the JJ with the smaller Ic. For Ibc much larger than
Itc ( I

b
c

It
c
≥ 10), ϕb can be assumed constant in Eq.6.2 such that fb stays at

its maximum value. This results in a total critical current of the device of
Itotc = Ibc +Itcf

t(ϕmaxb − 2πΦ
Φ0

) [198]. In this case a changing flux leads to an os-
cillation around Ibc with an amplitude of ±Itc, while the shape of the oscillation
is given by f t.
The number of transport channels and their transparencies determine the

CPR, and the Ic of a short JJ is then given by

Ic = e∆
2~
∑
n

tn sin(ϕ)√
1− tn sin2(ϕ/2)

, (6.4)

where tn is the transparency of the n-th channel and ϕ is the phase difference
over the junction [199–201]. For a superconductor-insulator-superconductor
JJ, one expects a sinusoidal CPR since only channels with low transparency
(tn � 1) contribute to the transport. If the channel transparencies increase
the maximum of the CPR starts to deviate from ϕmax = π/2 towards π
[38, 84, 202, 203]. This deviation is quantified by the skewness of the CPR,
defined as S = ϕmax−π/2

π/2 [84]. The skewness is 0 when the CPR is sinusoidal
and tn � 1 and is 1 for tn = 1, which corresponds to a saw tooth like CPR.
Note, that S and tn have a non-linear relation, and a single channel with t=0.9
for example causes only a skewness of 0.34.

6.5.1. Skewness of the CPR
In Fig.6.7 a we show the results of the CPR measurements around the CNP for
both layers. The reference junction was highly n doped and has a large Ic (Itc ≈
1.5µA, Ibc ≈ 2µA for the top and bottom panel respectively). Four examples
of the CPR at different densities are shown in Fig.6.7 b. The positions in
nb are indicated by the coloured lines in Fig.6.7 a. A strong decrease of the
amplitude at the CNP is observed (orange). For values of nb 6= 0 we observe a
skewed sinusoidal like oscillation. To extract the skewness, the measurement
data were fitted over six periods using,

Iic =
5∑

n=1

an sin(nf(By +B0)), (6.5)

where an is the prefactor of the n-th harmonic, f the frequency of the oscilla-
tions, and B0 the shift in magnetic field with respect to the first zero crossing
of the oscillation. The prefactors and their ratio is shown in Sec.6.5.2. The
skewness as a function of carrier density was extracted from the maximum
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Figure 6.7. a)Interference pattern as a function of nb (top) and nt (bottom)
for fixed top respectively bottom charge carrier density for JJDLG2 . b) Cuts of
the interference pattern as a function ofBy for different nb after subtracting the
critical current of the reference junction. The color of the curves corresponds
to the color of the bars at the left axis of the top graph in a), which indicates
the positions in nb where the line cuts are taken. c) The skewness of the CPR
as a function of nb (blue) and nt (red) are shown.
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value of the fit for both layers and is plotted in Fig.6.7 c. Extracting S from
the fit increases its accuracy since several periods are taken into account. The
largest S was observed, if the layers are n doped. It reaches a value of around
0.25. For the p doped graphene a S of around 0.15 was deduced from the
data. These values decrease when the carrier density is reduced. At the CNP
there is large uncertainty in the measurement due to the small amplitude of
the oscillation. Nevertheless, towards the CNPs we observe a reduction of the
skewness, which indicates that the transparency of the modes reduces when
compared to that at higher doping. By fitting the measured curves with Eq.6.4
assuming one channel, we obtain a transparency of 0.6 for p doping and one of
around 0.7 for n doping. Even though, the electron transport in the graphene
has a ballistic nature, the finite contact resistance limits the transparency.
By increasing the electron density, S(nb) appears to decrease again. This is
not due to a decrease of the transparency of the superconducting modes, but
has to be attributed to the transition from the asymmetric to the symmetric
regime, in which the CPR is not probed any more.

6.5.2. Gate dependence of an

To fit the CPR we used Eq.6.5, which contains up to the fifth harmonic in
frequency. If the CPR is sinusoidal a2 to a5 are all zero and only the first har-
monic exists. The non-vanishing amplitudes of the higher harmonic indicate,
that the CPR will be skewed and can be used as an alternative measurement
quantity to the skewness, which determines the deviation of the CPR from
the sinusoidal behavior. For completion, we plot the a1 to a3 and the ratio
between a2 and a1, as well as the ratio between a3 and a1 in Fig.6.8. The
amplitudes a4 and a5 are much smaller than the others and their contribution
to S can be neglected. For n (p) doped graphene a skewness of 0.25 (0.15) was
extracted. This value corresponds to a ratio of a2/a1 ≈ 0.15 (0.1).

6.5.3. Loop inductance and screening

We note, that the self inductance Ls of the SQUID can also lead to a non-
linear dependence of ϕ as a function of magnetic field [200]. This effect is
especially dominant around ϕ = π/2, where the current in the loop is the
largest. This can seem like the observation of a non-sinusoidal CPR as a
function of the external flux and must be taken into account, when the external
flux is converted into the phase difference over the junction. However our
compact DLG SQUID has a very small perimeter, and the Ls can be neglected
(see App.6.A).
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Figure 6.8. a) Fitting coefficients a1, a2, and a3 as a function of nt for
nb=1.3×10−2. b) Fitting coefficients a1, a2, and a3 as a function of nb for
nt=2.6×10−2. c) Ratio of a2 and a1, which are shown in a) and b). d) Ratio
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6.6. Conclusion and Outlook

In conclusion, we fabricated a compact double layer graphene SQUID, in which
the normal state resistance and critical current of each graphene Joseph-
son junction can be tuned individually by gating. As expected from the
Ambegaokar-Baratoff relation the critical current is inverse proportional to
the normal state resistance. Therefore, their product is constant, but smaller
than the expected Thouless energy in the long, ballistic limit. This is at-
tributed to the imperfection of the contacts, which leads to reflection and
an increase of the trajectories. The individual tunability of the critical cur-
rent of each Josephson junction opens the possibility to continuously tune the
SQUID from the symmetric to the asymmetric regime. To measure the SQUID
response with respect to an external flux, the in-plane magnetic field had to
be carefully calibrated. In the symmetric regime we observe a cosine like in-
terference pattern. The non-vanishing critical current at a flux of half a flux
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quantum could be attributed to a slight asymmetry of the critical currents
and a non-sinusoidal current phase relation. Note, that no contribution of
crossed Andreev reflection to the supercurrent tranport was observed, which
would have appeared in an alternation of every second maxima of the in-plane
magnetic field interference pattern. The current phase relation was then mea-
sured in the asymmetric regime, where one junction was used to phase bias
the other. A skewness of 0.15 for hole doped graphene and one of 0.25 for
electron doped graphene was observed. This corresponds to a transparency
between 0.6-0.7 of a single channel in the short junction limit.
.
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6.A. Supporting Informations

Calculation of the interference pattern

To get an idea of the asymmetry of the measurement shown in Fig.6.5 a, we
calculated the in-plane magnetic field dependence of the Ic. The CPRs were
chosen to be equal and with skewness of S=0.18. The blue curve is the result
of Ibc = 1.2µA and Itc = 0.6µA, the red one for Ibc = 1.4µA and Itc = 1.4µA
and the green for Ibc = 2µA and Itc = 1.4µA. For the blue result we took
the dimension (junction length and middle hBN thickness) of JDLG1 , for the
red the dimension of JDLG2 , and for the green curve the dimension of JDLG3 .
The result reproduces qualitatively the measurements in Fig.6.5 a. Therefore,
we conclude that the in-plane magnetic field dependence of JDLG2 was in a
rather symmetric state of the SQUID, while for JDLG1 and JDLG3 the SQUID
was slightly asymmetric. The calculations also reproduce the shape of the
different curves.
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Figure 6.9. a) Calculated interference pattern for a SQUID with a skewed
CPR (S=0.18). The different curves, indicated by different colors, were ob-
tained for different SQUID areas, which corresponds to the ones of JDLG1
(blue), JDLG2 (red) and JDLG3 (green). b) Measurement of the critical current
as a function of in-plane magnetic field for JDLG1 , JDLG2 , and JDLG3 .

Estimation of the loop inductance

The loop inductance (Ls) can lead to a screening of the external magnetic
field, which reduces the actual flux (Φ) inside the SQUID. Furthermore, it
makes the relation between Φ and the external flux (Φext) non linear. When
the magnetic field axis is converted to a phase axis, this non linearity has to
be taken into account, if Ls or Ic is large. The external flux as a function of
Φ can be expressed by

Φext = Φ + LsIcf
(
πΦ
Φ0

)
. (6.6)
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Moreover, Ls and Ic determine the limit, above which the phase biasing by
a magnetic field becomes hysteretic. This limit is given by 2LsIc/Φ0 ≈ 1. To
estimate the loop inductance, we calculated the kinetic inductance (Lk) of the
MoRe leads and the geometric inductance (Lg) of the SQUID loop. The sum
of these inductances results in Ls.
Lk was measured by the temperature dependence of the resonance frequency

(fres) of a λ/4-resonator.

2πfres = 1

4l

√(
Lm + L0

k

1−
(

T
Tc

)4

)
· Cm

, (6.7)

where l is the length of the resonator and L0
k is the kinetic inductance per

unit length in the zero temperature limit. The geometric inductance of the
resonator (Lm) as well as the geometric capacitance of the resonator (Cm)
were calculated as described in Ref.[139]. We obtain a sheet inductance of
Lsk=4.26 pH for a resonator thickness of 70 nm. The kinetic inductance is
obtained by multiplying the sheet inductance with the interlayer distance,
here dgg=25nm, and divide it by the the contacts width of 550 nm. By doing
so Lk=0.19 pH. Note, that this is an upper bound of the kinetic inductance,
since the Lsk was determined using a 70 nm thick resonator.
To estimate Lg we calculate the inductance of a rectangular loop as derived

in Ref.[204] for JDLG2 . Here we take the following values: l1=L = 650nm,
l2 = dgg = 25 nm, w=0.3 nm (thickness of graphene) and h=1nm, which
corresponds to the width of the loop. By taking h equal to only 1 nm instead of
the entire junction width, we get an upper limit of the geometrical inductance
of Lg=1.2×10−12 H. This has to be done since the used formula does not hold
if h is much larger than the product of l2 and l2.

We calculate now the difference between Φext and Φ at Φ = π/2, where
the effect of the screening is the strongest. For a critical current of 3µA,
the difference is not more then 0.3%. Furthermore, the maximal current,
which can be passed through the SQUID before it starts to behave hysteretic
is Ihc ≈ 1mA. For these reasons screening effects can be neglected in our
measurements, since the measured critical currents are way smaller and the
non linearity is not present.
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Figure 6.10. Schematic drawing of the model taken to calculate the geomet-
rical inductance of a DLG SQUID. The thin segment in the center on the top
and bottom with a hight w stand for the graphene in the DLG JJ device.
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7 Conclusion and Outlook

The goal of this thesis was to investigate the possibility of creating topological
superconductivity in graphene based van der Waals heterostructures. The
pursued way was to engineer helical quantum Hall states by lifting the spin
and valley degeneracy of the 0th Landau level using high quality double layered
graphene structures. The counter propagating modes of the helical quantum
Hall state were then intended to be coupled by crossed Andreev reflection at
a superconductor.
In summary the proximity effect in graphene based van der Waals het-

erostructres were studied in Josephson junction configurations and multi-layered,
high quality structures were engineered to establish helical quantum Hall states
in graphene based electronics. The fabrication methods and the procedure are
described in Ch.3. In Ch.4, we showed that the supercurrent in graphene-hBN
superlattice Josephson junctions reveals signatures of the superlattice’s mod-
ified bandstructure, like van Hove singularities and the accompanied change
of the charge carrier type as well as the appearance of satellite Dirac points.
Furthermore, an increased edge to bulk current ratio was observed at the van
Hove singularities, which mimics an edge current, but arises due to localisa-
tion of the charge carriers in the bulk of the junction [57]. After the Joseph-
son coupling in graphene was realized in a single layer, more complex device
structures were investigated, namely large angle twisted bilayer graphene and
double layer graphene structures. In Ch.5, we created spin polarized, counter
propagating states, which formed a helical quantum Hall state delocalized over
the two graphene sheets by gate tune the layers to opposite filling factors of
ν = ±1. This state manifests itself as a conductance plateau of 2e2/h. In
the quantum Hall regime no coupling of the counter propagating states were
observed in a Josephson junction geometry, which would have been detected
as a supercurrent or the appearance of superconducting pockets. The absence
of superconducting coupling between the layers is attributed to the poten-
tially to large interlayer spacing, which has to be in the order or well below
the superconducting coherence length of MoRe, and the momentum mismatch
between the individual layers, such that there is no available state in the other
layer for the reflected hole with opposite momentum of the incoming electron.
In Ch.6 we studied the in-plane magnetic field dependence of the supercur-
rent in double layer graphene Josephson junctions. We show that the in-plane
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7. Conclusion and Outlook

magnetic field dependence is accurate enough to probe eventual h/e periodic
signals, which would be an indication of cross Andreev processes. The global
and independent tunability of the supercurrent in each graphene layer allowed
us to measure their current-phase relation separately, which revealed highly
transparent superconducting modes in both of them.

The next step towards topological supercurrent in double layer graphene
Josephson junctions is to observe superconducting correlations between the
superconducting modes in the two layers, first at low magnetic fields and later
in the quantum Hall regime. For that it would be beneficial to reduce the
hBN spacer’s thickness well below the superconducting coherence length of
the superconducting contacts. So far only structures with a minimal spacer
thickness of 12 nm were studied. Possibly the alignment of graphenes’ mo-
mentum space may play a major role in the appearance of crossed Andreev
reflection between the layers [37]. The momentum space could be aligned by
using the same graphene flake for the top and the bottom layer by the tear and
stack technique as described in Ch.3 without introducing a twist angle between
the created pieces, while picking up the hBN spacer. Possible measurements
to detect a crossed Andreev processes contributing to the supercurrent would
then be the following. At zero magnetic field one would expect an increased
critical current compared to just the sum of the critical currents carried in
the individual layers due to the additional process as observed in a double
nanowire device [205]. This could be investigated by measuring the gate de-
pendence of the critical current for each layer while the other is kept at the
charge neutrality point, where the critical current is expected to be signifi-
cantly small. Another possible experiment would be to probe the in-plane
magnetic field interference pattern of the critical current, which should host a
h/e contribution [118]. Instead of using a Josephson junction device structure
one could use a multi-terminal device as in Ref.[120], where the two layers are
connected separately and only have one common superconducting contact, to
detect the crossed Andreev reflection in graphene by a negative non-local sig-
nal. In the quantum Hall regime the interlayer coupling would be potentially
observed by a strong reduced resistance at zero bias current, when the edge
states in the two graphene layers are counter propagating. Further, a period-
icity of h/e is expected when the critical current is measured as a function of
in-plane magnetic field.
Furthermore, the helical state in graphene can also be realized by other ap-

proaches. As it was shown by Veyrat et al.[98], the ground state of the 0th
Landau level changes when the graphene is brought in to close proximity with
a SrTiO3 substrate, which has a large dielectric constant and that screens the
long range Coulomb interaction between the electrons. This new ground state
hosts helical edge states, which could be coupled to superconductors at mod-
erate magnetic fields of 1.5T. A different route was proposed by Kane and
Mele [206], which calculated that at low temperatures graphene can turn into
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a quantum spin Hall insulator if Rashba spin orbit coupling is present, such
that the bulk is insulating and helical states are present at the edges. Since
the intrinsic Kane-Mele type spin orbit coupling in graphene is too weak for
observing this effect experimentally, recent studies tried to enhance the spin
orbit coupling by van der Waals engineering. It was observed that graphene
in proximity to WSe2, WS2, and MoS2 exhibits an increased spin orbit inter-
action strength [20, 21], but so far it seems that the valley Zeeman spin orbit
interaction is the dominating mechanism and not the desired Kane-Mele type.
Therefore, further investigations in this direction are still needed.
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A Fabrication Recipes

In the following we give the detailed fabrication recipes used to build the nano
structures.

A.1. Van der Waals heterostructure fabrication

A.1.1. Material sources
1. Graphite: NGS Trading & Consulting GmbH, natural graphite source

2. HOPG: HQ-graphene

3. hBN: T. Taniguchi et al., National Institute for Material Science, 1-1
Namiki, Tsukuba 305-0044, Japan

4. Exfoliation tape: NITTO ELP-150P-LC

A.1.2. Annealing
1. Forming gas: H2/N2 (8%/92%)

2. Pressure 10-50mbar

3. Ramping to 300 ◦C in 30min

4. Hold temperature for 3-4 hours

5. Cool down to 30 ◦C in 30min

A.2. Reactive ion etching

A.2.1. CHF3/O2

1. CHF3/O2 (40 sccm/4 sccm); power 60W; pressure 60mTorr

2. Etching rates:
• hBN: 0.3-0.33 nm/s
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• SiO2: ∼0.23 nm/s
• graphite: 0.07 nm/s

A.2.2. SF6/Ar/O2

1. SF6/Ar/O2 (20 sccm/5 sccm/4 sccm); power 50W; pressure 25mTorr

2. Etching rates:
• hBN: >6.35 nm/s
• SiO2: ∼0.5 nm/s

3. After the SF6 etching a O2 plasma (A.2.3) was used to remove cross-
linked PMMA.

A.2.3. O2

1. O2 (20 sccm); power 60W; pressure 40mTorr

2. Etching rates:
• hBN: ∼0.33 nm/s
• PMMA: ∼1.66 nm/s

A.2.4. O2 prior ALD

1. O2 (16 sccm); power 30W; pressure 250mTorr; time 20 s

A.3. Electron beam lithography

A.3.1. PMMA mask for etching and contact deposition

1. PMMA 950k diluted in Anisole (solid content 4.5-5.5%)

2. Spin coat at 4000 rpm for 40 s with ramp rate of 1000 rpm/s (≈ 450nm)

3. Back out at 180 ◦C for 3min

4. Exposure with e-beam (EHT=20 kV; dose≈400µC/cm2)

5. Development in cold (∼5 ◦C) IPA:H2O (7:3) for 60 s

6. Blow dry with N2
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A.4. Metal deposition

A.3.2. PMMA lift-off
1. Sample in Acetone (T=50 ◦C) for 30min

2. Remove remaining metal by Acetone flow created with a syringe

3. Transfer sample into IPA

4. Wash off Acetone

5. Blow dry with N2

A.4. Metal deposition

A.4.1. Fabrication of 1D MoRe contacts
1. PMMA mask defined by EBL (A.3.1)

2. CHF3/SF6 etching (A.2)

3. Sputter MoRe using a AJA ATC Orion

4. Ignite plasma (Ar 30 sccm, pressure 20mT, power 50W)

5. Presputter for 1-2min

6. Adjust parameters according to sputtering recipe

7. Single MoRe (1:1) target:
• power 100W
• background pressure 2mTorr
• Ar flow 30 sccm
• Sample rotation "on"
• hight 40 cm
• rate 0.27 nm/s

8. Co-sputtering:
• powerMo 200W; powerRe 35W
• background pressure 10mTorr
• Ar flow 30 sccm
• hight 20 cm
• rate 0.19 nm/s

9. Lift-off in Acetone (A.3.2)

A

143



A. Fabrication Recipes

A.4.2. Fabrication of Au contacts
1. PMMA mask defined by EBL (A.3.1)

2. CHF3/SF6 etching (A.2) was used for 1D contacts

3. The metal was deposited using a Sharon e-beam evaporator

4. 5 nm of Ti or Cr was deposited as a sticking layer

5. Evaporate Au

6. Lift-off in Acetone (A.3.2)

A.4.3. Fabrication of metal top gates
1. PMMA mask defined by EBL (A.3.1)

2. Short CHF3 (3-5 s) etching (A.2) to increase the adhesion

3. The metal was deposited using a Sharon e-beam evaporator

4. 5 nm of Ti or Cr was deposited as a sticking layer

5. Evaporate Au

6. Lift-off in Acetone (A.3.2)

A.5. Growth of aluminium oxide

1. O2 cleaning step (see App.A.2.4)

2. growth of Al2O3 by atomic layer deposition
• build sample into main chamber
• preheat chamber to 225◦C
• perform 250 cycles:
• open water source for 0.05 s
• wait for 12 s
• open trimethylaluminium source for 0.04 s
• wait for 10 s

3. this results in an Al2O3 thickness of 30 nm
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A.6. PC mixture

A.6. PC mixture

1. clean glass vial with chloroform and magnetic stirring bar

2. add 0.7 g of Poly(Bisphenol A carbonate)

3. add 20ml of chloroform

4. close the vial and seal it with parafilm

5. let it stir over night at 40◦ C to dissolve the PC

A
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