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1 Introduction

During the last 60 years, the world has witnessed a major revolution in the
realm of microelectronic devices based on the flow of electron charges. Such
relentless growth of digital microelectronics can be summarized by Moore’s
law [1, 2], which states that the number of transistors and microprocessors in
an integrated chip will double about every two years due to device miniatur-
ization. Yet Moore’s law is starting to fail [3] as the size of devices approaches
the dimensions of atoms. Therefore, potential replacements for traditional
charge based electronics is actively sought after to enhance the computational
power and functionality of devices. One such intrinsic property of the electron,
known as spin, has been exploited to control electric currents for information
processing [4–6]. The electron spin degree of freedom offers many advantages,
such as long coherence times [7–9] for quantum computing [10], unlike charge
states which gets easily destroyed by scattering with impurities, defects or
other charges. These characteristics pave the path for more powerful and
smaller devices in the field of spintronics [11–15] (or spin electronics) and the
opportunity to exploit quantum mechanics in the ultimately powerful comput-
ing schemes, a quantum computer [16].

One such spin device already implemented for technological applications is
based on the concept of giant magnetoresistance (GMR) [17, 18], where a non-
magnetic metal layer is sandwiched between two ferromagnetic layers. The
electrical current through this structure changes from small to large values
depending on the relative magnetization orientation in the ferromagnetic lay-
ers. Such structures, known as spin valves [19–21], have resulted in extremely
sensitive detectors of changing magnetic fields, resulting in new generations
of read/write heads for data storage in hard-drives [22] as well as magne-
toresistive random access memories (MRAMs) [23]. In addition, replacing the
non-magnetic layer by a gate tunable semiconducting layer has enabled electric
field control of the spin transport channel [24–26], a key ingredient essential
for realization of heavily sought after Datta-Das spin field effect transistor[27–
29]. Therefore, the spintronics community is primarily focused on developing
such devices with larger well-controllable spin polarizations. One approach is
to advance the existing GMR-based technology by developing new materials
or by improving existing devices for better spin filtering , while the other ap-
proach is to find novel ways to generate and control spin polarized currents
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1. Introduction

[30, 31] for efficient spin valves and spin polarizers.
One such well-controlled platform to support single electron spins is quan-

tum dots (QDs) in semiconductors [32, 33]. QDs, also known as artificial
atoms, offer tunable discrete energy levels resulting from the confinement of
electrons in all three spatial dimensions. All the parameters of a QD can be
well controlled, such as the spin degenerate energy levels can be Zeeman split
by an external magnetic field. This allows one to electrically control the spin
polarized current through a QD, enabling one to achieve efficient spin injection
and detection in spin valves as well as study various other phenomena such
as spin orbit scattering [34–37], spin relaxation mechanisms [38–40], magnetic
resonance [41] and spin dynamics in such nanostructures. In addition, the
electrons in a QD can be used to form a spin qubit [42–45], a quantum me-
chanical two level system, which forms the basis for new and faster algorithms
for quantum computing [46, 47], quantum cryptography [48] and teleportation
[49].

A key element in such quantum computing applications is the ability to
measure non-local correlations, known as entanglement [50], as well as reliably
generate them. A naturally occurring source of entangled spin pairs is the
superconducting condensate, from which spin singlet Cooper pairs [51] can be
split into two QDs on each side of a s-wave superconductor. Such Cooper pair
splitter (CPS) devices have already been demonstrated in various systems,
such as InAs nanowires (NWs) [52–57], carbon nanotubes (CNTS) [58, 59]
and graphene [60, 61]. A strong charge current correlation between the two
output terminals has been demonstrated already [59], but a spin correlation,
as expected for split singlet states, is missing and is even conceptually prob-
lematic so far. Such spin correlation measurements, i.e. the expectation value
of the product of spin projection operators ⟨σ1 ⊗ σ2⟩ of the two QDs in a CPS
device, requires efficient spin readout of the split electrons without destroying
the superconducting state of the emitter. The idea is to use the two QDs for
spin filtering [62–64], achievable by applying locally different magnetic fields.
A lower CPS current is then expected for the parallel spin projection axes with
respect to the antiparallel ones. In general, the most essential requirements for
such an complex experiment can be summarized as: (1) highly polarized QDs
with large electrical tunability of the QD spin polarization for efficient spin
detection in close proximity to a superconductor; (2) coexistence of supercon-
ductivity and locally varying magnetic fields in close proximity to each other,
such that the critical field of the superconductor is much higher than the local
magnetic field strength; and (3) the CPS current in both QDs should exhibit
non-local spin correlations in a specific pattern, i.e. higher for antiparallel spin
projection axes.

In this thesis, we investigate all the above criteria using electron spin trans-
port through engineered QDs in InAs NWs, chosen predominantly due to their
large g-factors in QDs [65, 66] . We first show a new approach to control elec-
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tron spin currents in QDs using stray magnetic fields locally generated from
individual nanomagnets. Using this approach, we demonstrate electrically
tunable highly efficient spin injection and detection in a double quantum dot
spin valve (DQD-SV). We then use this efficient spin detection technique in a
Cooper pair splitter device to perform spin readout and filtering of the CPS
conductance signal. In addition, electron spin state engineering at very large
magnetic fields through the Pauli spin blockade (PSB) effect is also presented.

Outline of the thesis

This thesis starts with an introduction to the relevant theoretical concepts in
Chapter 2. A concise description of electron transport in single and dou-
ble quantum dots is presented, followed by a brief introduction to ferromag-
netism. Then, various concepts and phenomena associated with ferromagnetic
devices, such as spin valve structures, tunneling magnetoresistance (TMR),
magneto-Coulomb effect, are discussed. In addition, a brief introduction to
superconductivity and Cooper pair splitting with quantum dots is introduced.
In Chapter 3, an overview of the most important fabrication techniques and
experimental setup is shown, with the exact fabrication recipes presented in
Appendix A. The deposition of InAs NWs and fabrication of the ferromag-
netic split gates are shown, followed by a description of the low temperature
measurement setup. Chapter 4 presents a brief description on the growth
and electronic properties of the InAs NWs used in this thesis. In addition, a
brief summary of magnetotransport experiments with InAs NWs is presented.
In Chapter 5, we investigate the magnetoconductance (MC) of a single QD
in the presence of a reversible stray magnetic field locally generated from
Permalloy nanomagnets, which we term as ferromagnetic split gates (FSGs).
We determine the characteristic switching field of the FSG and the generated
stray field in the FSG gap as well as far away from the FSGs. In addition,
magnetoconductance experiments with cobalt FSGs are also shown. Chap-
ter 6 presents an alternative route for spin injection and detection in InAs
NWs using two such Zeeman split QD-FSG units in a double quantum dot spin
valve (DQD-SV). We show that the magnetization orientation of the two FSGs
can be reoriented individually, enabling us to access four magnetization states
(two parallel and anti-parallel states) at zero external magnetic field. In tun-
neling magnetoresistance (TMR) experiments, we show an electrically tunable
large TMR signal as well as large QD polarizations, signifying that the QD-
FSG units can serve as highly efficient spin injectors and detectors. Using this
spin detection technique, we perform spin readout of the CPS conductances
in a CPS device in Chapter 7. We show coexistence of superconductivity
and stray magnetic field in close proximity in our device and determine the
CPS conductance change with the four FSG magnetization states. We observe
a suppressed conductance for the parallel magnetization states with respect

3



1. Introduction

to the antiparallel states, consistent with the interpretation of negative spin
cross correlation between the split electrons. In Chapter 8, we present elec-
tron spin control at large magnetic fields by the Pauli spin blockade (PSB)
effect in double quantum dots. We observe standard PSB at zero external
magnetic field and a singlet-triplet transition of the DQD ground state at
BS-T ≈ 1.5 T. Beyond 1.5 T, we find an unconventional spin blockade effect
with an odd number of total electrons in the double quantum dot.

Finally, we summarize the main findings of this thesis in Chapter 9, and
present a brief outlook on further improvements and experiments.
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2 Theoretical background

S
N1 N2

QD2QD1

Δ
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µQD1 µQD2
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This chapter provides the most important theoretical concepts that are
needed for the experiments presented in this thesis. First, an introduction
to electron transport in single and double quantum dots is discussed. Second,
a brief introduction to ferromagnetism is presented, followed by a description
of the various experimental phenomena and concepts associated with ferro-
magnetic devices. In addition, a brief description of superconductivity and
Cooper pair splitting with quantum dots is introduced. The quantum dots
and superconductivity part partially follow the references [67–69], whereas the
ferromagnetism part follows partially the reference [70] .
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2. Theoretical background

2.1. Quantum dots

Quantum dots (QDs) are a key ingredient in this thesis as they form an in-
tegral part of Cooper Pair splitters [52, 59]. Quantum dots are quasi-zero
dimensional islands where the motion of electrons is confined in all three spa-
tial dimensions resulting in their kinetic energies becoming quantized. As a
result, their energy spectrum is quantized and are commonly referred to as
’artificial atoms’ [33]. However in contrast to natural atoms, QDs can be cou-
pled to source-drain electrodes and tuned by electrostatic gates, enabling us to
investigate their electrical properties in transport experiments at low temper-
atures. QDs have been realized in different solid state systems, such as semi-
conducting nanowires[71–73], graphene nanoribbons [74], carbon nanotubes
[75–77], two dimensional electron gases (2DEGs) [78–80] and two dimensional
Van-der-Waals materials [81].

In a typical one dimensional system, for example, semiconducting nanowires
(NWs), the electronic wavefunction along the radial direction is already quan-
tized due to their small diameters, which are typically on the order of few tens
of nanometers. In order to realize a QD, we need to introduce a confinement
along the NW axis. Experimentally, this is achieved by either forming Schot-
tky barriers [82], or by more controllable methods such as electrostatic gating
and epitaxially defined in-situ grown tunnel barriers [72, 83]. At sufficiently
low temperatures, the transport process across the metal-NW-metal nanos-
tructure is dominated by tunneling events as the resistance of the NW-metal
contact barriers are on the order of the resistance quantum, i.e., R ≥ h/e2.
Such a system is equivalent to a particle-in-a-box problem [84], where the en-
ergy level spacing δE depends on the dispersion relation of the system, which
in turn, depends on the precise geometry of the QD. Furthermore, the shell
filling of the energy levels follow the Pauli exclusion principle, similar to atoms.

In order to completely describe a QD, we need to consider another phe-
nomena along with quantum confinement: Coulomb interaction between the
electrons. Due to their small size, the associated capacitance C of the island
is small. The Coulomb interaction is then not negligible and can even be the
dominating energy scale at low temperatures. This leads to a large energy
cost, called the charging energy Ec, for adding or removing an electron from
the island. This property, termed as Coulomb blockade (CB) [33], is the most
universal property of a QD and discussed in detail in the next section. There-
fore, an ideal QD would be weakly coupled to the metal contacts such that
electrons can tunnel on and off the island, while keeping it isolated from the
environment.
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2.1. Quantum dots

2.1.1. Coulomb blockade and single electron tunneling

The phenomena of Coulomb blockade can be well described within the frame-
work of the constant interaction model (CIM) [32], which assumes that: (1)
the capacitance C assigned to the dot is always constant, and (2) the energy

QDS

 VSD I

 VG

 ΓS CS
μS μD

S D

QD E

μ(N+1)

a

D

G

b

,  ΓD CD,
μ(N)

μ(N-1)

 ΓS  ΓD

 VG

 CG

Figure 2.2. a. Capacitance model and typical measurement schematics of
a single quantum dot coupled by two tunnel barriers with capacitive coupling
CS,D and tunnel coupling strengths ΓS,D to a source (S) and drain (D) contact,
respectively. A single gate (G) capacitively couples to the quantum dot (QD)
with capacitance CG allowing us to tune the electrochemical potential of the
QD with voltage VG. b. Illustration of the energy level diagram of a single
QD showing the electrochemical potential energies µ(N) relative to those of
the S-D contacts, µS,D. Schematics adapted from Refs [33, 69, 85, 86].

spectrum of the QD is independent of the electron-electron interactions or
electron number N of the QD [33, 84, 85]. Let us consider a typical QD device
consisting of a single QD tunnel coupled to a source and drain contact with
tunnel coupling strengths ΓS, ΓD and capacitive coupling with capacitances
CS and CSD, respectively as shown in Fig. 2.2a. By applying a finite bias
voltage VSD = VS − VD, electrons can tunnel between the source and drain
contacts through the QD. This allows us to measure the DC current I or
differential conductance G = dI/dVSD across the quantum dot. The QD is
simultaneously tuned by the gate voltage VG, which is capacitively coupled to
the dot with a capacitance CG. The total capacitance of the QD is then given
by: C =

∑
i
Ci = CS +CD +CG, and the total ground state energy of the dot

with N charge carriers is:
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2. Theoretical background

Etot(N) = Q2
tot

2C +
N∑

n=1

En = 1
2C [−|e|(N −N0) +

∑
i

CiVi]2 +
N∑

n=1

En (2.1)

where N0 is the dot occupancy for all Vi = 0 with i ∈ S,D,G [33, 85]. The
first term in Eq. 2.1 refers to the electrostatic energy of the QD, where the
number of electronsN in the dot varies in discrete steps, while the gate-induced
charges CiVi changes the QD potential continuously (gating). The second term
describes the sum over all the occupied quantum mechanical energy levels En.

It is clearly seen from Eq. 2.1 that the energy required to add the Nth
electron to the QD is given by the difference between two single particle energy
levels defined as the electrochemical potential µ(N) of the QD, i.e.

µ(N) = Etot(N) − Etot(N − 1) = EN + e2

C
[N −N0 − 1

2 ] − |e|
C
CGVG (2.2)

This expression represents a “ladder" of electrochemical potential levels, as
shown in Fig. 2.2b. The spacing between these levels is the addition energy
given by:

Eadd = µ(N + 1) − µ(N) = e2

C
+ δE (2.3)

where EC = e2/C is the charging energy and δE is the quantized energy
level spacing of the QD [33, 85]. This ladder of electrochemical potential levels
can be shifted linearly by eαG∆VG using a gate voltage VG, where αG = CG/C
is the gate lever arm or efficiency factor.

For the low temperature regime kT ≪ δE ≪ EC and linear bias regime
VSD ∼ 0, the Fermi distribution of the lead electrons fS/D(E) = 1

e
(E−µS/D)/kT +1

can be approximated as a step function with a small thermal broadening ≈ kT
around µS/D. If µ(N) < µS = µD < µ(N + 1) as shown in Fig. 2.3b, elec-
tron transport is blocked, i.e. the so-called Coulomb blockade (CB) situation,
where the number of electrons in the QD is fixed. By tuning the gate voltage
VG, the electrochemical potential of the QD can be aligned with those of the
source-drain contacts, i.e. µ(N) = µS = µD, as shown in Fig. 2.3a. The QD is
said to be on-resonance and an electron from the leads can sequentially tun-
nel through the QD: single electron resonant tunneling. If one now measures
G as a function of gate voltage VG, one obtains a series of positive step-like
increase in G, i.e. the so-called Coulomb peaks or resonances [33] (Fig. 2.3c),
when the QD is on resonance. However, the CB peaks are typically broadened
by various effects, such as applied bias voltage, finite temperature of the lead
reservoirs and the QD lifetime such that they acquire an intrinsic line shape,
as discussed in the next section.
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2.1. Quantum dots

EC EC + δE

N-2

eαVG

N N+2 d
I/d

V S
D

μS μD

S D

QD E

μ(N+1)

b

μ(N)

μ(N-1)

 ΓS  ΓD

μS μD

S D

QDa
 ΓS  ΓD

μ(N+1)

μ(N)

μ(N-1)

c

Figure 2.3. Coulomb Blockade in a single QD. a. Single QD energy level
diagram describing the on-resonance configuration. An electron can tunnel
through the single QD when the electrochemical potential µ of the QD aligns
with the electrochemical potential of the source-drain contacts, i.e. µN =
µS,D. b. Energy level diagram when the single QD is in Coulomb blockade.
Electron tunneling through the QD is forbidden when µN ̸= µS,D. c. Expected
differential conductance G = dI/dVSD as a function of VG at VSD = 0 with two-
fold degenerate energy levels. Schematics adapted from Refs [33, 69, 85, 86].

In addition, the CB resonances also directly reveal the two-fold spin degen-
eracy of QD energy level spectrum. This signifies that although each of the
Coulomb peaks are separated by Eadd, the first electron occupying a new or-
bital needs an energy Eadd = EC + δE, while for the second electrons δE = 0
leading to an addition energy of Eadd = EC .

2.1.2. Resonance line shapes

Until now, the QD was assumed to be a perfectly isolated system such that
the tunnel coupling ΓS/D to the source-drain leads are always smaller than

9



2. Theoretical background

any other relevant energy scales of the system. However, even a small cou-
pling leads to a finite lifetime τ of the electrons on the QD. This provides an
energy window of h/τ (Heisenberg’s uncertainty principle) to tunnel slightly
off resonance onto the QD - resulting in a finite resonance width even at T = 0.
In the lifetime-broadened or strong coupling regime, i.e. kT ≪ Γ ≪ δE,EC,
the Coulomb peak can be expressed by a Breit-Wigner function [87]:

G(∆E) = e2

h

4ΓSΓD

Γ2
(Γ/2)2

∆E2 + (Γ/2)2 (2.4)

where ∆E = −eαG(VG − V
(0)

G ) is the level detuning of the resonance at
position V

(0)
G . The tunnel coupling Γ = ΓS + ΓD is given by the full width at

half maximum (FWHM), while the conductance maximum is determined by
the tunnel barriers asymmetry.

On the other hand, in the thermally broadened or weak coupling regime,
i.e. Γ ≪ kT ≪ δE,EC, the lineshape is described by [88]:

G(∆E) = e2

h

π

2kBT

ΓSΓD

ΓS + ΓD
cosh−2( ∆E

2kBT
) (2.5)

In this regime, the FWHM is given by: FWHM ≈ 3.5kBT , while the con-
ductance amplitude depends on the asymmetryA and decays with temperature
as ∼ 1/kBT .

2.1.3. Coulomb diamonds
In addition to VG, Coulomb blockade can also be lifted by applying a large
finite source-drain bias VS/D, as shown in Fig. 2.4. Whenever an electrochem-
ical potential level of the QD enters the bias window defined by: −|e|VSD =
µS − µD, electrons can tunnel through the QD. By measuring G as a function
of VSD and VG, we observe a pattern of so-called Coulomb diamonds [85], as
shown in Fig. 2.4. Inside the diamonds, the number of electrons on the QD
is fixed and the system is in CB where no sequential tunneling allowed. How-
ever, outside of the diamonds, CB is lifted as there is at least one QD level
within the bias window. The boundaries of the CB diamonds mark the onset
of charge transport with the negative slope β− signifying a QD level aligned
with the drain µD (panel I in Fig. 2.4), while for the positive slope β+ line
µQD = µS holds (panel III in Fig. 2.4).

Assuming asymmetric biasing, i.e. µD = 0 and bias is applied at the S
contact only, we have to tune the gate VG for staying along the diamond edges
in order to compensate for the electrochemical potential shift of the QD due
to the capacitive coupling from the S contact. This allows us to calculate the
slopes β+/−: From µQD = 0 = µD for the line with negative slope, one finds
0 = −|e| CG

C
∆VG − |e| CS

C
∆VSD resulting in β− = − CG

CS
. Similarly for the
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Figure 2.4. Schematics of Coulomb blockade diamonds in a single
QD. Differential conductance G of a typical NW QD as a function of source-
drain bias voltage VSD and gate voltage VG. The blue lines describe the edges
of the Coulomb diamonds with slopes β+ and β−. A clear two-fold periodicity
is shown, which can be used to extract Eadd, EC and δE. The energy diagram
in panels I-III shows different biasing conditions as marked in the Coulomb
diamond diagram. The energy diagram IV describes transport through the
first orbital excited state. Schematics adapted from Refs [33, 69, 85, 86].

positive slope, one obtains −|e|VSD = −|e| CG
C

∆VG − |e| CS
C

∆VSD giving us a
positive slope of β+ = CG

C−CS
. We can then estimate various parameters, such

as α, CS, CD, CG, from the negative and positive slopes of the diamond edges
such that the lever arm of the gate can be determined as αG = β+|β−|

β++|β−| = CG
C

.
In addition, at the tip of the diamond where the negative and positive slopes
cross as shown in panel II in Fig. 2.4, the corresponding QD levels are aligned
with both µS and µD respectively. This allows us to measure the spacing
between two adjacent levels of the QD, i.e. the addition energy Eadd = EC +
δE is given by the size of the big diamond in a two-fold degenerate energy
spectrum, while the size of the small diamond corresponds to the charging
energy EC.

Excited states and cotunneling

In all the above discussion, we only considered the ground state transitions
Etot(N + 1) ↔ Etot(N). However when we apply |eVSD| > δE, the Nth
electron can be excited into the EN+1 orbital and relax back to the ground
state. These excited orbital state appears as an additional line in G running
parallel to the diamond edge and terminating at |eVSD| < δE whenever an
excited energy level µ∗(N) falls into the bias window (panel IV in Fig. 2.4).

Apart from the above, higher order tunneling processes such as co-tunneling
are possible with increasing tunnel coupling Γ. In such a process, an electron
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2. Theoretical background

can leave the QD under CB, if another electron tunnels onto the QD within the
Heisenberg’s uncertainty times scale of ∼ ℏ/EC. This gives rise to a constant
G ∝ VSD inside the CB diamond region [89]. This process is defined as elastic
co-tunneling or inelastic co-tunneling depending on whether the QD remains
in the ground state or excited state, respectively, after the event.

2.1.4. Quantum dot states in magnetic field

As described earlier, the energy spectrum of a QD depicts a two-fold spin
degeneracy such that the electrons occupy doubly degenerate levels. This
spin degeneracy can be lifted by applying an external magnetic field B. The
electron spins in the QD will align either parallel or anti-parallel to the external
magnetic field. The energy of such parallel and anti-parallel spin configurations
shift linearly in opposite directions such that the energy separation is given
by: ∆EZ,N = g∗

NµBB, where g∗
N is the effective g-factor of the nth quantum

level and µB is the Bohr magneton. This is known as the Zeeman effect [90]
from atomic physics.

In addition to the linear Zeeman splitting, the energy of a QD state with
spin states sz = ±1/2 shows a quadratic dependence on B given by:

∆EN,sz = szg
∗
NµBB + γB2 (2.6)

The second term describes the effect of diamagnetic shift [87] with an ex-
perimentally determined proportionality constant γ that accounts for the dia-
magnetism of the QD when an induced magnetic moment couples with B.

In this formulation, the electron is considered a non-interacting particle such
that all the interactions are accounted within the effective g-factor g∗. This
reveals an effective g-factor of g∗

InAs = −14.9 for bulk InAs [65, 91], which is
considerably different from the free electron value of ge = +2.0023. This leads
to a large separation in the energy of the spin states with relatively small
B, leaving the contribution of the diamagnetic shift very small. However,
the effective g-factor in a QD can significantly deviate from the bulk value
depending on the electronic wave function in the confinement potential. It
has been observed that g-factor reduces towards the free electron value of
2 in very small QDs where the effect of confinement becomes prominent - an
effect called the quenching of orbital angular momentum [92, 93]. Furthermore
in a distorted confinement potential, the orbital angular momentum becomes
direction dependent making the g-factor anisotropic.

In our transport spectroscopy investigations, the Coulomb resonances will
exhibit position shifts according to Eq. 2.6 while measuring the conductance
G as a function of gate voltage and magnetic field B. If the Zeeman energy
∆EZ(B) becomes as large as the level spacing δE(B), a ground state transition
takes place and the N electron state evolves according to the lower energy state
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2.1. Quantum dots

in the EN (B) spectrum. On the other hand, the Zeeman splitting becomes
too obscured if the level spacing is too small.

2.1.5. Magneto-Coulomb effect
Quantum dots serve as extremely sensitive electrostatic sensors to their sur-
roundings such that any small change in the electrochemical potential of a
nearby ferromagnet can be detected. Such a ferromagnet in close proximity to
the dot induces an effective gating action on the QD upon application of an
external magnetic field. This effect is referred to as Magneto-Coulomb effect
[94], and has been observed in QD-based spin valves [94–96].

-Bc
B0

qind

Bc

∆qc

1 gμBB

E

EF

D↑(E) D↓(E)

2

ba

Figure 2.5. The Magneto-Coulomb effect a. Schematics of the spin-split
subbands in a typical ferromagnet. An external magnetic field B shifts the two
subbands energies in opposite directions by | 1

2gµBB|, as shown by the dashed
lines. b. Illustration showing the characteristic sawtooth-like dependence of
the induced charge qind on the QD as a function of B. A sudden change in
the induced charge ∆qc is observed when B is swept through the coercive field
BC of the ferromagnet. Schematics adapted from Refs. [96]

For a normal metal, an external magnetic field linearly shifts the electron
energies of the two spin species in opposite directions by the Zeeman term
± 1

2gµBB. However in the case of a ferromagnet, the electron filling of the
two spin subbands as well as the corresponding spin-dependent density of
states D↑/↓(EF) are different, as shown in Fig. 2.5a. Therefore, to preserve
the number of electrons, the electrochemical potential of the ferromagnet gets
shifted by:

∆µ = −1
2PgF MµBB (2.7)
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2. Theoretical background

where gF M is the g-factor of the ferromagnet, µB is the Bohr magneton and
P = D↑(EF)−D↓(EF)

D↑(EF)+D↓(EF) is the spin polarization of the ferromagnet. In practice,
the ferromagnet is connected to a nonmagnetic lead, i.e. a charge reservoir,
that requires the electrochemical potential in both metals to be equal. This
shift translates to a change in contact potential ∆ϕ between the ferromagnet
and the lead. This potential change induces an additional charge in the QD
given by:

∆qind(B) = CF M

2e PgF MµBB (2.8)

where CF M is the capacitance of the ferromagnet to the QD. Thus, applying
an external magnetic field to a close-by ferromagnet effectively acts as gate
voltage to the QD. From Eq. 2.8, we can clearly see that the induced charge
and hence the conductance G linearly shifts with B in the absence of any
ferromagnetic switching.

Let us now consider the case where magnetization switching of the ferro-
magnet is allowed. Sweeping the external field B from B > 0 towards B < 0,
the magnetization of the ferromagnet reverses on reaching the coercive field
B = −Bc. This leads to a sudden jump in the conductance G as the induced
charge changes discontinuously at BC by:

∆qc = CF M

e
PgF MµBBC (2.9)

A characteristic sawtooth-like profile in the induced charge (and hence the
conductance G) is observed, as shown in Fig. 2.5b. In addition, the position of
the QD resonances are also shifted in a similar manner in the energy spectrum
of the dot.

2.1.6. Double quantum dots
We will now extend our discussions from single quantum dot systems to double
quantum dots (DQDs) - an integral component of spin filter and spin valve
devices in this thesis. Two QDs can be formed in series by introducing a third
tunnel barrier in the NW such that two different regions become energetically
confined. Such a structure is called serial double quantum dot [97] (or artificial
molecules) such that an additional tunneling event takes place between the two
QDs determined by spin selection rules.

An electrostatic model/circuit diagram for a serial DQD is shown in Fig. 2.6a.
The two QDs are capacitively as well as tunnel coupled to their respective
source-drain leads, along with a mutual capacitance CM and tunnel coupling
ΓM between the dots. Two gate electrodes VG1 and VG2 tune the electrochem-
ical potential of individual dots QD1 and QD2 respectively. Typically, it is
difficult to avoid capacitive cross-talk in such small systems. Therefore, the two
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2.1. Quantum dots

gates tune both QD1 and QD2 to different extents via the cross-capacitances
VG1x and VG2x. An electrochemical potential diagram of the DQD is shown in
Fig. 2.6b where µ1,2(N,M) depicts the electrochemical potential and (N,M)
describes the electron population/configuration in QD1 and QD2 respectively.
We now limit our discussion to the linear bias regime, where VSD is extremely
small, i.e. VSD → 0 and µS,D = 0.

QD1S

 VSD I

 VG1

 ΓS CS

a

D

G1

,  ΓD CD ,

 CG1

QD2

 ΓM CM,

 VG2

G2

 CG2

 CG2x CG1x
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S
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μ(N+1)

b

μ(N)

μ(N-1)

 ΓS  ΓM

 VG1

μD

D

E
 ΓD

QD2

μ(M+1)

μ(M)

μ(M-1)

 VG2

Figure 2.6. Model of a double quantum dot (DQD) in series a.
Capacitance model and typical measurement schematics of a DQD. The two
quantum dots QD1 (QD2) are capacitively coupled to the source(drain) reser-
voirs, denoted by S(D), with capacitive coupling CS (CD) and tunnel coupling
strength ΓS (ΓD). Each of the dot QD1 (QD2) can be tuned by the gate G1
(G2) with capacitance CG1 (CG2) and cross-capacitance CG2x (CG1x). The
two dots are also coupled through a mutual capacitance CM and inter-dot
tunnel coupling strength ΓM. b. Illustration of the energy level diagram of a
DQD showing the electrochemical potential energies µ of the two dots relative
to those of the S-D contacts, µS,D. The electron population in the DQD is de-
noted by (N,M) where N (M) denotes the number of electrons in QD1 (QD2)
respectively. Schematics adapted from Refs. [97]

2.1.6.1. Charge stability diagram

In the linear regime, the charge configuration (N,M) of a DQD system can be
determined by the so called charge stability diagram [97], i.e. conductance G
as a function of gate voltages VG1 and VG2. The shape of the charge stability
diagram is mostly governed by the mutual capacitance CM between the two
dots. Fig. 2.7 shows the stability diagram for a DQD system with (a) weak
(CM → 0), (b) intermediate (0 < CM < C1,2), and (d) large (CM/C1,2 → 1)
interdot coupling, where C1(2) = CS(D) +CG1(G2) +CM is the total capacitance
of QD1 and QD2 respectively.
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Figure 2.7. Schematics of charge stability diagram of a DQD in se-
ries a. Charge stability diagram for the DQD with a. small (CM ≈ 0) and
b. intermediate (0 < CM < C1(2)) inter-dot tunnel coupling. The stability
diagram evolves into a honeycomb pattern for intermediate inter-dot tunnel
coupling strengths, where the degeneracy points (black dots) in a splits into
so-called triple points due to electrostatic interactions. The dimensions of
the honeycomb pattern are used to determine the respective gate and mutual
capacitances as given in Eq. 2.10 and Eq. 2.11. c. Evolution of the degen-
erate triple points into avoided crossings (dashed black lines) with increasing
inter-dot tunnel coupling strength ΓN. The insets describe the charge transfer
process through the DQD for the relevant edges of the honeycomb pattern. d.
For large CM, the DQD effectively behaves as a single QD and the honeycomb
pattern evolves into parallel lines. Schematics adapted from Refs. [97]

In the weak interdot coupling regime, the two individual QDs are fully de-
coupled (neglecting cross capacitances) and electron transport is independent
of the other QD, i.e. VG1,G2 tunes QD1,2 independently. The charge stability
diagram reveals a rectangular pattern of perfectly horizontal and vertical lines
as shown in Fig. 2.7a. Each line represents a change in the electron number
of the corresponding QD by one. For a small bias, electron transport through
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2.1. Quantum dots

the DQD is possible only at the crossing points, where the electrochemical
potential of the two individual dots align with source-drain electrochemical
potentials, i.e. µS = µ1 = µ2 = µD.

However in a realistic picture, there is always a finite mutual capacitance
CM between the two dots as well as a finite cross capacitance from the two
gate electrodes. The rectangular charge stability diagram then evolves to a
regular honeycomb pattern with two different slopes that forms the edges of
the honeycomb hexagon, as shown in Fig. 2.7b. The number of charge carriers
is fixed inside each of the honeycomb hexagon. However, each crossing point
splits into two triple points where three different charge states (N,M),(N +
1,M) and (N,M+1) are energetically degenerate. Therefore, electrons tunnel
through the DQD in two possible charge transfer processes: (1) (N,M) →
(N + 1,M) → (N,M + 1) → (N,M), and (2) (N + 1,M + 1) → (N + 1,M) →
(N,M + 1) → (N + 1,M + 1). The former process can be interpreted as an
electron sequentially tunneling from the source to drain, while the latter is the
sequential tunneling of a hole in the opposite direction. The spacing between
the honeycomb edges determines the gate capacitances by:

CGi = e

∆VGi
(2.10)

where i ∈ 1, 2 refers to QD1, QD2 respectively and ∆VGi is the correspond-
ing spacing. In addition, the distance between each set of triple points is
related to the mutual capacitance CM by:

CM = C1/2
∆V M

G1/G2

∆VG1/G2
(2.11)

where C1/2 is the total capacitance of QD1/QD2 determined from the non-
linear, i.e. finite bias, regime discussed in the next section.

If we now take into account a finite tunnel coupling ΓM between the two
dots, the degeneracy at the triple points is lifted leading to avoided crossings
in the charge stability diagram, as shown in Fig. 2.7c. At the triple points,
the two QD states hybridize to form bonding and anti-bonding molecular
orbitals, rounding off the hexagonal lines into avoided crossing features. The
separation of the avoided crossing from the triple points is determined by the
strength of the interdot tunnel coupling. If the tunnel coupling ΓM and the
mutual capacitance (CM/C1,2 → 1) is very large, the resulting charge stability
diagram evolves into parallel lines signifying an effectively large single QD as
shown in Fig. 2.7d.

2.1.6.2. Bias triangles

We now consider the case of an asymmetric finite bias |VSD| > 0 applied to the
DQD such that µD = 0 and the bias is applied to the source contact, similar to
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Figure 2.8. Transport through a serial DQD at finite bias voltage
VSD. For finite VSD, the triple points in the honeycomb pattern change into
bias triangles, where electron transport through the DQD is allowed in the
regions within these bias triangles. The insets (I-IV) describe the electro-
chemical energy level diagrams for the relevant points along the bias triangle
boundaries. For large VSD, multiple discrete energy levels enter the bias win-
dow resulting in electron transport through excited states (red dashed lines).

the single QD description. The conductance regions at the triple points of the
honeycomb change into triangular shaped regions, so-called bias triangles [97],
at finite bias as shown in Fig. 2.8. The boundaries of these bias triangles are
determined by the condition: −|e|VSD = µS ≥ µ1, µ1 ≥ µ2 and µ2 ≥ µD = 0.
An electron is allowed to tunnel through the DQD within these bias triangles,
while outside the triangles electron transport is blocked. The dimensions of
the triangles δVG1 and δVG2 are related to the applied bias voltage VSD by:

α1(2)δVG1(G2) =
CG1(G2)

C1(2)
|e|δVG1(G2) = |eVSD| (2.12)

where α1,2 are the corresponding gate lever arms. Using Eq. 2.10, 2.11
and 2.12, we can explicitly determine the total capacitances C1,2 and mutual
capacitance Cm.

All the above discussion was based on the assumption that a single energy
level from each QD lies within the bias window. However for sufficiently large
bias voltages, multiple discrete energy levels enter the bias window. In such
a case, the excited states also contribute to the conductance along with the
ground state. Such an excited state transition appears as a resonance parallel
to the ground state resonance within the bias triangle, as illustrated by the
red dashed lines in Fig. 2.8.
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2.1.7. Pauli Spin Blockade
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Figure 2.9. Pauli Spin Blockade. a,b Schematics of DQD charge stabil-
ity diagram at (a) negative VSD = −1 mV and (b) positive VSD = +1 mV bias
voltages. c,d Energy level diagram at B = 0 for the DQD charge transition
(1, 1) → (2, 0) at (c) negative VSD = −1 mV and (d) positive VSD = +1 mV
bias voltages. Electron transport is blocked when the T(1,1) state gets oc-
cupied in Fig. d, resulting in a current suppression at the base of the bias
triangles as shown in Fig. b. Figure adapted from Ref. [87].

In a typical DQD system, the electron spin is conserved during tunneling
events. The tunneling current is strongly suppressed when the initial and final
spin states of the DQD system are orthogonal, thereby forbidding the electron
transition. This phenomenon is known as Pauli spin blockade (PSB) [87] and
has been observed in single QDs with strong electron-electron interactions [98]
as well as DQD systems [99]. For a DQD in series with up to two electrons in
each dot, PSB is observed at finite VSD. We consider the charge transition with
two electrons in the DQD as shown by the bias triangle in Fig. 2.9a, where
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the left QD contains one electron. The ground state (GS) of the (2,0) charge
configuration is the spin singlet (S) state [|S⟩ = 1

2 (|↑↓⟩ − |↓↑⟩)], while the
(2,0) spin triplet (T) excited state (ES) are inaccessibly higher up in energy.
On the other, the singlet and triplet states for the charge configuration (1,1)
are almost degenerate due to negligible exchange interaction between the two
electrons residing in different QDs. For a negative VSD, the charge transfer
cycle is (1, 0) → (2, 0) → (1, 1) → (1, 0). The interdot charge transition
occurs through the S(2, 0) → S(1, 1) spin states, which conserves the spin of
the tunneling electron and current flows unhindered, as shown by the energy
level diagram in Fig. 2.9c. For the opposite polarity positive VSD, the charge
transfer cycle is (1, 0) → (1, 1) → (2, 0) → (1, 0). Since the S(1,1) and T(1,1)
spin states are almost degenerate, an electron can enter the right QD to form
either the S(1,1) or the T(1,1) state. For the S(1,1) state, the electron can
tunnel through the DQD via the interdot transition S(1, 1) → S(2, 0). However
when an electron enters the T(1,1) state, it gets trapped as the T(2,0) spin
state is inaccessibly high in energy. The interdot transition T (1, 1) → S(2, 0)
is forbidden due to violation of spin conservation (Fig. 2.9d) and the finite
VSD disallows tunneling back to the metal reservoirs. The trapped electron
then prohibits further occupation of the right QD due to Coulomb blockade
effect. This PSB phenomenon results in a suppression of the current in the
bias triangle at positive VSD, as depicted in Fig. 2.9b. PSB within the bias
triangles can be lifted by spin-flip processes, mediated by spin-orbit interaction
or hyperfine interaction.

2.2. Ferromagnetism

In general terms, ferromagnetism can be described as a physical phenomenon
in which certain materials, such as iron (Fe), cobalt (Co) and nickel (Ni), are
attracted to a magnetic field and form permanent magnets. Quantum mechan-
ically, ferromagnetism is a quantum mechanical effect in which the magnetic
moment of the electrons gets collectively ordered to produce a finite magneti-
zation M in a permanent magnet. Such finite M occurs on macroscopic length
scales and even at room temperatures if the Curie temperature TCu, i.e. the
temperature above which ferromagnetic ordering gets destroyed, is sufficiently
large as in Fe, Co and Ni.

For a ferromagnetic material, the magnetic moments retain their ordered
alignment even in the absence of an external magnetic field B. This results
in a non-zero magnetization at B = 0, which is known as the remanent mag-
netization Mr as shown in Fig. 2.10a. The magnetization gets reversed only
when a sufficiently large B is applied in the opposite direction to overcome the
ferromagnetic order. This field is termed as the coercive field BC = µ0Hc as
illustrated in Fig. 2.10a. Further increase to higher B aligns all the magnetic
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moments along the direction of B and the ferromagnetic material reaches its
saturation magnetization MS. Therefore, the magnetization of a ferromagnet
strongly depends on the B sweep history, resulting in a loop for the magnetiza-
tion curve as a function of applied magnetic field B. This phenomena, known
as magnetic hysteresis, is shown in Fig. 2.10a. The width of the hysteresis
loop determines the coercivity of a material, i.e. the ability of the material
to withstand external magnetic fields without losing its magnetization. Fer-
romagnets with small and large coercive fields HC are categorized as soft and
hard magnets, respectively.
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Figure 2.10. Basic characteristics of ferromagnetism. a. Magneti-
zation curve M as a function of external magnetic field B for a ferromagnet
with saturation magnetization MS, remanent magnetization Mr and coercive
field Bc. b. Schematic of the density of states (DOS) for the spin-up (D↑(E))
and spin-down (D↓(E)) electrons, where the dashed arrow describes spin-flip
processes. c. Schematics of the spin-split bands shifted by the exchange split-
ting ∆Eex in the Stoner model. A spontaneous magnetization M ∝ (n↑ − n↓)
proportional to the difference between the number of spin-up and spin-down
electrons arises. d. Schematics of an elliptical single-domain nanomagnet de-
scribing the angles between the easy axis, magnetization M and magnetic field
H in the Stoner-Wolfarth model. Schematics adapted from Refs [67, 70].

2.2.1. Microscopic origin
In a classical description, the magnetic dipole moments energetically favor
an anti-parallel orientation. However, ferromagnetic ordering favors parallel
alignment of the electron’s magnetic moments. In microscopic terms, such
an ordering is the consequence of a purely quantum mechanical effect, known
as exchange interaction, caused due to the Coulomb repulsion and indistin-
guishability of electrons [100, 101]. The fermionic statistics theorem states
that the electron wavefunction has to be anti-symmetric under the exchange
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of two particles, i.e. the amplitude for two identical electrons to occupy the
same state is zero (Pauli exclusion principle). Therefore, the spatial distri-
bution of the electron wavefunction depends on its spin configuration. In a
ferromagnetic material, the reduced Coulomb repulsion energetically favors a
parallel electron spin alignment if the thermal fluctuations do not dominate
the exchange interaction.

Although the above exchange-interaction picture explains the origin of ferro-
magnetism in strongly localized systems, it fails to describe metallic ferromag-
nets, e.g. Fe, Co and Ni, in which the electrons responsible for ferromagnetism
are itinerant [101]. Such systems are treated with the Stoner model, which as-
sumes a spin-split band structure for the spin-up and spin-down electrons.
The model evaluates the total energy change due to spontaneous magnetiza-
tion in a ferromagnet [100, 101]. Such spontaneous magnetization arises when
electrons are transferred from one spin band to other, creating an imbalance
of the two spin species, as shown in Fig. 2.10b. This results in an increase in
the total kinetic energy and a decrease in potential energy due to exchange
interaction. The spontaneous ferromagnetic behavior occurs only when the
system’s energy reduction outweighs the kinetic energy increase, i.e. Etot < 0,
yielding the Stoner criteria

UD(EF) ≥ 1 (2.13)

where U is the exchange interaction strength and D(EF) is the density of
states (DOS) at Fermi energy EF.

To fulfill this criteria, we need a large exchange interaction strength and a
large DOS at the Fermi energy. For the ferromagnetic metals Fe, Co and Ni,
the Fermi energy lies within the narrow 3d bands leading to a large DOS D(EF)
[100]. The spin-split bands in these metals shift with respect to each other in
order to maintain equal chemical potential at thermal equilibrium. This leads
to the exchange splitting ∆Eex between the spin-up and spin-down bands
(Fig. 2.10c) and a spontaneous magnetization, M ∝ (n↑ −n↓) proportional to
the difference between the number of spin-up and spin-down electrons, arises
even without any external magnetic field.

2.2.2. Stoner-Wohlfahrt model

The Stoner model successfully describes the microscopic origin of ferromag-
netism by considering the magnetization M homogeneous over the whole ma-
terial. However, it fails to account for the local variations in M(r) and the
various anisotropies observed in real bulk ferromagnets. This can be ac-
counted for by minimizing the total free energy of a ferromagnet, i.e. G =∫

V
dV gtot(M(r),H), which includes all the relevant energy terms and built-in

magnetic anisotropies of the system [101, 102]. In summary, these anisotropies
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align the magnetization M along a preferred orientation called the easy axis,
for which the total free energy G of the system is minimal. The orientation
with maximal energy is called the hard axis.

In this thesis, we provide a brief overview of the most relevant energy
terms and magnetic anisotropies which contribute to the total energy density
[101, 102] gtot = fZ + fex + fmc + fd and determine the magnetic proper-
ties. The coupling between a ferromagnet and an external magnetic field B
is given by: fZ = −BM = −µ0HM, which gets minimized for parallel align-
ment of M with the external field. A short range exchange energy interaction
term fex ∝ ∇(M(r))2 explains the microscopic ferromagnetic ordering of mag-
netic moments, in which spins at adjacent sites prefer parallel alignment. The
magneto-crystalline anisotropy fmc term describes the favored alignment of
magnetic moments along a crystallographic easy axis, determined by crystal
field effects and spin-orbit interaction which couples the electron spins to the
anisotropic orbitals in the crystal structure. It is described by the leading term
in the expansion for uniaxial anisotropy: fmc = K sin2 θ + O(sin4 θ), where θ
is the angle between magnetization and the easy axis.

An important energy term is the dipolar energy density: fd = −µ0Hd(r)M(r),
which describes the interaction of the magnetization with the dipolar field gen-
erated by the sample itself. The dipolar field generated by a ferromagnet is
known as demagnetizing field (inside the sample) and stray field (outside the
sample). Due to the non local nature of Bd, this term determines the non-
uniform magnetization configurations in samples with finite dimensions. The
minimization of the stray field energies tends to reduce the surface magnetic
charges of the magnet, i.e. align the magnetization parallel to the body edges.
This effect, also known as shape anisotropy, leads to a preferred-in plane mag-
netization direction for soft magnetic materials such as Permalloy. We can
engineer the magnetization direction by choosing an appropriate geometry,
for example, an elongated strip tends to align its magnetization along the long
axis. However for larger ferromagnetic samples, the stray fields can be reduced
by magnetic domains - uniformly magnetized areas with parallel orientation
of magnetic moments - separated from each other by domain walls over which
the magnetic moments orientation continuously changes.

For the ferromagnets used in this thesis, the sample sizes are typically small
(< 300 nm in width). In such samples, the energy cost to form domain walls is
large compared to the reduction of dipolar energy. As a result, the exchange
and anisotropy terms dominate leading to a single domain magnetization. Such
single domain structures are well described by the Stoner Wolfarth model [103,
104] which considers only two energy terms: an ellipsoidal magnet of uniaxial
anisotropy and constant magnetization |M| arising from magneto-crystalline
or shape anisotropy, and the Zeeman energy of the magnet in an external
magnetic field B. The expression is given by:
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gsw(B) = fmc + fz = K sin2 θ − µ0MSH cos(α− θ) (2.14)

where θ(α) denotes the angle between easy axis and M(H) as shown in
Fig. 2.10d. By minimizing the energy density in Eq. 2.14 with respect to θ, we
can obtain the preferred orientations for magnetization M, which is restricted
to the plane containing H and the easy axis. For low B = µ0H, one gets two
solutions as the minimal energy orientations for M. As B is swept further,
M displays either a smooth in-plane rotation or sudden sharp switching as
only one of the solution becomes sustainable. For example, if B is applied
parallel to the easy axis, i.e. α = 0, the magnetization reverses abruptly at
the switching or coercive field Hc = 2K/µ0MS [103] forming a hysteresis loop.
However for α = 90◦, we do not observe any hysteresis, but a continuous and
smooth in-plane rotation of M towards the hard axis.

2.2.3. Spintronic devices and magnetoresistance effects

The field of spintronics refers to the control and manipulation of the electron’s
spin degree of freedom for various applications, such as information storage,
logic and sensing [11, 13]. We briefly discuss the key concepts essential for
such efficient spin control, for example spin injection, accumulation and de-
tection. Furthermore, the relevant magnetoresistance effects observed in the
spintronic devices - tunneling magnetoresistance (TMR) [105] and anisotropic
magnetoresistance (AMR) [106]- are also discussed.

2.2.3.1. Spin polarization, injection and detection

The most important phenomena in the field of semiconducting spintronics in
the generation of spin polarized currents [4]. The DOS D↑/↓(EF) of the spin-up
and spin-down electrons at the Fermi energy EF of a ferromagnet is different
due to the exchange-split spin bands. As a result, we can define the spin
polarization of the ferromagnet by:

P = D↑(EF) −D↓(EF)
D↑(EF) +D↓(EF) (2.15)

which can have absolute values from 0 (unpolarized, normal metals) to 1
(completely polarized) [107]. This spin polarization leads to a spin-polarized
current in the ferromagnet. In the absence of any spin flip scattering, spin
transport in a ferromagnet is by described the two-current model which as-
sumes two independent spin channels jσ, σ ∈ {↑, ↓} first proposed by Mott
[108] and experimentally verified by Campbell and Fert [109]. The current
spin polarization is then defined as the ratio of the difference between the two
spin current j↑ − j↓ to the total charge current j↑ + j↓:
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Pj = j↑ − j↓

j↑ + j↓
(2.16)

Typical current spin polarization for ferromagnetic metals such as Fe, Co,
Ni are around Pj ∼ 0.4 [110].
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Figure 2.11. Spin Injection and spin accumulation in a non-magnetic
material. a-c A spin polarized current is injected into a non-magnetic mate-
rial (NM) from a ferromagnet F, resulting in a non-equilibrium spin accumu-
lation µS = µ↑ − µ↓ in the NM near the F-NM interface. The spin polarized
current can then be detected with a second ferromagnet. d. Schematics de-
scribing spin accumulation µS at the ferromagnet-non-magnetic material in-
terface, where ∆µ denotes the difference between the averaged electrochemical
potentials µF and µNM across the interface. Adapted from Refs. [67, 70].

Therefore, ferromagnets can be fundamentally placed in contact with non-
magnetic materials (NM), such as semiconductor (SC), superconductor (S)
or normal metal (N) to inject a spin-polarized current across the interface.
This process, known as spin injection [13], induces a non-equilibrium spin-
band population in the non-magnetic material as illustrated in Fig. 2.11a,b.
This induced difference in the electrochemical potential of spin-up and spin-
down electrons is known as spin accumulation µS = µ↑ − µ↓ at the interface
(Fig. 2.11b) [13]. Spin accumulation decays with increasing distance |x| from
the interface into the NM due to spin-flip processes, resulting in a spin equilib-
rium µS = 0 far away from the interface (Fig. 2.11d). For diffusive transport,
the non-equilibrium spin accumulation µS decay is exponential, which can be
obtained from the equation:

δ2µS

δx2 = µS

L2
s

(2.17)

where Ls =
√

Dτs is the characteristic length for spin flip processes or spin
diffusion length, D is the spin-averaged diffusion constant and τs is the spin
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relaxation time. The spin relaxation is mainly due to spin-orbit interaction,
hyperfine interaction and magnetic impurities. The remaining spin-polarized
current and spin accumulation can then be detected using a second ferromag-
netic contact as shown in Fig. 2.11c, resulting in a typical spin-valve structure
(F-NM-F) discussed in more details in section 2.2.3.2.

However, if the NM material in a typical spin valve device has large resistiv-
ity such as a semiconductor or graphene, spin injection is strongly suppressed
due to conductivity mismatch at the interface [111]. This mismatch leads to
lower values of current spin polarization in the ferromagnet as well as NM.
The problem can be solved by using fully polarized (PN = 1) half metallic
ferromagnets or introducing a tunnel barrier between the ferromagnet-normal
metal interface. The tunnel barrier provides a large interface resistance which
shifts the decay of spin accumulation to the NM. In the case of InAs NWs,
such tunnel barriers are typically created at the contact interfaces.

2.2.3.2. Magnetoresistance effects

As discussed in the previous section, ferromagnets serve as an useful tool to
study spin transport phenomena. In mesoscopic devices, they are typically
used as spin injectors and detectors to investigate magnetoresistance (MR)
effects, i.e. change in resistance with magnetic field. We provide a brief de-
scription of the relevant MR effects for this thesis.

Tunneling Magnetoresistance

Spin valve structures have been extensively used for various applications,
for example, as magnetoresistive random-access memory (MRAM) [23] and
read/write heads of hard drives [22] for information storage. Typically, a spin
valve consists of a non-magnetic (NM) material coupled/sandwiched between
two ferromagnets (F), as shown in Fig. 2.12a [13]. The device resistance of
such a structure can be controlled by the magnetization configuration of the
ferromagnets. This is accomplished by placing two narrow F strips F1 and
F2 with different width in contact with the NM such that they have different
switching fields due to shape anisotropy. One can then obtain both parallel
(P) and anti-parallel (AP) magnetization configuration by tuning the external
magnetic field B. The P and AP configurations produce different conduc-
tances GP/GAP, resulting in a step-like conductance change at the switching
field of the ferromagnets (Fig. 2.12b). This characteristic signal is defined as
the magnetoresistance (MR) given by:

MR = GP −GAP

GP +GAP
(2.18)

Magnetoresistance can be classified into different categories based on its
physical origin: If the NM material is conducting, the phenomenon is called
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Figure 2.12. Tunneling Magnetoresistance (TMR) a. Schematics of
a conventional spin-valve device consisting of two ferromagnets F1,F2 with
different widths and a non-magnetic material (NM). b. Typical magnetocon-
ductance (MC) curve for a spin-valve showing two different switching fields Bc1
and Bc2for the two ferromagnets. The horizontal red and blue arrow denotes
the up-sweep and down-sweep direction of the external magnetic field B, while
the vertical arrows describe the magnetization configuration of the ferromag-
nets. c,d Schematics of the Jullière model for TMR. The conductance across
the spin valve is determined by the DOS of two independent spin channels,
such that higher conductance is observed for parallel magnetization configu-
ration (c) than the anti-parallel magnetization configuration (d). Schematics
adapted from Refs. [67, 70]

giant magnetoresistance (GMR). On the other hand, if the NM material is
an insulator (I) forming a tunnel barrier F-I-F between the ferromagnets, the
corresponding MR is called tunneling magnetoresistance (TMR). TMR can be
well described by the Jullière model [112] which consists of two assumptions:
(1) the electron spin is conserved during tunneling such that the two spin
current channels are independent, and (2) the tunneling across the barrier is
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energy independent resulting in a current given only by the product of the
spin-dependent DOS Dσ(EF) at the Fermi energy. Hence, the conductance
for P and AP magnetization states are given by:

G(ij) = G
(ij)
↑ +G

(ij)
↓ ∝ D

(i)
1,↑D

(j)
2,↑ +D

(i)
1,↓D

(j)
2,↓ (2.19)

where i, j ∈ {+,−} denotes the P and AP magnetization states. In the
AP case, the majority (minority) spins have to tunnel into empty minority
(majority) states resulting in a reduced conductance of the two spin channels
as shown in Fig. 2.12d. However for the parallel magnetization case, the
conductance is dominated by the majority spin current denoted by the larger
arrow in Fig. 2.12c. Using the identity D+

σ (EF) = D−
−σ(EF) and Eq. 2.15, the

TMR can be expressed as:

TMR = GP −GAP

GP +GAP
= P1P2 (2.20)

where P1 and P2 are the spin polarization of the ferromagnets respectively.
In Eq. 2.20, the TMR can have values between 0 (normal metal) and 1 (fully
polarized ferromagnetic half-metals with PN = 1). Although, Jullière model
provides a simple explanation for TMR, it neglects spin-flip processes dur-
ing tunneling at the interface. It is also limited by the assumption that the
tunneling matrix elements across the interface are energy independent, i.e.
Tσ(E) = T .

Anisotropic Magnetoresistance

Anisotropic magnetoresistance (AMR) is defined as the change in the resis-
tance of a ferromagnet based on the relative orientation of the magnetization
M and current j. AMR arises due to spin-orbit interactions (SOI) and con-
sequent anisotropic s-d spin-flip scattering processes. The conductivity of a
ferromagnet is mostly determined by the unsplit 4s-band electrons due to their
small effective mass. The main source of these s-electron scatterings are 4s-
3d intraband transitions, where the resistivity (or scattering cross section)
depends on the number of empty 3d states [113]. SOI allows spin-flip s-d scat-
tering processes, which further increases the resistivity. Due to the built-in
anisotropy of the d orbitals, the selection rules for such scattering processes
depends on the relative orientation of the current and magnetization direction.

In general, only those s-electrons whose momentum direction k lies in the
plane of d-orbitals can scatter into the empty 3d-states. If we now consider
d-orbitals oriented in a plane perpendicular to M, we find that the scattering
cross section, and hence the resistivity, is maximal for j,k||M and minimal for
j,k⊥M. This dependence of the resistivity can be expressed as:

ρ(ϕ) = ρ⊥ + (ρ|| − ρ⊥) cos2 ϕ (2.21)
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Figure 2.13. Anisotropic magnetoresistance (AMR) measurements.
The normalized resistance change (∆R/∆Rmax) and the normalized magneti-
zation M/MS for a rectangular single-domain ferromagnetic strip as a function
of external magnetic field H for angles (a) α = 90◦ and (b) α = 1◦ calculated
from the Stoner-Wolfarth model. The red and blue arrows denote the up-
sweep and down-sweep direction of H respectively. A continuous rotation of
the magnetization M and a continuous decrease in the resistance is observed
for α = 90◦, while M exhibits a sudden switching for α = 1◦ at the coercive
field Hc. Adapted from Refs. [67, 70]

where ϕ is the angle between j and M and ρ||(ρ⊥) are the resistivities for
j||M (j⊥M). However, we note that a exactly accurate description of AMR
requires a microscopic treatment of the scattering matrix elements and the
spin-orbit interaction.

In practice, AMR measurements are used to determine the switching (coer-
cive) field of single domain ferromagnets [106]. The magnetization M direction
can be tuned with an external magnetic field B such that at higher B fields, M
aligns in a parallel orientation with B. By applying a fixed current direction j
along the easy axis of the ferromagnet, we can obtain the sample resistivity as
a function of B by determining ϕ(B) from Eq. 2.14 of the Stoner-Wohlfahrt
model. For B ⊥ j, M continuously rotates towards the hard axis and the resis-
tivity reduces parabolically to its saturation value ρ⊥ as shown in Fig. 2.13a.
For B||j, the magnetization sharply switches its orientation at the coercive
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field Hc. However, we do not observe as resistivity change in AMR as j||M
always. However, a small misalignment α = 1◦ of B with j causes the magne-
tization to briefly rotate towards the hard axis before switching its orientation.
This results in a characteristic resistance dip followed by a sudden jump at
the switching fields as illustrated in Fig. 2.13b, allowing us to characterize the
switching fields of single domain ferromagnetic strips as well as investigate
multiple domain ferromagnetic configurations [114].

2.3. Superconductivity

Superconductivity is a physical phenomenon in which certain materials such
as aluminum, mercury, lead or niobium show a vanishing electrical resistance
when the temperature drops below a critical value Tc. Another key feature
of superconductivity is the perfect diamagnetism in the superconducting state
or the so-called Meissner-Ochsenfed effect [115], i.e. magnetic fields are ex-
pelled from inside the superconductor due to induced dissipation less surface
currents. This leads to the existence of a critical magnetic field Bc = µ0Hc,
above which a thermodynamic phase transition to the normal state occurs
due to the increased energy cost to keep the magnetic field out of the super-
conductor. In general, the external magnetic field leads to an increase of the
Gibbs energy of the superconductor according to dGS = −VMdB, where V
is the volume of the superconductor, M = −B/µ0 is the magnetization of
a perfect diamagnet and dB is the magnetic field change. This behavior of
superconductors is frequently used to perform control experiments in the nor-
mal state. Although, superconductivity is phenomenologically described by
the Ginzburg-Landau (GL) theory [116] and the London equations, the micro-
scopic theory was presented by Bardeen, Cooper and Schrieffer in the BCS
theory of superconductivity [51].

2.3.1. Cooper pairs and superconducting gap
The fundamental pillar of BCS theory is that in the presence of the ‘Fermi
sea’, any net attraction between two electrons can bind them together into
so-called Cooper pairs which obey bosonic statistics [51]. The binding energy
of the electron pair is a function of the total momentum K = k1 + k1, where
k1 and k2 are the wavevectors of the two electrons. The binding energy is
maximum for K = 0, i.e. the two electrons of a Cooper pair have opposite
momenta, k1 = −k2. This result can be intuitively understood by considering
the physical origin of such attraction, which is mediated by the ion lattice.
In a classical picture, an electron moving across a solid attracts the positively
charged ion cores and deforms the ion lattice. This drags a cloud of positive po-
larization behind its path, which in turn attracts another electron. Quantum
mechanically, this attraction is described as the exchange of virtual phonons.
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Exchanging a virtual phonon with wavevector q results in the two new elec-
tron wavevectors k′

1 = k1 + q and k′
2 = k2 − q, thereby conserving the total

momentum K = k1 + k2 = k′
1 + k′

2. This exchange is limited by the available
phonon energies, which is cut-off at the Debye frequency ωD. The phonon
mediated interactions are then limited to the narrow energy window of EF to
EF + ℏωD, assuming all electron states below the Fermi energy are occupied.
This corresponds to a narrow shell of thickness δk = mωD/ℏkF around the
Fermi sphere in the reciprocal lattice, as illustrated in Fig. 2.14a. It can be
clearly seen that the probability of phonon exchange is maximum for electrons
with the condition K = 0 as the whole δk shell is accessible (Fig. 2.14b), while
if K ̸= 0 only the scattering states in the small area where both shells intersect
are accessible.

1k 2k
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k

k− 'k
'k−

a b

kδ

Figure 2.14. Schematics illustrating momentum conservation during
the exchange of a virtual phonon. The blue circle denotes the allowed
magnitude of the initial and final wavevectors of the electrons ranging between
kF and kF + δk. a. For K ̸= 0, only the small intersection area of the
two circles fulfill momentum conservation. b. However for K = 0, the two
circles coincide, which maximizes the number of scattering events that fulfill
momentum conservation and thereby maximizes the probability of phonon
exchange. Schematics adapted from Refs. [67, 69]

In general for simple metals, the Cooper pair wavefunction comprises of
two parts dependent on the spatial coordinates and the spin coordinates re-
spectively. Since the two electrons have opposite momenta (k,-k), the orbital
(spatial) wavefunction is the product of two plane waves given by:

ψ(r1, r2) =
kF+δk∑
k=kF

gke
ιk.r1e−ιk.r2 =

kF+δk∑
k=kF

gke
ιk.(r1−r2) (2.22)

In inversion-symmetric crystal, an interchange of two electrons should be
indistinguishable from the original state such that the probability distribution
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of the electrons remain unchanged. This means that the Cooper pair wave-
function can only pick up a phase factor during the interchange. However,
a further second interchange must give back the original state, which limits
the phase factor to either +1 or -1. Therefore, the orbital part of the Cooper
pair wavefunction can either be symmetric or anti-symmetric. In contrast, the
total Cooper pair wavefunction must be anti-symmetric under the interchange
of two electrons due to the Pauli exclusion principle of fermions. Thus, the
spin part of the wavefunction must have opposite symmetry to the orbital
part. In metals such as aluminum, the orbital wavefunction is symmetric,
which results in an anti-symmetric spin wavefunction known as the conven-
tional ’spin singlet state’: |S⟩ = 1√

2 (|↑↓⟩ − |↓↑⟩). On the other hand, in liquid
3He, the orbital wavefunction is anti-symmetric, which makes the spin wave-
function symmetric resulting in an unconventional ’spin triplet state’. For the
aluminum superconductor used in this thesis, the Cooper pairs can thus be
denoted by the notation (k ↑,−k ↓). The spins of the two electrons are in a
superposition state: the two individual spins of a Cooper pair are maximally
entangled, while the total spin is zero.

The electrons keep condensing into Cooper pairs due to the attractive inter-
actions until an equilibrium state has been reached where further pairing does
not lower the energy anymore. This new ground state is known as the BCS
ground state, which completely differs from the Fermi sea. Although a rigorous
derivation of the BCS theory is omitted here, the most important findings of
the BCS theory can be categorized into two effects: First, Cooper pairs obey
bosonic statistics and can be described by a coherent macroscopic wavefunc-
tion. Second, the single particle energy spectrum in the superconducting state
is gaped, i.e. excitations from the ground state requires a minimum energy of
2∆, where ∆ is the superconducting energy gap. The factor 2 is due to the
breaking of one pair into two unpaired charge carriers. Since these coherent
excitations are strongly different from free electron excitations in a Fermi gas,
the new unpaired electrons are called quasiparticles or Bogoliubons in order
to distinguish them. The dispersion relation of these quasiparticles can be
written as:

E(k) =
√
ϵ(k)2 + ∆2 (2.23)

where ϵ(k) = ℏ2k2/2m − EF is the kinetic energy of a free electron with
respect to the Fermi energy. This dispersion relation has hole-like (ϵ < 0) and
electron-like (ϵ > 0) branches, as depicted in Fig. 2.15a. The quasiparticles
behave as free electrons (free holes) only for large kinetic energies ϵ ≫ ∆
(ϵ ≪ ∆), while at small kinetic energies the behavior is strongly deviated from
free electrons due to the energy gap. Although the energy gap separates the
Cooper pair condensate from the quasiparticle excitations, no states are lost
in the phase transition from normal to superconducting state, i.e. DN(ϵ)dϵ =
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DS(E)dE. One can then derive the density of states (DOS) DS(E) for the
quasi-particle spectrum:

DS(E) = DN(ϵ) dϵ
dE

=

{
|E|√

E2−∆2
, |E| > ∆

0 |E| < ∆
(2.24)

where the normal state DOS DN(ϵ) is assumed to be constant for energies
close to the Fermi energy EF, i.e. DN(ϵ) ≈ DN(0). This normalized quasipar-
ticle DOS is plotted in Fig. 2.15b where the normal state DOS is recovered
for |E| ≫ ∆, the quasiparticle DOS diverges for |E| → ∆ and no quasiparticle
states exist for |E| < ∆ with the Cooper pair condensate located at EF.
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Figure 2.15. Dispersion Relation a. Quasiparticle dispersion relation in
the superconducting state (solid blue lines) as compared to the normal state
(dashed black lines) close to the Fermi energy EF. b. Quasiparticle density-of-
states (DOS) DS(E)/DN(0) in the superconducting state for positive (electron-
like excitations) and negative (hole-like excitations) energies in a band diagram
formalism. Schematics adapted from Refs. [67, 69]

The vanishing electrical resistance below Tc and the perfect diamagnetism
below Bc can now be explained by the gaped superconducting energy spectrum
and BCS ground state. In a superconductor, the common motion of Cooper
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pairs with a center of mass momentum K results in an electrical current. The
scattering events which contribute to resistance are suppressed due to the gap
∆. This is because any change in the current carrying ground state due to
inelastic scattering can occur only by breaking the Cooper pairs which requires
a minimum energy cost of 2∆. The Cooper pairs can be broken up and the
superconductor driven to a normal state only when the energy associated with
the supercurrent and the total center of mass momentum K of the Cooper
pairs becomes 2∆. The existence of such critical current results in a critical
magnetic field Bc, where the induced supercurrents expelling the magnetic
field from the superconductor reaches the described critical current value.

For finite temperatures T > 0, quasiparticles get thermally excited and oc-
cupy otherwise empty states. These states cannot be accessed by Cooper pairs
anymore and hence, the superconducting order parameter or gap ∆ decreases.
The temperature evolution of the gap is approximated by:

∆(T ) ≈ ∆(0)(1 − T

Tc
)1/2 (2.25)

where ∆0 = ∆(T = 0) ≈ 1.764 kTc is the gap at zero temperature for
BCS superconductors with weak electron-phonon coupling. Another impor-
tant quantity related to the superconducting gap is the BCS coherence length
given by:

ξ0 = ℏvF

π∆ (2.26)

Apart from the factor of π, Eq. 2.26 can be intuitively interpreted as the
position uncertainty δx ∼ ℏ/δp ∼ ℏpF/mδE ∼ ℏVF/∆ due to an energy un-
certainty ∼ ∆. Thus, the coherence length can be described as the spatial
extent of a Cooper pair, which has typical values from few ten to few hundred
nanometers. Therefore, the Cooper pairs strongly overlap in the condensate.

2.3.2. Transport in superconductor - normal metal structures
Superconductors (S) coupled to a normal metal (N) provides a promising plat-
form to study charge transport across the interface where current is carried by
free electrons on the N side while Cooper pairs are responsible on the S side.
This charge transport results in interesting effects in such N-S structures and
we discuss the most relevant transport mechanisms in this section.

2.3.2.1. Andreev reflection and proximity effect

When an electron from N impinges on a completely transparent N-S interface
at a subgap energy |E| < ∆, transport across the interface is prohibited as
there are no quasiparticle states available at this energy. At the same time, the
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electron cannot be normally reflected back because a normal reflection inverts
the momentum perpendicular to the interface, i.e. pF → pF. This requires a
net momentum transfer of 2pF for normal reflection.

This requirement is satisfied by a simple second order process known as
Andreev reflection (AR) [117], as depicted in Fig. 2.16b. The impinging elec-
tron with energy E and |k, ↑⟩ pairs up with another electron at energy −E and
|−k, ↓⟩ to form a Cooper pair such that a total charge of 2e is transferred across
the interface. This results in the retro-reflection of a positively charged hole,
i.e. the reflected hole travels backward on the path of the incident electron in
N due to momentum conservation.
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Figure 2.16. Andreev Reflection in a N-S interface. Illustrations of
energy-real space diagrams for (a) normal reflection and (b) Andreev reflec-
tion of an electron incident at the N-S interface at x = 0. c. Normalized
differential conductance GS/GN0 for a N-S junction at T = 0 for different bar-
rier strengths Z according to the BTK model, where GN0 is the conductance
for the normal state at Z = 0. Figures adapted from Refs. [67, 69, 86]

This transport process can be described by the BTK model [118], where
the scattering at the N-S interface is described by a delta function potential
V (x) = ZℏvFδ(x) with a dimensional barrier strength Z, which accounts for
elastic scattering. For Z = 0, only Andreev reflection takes place resulting in
a conductance GS = 2GN for electrons with energy |E| < ∆, as depicted in
Fig. 2.16c. However, Z ̸= 0 in real samples due to Fermi velocity mismatch in
different materials. Thus, the subgap conductance GS decreases for increasing
Z due to an increase in the probability of normal reflections. As a result, a
‘soft gap’ begins to appear. Further increase of Z to Z ≫ 1, Andreev reflection
is strongly suppressed for |E| < ∆ and we start to observe quasiparticle DOS
in S for |E| > ∆. This limit represents tunneling spectroscopy through a
N-insulator-S junction.

Due to time-reversal symmetry, an incident hole is retro-reflected as an
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2. Theoretical background

electron resulting in a removal of a Cooper pair from the condensate. The
incident hole and retro-reflected electron stays phase coherent in N for some
time and distance resulting in a non-zero probability of finding a Cooper pair
in N. Therefore, the Cooper pair density does not suddenly drop to zero at
the N-S interface, but decays continuously on the scale of the BCS coherence
length ξ in N. This is known as the proximity effect, which is due to the phase
coherence of AR in N such that Cooper pairs ‘leak’ into normal metal materials
in contact with S. Macroscopically, the proximity effect can be described by
the framework of Ginzburg-Landau theory [116]. In addition, the inverse
proximity effect also occurs where electrons and holes can enter S without
being converted into Cooper pairs on the length scale of ∼ ξ.

2.3.2.2. Crossed Andreev reflection

Since the Cooper pairs have a spatial extent on the length scale of ξ, an
incident electron (hole) can be retro-reflected as a hole (electron) at a differ-
ent position with distance d < ξ apart. In a typical multi-terminal device
where two N contacts are attached to S as shown in Fig. 2.17a, one can ob-
tain cross-conductance channels between the two N contacts. This non-local
Andreev reflection is known as crossed Andreev reflection (CAR) [118]. As
shown in Fig. 2.17a-b, an incident hole from N1 is reflected as an electron
in N2, which corresponds to splitting of a Cooper pair into two separate N
contacts. Therefore, CAR is a suitable process for separating spin-entangled
electrons. Although, CAR was observed in metallic N-S-N structure [119], its
signature is hindered by the competing process of ‘non-local normal reflection’
where the incoming electron can propagate between N1 and N2 via a virtual
quasiparticle state in S, as shown in Fig. 2.17c-d. This process is called elastic
cotunneling (EC), analogous to the co-tunneling in QDs. Both EC and CAR
has a similar probability amplitude that decays on the scale of ξ and masks
the signature of CAR in metallic systems [120].

2.3.3. Cooper pair splitting

Cooper pair splitting (CPS) is described as the process in which the two
electrons of a Cooper pair are split into separate terminals. Although CAR
was shown to provide pairs of spatially separated spin entangled electrons in
metallic S-N-S systems, it is often hidden by the competing local and elastic
co-tunneling processes. Therefore, Recher et al. [121] proposed to use the
electron-electron interactions in a tunable QD inserted between the S and N
to suppress the competing processes and enforce CPS. A typical Cooper pair
splitter (CPS) device and the corresponding energy level diagram at zero bias
VSD = 0 is shown in Fig. 2.18a and Fig. 2.18b respectively, where the notations
used to describe the two QDs (QD1 and QD2), the two normal leads (N1 and
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Figure 2.17. Crossed Andreev Reflection. Schematics of crossed An-
dreev reflection for a three terminal N-S-N device in (a) real space, and (b)
energy space diagrams. (c,d) Elastic co-tunneling via a virtual quasiparticle
state in S shown in (c) real space, and (d) energy space diagrams. Figures
adapted from Refs. [67, 69].

N2) and the superconductor are as introduced earlier. In addition, δr is the
spatial separation between tunneling points of the two electrons in a Cooper
pair and Γ12 is the inter-dot tunnel coupling strength.

2.3.3.1. Cooper pair splitter with quantum dots

The main concept in the above CPS device scheme is to enhance the CAR
process by the combination of two main effects: the Coulomb interaction or
charging energy Ec1 = Ec2 = Ec on each QD and the pairing interaction ∆
in S. These effects contribute in suppressing the local pair tunneling (LPT)
of Cooper pairs into the same arm of the CPS device [121]. The two primary
mechanisms for LPT are shown in Fig. 2.19. The Cooper pair electrons can
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Figure 2.18. Cooper Pair Splitter. a. Schematics of a Cooper pair splitter
(CPS) device illustrated with the characteristic energy scales and parameters.
δr denotes the spatial separation between the tunneling points of the two
electrons in a Cooper pair. b. Energy level diagram showing Cooper pair
splitting at zero bias VSD = 0, where µS = µQD1 = µQD2 = µD. Adapted from
Refs. Figures adapted from Refs. [67, 69].

simultaneously occupy the same QD at an energy cost of Ec and tunnel to the
respective N (Fig. 2.19a). The double occupancy of a QD in such a process is
suppressed by the Coulomb interaction ∼ 1/Ec, which can be controlled by the
size of the QD. Alternatively, the two electrons can sequentially tunnel through
a QD into the same lead (Fig. 2.19b). This is observed when one electron of
a split Cooper pair tunnels onto a QD, while the other electron occupies a
virtual quasiparticle state at energy > ∆ in S. The first electron then tunnels
into the lead followed by the second electron. Such a process is suppressed by
∼ 1/∆ due to the virtual excitation of a quasiparticle. In contrast, Ec and ∆
does not affect the CPS process, and hence the ratio ICPS/ILPT can be tuned
to large values by increasing Ec and ∆.

In addition, the applied bias |eVSD| and the temperature kBT has to be
smaller than Ec and ∆ for effective Cooper pair splitting. Another important
parameter is the lifetime broadening Γ1,2 = ΓS1,S2 +ΓN1,N2 of each QD. When
the broadening Γ = Γ1 = Γ2 becomes comparable to ∆ or Ec, the lifetime of
the QD states τ ∼ ℏ/Γ corresponds to an energy uncertainty that is com-
patible with LPT processes rendering the CPS process ineffective. Therefore,
Γ ≪ ∆, Ec is one of the ideal working condition for a CPS device. Another
important condition is to operate the device in asymmetric coupling regime
with ΓN ≫ ΓS. Such asymmetric coupling ensures that the QDs have van-
ishing occupation probabilities as electrons leave the QDs much faster to N
than being replaced from S. This prevents any blockage of subsequent CPS
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Figure 2.19. Local Pair Tunneling (LPT). a. Competing LPT process
where the two electrons of a Cooper pair simultaneously tunnel into one arm
(QD2) of a CPS device. This process is suppressed by the Coulomb interac-
tion ∼ 1/Ec. b. LPT process where the two Cooper pair electrons tunnel
sequentially via a virtual quasiparticle state in S into QD2. Such processes are
suppressed by ∼ 1/∆ due to the superconducting gap. Figures adapted from
Refs. [67, 69].

processes due to electrons occupying a QD for too long. Another coupling con-
stant to consider is the inter-dot tunnel coupling Γ12, which mainly arises due
to direct tunnel coupling between QD1 and QD2 or elastic co-tunneling in S
via a virtual intermediate state. When ΓN ≫ Γ12, the electrons tunnel out to
N before they could tunnel between QD1 and QD2. In contrast if ΓN ≪ Γ12,
the device acts as a Cooper pair beam splitter because the electrons can tunnel
out to N1 or N2 at random. For ΓN1 = ΓN2, the device behaves as a 50/50
beam splitter, resulting in an upper bound of 50% splitting efficiency. In order
to achieve higher efficiencies beyond 50%, interactions play a crucial role in
enforcing the splitting [121].

However, the spin-entanglement in a CPS device can be destroyed by spin-
dephasing mechanisms, which swaps an entangled electron with another ran-
dom spin electron. To suppress such dephasing processes, the level spacing δE
of the QDs should be large: δE ≫ Γ, |eVSD|, kBT . Otherwise, the QD might
behave as a capacitive island, where an electron irrespective of its spin orienta-
tion can leave to N after the entangled electron enters the island. Furthermore,
QDs exhibiting clear shell-filling patterns are desired to avoid unwanted cor-
relation effects. Finally, electrons hopping from the Fermi leads, i.e. electron-
hole pair excitations, can also occupy the QDs levels and potentially replace
the entangled electron. Such excitations are more probable with strong cou-
pling to the N leads. In order to suppress such processes, a sufficiently large
bias |eVSD| > Γ should be typically applied to position the electrochemical
potential of the normal lead well below the QD resonance, while keeping S
resonant with both the QDs i.e. µS = µQDi.

In summary, the ideal working conditions of a CPS device with large splitting
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efficiencies is given by:

EC,∆, δE ≫ |eVSD| > Γ, kBT ΓN ≫ ΓS,Γ12 (2.27)
Quantitatively, the CPS current is given by:

ICPS = eΓ2
SΓ

(µQD1 + µQD2)2 + (Γ/2)2F (δr) (2.28)

where µQD1 (µQD2) is the electrochemical potential of QD1 (QD2), ΓS =
ΓS1 = ΓS2, Γ = ΓN1 + ΓN2 and F (δr) is a geometrical factor that depends
on the separation of the tunneling points as discussed in detail below. When
µQD1 = −µQD2 (µS = 0), ICPS has a maximum value of ICPS = 4eΓ2

S
Γ F (δr).

Similarly, the LPT current is given by [121]:

ILPT = 2eΓ2
SΓN( 1

π∆ + 1
EC

)2 (2.29)

where ΓN = ΓN1 = ΓN2. From Eq. 2.28 and Eq. 2.29, we can clearly see
that ILPT is suppressed by increasing Ec and ∆, while ICPS is not affected. In
Eq. 2.28, the CPS current is suppressed by a geometry dependent factor F (δr)
where δr is the spatial separation of the two tunneling points in S (Fig. 2.18).
Intuitively, F (δr) should decay rapidly when δr exceeds the BCS coherence
length ξ. Although this term is heavily debated [121], the plausible term of
F (δr) ∼ exp(−δr/ξ) captures the spatial extent of a Cooper pair. Therefore,
the width ω ∼ δr of S in a CPS device should be smaller than the BCS
coherence length.
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3 Experimental Methods

300 nm

This chapter is dedicated to the description of the important experimental
methods used in this thesis. The key fabrication techniques for different types
of devices are introduced, with the exact fabrication parameters discussed in
Appendix A. In addition, the basic principles and measurement setup for low
temperature transport measurements are briefly described.
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3.1. Sample fabrication

The fabrication of a suitable sample is the first essential step towards every
project in this thesis. Obtaining clean InAs nanowire (NW) structures with
good contacts is a prerequisite for all the presented measurements in this the-
sis. In this section, we introduce the most important techniques required to
fabricate clean InAs NW structures. First, the fabrication of base structures
with predefined markers and contact pads is discussed. Then a short descrip-
tion of depositing and cleaning the NWs on a substrate is presented, followed
by the technique of contacting these deposited NWs. Standard nanofabrica-
tion procedures, such as electron-beam lithography (EBL), metallization with
thermal or e-beam evaporation and standard wet etch methods are used to
completely fabricate devices, but not discussed in details here. All the exact
fabrication recipes are described in Appendix A.

Base structure fabrication

For all devices, we first need to create a grid of predefined markers and contact
pads called base structures to deposit the NWs and consequently locate them
with high precision. The base structures are fabricated on a highly p-doped
silicon wafer, which acts as a global backgate (BG), with a 400 nm thick silicon
oxide (SiO2) as the top insulating layer. After cleaving the substrate into a
2 cm x 2 cm rectangular piece, the substrate surface is cleaned by ultrason-
ication in a beaker of acetone for 20 minutes, followed by 2-propanol (IPA)
sonication for the same duration. The remaining solvents are finally blow dried
using compressed nitrogen (N2) gas.

We then fabricate the base structures on the clean substrate using standard
EBL, followed by evaporation of a 5 nm/45 nm titanium/gold (Ti/Au) layer
and subsequent lift-off using acetone at 50◦C. Each base structure has a 2 mm
x 2 mm area consisting of alignment markers, outer contact leads and bonding
pads as shown in Fig. 3.2a. The central region contains a 500µm x 500µm
square grid of unique fine reference markers separated from each other by
20µm (Fig. 3.2b).

Nanowire deposition and readout

The next step is to deposit the NWs in the central region of the fabricated base
structures. This requires the transfer of the NWs from the growth substrate to
the sample substrate, which is done by using the sharp tip of a cut cleanroom
tissue. By slightly touching the densely-packed growth substrate with the
tissue tip, several NWs break off and stick to the tip of the tissue. The NWs
are then placed on the sample substrate by gently pressing the tissue tip on
the already fabricated base structures. The procedure is checked under the
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Figure 3.2. Base structure and nanowire (NW) imaging. Optical
microscope image of a) a base structure and b) predefined markers for precise
NW deposition and location. c,d Scanning electron microscope (SEM) image
of a deposited NW near the predefined markers. Figure adapted from Ref.
[86].

optical microscope and repeated until a desired number of NWs are placed on
the sample substrate. The substrate is then cleaned again using acetone and
IPA without ultrasonication and blow dried using N2 to remove any dirt or
unwanted particles from deposition.

We then image the NWs using a scanning electron microscope (SEM) to
precisely locate the individual NWs with respect to the unique fine reference
markers on the base structure, as shown in Fig. 3.2c,d . The NW position is
then read out using a Python program developed by co-worker O. Faist, and
the electrical contacts and gates specific for each NW are finally designed.

Nanowire metallization

The designed contacts are then patterned in a standard EBL process using
300 nm thick PMMA as the resist layer [114]. However in order to electrically
contact the NWs, we have to remove the 2 − 3 nm thick native oxide enclosing
the InAs NW before metallization. This is done using a wet etch process known
as sulfur passivation [122](exact recipe in Appendix A ). Sulfur passivation is
a self-terminating process which removes the native oxide of the NW and
deposits a protective monolayer of S atoms on the NW. This layer prevents
immediate reoxidation of the NW as well as locally dopes the contact area. The
doping helps to achieve good ohmic contacts in wurtzite (WZ) crystal phase
InAs NWs as the Fermi energy is shifted further up in the conduction band.
The NW is then contacted using 5 nm/45 nm Ti/Au for normal contacts and
5 nm/70 nm titanium/aluminum (Ti/Al) for the superconducting contacts. A
schematics of the standard fabrication process for typical InAs devices is shown
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in Fig. 3.3.
In order to fabricate normal metal top/side gate electrodes, we evaporate

5 nm/45 nm Ti/Au without sulfur passivation. However for the ferromagnetic
side gates (FSGs) made of Permalloy (Py), we use an optimized ZEP resist
EBL process instead of PMMA, optimized in the Ref. [67] with the detailed
parameters mentioned in Appendix A.

a c

d e f

g h i

b

Figure 3.3. Standard fabrication process of an InAs NW device. a.
Cleaned silicon (Si) substrate (grey) with 400 nm SiO2 (pink) as insulating
layer. b. NW deposition on the sample substrate. c. Spin coating of electron-
beam resist with desired thickness. d. Patterned irradiation of the device
design using electron-beam lithography (EBL). e. Development of exposed re-
sist, followed by sulfur passivation. f,g. Metal evaporation onto the patterned
substrate. h. Lift-off of the unexposed resists. i. Finished fabricated device.
Figure adapted from Ref. [70].

Bonding to chip carrier

In the last step of fabrication, the sample substrate with the metallized NWs is
glued to a commercially available non-magnetic chip carrier with conductive
silver paste as shown in Fig. 3.4a. The silver paste provides an electrical
connection to the highly p-doped silicon layer, which can then be used as a
global back gate to tune the NW. Finally, the bond pads are connected to the
chip carrier via standard wire bonding techniques by using a gold wire. The
chip carrier is then built into a cryogenic measurement set-up, which is briefly
described in the following section.
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Figure 3.4. Wire Bonding. a. Schematics of a chip carrier where the
sample substrate is glued with conductive silver paste and connected to the
bond pads using gold (Au) bond wires. b. SEM image of a fabricated NW
device with Ti/Au contacts and Permalloy side gates. Figure adapted from
Ref. [70].

3.2. Cryogenic measurement set-up

Low sub-Kelvin electron temperatures are essential for resolving quantum me-
chanical phenomena, where the energy scales involved are in the order of meVs.
For a typical QD, the thermal energy of the electrons should be ideally lower
than the charging energy EC and level spacing δE. In addition, devices with
superconducting elements needs electron temperatures lower than the super-
conducting gap ∆ and critical temperature of the material. This requires
temperatures of ≤ 50 mK which is achieved in the lab using commercially
available dilution refrigerators.

The sample can be quickly cooled down to 4.2 K by inserting it in liquid 4He.
The temperature can be further lowered to 1.4 K by pumping on the surface
of liquid 4He as it removes the latent heat. However to obtain temperatures
two orders of magnitude lower, we use the technique of dilution refrigeration
[124], where a mixture of 3He-4He spontaneously separates into 3He-poor and
3He-rich phases. An osmotic pressure difference is created between the two
phases by pumping on the still. This results in an endothermic transfer of 3He
from 3He-rich to 3He-poor phase across the phase boundary, which in turn
cools the mixing chamber. The phase transition is continuously driven using
a circulation pump and 1K pot recondensation. The sample is simultaneously
cooled by bringing it in good thermal contact with the mixing chamber using
a cold finger, a metallic sample stage with high thermal conductivity usually
made from copper.
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Figure 3.5. Schematics of a standard cryogenic measurement set-
up. Typical measurement set-up for voltage biased differential conductance
measurements of an InAs NW device at low temperatures (blue region) of
T = 50 mK. Figure adapted from Ref. [67, 68, 70, 86, 123].

The chip carrier is typically mounted on the cold finger using a corresponding
chip socket. This chip socket is shielded from outside radiation by a Faraday
cage and pumped to very low pressures in the inner vacuum chamber (IVC).
It is connected to a room-temperature breakout box using twisted pairs to
cancel out electromagnetic interference from external sources and cross-talk
between the lines. The home-made breakout box acts as an interface between
the cryostat wiring leads and the BNC cables of the room temperature mea-
surement instruments. This enables us to individually address and ground
each lead. Several filters are mounted in the cryostat wiring to suppress high
frequency radiation and make the electron temperature go as low as possible.
A home-built tapeworm filter with a cut-off frequency of 10 MHz is mounted

46



3.2. Cryogenic measurement set-up

at the cold finger for this purpose. In addition, the breakout box is equipped
with filters that have a cut-off frequency of around 1 MHz.

For differential conductance measurement, we employ standard low-frequency
lock-in techniques, as shown in Fig. 3.5. In a typical two terminal measure-
ment, we apply a AC bias to the source (S) contact using a SR830 (Stanford
Research Systems) lock-in amplifier. The AC excitation signal is fed through
a 4:1 step-down transformer and transposed with a DC bias signal supplied
from a Yokogawa YK7651 DC voltage source. The combined signal is further
reduced by a 1:1000 voltage divider to achieve Vac ∼ 10µV excitation on the
S contact. The resulting current is amplified using a low-noise I-V converter
and the output voltage of the amplifier is measured in the lock-in to get the
differential conductance G = dI/dV . The DC gate voltages were applied us-
ing a high resolution 8-channel DAC (digital-to-analog) converter, built by the
electronics workshop, University of Basel. All the measurement instruments
were controlled using the python-based data acquisition program QCodes.
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4 Material Platform: Indium Arsenide
Nanowires

This chapter presents a brief description on the growth and electronic prop-
erties of the indium arsenide (InAs) nanowires (NWs) used in this thesis. In
addition, a brief summary of various magnetotransport experiments previously
performed with InAs NWs is described.1

1The above SEM image has been provided by Dr. Valentina Zannier, Pisa, Italy

49



4. Material Platform: Indium Arsenide Nanowires

Semiconducting indium arsenide (InAs) nanowires (NW) were chosen as
the ideal material platform suitable for carrying out all the projects in this
thesis. In general, semiconducting nanowires are crystalline one-dimensional
nanostructures with small diameters up to few tens of nanometers and lengths
in the range of few microns. NWs are typically synthesized from Group IV
materials (Si, Ge), Group III-V alloys (Al, Ga, P, As, Sb), Group II-VI alloys
(Cd, Zn-Se, O) and tertiary compounds, such as AlGaAs.

Semiconducting InAs NWs proved to be a versatile platform for various
applications due to their low effective mass [125], high mobility [126–128],
small band gap [129], tunable large g-factor [65, 130] and strong spin-orbit
interaction [131, 132]. Therefore, they are extensively used to investigate fun-
damental physics on the nanometer scale, for example, as possible hosts of
Majorana fermions [71, 133–136] for topological quantum computation [137–
139], entanglement and correlation measurements [64, 140] using supercon-
ducting elements, as well as in the field of field of spintronics [11, 13, 14],
magnetotransport [105, 141, 142], and thermoelectrics [143].

In this chapter, we present a brief introduction to the most important fea-
tures of InAs nanowires: the growth mechanism and the electronic properties
that affect electron transport. We also provide a short summary on previous
magnetotransport experiments with InAs NWs.

4.1. Nanowire growth

Semiconducting NWs are generally grown in a bottom-up approach based on
vapor-liquid-solid (VLS) methods [144]. As suggested by the name, it refers
to the formation of solid crystals from vaporized precursors facilitated by liq-
uid catalysts. This includes various techniques with the same principle such
as chemical vapor deposition (CVD) [145], molecular beam epitaxy (MBE)
[146], chemical beam epitaxy (CBE) [147, 148] and metal-organic vapor phase
epitaxy (MOVPE) [149, 150].

In the VLS method, metal catalyst particles are first randomly formed on a
substrate by one of the various processes, for example, direct deposition [151],
aerosol techniques [152], metal evaporation followed by subsequent annealing
[153] or by pre-patterning arrays using EBL and subsequently evaporating
the metal [154]. Typically, gold is considered the best metal choice for the
catalyst due to its great alloying capability and inertness to oxygen. The
precursors from the vapor phase then strike the gold catalyst forming an alloy
and supersaturating the catalyst (Fig. 4.2a), such that no further material can
be accumulated. This results in the initiation of nucleation at the liquid-solid
interface. A solid crystalline pillar of the precursor materials grow axially
beneath the gold droplet, while the radial growth is suppressed as shown in
Fig. 4.2b. The growth process is stopped by removing the vapor precursors.
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Figure 4.2. Illustration of the InAs NW growth process. a. Gold (Au)
catalyst particles on an InAs (111)B substrate are fed with In (red) and As
(blue) vapor precursors to supersaturate the Au particle and initiate nucleation
at the solid-vapor interface. b. Growth of an InAs pillar in the axial direction
beneath the Au particle. c. Scanning electron microscope (SEM) image of an
InAs NW ‘forest’ on the InAs (111)B substrate. SEM image from the group
of Prof. Lucia Sorba, Pisa. Figure adapted from Refs. [70, 86]

The different parameters such as diameter, crystal phase, growth rate and
length of the NWs can be well-controlled during the growth process . The flux
of the vapor precursors determine the growth rate, while the length of the NW
depends on the growth time. The diameter of the NW is typically controlled
by the size of the gold catalyst. However, by lowering the growth temperature,
the catalyst can be deactivated allowing one to quench the axial growth and
enable radial growth. Although the crystal phase of bulk InAs is zincblende
(ZB) (Fig. 4.3a), defect free wurtzite (WZ) crystal phase InAs NWs (Fig. 4.3b)
can also be grown under the right growth conditions with advanced growth
techniques [72, 155, 156].

The InAs NWs used for all the devices in this thesis are grown in the group
of Prof. Lucia Sorba (NEST Pisa) using VLS technique in a chemical beam
epitaxy (CBE) environment [153]. A thin gold film is evaporated onto an InAs
(111)B substrate, followed by thermal annealing inside the growth chamber to
form randomly distributed gold nanoparticles with a diameter of 40 to 50 nm.
The vapor precursors trimethylindium (TMIn) and tert-butylarsine (TBAs)
are introduced in the system to start the NW growth. These precursors su-
persaturate the Au particle and a pillar of InAs start to grow beneath the
Au nanoparticle. This procedure produces a “forest" of defect-free crystalline
wurtzite InAs NWs in the growth chip as shown in Fig. 4.2c.

With recent technical advances, significant progress has been made in engi-
neering various NW heterostructures. Complex geometries involving multiple
NWs such as networks and crosses [157–160] using shadow evaporation tech-
niques have become feasible. In-situ grown epitaxial superconducting half and
full shell [161–163] around the NW has enabled a defect free interface for
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4. Material Platform: Indium Arsenide Nanowires

superconducting hybrid devices [71]. Furthermore, different types of NW het-
erostructures have been achieved to form precisely located QDs in the NW. For
example, in InAs/InP heterostructure NWs, two short InP segments are grown
in-situ into the InAs NWs to form well-defined tunnel barriers [164, 165]. Sim-
ilarly, a atomically precise controlled switching of the crystal phase between
ZB and WZ has been achieved, where the WZ segments acts as tunnel barriers
[72, 166].

4.2. Electronic properties
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Figure 4.3. Crystal structure of InAs NWs. Crystal structure of a)
face-centered cubic (fcc) zinc blende (ZB) InAs NW and b) hexagonal close-
packed (hcp) wurtzite (WZ) InAs NW. c. Schematics of the electronic band
structure around the Γ point of InAs, with a band gap of Eg = 530 meV [72].
Figures adapted from [86, 167]

The InAs NWs used in this thesis are n-type III-V semiconductors compris-
ing of a hexagonal close-packed wurtzite crystal structure with a lattice con-
stant of 4.25 Å, where the In and As are covalently bonded [168] (Fig. 4.3b).
Although the semiconducting energy gap for bulk InAs with ZB crystal phase
(Fig. 4.3a) is around EZB = 0.47 eV, the WZ crystal phase has a larger conduc-
tion band (CB) and valence band (VB) separation of EWZ = 0.52−0.54 eV [72].
The conduction band around the Γ point (Fig. 4.3c) yields a parabolic disper-
sion relation: En(kx) = En + h2k2

x
2m∗ with an effective mass of m∗ = 0.04me

for the wurtzite InAs crystal phase [125], where me is the free electron mass
and En is the minimum energy of a quantized subband. The resulting cur-
rent I = 2e2

h
N depends on the number of subbands N and shows a step-wise

increase in the ballistic quantized conductance when a new subband gets oc-
cupied, as demonstrated in the reference [169]. Furthermore, InAs NWs have
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been shown to exhibit large g-factors of around g = −14.9 and strong SOI
strength of 250µeV [170].

In addition, the electrons are accumulated at the surface of InAs NWs re-
sulting in electron transport predominantly through the surface. This pins the
Fermi level at an energy of 200 meV above the conduction band minimum [171].
Therefore, it is easy to electrically contact InAs NWs [172], although they
are susceptible to any surface treatment and electrostatic gating effects[173].
Due to the radial confinement and small diameters, the electron wavefunction
in InAs NWs form quantized transverse modes. Such well-controlled growth
techniques and suitable electronic properties of InAs NWs make them an ideal
candidate for investigation of magnetotransport phenomena, as discussed in
the following section.

4.3. Magnetotransport experiments in nanowires

The vast majority of the magnetotransport experiments extensively focused
on the study of spin-orbit interaction using the phenomenon of weak anti-
localization [142, 174]. These studies showed experimental evidence of strong
spin-orbit coupling, with typical spin-orbit lengths and phase coherence lengths
in the range of 60-250 nm and 100-800 nm respectively. Electrical tunability
of the SOI lengths was also demonstrated using devices with top gate [175],
side gate as well as liquid gates [174]. The spin-orbit energy has also been
measured from avoided singlet-triplet crossing in excited state spectroscopy of
single QDs [176] and hybridization induced by orbital Kondo effects in strongly
coupled devices [177]. The spin-orbit energy was found to be anisotropic and
tunable by externally applied electric fields. The SOI was also investigated by
determining the leakage current in spin blockade in DQD systems [97]. These
measurements reported Rashba type SOI in semiconducting NWs. Such ev-
idence of strong SOI strengths is suitable for studying the induced ‘helical’
gap, whose first signatures have been recently reported [178].

The strong SOI results in a large g-factor for both bulk InAs as well as InAs
NWs [65]. The anisotropy and tunability of g-factor has been extensively stud-
ied [65], making InAs NWs an ideal candidate to selectively address individual
qubits. Various experiments with InAs NWs have demonstrated electron dipole
spin resonance (EDSR) and demonstrated various types of qubits such as spin-
orbit qubits [132], spin qubits [179] and charge qubits [180] in the presence of
stray field from micromagnets. These studies revealed Rabi oscillations and
demonstrated long T1 coherence times for spin qubits [8, 9].

In the superconducting domain, InAs NW DQDs have been used to demon-
strate Andreev molecules [181] and study their magnetic field evolution. They
have gained a lot of interest as potential platform for topological quantum com-
putation [137–139]. Topological states, such as Majaorna fermions [71, 133–
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136], were demonstrated in these NWs under the application of a magnetic field
parallel to the NW. More recently, they were demonstrated in zero external
magnetic field utilizing the proximity induced exchange coupling from a fer-
romagnetic insulator in an epitaxially grown semiconductor-superconductor-
ferromagnet NW [182].

In the field of spintronics, InAs NWs constitute an integral platform for
spin valve devices both at low temperatures as well as room temperature.
They are extensively used for studies aimed at increasing the efficiency of spin
injection into semiconducting nanostructures as well as efficient spin detection
[105]. However, they are mainly achieved using ferromagnetic contacts which
are limited by their low spin polarization and low tunability. In contrast, we
require a highly efficient and tunable spin injectors and detectors to detect
small spin correlation signals in a purely electronic system, such as Cooper
pair splitters [52, 59]. Therefore, we investigate a new approach using local
stray magnetic fields from ferromagnetic nanomagnets in Chapter 5, which
is then implemented in Chapter 6 to demonstrate efficient spin injection and
detection as well as perform spin readout measurements in close proximity to
a superconductor in Chapter 7.
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5 Investigation of building blocks:
Ferromagnetic Side Gates with InAs
Nanowire Single Quantum Dot

In this chapter, we investigate magnetoconductance (MC) experiments for a
single quantum dot (QD) with ferromagnetic split gates (FSGs). We determine
the generated stray field and switching (coercive) field of the FSG from the
hysteretic MC of Coulomb blockade resonances. In addition, we present a
control experiment to determine the stray magnetic field far away from the
FSG in the same device. We also present MC measurements using Cobalt
(Co) as the ferromagnetic material.1 2

1Parts of this chapter has been published in a similar form in [105].
2The above image has been adapted from sciencestruck.com.
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5.1. Introduction

Recent proposals, such as Majorana fermion detection by selective equal spin
Andreev reflections [183], generation of fractional fermions [184–189] through
synthetic spin orbit coupling [190] and spin entanglement/correlation measure-
ment schemes [62, 140] in Cooper pair splitters [52, 59] have attracted a lot of
attention in topological quantum computing with superconductors. One of the
key requirements in these experiments is to obtain a non-zero local Zeeman
splitting in close proximity to superconductors for spin filtering and read-out.
This prohibits the use of global external magnetic field, which completely sup-
presses superconductivity. The conventional approach of spin read-out using
ferromagnetic contacts is problematic [140, 191] due to significant obstacles like
low spin polarization (20%-40%) [110], conductivity mismatch at the metal-
lic ferromagnet-semiconductor interface [111]. An alternative approach is to
achieve such splitting using the localized switchable stray magnetic fields [192]
from tailored ferromagnetic nanomagnets [179, 180, 193, 194]. The generated
stray fields from such nanomagnets need to be large enough to produce an
appreciable Zeeman splitting. Therefore, InAs nanowires constitute the ideal
platform for implementation of such experimental schemes due to its large
g-factor of g∗ = −14.9 in bulk as well as quantum dots (QDs) [65, 66].

In this chapter, we discuss the approach of using stray magnetic fields gener-
ated from nanomagnets to control electron spins in a QD. We present proof-of-
principle magnetoconductance (MC) experiments for a single QD using a pair
of Permalloy (Py) split-nanomagnets, which we term as ferromagnetic split
gates (FSGs). We deduce the generated stray field and switching (coercive)
field of the FSG from the hysteretic MC of Coulomb blockade resonances. As
a control experiment, we determine the stray magnetic field far away from the
FSG in the same device. This demonstrates the suitability of implementing
our approach in hybrid semiconductor-superconductor devices. We further
present MC measurements using Cobalt (Co) as the ferromagnetic material,
which is expected to generate a larger stray field than Py due to its higher
saturation magnetization.

5.2. Permalloy FSG properties

Permalloy is a soft ferromagnetic material that has been extensively used for
many applications due to its properties such as high magnetic permeability,
low coercivity and single domain magnetization [196]. Due to its dominant
shape anisotropy, the magnetization reversal in long Py strip can be easily
measured in near parallel anisotropic magnetoresistance (AMR) measurements
[106]. The magnetization switching fields can thus be engineered by varying
the geometrical width of the Py strip.
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Figure 5.2. Stray field imaging of Permalloy FSG strips. a Scanning
electron microscope (SEM) image of a permalloy FSG. b,c Magnetic force
microscopy of stray magnetic fields generated by a FSG and a single Py strip. d
Domain structure of Py strips measured by X-ray magnetic circular dichroism
(XMCD). All the characterizations were carried out by Dr. Gabor Fabian, Dr.
Andreas Baumgartner, Dr. Simon Zihlmann and Dr. Peter Makk in the Hug
lab at EMPA, Switzerland (MFM) and the SIM beamline at Paul Scherrer
Institut, Switzerland (XMCD) [70, 195].

For the FSGs fabricated in our device, the end domains i.e. the domain
structures at the tip of the FSG, plays an important role in determining the
strength of the stray fields. The magnetic properties of such Py FSG strips
were examined using magnetic force microscopy (MFM) and X-ray magnetic
circular dichroism (XMCD). The above characterizations were carried by Dr.
Gabor Fabian, Dr. Andreas Baumgartner, Dr. Simon Zihlmann and Dr. Peter
Makk in the Hug lab at EMPA, Switzerland (MFM) and the SIM beamline at
Paul Scherrer Institut, Switzerland (XMCD) [70, 195].

MFM probes the spatial distribution of the out-of-plane component of Bstr
near the FSG gap by measuring the force on a magnetic AFM tip. The imaged
stray fields, shown in Fig. 5.2b,c, reveals an out-of-plane component strongly
confined to the FSG gap. The two tips of the FSGs show opposite polarity
signifying that the stray field lines originate from one FSG tip and terminates
at the other tip. This results confirm that the stray field is predominantly
confined to the FSG gap and parallel to the magnetization strips. In con-
trast, the tip of a single FSG strip showed stray fields with only one polarity,
signifying field lines originating from the tip and terminating elsewhere. The
FSG bulk displayed minimal stray magnetic fields, which is consistent with
the formation of single domains along the Py strip [70, 106, 196].

The domain structures for the Py strips with different widths were char-
acterized using the XMCD technique. Single domain structure was observed
for most of the Py strips, as illustrated by the homogeneous response in the
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XMCD data in Fig. 5.2d. However, for strips with width ∼ 1µm, small spots
at the corners of the strips were observed, which might indicate the formation
of closure domains [67, 70]. Similarly, multiple domains are observed for FSGs
with width ∼ 100 nm. Such effects could be mainly due to imperfect edges
during EBL or contaminants during fabrication, which pins the domains at
the FSG ends. However, we observe complete single domain magnetization for
FSG strips with width of 120 − 200 nm, which makes them suitable for use in
our device.

5.3. Device and Characterization
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Figure 5.3. Single QD-FSG Device. a False color SEM image and b
schematics of the investigated 3-terminal NW device. The FSG is located at
a distance of 35 nm from the NW.

The primary aim of our device is to generate and measure a large stray mag-
netic field localized in the FSG gap. A false color SEM image and schematic
diagram of the investigated device is shown in Fig. 5.3. The device is 3-terminal
InAs NW contacted with titanium/gold (Ti/Au) normal metal contacts S, D1
and D2. In both the NW segment S-D1 and S-D2, a QD (QD1 and QD2) is
formed between the two normal metal contacts respectively. However, a pair
of Permalloy (Py) FSGs is fabricated in the NW segment S-D1 such that QD1
experiences a local stray magnetic field. In contrast, we use the NW segment
S-D2 without any FSGs as a control experiment to determine the stray mag-
netic field away from the FSGs [192]. For our device, the tips of the FSGs
are relevant in contrast to the bulk properties of ferromagnetic (F) contacts in
conventional spin valves. The tips of the FSGs are prone to formation of clo-
sure domains, which decreases the effective stray field in the FSG gap. Such
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closure domains can be reduced by minimizing the FSG gap such that the
magnetization of the two nanomagnets gets coupled due to their close proxim-
ity. This also results in a homogeneous stray field in the FSG gap, and sharp
decay outside. Furthermore, the magnetization orientation of the FSGs can be
reversed by sweeping an external magnetic field through the coercive field of
the FSG strip. The switching field of such a long FSG strip is determined by
the width of the FSGs due to its shape anisotropy. In general, our technique
without any ferromagnetic contacts avoids the potential issues associated with
ferromagnet-semiconductor interfaces.

In our device, the InAs NW has a diameter of around 40-45 nm and the two
NW segments S-D1 and S-D2 have similar lengths of L ∼ 400 nm. The FSG
is 170 nm wide and made up of 30 nm thick Py. The tip of the FSGs are at a
distance of 35 nm from the NW and the electrical contacts to the NW are made
of 5 nm/45 nm titanium/gold (Ti/Au). We apply a dc (VSD) and ac bias to
the source S contact and simultaneously measure the differential conductance
G(1,2) = dI1,2

dV
at contacts D1 and D2 using standard lock-in techniques at a

base temperature T = 50 mK.
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Figure 5.4. Device Characterization. Differential conductance a G(1)

and b G(2) as a function of dc bias VSD and back gate voltage VBG showing
Coulomb blockade diamonds for the NW segment a S − D1 and b S − D2
respectively.

We first investigate the electronic transport properties of the device at zero
external magnetic field, i.e. B = 0. Both the NW segments are simultaneously
tuned using the global backgate (BG). In addition, the NW segment S-D1 is
further tuned using VG2, while VG1 is kept at a constant potential of VG1 = 0.
Fig. 5.4a and Fig. 5.4b shows the colorscale plots of G(1) and G(2) as a function
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of the applied VSD and backgate voltage VBG. We observe a regular pattern of
Coulomb Blockade (CB) diamonds, suggesting the formation of a single QD in
both NW segments. From the size of the Coulomb diamonds, we can deduce
an addition energy of Eadd,1 ≈ 2 meV for QD1 and Eadd,2 ≈ 3.8 meV for QD2
in the NW segments S-D1 and S-D2 respectively.

5.4. Magnetotransport Measurements
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Figure 5.5. Magnetoconductance measurements. G(1) as a function of
external magnetic field B and gate voltage VG2 for the a up (red) and b down
(blue) sweep of a QD resonance, with VSD = 0, in the NW segment S −D1.

We now measure the magnetoconductance G(1) as a function of VG2 at a se-
ries of external magnetic field B for multiple QD1 resonances. The backgate is
kept constant at VBG = 1.2 V. We apply B along the FSG long axes such that
the FSG domains align along the long axis. Such a colormap for a particular
QD1 resonance is shown in Fig. 5.5 for increasing and decreasing magnetic
fields, as indicated by the red (up sweep) and blue (down sweep) arrow re-
spectively. The magnetic fields are first swept to B = −1 T (B = 1 T) for the
up (down) sweep to ensure the formation of a single magnetic domain in the
FSGs. The maps are clearly hysteretic with strong dependence on B and the
sweep direction. In order to study this behavior more explicitly, we extract
the postion, width and maximum conductance G(1)

max at each B value. This is
achieved by taking individual gate cross sections at each B in Fig. 5.5 and then
fitting them with a Lorentzian to obtain the peak height, peak position and
full width at half maximum (FWHM). G(1)

max extracted from Fig. 5.5 is shown
in Fig. 5.6a for increasing (red) and decreasing B (blue), along with the peak
position in VG2 (Fig. 5.6b) and FWHM (Fig. 5.6c). The same parameters for
two other QD1 resonances are shown in Fig. 5.6d-i.
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Figure 5.6. Overview of magnetoconductance features. a,d,g Maxi-
mum amplitude, b,e,h resonance position in VG2, and c,f,i resonance width
as a function of B for three different QD resonances for the up (red) and down
(blue) sweep with VSD = 0 in the NW segment S −D1.

The maximum conductance G(1)
max for all three resonances (Fig. 5.6a,d,g) are

clearly hysteretic for the up (red) and down (blue) sweeps and mirror sym-
metric around B = 0. For Fig. 5.6a, the hysteresis can be qualitatively under-
stood as a smooth non-monotonous magnetoconductance (MC) of the single
QD, which changes abruptly with the reorientation of the FSG magnetization.
As we sweep the external magnetic field, the orientation of the stray magnetic
field changes at the switching (coercive) field of the FSG strips. This leads to
a discontinuity in the smooth MC of QD1, which is visible at Bsw = +25 mT
for the up sweep and Bsw = −25 mT for the down sweep, respectively. The
G

(1)
max curves in Fig. 5.6d and Fig. 5.6g also exhibit similar characteristics. We
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note that we only observe a single switching feature, suggesting that the mag-
netization reversal of the two parts of the FSG are in unison. This further
supports the fact that the magnetic domains in both the FSG strips form
a single unfiorm domain structure. In contrast, the resonance positions and
resonance widths do not show any sharp switching in both sweep directions
together except Fig. 5.6b, although the resonance widths (Fig. 5.6c,f,i) show
clear hysteresis around B = 0. Since, only the maximum conductance exhibits
sharp switching features for all three QD resonances, we therefore use G(1)

max
vs B curves to determine the stray field in the FSG gap.

5.5. Stray Field in the FSG Gap

Although a direct measurement of Bstr in the FSG gap is not possible in the
present device, we can indirectly determine Bstr from the hysteretic G

(1)
max.

This can be done by two methods: (1) the method of shifting curves, and (2)
the method of interpolation. For the sake of conciseness, we describe the two
methods for the resonance shown in Fig. 5.6a. However, Bstr for the other
resonances in Fig. 5.6d,g can be determined in a similar manner.

Method of shifting curves
Quantitatively, for a two terminal device with Bstr = 0, the magnetoconduc-
tance G0(B) can be necessarily described as an even function in the external
magnetic field B:

G0(−B) = G0(+B) (5.1)
This relation allows us to determine the stray field of the FSGs assuming

B⃗str||B⃗. For a given G0(B), we can define the hysteretic Bstr ̸= 0 curves
as the result of a constant stray field offset along the B axis, i.e. G−(B) =
G0(B − Bstr) for the up sweep up to B ≤ +Bsw and G+(B) = G0(B + Bstr)
for the down sweep down to B ≥ −Bsw. From equation 5.1, we can then find:

G+(B) = G−(−B) G+(B) = G−(B + 2Bstr) (5.2)
Eq. 5.2 describes that the up (G−(B)) and down sweep (G+(B)) are sym-

metric around B = 0. In addition, the down sweep curve can be obtained from
the up sweep by a shift of +2Bstr along the B axis and vice-versa. Assuming
a particular Bstr value, we compare the down sweep curve obtained by shift-
ing the up sweep with the measured down sweep and iterate the process with
different Bstr values until they match. We determine Bstr ≈ 85 mT for the
resonance in Fig. 5.6a using this method, as shown in Fig. 5.7a. In addition,
we can also obtain the zero magnetization Bstr = 0 curve G0(B) by shifting
the up sweep by +Bstr (Fig. 5.7b).
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Figure 5.7. Determination of the stray field in FSG gap. a,b G
(1)
max

vs B showing a the up (G- Fit) and down (G+ Fit) shifted curves, and b zero
magnetization Bstr = 0 curve, obtained by the method of shifting curves. c
G

(1)
max vs B for the up sweep showing the slope (G′

sw) at B = Bsw and the
interpolated parabola (Ginterp), resulting in Bstr ≈ 80 mT.

However, this method of shifting curves is limited in its accuracy for two
reasons. Firstly, the determined Bstr is a lower bound estimate as we do
not have any information of the MC curve after the switching fields. For
the up sweep at +Bsw, the stray field changes sign from −Bstr to +Bstr and
the smooth MC abruptly jumps from G−(B) = G0(B − Bstr) to G+(B) =
G0(B + Bstr). This forbids us from determining the B dependence of G−(B)
beyond +Bsw. The G−(B) MC curve might have multiple extremums between
+Bsw < B < Bstr. Secondly, we cannot quantify the goodness of the fit
between the measured and the shifted down sweep. This leads to an inevitable
systematic error in the determination of Bstr. Therefore, we implement the
method of interpolation that might circumvent some of these limitations.

Method of interpolation
In this method, we use a polynomial, or any other suitable function, to inter-
polate the data of G−(B) up to +Bsw and use the same function to extrapolate
to the next extremum, where dG−(B)

dB
|B=Bstr = 0 by symmetry. This allows

us to directly read off Bstr instead of relying on the goodness of a fit. For a
simple analytical estimate of Bstr, we use the lowest order even polynomial
Ginterp = a(B−Bstr)2 + b. The curvature a is fixed to the maximum observed
value in the experiment. Using the slope at B = Bsw obtained from the exper-
iment, one finds G′

sw = dG−
dB

|B=Bsw = 2a(Bsw − Bstr), assuming Bstr > Bsw.
This results in Bstr = Bsw − G′

sw
2a

. The parameter b is not used here, but can be
obtained by matching G− and Ginterp at B = Bsw. The method is illustrated
in figure 5.7c. A similar analysis also holds for the down sweep G+(B). With
this method, we find a lower bound for Bstr ≈ 80 mT. We note that although
we can directly determine Bstr in this method, the limitation of not knowing
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the MC beyond Bsw still persists. Therefore, the calculated Bstr is still a lower
bound estimate. More direct measurements are necessary to exactly determine
Bstr as discussed in section 5.8.

5.6. Control Experiment
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Figure 5.8. Control Experiment. a G
(2)
max, b resonance position, and c

resonance width as a function of B for the up (red) and down (blue) sweep of
a QD resonance, at VSD = 0, in the NW segment S −D2.

As a control experiment, we measure the magnetoconductance G(2) as a
function of VBG at a series of external magnetic field B for a resonance in
QD2. We expect negligible hysteresis as QD2 is located far away from the
FSGs. To illustrate this, we extract the maximum conductance G(2)

max, peak
position and FWHM of the resonance at each B value in Fig. 5.8, similar
to section 5.4. The extracted G

(2)
max shows a small hysteresis and no abrupt

switching in both the up and down sweep. The peak position and FWHM also
exhibit similar behavior. We further note that we do not observe any hysteresis
in the magnetoconductance for QD devices without any FSGs nearby. The
study of such a device is not presented in this thesis. A similar analysis using
the method of interpolation for this QD2 resonance results in Bstr ≤ 5 mT.
This value is consistent with the much larger distance ∼ 800 nm of QD2 from
the FSGs.

5.7. Cobalt ferromagnetic Sidegates

Although we obtain Bstr ∼ 80 mT with permalloy FSGs, a stronger stray mag-
netic field is ideal for larger Zeeman splitting of the QD resonances. One of
the approaches for improving the stray field is to use different ferromagnetic
materials such as cobalt (Co). In general, cobalt has a higher saturation mag-
netization than permalloy and is a harder magnet making it less susceptible
to changes in the geometry of the magnet. Therefore, we expect a larger Bstr
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and Bsw for Co than Py. However, the magnetocrystalline anisotropy in Co
is large due to which the magnetization has a built-in preferred orientation
at zero external magnetic field. The domain structures and stray field can
be observed in the X-ray magnetic circular dichroism (XMCD) and magnetic
force microscopy (MFM) measurements as shown in Fig. 5.9 [70, 195].
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Figure 5.9. Stray field imaging of cobalt (Co) FSG strips. a,b Mag-
netic force microscopy of stray magnetic fields generated by a Co FSG and a
single Co strip. c Domain structure of Co strips measured by X-ray magnetic
circular dichroism (XMCD). All the characterizations were carried out by Dr.
Gabor Fabian, Dr. Andreas Baumgartner, Dr. Simon Zihlmann and Dr. Peter
Makk in the Hug lab at EMPA, Switzerland (MFM) and the SIM beamline at
Paul Scherrer Institut, Switzerland (XMCD) [70, 195].

Similar to permalloy, we find a stray field pattern where the tips of the
two FSGs have opposite polarity and the bulk displays minimal stray field
strength in MFM measurements. However, the magnetization distribution
along the FSG axes displayed some discrepancies in the XMCD measurements.
The domain structures at the FSG tips showed more pronounced non-uniform
magnetization compared to similar permalloy strips indicating the formation
of closure domains, as shown in Fig. 5.9c.

We then fabricate samples with cobalt ferromagnetic split-gates as shown in
Fig. 5.10a. The differential conductance G as a function of gate VG1 is mea-
sured at a series of external magnetic field B for a QD resonance, as shown in
Fig. 5.10b. The backgate is kept at a constant voltage of VBG = 0.66 mV and
VG2 = 0. Similar to the Py device, we find that the colormaps are clearly hys-
teretic for the increasing (red arrow) and decreasing (blue arrow) field sweep
directions and display a strong dependence on B. The extracted maximum
conductance Gmax from Fig. 5.10b is shown in Fig. 5.10c. Gmax is hysteretic
and mirror symmetric around B = 0. Similar to the permalloy device, we
expect a smooth non-monotonous magnetoconductance with a abrupt con-
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Figure 5.10. Cobalt device and magnetoconductance experiments. a
False color SEM image of the investigated Co FSG device. b G(2 as a function
of external magnetic field B and gate voltage VG2 for the up (red) and down
(blue) sweep of a QD resonance, with VSD = 0, in the NW segment S −D2. c
G

(2)
max vs B for the up and down sweep extracted from b.

ductance change at the switching field Bsw. However, the extracted Gmax
displays a smooth change rather than a sharp switching. For the up sweep
(red arrow), Gmax first increases linearly with increasing B, followed by a peak
at around B = −500 mT and a decrease till roughly B ≈ 0. As B changes
sign at 0 T, Gmax smoothly increases till ∼ 80 mT and subsequently converges
with the curve measured in the opposite direction at higher B values.

The smooth change of Gmax on a large field scale around B = 0 can be
attributed to the magnetocrystalline anisotropy of the Co strips. As observed
in the XMCD measurements, the domains at the tip of the Co strips displayed
non-uniform magnetization at B = 0. As we sweep B towards zero in our
measurements, these domains align along the preferred built-in direction to
minimize the total free energy. The crystalline anisotropy dominates over
the shape anisotropy in such Co strips resulting in a smooth rotation of the
domains rather than a sudden reversal in the magnetization orientation. This
is reflected as a smooth change in the MC around B = 0. These results
demonstrate that although we observe clear hysteresis with Co FSGs on a
larger field scale, the less controlled domain structure of the Co FSG tips
makes it harder to observe the desired MC features compared to permalloy.
Therefore, we use permalloy as the suitable material for FSG fabrication in all
the subsequent devices in this thesis.
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5.8. Discussion and Outlook

One of the main disadvantages in this experiment is the inability to directly
determine Bstr. Although the stray field from a nearby micromagnet has been
measured in a DQD system [197, 198], the most straightforward way in our
experiment is to perform electron spin resonance (ESR) measurements [199].
For a single QD with FSG device, we apply a varying magnetic field to drive
the electron spins using a strip line with an ac current. At the ferromagnetic
resonance condition, we should observe a dip in the reflected signal strength,
examined by a readout resonator coupled to the QD-FSG device.

In addition, larger Bstr is ideal for larger Zeeman splitting of the QD states.
This can be optimized by reducing the FSG gap with optimized fabrication
procedures or smaller diameter NWs. In addition, precise location of the QD,
using either in-situ grown InP tunnel barriers [83, 86] or crystal-phase engi-
neered tunnel barriers [72, 166] in an InAs NW, is desired to ensure optimized
and homogeneous local stray magnetic fields.

In conclusion, we presented proof-of-principle magnetoconductance (MC)
experiments for a single quantum dot (QD) with ferromagnetic split gates
(FSGs). We characterized the switching (coercive) field of the FSG and deter-
mined a stray magnetic field of ∼ 80 mT in the FSG gap from the hysteretic
MC of the QD resonances. In addition, we estimated a negligible stray field
far away from the FSGs. Our technique demonstrates a new approach to-
wards controlling electron spin in QDs in close proximity to superconducting
elements.
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6 A Double Quantum Dot Spin Valve

In this chapter, we investigate electron transport through two Zeeman-split
QDs in series, spin polarized by stray magnetic fields from local FSGs, in a
double quantum dot spin valve device. We determine the switching field of
the two FSGs and demonstrate the accessibility of two parallel and two an-
tiparallel magnetization states at zero external magnetic field in our device.
In tunneling magnetoresistance (TMR) experiments, we find a large TMR sig-
nal electrically tunable from +80% to −90%, which also results in a large gate
tunable QD spin polarizations up to ±80%. Such versatile QD-FSG spin filters
offer an alternative route for spin injection and detection in semiconducting
nanostructures.1

1This chapter has been published in a similar form in [105].
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6.1. Introduction

Spin injection and detection are two of the most fundamental processes in semi-
conductor spintronics,[11–13, 200–202] for example for quantum spintronic
devices and spin-based information processing,[27, 203, 204] or to determine
and control spin states in quantum physics.[205–207] Significant efforts are
dedicated to improve the efficiencies of these processes in a variety of ma-
terial platforms and physical phenomena.[24, 208–211] However, a reliable
and versatile technique to measure the spin degree of freedom remains elu-
sive, especially for superconductor hybrid devices, where spin phenomena are
crucial, for example in entanglement generation in solids,[52, 59] or demon-
strating topological superconductivity in Majorana type devices.[183] Such
experiments require highly efficient and gate-tunable spin injectors and de-
tectors in-situ of an active device. Most of these concepts rely on electrical
contacts to ferromagnetic reservoirs,[13] or on magnetic tunnel barriers,[212]
with significant obstacles[213] like a low polarization (20 − 40%),[110] the
magneto-Coulomb effect,[96, 214] the conductivity mismatch at the metal-
lic ferromagnet-semiconductor interface[111] or large global external magnetic
fields,[203, 215] suppressing the superconductivity and changing significantly
the bandstructure. All these effects are particularly challenging in sub-micrometer
scaled electronic devices.

6.2. Device Concept and Characterization

Here we provide an alternative route for spin injection and detection in semi-
conductor devices, compatible with superconductors in close proximity, using
quantum dots (QDs) without ferromagnetic contacts. As illustrated in fig-
ure 6.2a, the spin degeneracy of a QD state can be lifted by a magnetic field,
resulting in a spin polarization at the Fermi energy EF of

P = D↑(EF) −D↓(EF)
D↑(EF) +D↓(EF) , (6.1)

with Dσ the QD transmission density of states (t-DoS) for spin state σ ∈ {↑, ↓}
at EF. This spin-dependent transmission directly results in a spin-polarized
current through the QD. In practice, a single QD can be spin polarized in-
dividually by placing it in the narrow gap in a long strip of a ferromagnetic
material, which we term ferromagnetic split-gate (FSG). The FSG generates a
stray field Bstr at the QD position in the direction given by its magnetization,
either parallel or antiparallel to its long axis[192] and can also be used for
electrical gating. The FSG magnetization, and with it Bstr, can be inverted
at a characteristic external switching field Bsw, determined by the FSG width
in the device design.[106, 114]
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Similar to conventional spin valves with two ferromagnetic contacts with
Stoner split bands, we combine two QD-FSG elements with Zeeman split QD
states in series to form a double QD-spin valve (DQD-SV). In the first QD-
FSG unit (spin-injector), a spin polarized tunnel current is generated, which
is then detected at a different position by a second QD-FSG unit (spin detec-
tor). This concept is illustrated in figure 6.2a: electrons in state σ from the
unpolarized electrical contacts tunnel sequentially through the two QDs with a
probability that depends on the FSG states of both QDs, to first order resulting
in the respective current Iσ ∝ D

(1)
σ D

(2)
σ . Following typical tunneling magne-

toresistance (TMR) experiments,[13] we show that in such nano structures
both mutually parallel (p) and both anti-parallel (ap) magnetization states of
the two FSGs can be accessed at zero external magnetic field, B = 0, and
reoriented by cycling B. The individual QD polarizations and TMR signals
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6. A Double Quantum Dot Spin Valve

can be continuously electrically tuned up to values close to the theoretical lim-
its. In contrast to previously employed very large polarizing external magnetic
fields,[215–217] the stray and external magnetic fields required for such opti-
mizations are small enough and decay over short enough length scales, to be
compatible with various spin injection and detection experiments, for example
with superconducting components in Cooper pair splitters[52, 59] for electron
spin correlation measurements,[140] or to demonstrate equal spin Andreev
reflection[183] at Majorana type superconducting bound states.[71, 218, 219]

A schematic of a DQD-SV and a scanning electron microscopy (SEM) im-
age of the investigated InAs nanowire (NW) device are shown in figures 6.2b
and 6.2c, respectively. The FSGs are long Permalloy (Py) strips fabricated by
electron beam lithography with a narrow gap at the NW position, forming the
split-gate geometry. The strip widths are 120 nm and 230 nm, respectively,
determining the corresponding switching and stray fields, which can be ex-
tracted from independent experiments as demonstrated in Appendix B.1 and
Chapter 5, respectively. The electrical contacts at the NW ends are made
of titanium/gold with a split central gate (CG) to electrically form the two
QDs fabricated in the same step. One part of the narrower FSG and the CG
gate are electrically connected accidentally and are tuned in unison, which we
refer to as "gate 1" (G1) and "gate 2" (G2), while the other FSGs are labeled
individually (see figure 6.2c). The DC current I resulting from a bias voltage
VSD and the differential conductance G = dI/dVSD, were measured simulta-
neously using standard DC and lock-in techniques (Vac = 10µV), at a base
temperature of ∼ 50 mK.

In figure 6.2d, we plot I flowing through the DQD-SV at VSD = 1 mV, as a
function of VG1 and VG4. This map shows several bias triangles characteristic
for a weakly coupled DQD. These triangles originate from one resonance of
each QD aligning in energy within the bias transport window.[97] This allows
us to independently extract most of the single QD parameters used for mod-
elling later, e.g. the lever arms of each gate to each QD (see Appendix B.2).
We now discuss various types of TMR experiments for two resonances, in fig-
ures 6.3 and 6.4, respectively, while data for a third resonance are discussed
in Appendix B.5.

6.3. Tunneling Magnetoresistance at B = 0

We first demonstrate the principle of a TMR experiment and show that all FSG
magnetization states can be accessed at B = 0. Figure 6.3a shows a high reso-
lution bias triangle of a resonance (not shown in figure 6.2d) at VSD = 500µV.
Our typical TMR experiment consists of first choosing a specific trace for the
two gate voltages, here by sweeping VG1 and keeping VG4 constant, as indi-
cated by the red arrow, such that no excited states are involved in the transport

72



6.3. Tunneling Magnetoresistance at B = 0

20

10

0

G
 (1

0
G

0)

-5 -4 -3 -2 -1 0
VG1 (mV)

G--
G-+
G++
G+-

I (pA)

-3
B = 0  ∆G 

90

85

80

75

70

V
G

4 (
m

V)

-10 -5 0 5 10
VG1 (mV)

3000

VSD = 500 µV

a

c d

b

VSD = 0

-2
0
2

3000
I (pA)

-2
0
2

0.2-0.2

V
G

1 (
m

V)

B (T)
0

Sw
ee

p 
Se

qu
en

ce350

300

250

0.2-0.2 0.0
B (T)

I m
ax

 (p
A)

 --  ++ +
 --  ++ +

A

±Bsw1 ±Bsw2

 - -

Figure 6.3. FSG magnetization states and TMR at B = 0. a, Bias
triangles at VSD = 500µV. The red arrow specifies the cross-section A inves-
tigated in b. b, Up (red arrow) and down sweep (blue arrow) maps of I as
a function of B and VG1, measured along cross section A in figure 6.3a. c,
Current maximum Imax vs B, extracted from figure 6.3b, for the up (red)
and down (blue) sweep. The magnetization configurations are indicated by
i, j ∈ {+,−} d, G as a function of VG1 for all four magnetization states at
B = 0 and VSD = 0, showing a supression ∆G for the anti-parallel states
relative to the parallel magnetization configurations. The arrow indicates the
sequence of the experiments.

process. We then measure I as a function of VG1 at a series of external mag-
netic fields, B, applied in parallel to the FSG axes, which results in relatively
abrupt switchings of the FSG magnetizations (details in Appendix B.1). Such
a map for the trace in figure 6.3a is shown in figure 6.3b for decreasing and
increasing magnetic fields, as indicated by the blue and red arrows, respec-
tively, each starting at fields much higher (+0.5 T), or lower (−0.5 T) than
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shown, to ensure the formation of only a single magnetic domain along the
FSG axes. These maps show a clear hysteresis with a strong dependence on B
and the sweep direction. To demonstrate this more explicitly, we extract the
position, width (both discussed in Appendix B.3) and the maximum current
Imax at each B value. Imax extracted from figure 6.3b is plotted in figure 6.3c
for decreasing (blue) and increasing B (red).

In the up-sweep, Imax first increases roughly linearly with increasing B,
followed by a maximum at B ≈ −55 mT and a decrease around B = 0. At
small positive B, Imax becomes flatter, followed by a small maximum at B ≈
85 mT, and a roughly linear decrease towards more positive B. The down-
sweep can be described similarly as the up-sweep, but mirrored at B ≈ 0
leading to a clear hysteresis. This hysteresis can be understood qualitatively by
considering a smooth non-monotonous MR of the DQD that changes abruptly
with the reorientation of the FSG magnetizations. In the up-sweep, at B >
Bsw2 ≈ 5 mT the wider FSG is reoriented parallel to the now positive B, and
the two FSG magnetizations become anti-parallel (ap). The FSGs become
magnetized in parallel again for B > Bsw1 ≈ 140 mT, when the narrower FSG
is also inverted (details are given in Appendix B.1). These configurations are
shown schematically at the bottom of figure 6.3c for the down (blue) and the
up-sweep (red).

As a first quantitative measure for the TMR effect, we use the maximum
current values at B = −55 mT, using the maximum value of Imax in the p
state, and the value in the opposite sweep direction at the same field in the
ap state. We define TMR as

TMR = Ip − Iap

Ip + Iap
(6.2)

which results in TMR ≈ 6% at VSD = 500µV and B = −55 mT.
To explicitly demonstrate that all four magnetization states (two p and two

ap) are accessible at B = 0, we measure the differential conductance G at
VSD = 0 as a function of VG1 for each FSG magnetization state. The direction
of the stray fields Bstr1 and Bstr2 can be reversed individually by sweeping
B beyond the characteristic FSG switching fields. The exact sequence of B
sweeps for each measurement at B = 0 are as follow:

1. (-,-): Sweep the external magnetic field to B = −500 mT << −Bsw1 in
order to form a single magnetic domain along the FSG axis, followed by
a sweep back to B = 0 to obtain the magnetization state (−,−).

2. (-,+): Continue sweeping to B = +40 mT > Bsw2 (but < Bsw1) followed
by a sweep back to B = 0 to obtain the magnetization state (−,+).

3. (+,+): Sweep to B = +500 mT>> Bsw1 to get a single magnetic domain
along the +B direction, followed by a sweep back to B = 0 to obtain
(+,+).
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4. (+,-): Continue sweeping to B = −40 mT < −Bsw2 (but > −Bsw1)
followed by a sweep back to B = 0 to obtain (+,−).

We note that in the used sequence, p is followed by ap and vice versa.
The gate sweeps for the four magnetization states at B = 0 are plotted in
figure 6.3d. All curves show a maximum at the same gate voltage, which cor-
responds to a weakly spin split energy level of each QD (Γ > gµBB) being
aligned with the Fermi energy. The conductance is gradually reduced to zero
if the QD levels are detuned by VG1. We find very similar maximum con-
ductances for the same relative magnetization orientations and a clear sup-
pression in G for both ap states with respect to the two p states, yielding
TMR = ∆G

GP+GAP
≈ 7%, similar to the value obtained at a larger bias and a

small finite B.
The DQD-SV experiment can be reproduced quantitatively using a very

simple model, which also allows us to estimate the QD polarizations: we as-
sume that the current is given by elastic tunneling in two independent spin
channels,[112] which yields for a constant weak inter-dot coupling T12 and the
magnetization orientations i, j ∈ {+,−} along the FSG axes,

I(ij) = I
(ij)
↑ + I

(ij)
↓ = e

h

∑
σ

∫ ∞

−∞
T12D

(i)
1σ (E)D(j)

2σ (E)

[f(E − µS) − f(E − µD)]dE,
(6.3)

where Dβσ(E) denotes the spin dependent t-DoS in dot β ∈ {1, 2} and σ ∈ {↑
, ↓} the spin orientation; f(E) = 1/(1 + eE/(kBT )) is the Fermi-Dirac distribu-
tion function and µS,D the electrochemical potential in the source and drain
contacts, respectively. To start with, we assume a small bias (linear regime)
to obtain the conductance, as in the experiments. Since the Zeeman shift is
opposite, but of the same magnitude for opposite spins, the t-DoS of each QD
obeys the identity D−

σ (−B,EF) = D+
−σ(+B,EF) due to time-reversal symme-

try. At B = 0, this reduces to D−
σ (EF) = D+

−σ(EF), which yields, using the
definition of the QD polarizations in equation (1),

TMR = Ip − Iap

Ip + Iap
= P1P2 ≈ P 2. (6.4)

In the last step we assume that both QD polarizations are identical, which
results in P ≈ 27% on resonance at B = 0. We stress that this expression for
the TMR signal only holds at B = 0 because of the non-constant QD t-DoS, in
contrast to devices with ferromagnetic contacts, for which it holds also at finite
external fields, limited only by the correlation energy of the band structure.
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6.4. Tunneling Magnetoresistance at finite B

The non-constant t-DoS of the QDs allows us to go beyond the standard
experiments, enabling us to optimize and tune the TMR signals magnetically
as well as electrically. To demonstrate this, we investigate cross section C1
pointed out in figure 6.2d, for which we again plot I as a function of B and
VG1 at VSD = 10µV. Figure 6.4a shows the up and down sweeps, which again
show a clear hysteresis, prominently visible in figure 6.4b, where we plot Imax as
a function of B for the up and down sweeps (width and position are discussed
in Appendix B.3). These curves show qualitatively similar characteristics as
discussed for figure 6.3c. From the current maximum, we find a TMR signal
of ∼ 29% at B = 0 and estimate the individual QD spin polarizations as
P ≈ 53% using equation (4). These values are larger than for the previously
discussed resonance, mostly due to a smaller resonance width.

We now exploit the non-constant t-DOS to optmize the TMR signal. First,
we apply a small homogenous external field of ±40 mT, which is small enough
to still access all four FSG magnetization states (B < Bsw1) and compatible
with a wide variety of applications, for example with many superconducting
circuit elements. We measure I along cross section C2 indicated in figure 6.2d,
which is chosen on the resonance maximum along the base of the bias triangle
(see Appendix B.4) so that a shift in the resonance energies is negligible.

Figure 6.4c shows the four I(VG1) curves along C2 for the four FSG mag-
netization states (i, j) (VG4 is the same for each chosen B). The curve for
the parallel (−,−) [blue] and the anti-parallel configuration (+,−) [grey] were
measured at B = −40 mT, while the ones for (+,+) [purple] and (-,+) [black]
were measured at B = +40 mT. The exact sequence of B sweeps for the
measurements at B = ±40 mT are as follow:

1. (-,-): Sweep the external magnetic field to B = −500 mT in order to form
a single magnetic domain along the FSG axis, followed by a sweep back to
B = −40 mT to obtain the magnetization state (−,−) at B = −40 mT.

2. (-,+): Sweep to B = +40 mT to obtain the magnetization state (−,+)
at B = +40 mT.

3. (+,+): Continue sweeping to B = +500 mT to get a single magnetic
domain along the +B direction, followed by a sweep back to B = +40 mT
to obtain the (+,+) at B = +40 mT.

4. (+,-): Continue sweeping to B = −40 mT to obtain (+,−) at B =
−40 mT.

We find that the maximum current and lineshape for both anti-parallel
configurations are almost identical, while the two parallel ones slightly differ.
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Figure 6.4. Optimized TMR at B = ±40 mT. a, Maps of I as a function
of B and VG1 for the up (red arrow) and down sweep (blue arrow), for the
cross section C1 (see figure 6.3d) at VSD = 10µV. b, Maximum current Imax
as a function of B for the up (red) and down sweep (blue) extracted from
figure 6.4a. c, I along cross section C1 (see figure 6.2d) paramterized by VG1
for all four magnetization states, with the (−,−) and (+,−) configurations
measured at B = −40 mT, and the (+,+) and (−,+) configurations at B =
+40 mT. d, TMR for magnetization states (+,+) and (−,+) at B = +40 mT
for cross sections C2 (red) and Copt in figure 6.5a (blue). The black dashed
line shows the TMR extracted from the model for cross section Copt (shown in
figure 6.5a), with the parameters obtained from fits to the data in figure 6.4b.

Most importantly, the anti-parallel curves are reduced in amplitude by ∼ 25%
with respect to the parallel ones. We note that for this cross section, the
maximum occurs at the same VG1 value for both pairs of curves in figure 6.4c.

For any given VG1 and B, we now calculate the TMR signal using equa-
tion 6.2. As an example, this is plotted for the states (+,+) and (−,+) in
figure 6.4d (red curve), which shows that the TMR signal is continuously gate

77



6. A Double Quantum Dot Spin Valve

tunable roughly between +50% and −25%. This TMR signal can be improved
significantly by exploiting the small, field-induced shifts in the resonance posi-
tions. To achieve this, we plot TMR = (I++ −I−+)/(I++ +I−+) at B = 40 mT
as a function of VG1 and VG4 in figure 6.5a and find the optimal cross section la-
belled Copt. In figure 6.4d, we plot TMR along Copt which shows a continously
gate tunable TMR with a well separated pronounced maximum and minimum
TMR of +80% and −90%, respectively. These values are significantly larger
than in most other systems.

6.5. Spin Polarization

We expect that the QD polarizations are also gate tunable to large values, but
since an external field is applied, the above symmetry argument cannot be used
for a simple estimate. We therefore resort to numerically evaluating the model
introduced above. To do so, we define the total magnetic fields B(β)

tot = B+B(β)
str

at the two QD positions β ∈ {1, 2}, and use as the energy-dependent t-DoS
of the QDs at energy E the Lorentzian L(E −Eβσ) = (Γβ/2)2/[(E −Eβσ)2 +
(Γβ/2)2], centered at

Eβσ = E
(0)
β − eαβVgβ + 1

2σgβµBB
(β)
tot , (6.5)

with E
(0)
β an energy offset for states in dot β at zero gate voltages, gβ the

corresponding electron g-factors and Γ1 and Γ2 the broadening parameters.
The lever arms αβ are extracted independently from the bias triangles2 and
Vgβ are the applied gate voltages. The total current is then calculated using
equation (6.3).

This model reproduces very well the experiments using a single set of pa-
rameters for a given resonance, all in the typical range found in literature. For
example, we obtain Imax as a function of B, as plotted by the black curve in fig-
ure 6.4b for the up sweep, using Bstr1 = 61(±4) mT, Bstr2 = 27(±5) mT (es-
timated independently, see chapter 6) and the adjustable parameters g1 = 5.6,
g2 = 6.3, Γ1 = 25µeV and Γ2 = 15µeV, E(0)

1 ≡ 0, E(0)
2 = 8.1(±0.3)µeV, and

an inter-dot tunnel coupling T12 = 0.12 adjusted to obtain the correct am-
plitude. The errors given in brackets indicate the range for a parameter that
still gives satisfactory model curves. The same parameters also reproduce the
TMR results, shown as an inset in figure 6.5a and the optimized TMR cross
section C5 shown in figure 6.4d (black dashed line). The same parameters also
reproduce the width (Appendix B.3) and figure 6.4c. To reproduce the other
investigated resonances, we use slightly different parameters, as summarized
in Appendix B.5.

2we also include cross lever arms in the model without stating this explicitly for simplicity
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Figure 6.5. From TMR to spin polarization. a, Measured TMR as a
function of VG1 and VG4 for the magnetization states (+,+) and (−,+) at
B = 40 mT. The cross sections C2 and Copt are indicated by dashed lines.
Inset: TMR from the model calculations with the parameters extracted from
figure 6.4b . b, Spin polarization of QD1 (P1) and QD2 (P2) as a function
of VG1 and constant VG4 from the model at B = 40 mT, showing a large gate
tunability of P1 from −0.8 to +0.8.

In the model it is straight forward to extract the spin polarizations, e.g. P1
for QD1 as a function of VG1 at B = 40 mT, which is plotted in figure 6.5b,
with P2 ≈ 27% for QD2, being independent of VG1. P1 can be gate tuned over
a large range, with a maximum absolute value of P1 ≈ 80%, and a zero-field
value of ≈ 59%. This analysis demonstrates that the DQD-SV is a highly
tunable spin valve with one QD acting as a gate-tunable spin injector and the
other as a detector, such that transport through the DQD can be electrically
tuned from predominantly spin down electrons to spin up electrons, depending
on the orientation of Bstr and B. The large gate-tunability of the QD spin
polarizations originates from the resonance widths being of similar magnitude
as the Zeeman splitting, Γ1 + Γ2 ∼ gµBtot. Increasing the QD life time in
the model by only a factor of two, keeping all other parameters the same, we
find even stronger polarizations, up to 91%, thus almost reaching unity. Such
sharper line shapes can be obtained with in situ grown InP tunnel barrier[83,
220, 221] or by crystal phase engineered barriers in InAs NWs.[72, 166] In
addition, the QD polarization can be enhanced by stronger Bstr, either by
reducing the FSG gap, e.g. using smaller diameter NWs, or by using other
ferromagnetic materials.
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6. A Double Quantum Dot Spin Valve

6.6. Discussion and Conclusion

In conclusion, we have demonstrated a DQD spin valve in an InAs NW with fer-
romagnetic split gates that results in a tunneling magnetoresistance electrically
tunable between +80% and −90%. Using a simple resonant tunneling model,
we extract gate and B field tunable QD spin polarizations up to ∼ ±80%,
with the possibility of even larger values, up to unity. This large benchmark
value and the spatially localized stray fields are promising for efficient spin
injection, detection and correlation experiments in a large variety of devices.
We note that our concept is very general and can be applied to any device
region with a non-constant transmission T (E) and a finite g-factor. Especially
the small external fields resulting in such large efficiences are compatible with
many superconducting contacts in close proximity,3 so that the QD-FSG units
are ideally suited as spin injectors and detectors in nanoelectronic devices, for
example to investigate spin orbit interactions [222], to perform spin correla-
tion measurements and electronic Bell tests in a Cooper pair splitter,[140] or
to demonstrate equal spin Andreev reflection at Majorana zero modes.[183] In
addition, a single QD-FSG unit could also prove useful for the initialization
and read-out of spin qubits,[179, 223] while arrays of FSG units are expected
to result in a variety of novel phenomena, such as magnetic superlattices,[224]
magnetic periodic potentials and in synthetic and externally controllable spin
orbit interaction.[190, 225–227]

3see Chapter 5 for an experimental estimate of Bstr away from the FSGs.
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7 Spin readout in a Cooper pair splitter

In this chapter, we perform spin readout measurements in a Cooper pair
splitter device using the efficient spin detection technique in chapter 6 to in-
vestigate correlations between the spin currents in the CPS device. We demon-
strate the coexistence of superconductivity and stray magnetic fields at close
proximity in our device. In addition, the non-local CPS conductance for the
four FSG magnetization states showed suppressed conductance for parallel
magnetization states with respect to antiparallel states, consistent with the
interpretation and calculation of spin cross anti-correlation for the spin singlet
CPS ground state.1

1The image showing a Cooper pair splitter device was adapted from Ref. [52].
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7. Spin readout in a Cooper pair splitter

7.1. Introduction

Non-local correlations between two distant quantum systems is an important
fundamental property in quantum mechanics [228]. Although experimental
investigation of such non-local correlations have been demonstrated with en-
tangled photons long back [229], it had proven quite difficult to investigate
such phenomenon with spin-1/2 electrons in a well-controlled manner. Re-
cently, Cooper pair splitter (CPS) devices were demonstrated as an on-chip
source of entangled electrons, where the spin-singlet Cooper pairs were split
into two different quantum dots (QDs) via crossed Andreev reflection (CAR)
[118]. This phenomenon, known as Cooper pair splitting (CPS), has been suc-
cessfully demonstrated in various systems, such as InAs NWs [52–57], carbon
nanotubes (CNTS) [58, 59] and graphene [60, 61], by investigating the non lo-
cal correlations in current [52, 59] as well as charge noise [56]. In such devices,
the conductance cross correlation corrG = ⟨dG1 ∗ dG2⟩, where dG1,2 is the
increase in conductance due to CPS, is expected to be positive, i.e. both arms
show a simultaneous increase in conductance, while the spin cross correlation
corrS = ⟨σz1 ∗ σz2⟩ is expected to be negative due to the electrons in a Cooper
pair being spin singlet.

However, a proof of spin correlation is still missing. We expect a strong spin
correlation between the electrons ejected into the two arms of a CPS device
[62–64]. Such spin sensitive measurements require an efficient spin filtering
and readout technique of the split electrons. One approach to achieve a spin
filter is to Zeeman split the QD states of a CPS device using an external mag-
netic field. However, such an approach is limited by the maximum applicable
external magnetic field in close proximity to a superconductor as well as the
need of highly efficient spin detectors to detect small correlation signals. Such
problems can be circumvented by the highly efficient spin detection technique
demonstrated in chapter 6 using local stray magnetic fields.

In this chapter, we demonstrate a first experiment towards spin correla-
tion measurements of Cooper pair electrons by combining ferromagnetic split
gates (FSGs) with a CPS device. Electrons in a Cooper pair are spin singlets,
for which we expect full negative correlation (or anti-correlation) between the
spin signals of the two QDs. We use non-ideal partially polarized quantum
dots as spin detectors to investigate CPS conductances for the four magneti-
zation states given by the FSGs. As the main result of this chapter, we then
demonstrate CPS in this device, with amplitudes that depend on the orien-
tation of both FSG magnetizations, demonstrating non-locality not only in
the charge current, but also in the spin signal. In addition, we determine the
superconducting gap by bias spectroscopy and demonstrate the simultaneous
coexistence of superconductivity and Bstr at each QD in our device.
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Figure 7.2. CPS-FSG concept and device a,b Energy diagram (a) and
schematics (b) of a Cooper pair splitter with ferromagnetic split gates (CPS-
FSG). c False color scanning electron microscope (SEM) image of the inves-
tigated InAs NW device. d Transmission electron microscope (TEM) image
of an InAs/InP heterostructure NW, where two in-situ grown InP barriers of
length l1,2 ≈ 5.5 nm are separated by s = 19 nm of InAs. TEM image provided
by Dr. Valentina Zannier, Pisa, Italy.

The spin selective CPS (SS-CPS) device is based on the tunneling of spin
correlated electrons originating from CPS through the individual QDs, as illus-
trated in Fig. 7.2a. Similar to a typical Cooper pair splitter device discussed
in section 2.3.3, we couple a superconductor to two individually electrically
tunable QDs, each coupled further to a normal metal reservoir. In contrast to
conventional CPS devices, we employ FSGs instead of normal metal side gates
(NSGs) to tune the electrochemical potential of the QDs independently and,
most importantly, to individually spin polarize the QD states. As discussed
in chapter 6, this is obtained by the stray field Bstr of the FSGs at the two
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7. Spin readout in a Cooper pair splitter

QD positions along the direction of its magnetization (Fig. 7.2b). This leads
to a spin dependent transmission at the Fermi energy (similar to chapter 6) as
Bstr lifts the spin degeneracy of the QD states, which we describe by defining
a spin polarization at the Fermi energy EF given by:

P = D↑(EF) −D↓(EF)
D↑(EF) +D↓(EF) , (7.1)

where Dσ is the QD transmission density of states (t-DoS) for spin state σ ∈
{↑, ↓} at EF. Therefore, a split Cooper pair electron in spin state σ will tunnel
through the QD with a probability that depends on the FSG magnetization
state of the respective dot. The width of the FSGs for each QD is different, such
that the FSG magnetization and the corresponding Bstr can be independently
reversed at the characteristic switching fieldsBsw (see chapter 6 abd chapter 5).

A false color SEM image of the investigated CPS-FSG device is shown in
Fig. 7.2c. An InAs NW of ∼40-45 nm diameter is contacted in the middle by a
200 nm wide titanium/aluminum (5 nm Ti/ 65 nm Al thick) superconducting
contact (S). Two titanium/gold (5 nm Ti/ 45 nm Au thick) normal metal
contacts (D1 and D2) are placed on opposite sides of S, such that they define a
QD (QD1 and QD2) on each arm of the device. Both the QDs are electrically
tuned using a global backgate (BG) and individually addressed by a pair of 30
nm thick Permalloy FSGs, which at the same time generate a stray magnetic
field Bstr1 and Bstr2 at the respective QD positions. The width of the FSG
pairs at QD1 and QD2 are ∼ 100 nm and ∼ 180 nm respectively, such that
they reverse their magnetization at different switching fields Bsw1 and Bsw2
respectively. We apply a dc (VSD) and an ac bias (Vac = 10µV) to the S
contact and simultaneously measure the differential conductance G(1,2) = dI1,2

dV

at the normal contacts D1 and D2 using standard lock-in techniques at a base
temperature T = 50 mK.

The InAs NW used in this experiment contain two short indium phosphide
(InP) segments directly beneath the 200 nm wide S contact with the purpose of
reducing direct single electron tunneling through the NW. Such InP segments
grown in-situ during the NW growth process serve as deterministic tunnel
barriers in the InAs NW [153]. A transmission electron microscope (TEM)
image of such an InAs/InP NW heterostructure is shown in Fig. 7.2d. The
two InP segments have a width of l1, l2 ≈ 5.5 nm, a separation of s ≈ 19 nm
and are located at a distance of 440 nm from the Au catalyst particle.

We first determine transport characteristics of the individual elements by
performing bias spectroscopy to determine the electronic transport properties
of the device at zero external magnetic field, i.e. B = 0. Fig. 7.3a and Fig. 7.3b
show colorscale plots of G(1) and G(2) respectively as a function of the applied
bias voltage VSD and gate voltages VG1a and VG2a respectively, from which we
extract an addition energy of Eadd,1 ≈ 1.6 meV and Eadd,2 ≈ 2.5 meV for QD1
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Figure 7.3. Bias spectroscopy. Differential conductance (a) G(1) and (b)
G(2) as a function of bias voltage VSD and gate voltages (a) VG1a and (b) VG2a
for QD1 and QD2 respectively. (c) G(1) and (d) G(2) as a function of VSD
and the external magnetic field B for cross sections marked by green and red
dashed line in (a) and (b) respectively, both consistently suggesting a critical
magnetic field of Bc ∼ 90 mT for the S-contact.

and QD2 respectively and a superconducting gap of ∆ ∼ 110µeV. The cross
lever arms across the the S contact are one order of magnitude lower compared
to the lever arm of a direct local FSG gate, which enables one to tune the QDs
almost independently.

To characterize the superconductor, we now apply an external magnetic
field B in-plane parallel to the FSG long axes. G(1) and G(2) as a function of
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7. Spin readout in a Cooper pair splitter

the applied VSD and B, along the cross sections marked by the green dashed
line in Fig. 7.3a and red dashed line in Fig. 7.3b, is plotted in Fig. 7.3c and
Fig. 7.3d respectively. We observe that the superconducting gap is suppressed
at a critical magnetic field of Bc ∼ 90 mT. Therefore, Bstr1 and Bstr2 cannot
be larger than Bc at the S position.

7.3. Magnetoconductance Measurements
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Figure 7.4. Magnetoconductance (MC) measurements. Up-(red ar-
row) and down-sweep (blue arrow) maps of (a) G(1) and (b) G(2) as a function
of B and gate voltage (a) VG1a and (b) VG2a for a QD1 and QD2 resonance
respectively. Conductance maximum (c) G(1)

max and (d) G(2)
max vs B extracted

from figure (a) and (b) for the up (red) abd down (blue) sweep.

To demonstrate the presence of a non-zero Bstr and determine the switching
fields of the FSGs, we measure G(1) (G(2)) as a function of VG1a (VG2a) for
a QD1 (QD2) Coulomb resonance at a series of external magnetic fields B
applied parallel to the FSG axes, similar to chapter 6. Such maps of G(1)
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7.3. Magnetoconductance Measurements

and G(2) are shown in Fig. 7.4a and Fig. 7.4b for increasing and decreasing
magnetic field directions, as indicated by the red and blue arrows respectively.
We note that B is first swept to large values, i.e. +0.5 T or −0.5 T, to ensure
the formation of a single domain along the FSG axes. Both G(1) and G(2) maps
show a clear hysteresis with strong dependence on the sweep direction of B,
suggesting the presence of a finite Bstr on both QDs. To explicitly demonstrate
this, we extract the maximum conductance Gmax for both QDs. G

(1)
max and

G
(2)
max for QD1 and QD2 is plotted in Fig. 7.4c and Fig. 7.4d respectively for

increasing (red) and decreasing (blue) B.
In the up sweep (red curve) of Fig. 7.4d, we observe that G(2)

max decreases
roughly linearly with increasing B followed by a relatively sharp decrease
around B = 0. At B ≈ 25 mT, G(2)

max achieves it minimum value, and starts to
increase with more positive B. The down sweep can be described in a similar
manner, but mirror symmetric at B ≈ 0 due to a clear hysteresis. Quali-
tatively, G(2)

max can be understood as a smooth magnetoconductance (MC) of
QD2, which changes relatively abruptly when the corresponding FSG2 reverses
its magnetization direction. From the up sweep, we find that the FSG2 gets
reoriented to positive B direction for B > Bsw2 ≈ 25 mT, as indicated by the
brown arrows in Fig. 7.4d (see chapter 5 for more details).

Similar to G(2)
max, G(1)

max also exhibits a clear hysteresis around B = 0 as shown
in Fig. 7.4c. In the up-sweep, G(1)

max increases roughly linearly with increasing B
till B = −110 mT, followed by a steep increase with a maximum at B = 20 mT
and a steep decrease until B ≈ 100 − 105 mT. For B > 100 − 105 mT, G(1)

max
shows a roughly linear decrease with more positive B. The down sweep is
mirror-symmetric with respect to B = 0. However, we do not observe sharp
abrupt change in G(1)

max nor in G(2)
max compared to the ones found for single QD

FSG devices in chapter 5. The abrupt change in slope of G(1)
max at B ≈ 105 mT

might be a signature of FSG1 reversing its magnetization direction. Although
this is consistent with Bsw1 > Bsw2 due to narrower width of FSG1, the exact
determination of Bsw1 still remains elusive.

To determine the antiparallel FSG magnetization states, we operate the
device in a spin-valve configuration, i.e. standard two-terminal lock-in mea-
surements with the two QDs in series with S kept floating, and measure the
differential conductance Gsv as a function of B and VG1a for increasing (red)
and decreasing (blue) B as shown in Fig. 7.5a. Similar to G

(1)
max and G

(2)
max,

we extract Gsv
max from Fig. 7.5a, as plotted in Fig. 7.5b. In the up sweep

(red curve), Gsv
max first increases with increasing B, followed by a maximum at

B ≈ −130 mT and a subsequent decrease with a minimum at B ≈ −20 mT.
AroundB ≈ 0, Gsv

max increases again with small positiveB, followed by another
maximum at B ≈ 95 mT, and a further decrease towards more positive B. We
note here that Gsv

max decreases at negative B, which might be a consequence
of Cooper pair splitting in our device. The down sweep (blue curve) is mirror
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Figure 7.5. Spin Valve measurement a Up-(red arrow) and down-sweep
(blue arrow) maps of G(sv) as a function of B and gate voltage VG1a when the
device is measured in a spin valve configuration. b Conductance maximum
G

(sv)
max vs B extracted from figure (a) for the up (red) abd down (blue) sweep.

c ∆G = Gsv,up
max −Gsv,down

max as a function of B from figure (b).

symmetric to the up sweep at B = 0. To determine the antiparallel FSG mag-
netizations, we plot ∆G = Gsv,up

max − Gsv,down
max as a function of B in Fig. 7.5c,

where Gsv,up
max and Gsv,down

max refer to the up and down sweep in Fig. 7.5b. We
assign an average zero level of the measured data, as indicated by the black
dashed line and define a lower and upper conductance limit for significant de-
viation of ∆G from the average zero. We use the B values at which the upper
horizontal line meets ∆G as the two switching fields, Bsw1 ≈ 100 mT and
Bsw2 ≈ 25 mT, respectively. We use a similar analysis for the lower horizontal
line also. Therefore, for magnetic field values between Bsw1 > B > Bsw2, the
FSGs can be oriented antiparallel to each other for later experiments. There-
fore, this determination of the FSG switching fields along with the presence
of a finite Bstr demonstrates the coexistence of superconductivity and Bstr in
our device.

7.4. Cooper Pair Splitting

We now demonstrate the phenomenon of Cooper pair splitting in our CPS-FSG
device in the presence of Bstr which we will then analyze in different magne-
tization configurations in section 7.5 below. Fig. 7.6a and Fig. 7.6b show the
simultaneously measured differential conductances G(1) and G(2) as a function
of gate voltages VG1a and VG2a respectively at B = 0 and VSD = 0. When
VG1a is varied, QD1 is tuned through two resonances resulting in conductance
maxima in G(1) as shown in Fig. 7.6a. We note that the amplitudes and res-
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Figure 7.6. Cooper pair splitting (CPS). Maps of (a) G(1) and (b)
G(2) as a function of gate voltages VG1a and VG2a respectively at B = 0 and
VSD = 0. c,d The non local signal G(1)(VG2a) (red curve) for two on-resonance
positions of QD1, marked by the (c) brown and (d) green arrows in figure
(a), when G(2) (black curve) is tuned through four resonances.

onance positions vary negligibly while tuning VG2a due to the low capacitive
cross talk from FSG2 to QD1. We also observe similar conductance maxima
(ridges) with much larger amplitudes in G(2) for QD2, as plotted in Fig. 7.6b.
These are predominantly tuned by VG2a, which results in resonances perpen-
dicular to those observed in Fig. 7.6a due to QD1. The resonances in Fig. 7.6b
exhibit multiple small shifts in Vg2, most probably due to some nearby charge
rearrangements on the substrate or the NW oxide. Nevertheless, we can still
trace each individual resonance in G(2) as a function of VG1a.
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CPS is manifested by pronounced peaks when both QDs are in resonance.
This is prominently visible in G(1) for gate configurations where resonances
of QD1 and QD2 overlap. The conductance increases by 15% with respect
to the corresponding conductance maximum away from the resonance of the
other QD. QD1 is adjusted to an on-resonance position with VG1a as marked
by the brown arrow in Fig. 7.6a. QD2 is then tuned across four subsequent
resonances, showing Coulomb blockade peaks when a QD2 level is in reso-
nance (black curve) in Fig. 7.6c. We simultaneously measure G(1)(VG2a) and
observe a increase in the non-local conductance when QD2 is also tuned to
on-resonance, while the background is due to local pair tunneling (LPT) pro-
cesses [59]. The non-local conductance G(1)(VG2a) for another on-resonance
position of QD1 (green arrow in Fig. 7.6a) exhibits similar behavior on tuning
QD2 through the same subsequent four resonances, as shown in Fig. 7.6d. In
addition, we observe a suppressed non-local signal at the resonance crossings
when the S contact is driven into the normal state by applying B greater than
the critical field [52].

We expect the same non-local signal strength on the other arm, which,
however, is below the signal to noise detection limit of our experiment, since
the local signal is 10 times larger than in arm 1, i.e. G(2) ∼ 10G(1). The
large amplitude of G(2)(VG1a) limits the visibility of a small increase ∼ 1%
in its conductance from CPS. Such large background might be due to a LPT
process, where the two Cooper pair electrons tunnel sequentially via a virtual
quasiparticle state in S into QD2 [59] or resonant Andreev tunneling [230].

7.5. Spin correlation experiments in a CPS device

We now will investigate the spin correlation of the CPS currents. To do so,
we now focus on individual resonance crossings to explicitly quantify the non-
local CPS signal and determine its dependence on the four FSG magnetization
states (two parallel and two anti-parallel). Fig. 7.7a and Fig. 7.7b show simul-
taneously measured G(1) and G(2) for two resonance crossings (L1,R1) and
(L1,R2) at B = 0 (not shown in Fig. 7.6). Similar to Fig. 7.6, we observe
prominent peaks in G(1) at gate voltages where the two QDs are resonant,
while no such peaks are observed in G(2) due to the large background. To
explicitly demonstrate CPS, we extract the non-local maximum conductance
G

(1)
max(VG2a) from Fig. 7.7a. This is achieved by taking cross sections of G(1) as

a function of VG1a at each VG2a setting, followed by fitting with a Lorentzian to
extract the maximum conductance, similar to chapter 6. G(1)

max(VG2a) extracted
from Fig. 7.7a is shown in Fig. 7.7c. Sharp peaks (red line) are observed at the
voltages of resonance R1 and R2, which are similar in shape and width as the
resonances in G(2) (black line). For clarity, a zoom-in plot of G(1)

max(VG2a) (red
line in Fig. 7.7c) is shown in Fig. 7.7d. In addition, when the superconductiv-
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resonances. d Zoom-in plot of G(1)max (VG2a) at B = 0 (red curve) showing
the extracted CPS signal ∆GCPS.

ity is suppressed with an external magnetic field B = +150 mT, we observe no
peaks (blue line) in G

(1)
max(VG2a), consistent with S being in the normal state.

To quantify the CPS signal in QD1, we use the amplitude ∆GCPS = G
(1)
max −

Gbackground of the (L1,R1) peak inG(1)
max(VG2a), as shown in Fig. 7.7d. Gbackground

is obtained by interpolating the local background with a 2nd-order polyno-
mial (black dashed line in Fig. 7.7d). On the resonance crossing, we obtain
∆GCPS = 0.0085 e2/h. We now define the visibility of CPS in the QD1 arm of
the device as η1 = ∆GCPS/G

(1)
max [59], i.e. the ratio of the CPS conductance to
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7. Spin readout in a Cooper pair splitter

the total conductance in one arm, including the local processes. Similarly, one
can define η2 = ∆GCPS/G

(2)
max for QD2. η1 has a value of 9−10% on-resonance,

comparable to the best NW CPS devices [54, 55], though below the theoret-
ically possible 100% [59]. η1 increases to η1 ≈ 35% slightly off-resonance for
QD1, as marked by the brown arrow in Fig. 7.7a. For the sake of analysis,
we assume that Cooper pair splitting results in conductance ∆GCPS in both
QD arms independent of other processes, although η2 ≈ 0 for QD2 due to the
large local background. Therefore, we define the CPS efficiency [59] as

s = 2∆GCPS

G
(1)
max +G

(2)
max

(7.2)

Using ∆GCPS from Fig. 7.7d, we find a CPS efficiency of ∼ 2.3% in the
presence of stray magnetic fields. Although these are not the best values,
we still obtain clear CPS, with further techniques to improve the splitting
efficiency discussed in chapter 9.
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Figure 7.8. On-resonance CPS conductance and visibility. (a-c) CPS
conductance ∆Gij

CPS and (d-f) visibility η1 for the four FSG magnetization
states at (a,d) B = 0, (b,e) B = ±20 mT and (c,f) B = ±40 mT for the
resonance crossing (L1,R1) in Fig. 7.7.

We now investigate the effect of projecting the spin states of the CPS signal
onto two axis given by the magnetization of the two FSGs. We apply an exter-
nal magnetic field B along the FSG long axes to set the FSG magnetizations
and then read out the corresponding CPS conductance ∆Gij

CPS and the CPS
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7.5. Spin correlation experiments in a CPS device

visibility η1. To reach the respective magnetization states of the FSGs, we use
the following sweep patterns:

1. (-,-): Sweep the external magnetic field to B = −500 mT << −Bsw1 in
order to form a single magnetic domain along the FSG axis, followed by
a sweep back to B = 0 (or B = −40 mT) to obtain the magnetization
state (−,−).

2. (-,+): Continue sweeping to B = +60 mT > Bsw2 (but < Bsw1) followed
by a sweep back to B = 0 (or B = +40 mT) to obtain the magnetization
state (−,+).

3. (+,+): Sweep to B = +500 mT>> Bsw1 to get a single magnetic domain
along the +B direction, followed by a sweep back to B = 0 (or B =
+40 mT) to obtain (+,+).

4. (+,-): Continue sweeping to B = −60 mT < −Bsw2 (but > −Bsw1)
followed by a sweep back to B = 0 (or B = −40 mT) to obtain (+,−).

We note that in the above sequence, parallel states are followed by antipar-
allel states and vice versa. We then simultaneously measure G(1) and G(2) at
each magnetization state and extract ∆GCPS and η1 from G

(1)
max, as described

above. We note that the G(1)
max shows CPS peaks at the same gate voltage for

all four magnetization states, while the amplitude of the CPS peaks ∆GCPS
varies between the p and ap states. ∆GCPS and η1, measured on-resonance, for
the four magnetization states at B = 0,±20, ±40 mT are shown in Fig. 7.8a-
c and Fig. 7.8d-f, respectively. We find very similar CPS conductance and
visibility for the same relative magnetization configurations and a clear sup-
pression in ∆GCPS and η1 for the two p magnetization states compared to the
two ap states. We note that the CPS conductance for ap states are larger than
those of the parallel states, i.e. ∆GCPS,ap > ∆GCPS,p in Fig. 7.8, qualitatively
consistent with the interpretation of negative spin cross correlation between
the split Cooper pair electrons originating from spin singlet BCS ground state
(detailed discussion in section 7.6). In addition, we find that the magnitudes
of ∆GCPS and η1 decreases with increasing B in Fig. 7.8a-c, consistent with
Cooper pair splitting being suppressed in the presence of increasing external
magnetic field.

Another Resonance Crossing
We measure G(1) and G(2) for another resonance crossing as presented in
Fig. 7.9a and Fig. 7.9b at B = 0. Similar to resonance crossing (L1,R1) in
Fig. 7.7, we observe prominent peaks in the non-local conductance G(1)(VG2a)
for QD1, as shown in Fig. 7.9c for the (-,+) magnetization state at B = 0. No
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such peaks are seen for QD2 due to a large local background. We extract an
on-resonance visibility of η1 ≈ 3 − 5%, which increases to η1 ≈ 28 − 35% when
measured slightly off-resonance for QD1 (brown arrow in Fig. 7.9a). ∆GCPS
and η1, measured on-resonance at B = 0, for each of the four magnetization
states are shown in Fig. 7.9d and Fig. 7.9e respectively, while the off-resonance
CPS visibility is plotted in Fig. 7.9e. The observations for this resonance
crossing are also consistent with the interpretation of spin cross anti-correlated
CPS, similar to resonance crossing(L1,R1) in Fig. 7.7.

7.6. Spin Correlation Calculation

In general, a correlation function is given by the expectation value of the
product of two variables, ⟨σ1 ⊗ σ2⟩ in our case. In this section, we derive and
calculate the expectation value of the spin cross correlation operator for our
measured CPS conductance dependent on the FSG magnetization states. For
the sake of analysis, we assume ∆GCPS is same in both QDs and define the
spin quantization axis along the +ẑ-direction.

Quantum description of ferromagnetic detectors
We use the term non-ideal detectors to signify partially polarized spin detec-
tors, i.e. the spin polarization is P1,2 < 1 for the detectors QD1 and QD2
in our device. For such non-ideal ferromagnetic spin detectors with a finite
DOS of both spin components at the Fermi energy EF, an electron in state
|↑⟩z can enter the detector with opposite majority spins and be wrongly de-
tected as |↓⟩z with non-zero probability. Therefore, we define the non-ideal
measurement operators of the spin detector by [140]:

M+ = Γ+
↑ |↑⟩ ⟨↑| + Γ+

↓ |↓⟩ ⟨↓|

M− = Γ−
↑ |↑⟩ ⟨↑| + Γ−

↓ |↓⟩ ⟨↓|
(7.3)

where +(-) denotes the detector magnetization set parallel (antiparallel) to
the quantization axis. Γi

↑,↓ is related to the density of states (DOS) at the
Fermi energy EF by:

Γi
↑,↓ = D↑,↓(EF)

D↑(EF) +D↓(EF) (7.4)

where i ∈ {+,−} such that Γi
↑ + Γi

↓ = 1. Using the definition of spin
polarization from Eq. 7.1, we can rearrange the Γi

↑,↓ to:
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7. Spin readout in a Cooper pair splitter

Γi
↑ = 1

2(1 + P i)

Γi
↓ = 1

2(1 − P i)
(7.5)

where P i =
{
P, i = +
−P, i = −

and P ∈ [0, 1] is the absolute value of the spin

polarization. For ideal spin detectors, P = 1 which results in Γ+
↑ = Γ−

↓ = 1
and Γ−

↑ = Γ+
↓ = 0. This gives us the ideal projection operators M+ = |↑⟩ ⟨↑|

and M− = |↓⟩ ⟨↓| from Eq. 7.3. The non-ideal spin projection operator along
the ẑ-quantization axis for a single electron spin can then defined as

Ms,ẑ = M+ −M− = P (|↑⟩ ⟨↑| − |↓⟩ ⟨↓|) (7.6)
where P is the polarization of the spin detector (spin polarized QD in our de-

vice). For ideal detectors, P = 1 resulting in Ms,ẑ = |↑⟩ ⟨↑| − |↓⟩ ⟨↓|. Similarly,
we define the non-ideal spin projection operator for measuring spin correlation
between two electron spins as:

Md,ẑ = (M+
1 −M−

1 ) ⊗ (M+
2 −M−

2 )
= P1P2(|↑↑⟩ ⟨↑↑| − |↑↓⟩ ⟨↑↓| − |↓↑⟩ ⟨↓↑| + |↓↓⟩ ⟨↓↓|)

(7.7)

where P1 and P2 are the spin polarizations of the two spin detectors QD1
and QD2 respectively. For a spin singlet CPS state |cps⟩ = 1√

2 [|↑↓⟩ − |↓↑⟩],
we obtain the expectation value ⟨cps|Md,ẑ |cps⟩ = −P1P2 < 0, demonstrating
the anti-correlation of the spins in a singlet. For ideal detectors P1 = P2 = 1,
we obtain ⟨cps|Md,ẑ |cps⟩ = −1, i.e. the experiment would show the full anti-
correlation of a Cooper pair singlet. A smaller polarization would register as a
smaller correlation, although the CPS state is fully anti-correlated. This shows
that the detector quality is relevant. We note that the product state |s⟩ = |↑↓⟩
also yields ⟨↑↓|Md,ẑ |↑↓⟩ = −P1P2 < 0, exactly as the |cps⟩ state. On the other
hand, the product state |s⟩ = |↑↑⟩ gives ⟨↑↑|Md,ẑ |↑↑⟩ = P1P2 > 0 signifying
positively correlated states.

Spin correlation operator
We now define the experimental spin correlation operator Ĉexp for non-ideal
detectors as:
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Ĉexp = P1P2(|↑↑⟩ ⟨↑↑| − |↑↓⟩ ⟨↑↓| − |↓↑⟩ ⟨↓↑| + |↓↓⟩ ⟨↓↓|)
|↑↑⟩ ⟨↑↑| + |↑↓⟩ ⟨↑↓| + |↓↑⟩ ⟨↓↑| + |↓↓⟩ ⟨↓↓|

= Md,ẑ

|↑↑⟩ ⟨↑↑| + |↑↓⟩ ⟨↑↓| + |↓↑⟩ ⟨↓↑| + |↓↓⟩ ⟨↓↓|

(7.8)

Assuming constant tunnel barrier strength and attempt frequency f with
which Cooper pairs are scattered at the interface to the QDs for all FSG
magnetization states, the FSG dependent charge conductance for a stream of
electrons in state σ ∈ {↑, ↓} through a single QD detector can be related to
the non-ideal measurement operators as:

Gi ∝ Γi
↑ |↑⟩ ⟨↑| + Γi

↓ |↓⟩ ⟨↓| (7.9)
where i ∈ {+,−} denote the QD FSG orientation. For a two QD detector

system, the charge conductance is then given by the product of the individual
QD transmissions. This results in the relation:

G++ −G+− −G−+ +G−− ∝ P1P2(|↑↑⟩ ⟨↑↑| − |↑↓⟩ ⟨↑↓| − |↓↑⟩ ⟨↓↑| + |↓↓⟩ ⟨↓↓|) = Md,ẑ

G++ +G+− +G−+ +G−− ∝ |↑↑⟩ ⟨↑↑| + |↑↓⟩ ⟨↑↓| + |↓↑⟩ ⟨↓↑| + |↓↓⟩ ⟨↓↓|
(7.10)

Therefore, the CPS conductances are a result of the spin correlations. As-
suming G++ = G−− and G+− = G−+, one obtains using Eq. 7.8 and Eq. 7.10:

⟨cps| Ĉexp |cps⟩ = G++ −G+−

G++ +G+− ≈ −1
3 < 0 (7.11)

where G++ and G+− are the on-resonance experimentally measured values
in Fig. 7.9. This signifies that the measured CPS conductances in one arm are
in agreement with spin cross anti-correlation between the split electrons. For
the |cps⟩ state, we find ⟨cps| Ĉexp |cps⟩ = −P1P2 ≈ −P 2 = −1/3, where we
assumed identical spin polarization P for both QDs in the last step. Assuming
full singlet states from the CPS process, we obtain P ≈ 57% on resonance at
B = 0, very similar to values achieved in the double quantum dot spin valve
experiment at B = 0 in chapter 6.

7.7. Discussion and Conclusion

In our experiments, current cross correlation was observed in only QD1, while
it could not be resolved for the currents in QD2. However, there are various
other transport mechanisms that can result in conductance change in only
arm of a CPS device. These mechanisms are based on two basic principles:
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7. Spin readout in a Cooper pair splitter

(1) the probability of local and non-local processes depend on the individual
QD transmissions, and (2) a finite interdot coupling between the two QDs
results in a local process that depends on the occupation of both QDs.

The various single and two electron transport processes that can occur in
our device are[54] : (1) tunneling of an electron from a filled QD to the re-
spective N contact, known as single electron tunneling (SET); (2) LPT process
where Cooper pair electrons can sequentially tunnel through the same QD via
a quasiparticle state in S or a higher order tunneling process, e.g. Andreev
tunneling, as described in section 2.3.3; (3) two particle CPS process as de-
scribed in section 2.3.3; (4) single electron tunneling between the two QDs
either directly through the InAs segment below S or through higher order pro-
cesses mediated by S; and (5) a combination of processes where a Cooper pair
electron sequentially tunnels into one QD and then tunnels to the other dot
(sequential CPS). A schematics of all these processes can be found in Ref. [54].

Each process has a probability that predominantly depends on the tunnel
couplings both to the respective normal metal contact ΓNi, S contact ΓSi or
interdot coupling Γ12 between the two dots, where the used notations are il-
lustrated in Fig. 2.18. Such interplay between different processes is shown to
result in non-ideal conductance correlations between the QDs [54]. Positive
conductance correlations between the QDs occurs only if the probability of
CPS process is non-zero [54]. On the other hand, negative or zero (no conduc-
tance change) conductance correlations between the two signals can occur due
to: (1) finite interdot coupling that diverts tunneling current from one QD to
the other, thereby increasing the current in one N contact and decreasing it in
the other N contact; and (2) competition for occupying each QD by local and
non local processes. For example, when both QDs are brought on-resonance,
the probability of QD1 getting occupied due to CPS increases, which effec-
tively decreases the frequency of the local processes. Similarly, another effect
of such large occupation probability of a QD is that the conductance change
in both arms are not identical i.e. ∆GCPS is different for both QDs, which can
manifest itself as negligible non-local signal in the populated QD arm if Γ12
between the dots is relevant [54, 59].

Such large QD occupation probability primarily depends on the individual
tunnel barriers between the QD and the respective S and N contacts. If the
barrier to N is very opaque, the inter dot tunnel coupling Γ12 comes into play,
which can lead to no conductance variation in one QD arm as the electron
takes the path to the other QD. Similarly, if the barrier to S become very
weak, the QD population increases which can also lead to non-ideal current
correlations. Therefore, the ideal case for CPS is to have negligible inter-dot
coupling Γ12 and ΓS << ΓN in each dot, which does not appear to be the case
for QD2 in our CPS-FSG device. The tuning of FSG2 gate did not provide
sufficient control over the tunnel barrier between S and QD2.

This necessitates the use of controllable tunnel barriers, which can be achieved
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either by etching the NW with a dilute piranha solution [231], or by electrically
tuning them using precise bottom gate structures [54, 55]. In addition, the
direct tunneling of electrons through the NW segment beneath the supercon-
ductor can be suppressed by cutting the NW using focused ion beam (FIB)
[232–234], which ensures two completely decoupled QDs.

In conclusion, we have performed bias spectroscopy to establish the forma-
tion of single QD in both arms of the CPS-FSG device as well as determine
a superconducting gap of ∼ 110µeV, which gets completely suppressed at
BC ≈ 90 mT. We demonstrated hysteretic MC in both QDs of the CPS device
along with independent switching of the respective FSGs, signifying the pres-
ence of a non-zero Bstr in each dot. This confirms the coexistence of Bstr and
superconductivity at close proximity in our device. We further demonstrated
non-local signatures of Cooper pair splitting in the presence of Bstr in one QD
arm of our device. The investigation of this non-local CPS conductance for
the four FSG magnetization states showed suppressed conductance for paral-
lel magnetization states with respect to antiparallel states, consistent with the
interpretation and calculation of spin cross anti-correlation for the spin singlet
CPS ground state.

⟨∆G1,CP S ∗ ∆G2,CP S⟩ > 0 (7.12)
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8 Spin Blockade Effect at Large Magnetic
Field

In this chapter, we investigate the Pauli spin blockade (PSB) effect in a DQD
at zero as well as very large in-plane magnetic fields of > 1 T applied along
the FSG long axes. We show standard PSB at B = 0 and observe a com-
plete suppression of the tunneling current at B ∼ 1.5 T, consistent with the
singlet-triplet ground state transition of the DQD. Simultaneously, we find an
emergence of the tunneling current for an adjacent charge transition with one
electron less (odd number of total electrons) in the DQD, which was completely
suppressed around B = 0. This charge transition exhibits unconventional spin
blockade for an odd number of total electrons at magnetic fields B > 1.75 T,
which can potentially occur when the DQD achieves a quadruplet state similar
to a three electron system [235, 236].
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8.1. Introduction

Pauli Spin Blockade (PSB) is an important transport phenomenon for investi-
gating fundamental physics in semiconductor quantum dot systems [85]. The
spin to charge conversion mechanism in PSB [87] has been used to examine
spin orbit effects [237], electron spin T1 relaxation times [238], singlet-triplet
splitting [239], electron spin coupling to lattice nuclear spins [240] as well as
initialize and read-out electron spin states in the spin qubit. Yet, the magnetic
field dependence of PSB has been mostly studied in the low (near zero) mag-
netic field regime. Here, we experimentally investigate the PSB phenomena at
large (> 1 T) in-plane external magnetic fields B and find an unconventional
spin blockade effect with an odd number of total electrons in the DQD.

In this chapter, we first demonstrate PSB at B = 0 in a double quantum
dot (DQD) (same device as in chapter 6) for bias triangles with an even num-
ber of total electrons in the DQD. We then qualitatively investigate these
charge transitions at > 1 T in-plane external magnetic field, where the FSG
magnetizations are oriented in a parallel configuration relative to each other.
We observe a singlet-triplet ground state transition at ∼ 1.5 T as well as find
the simultaneous emergence of a different bias triangle at B > 1.5 T which
was completely suppressed around B = 0. Such a bias triangle exhibits un-
conventional spin blockade effect at ∼ 1.75 T, similar to PSB at B = 0, but
with an odd number of total electrons in the DQD. Our experiment explicitly
demonstrates control over the electron spin states at large magnetic fields in
InAs nanowires (NWs) and provides insights into charge transfer mechanisms
at large B where new physics is likely to be found.

8.2. Device and Characterization

The schematics and the scanning electron microscopy (SEM) image of the
investigated InAs nanowire (NW) DQD device are shown in Fig. 8.1a and
8.1b, respectively. We note that the InAs NW device used here is the same
double quantum dot spin valve (DQD-SV) device used in Chapter 6. In this
experiment, the FSG magnetizations are oriented in a parallel configuration
for B > 1 T, which is larger than the coercive fields of our Permalloy (Py)
FSGs. For all measurements also around B = 0, we ensure parallel FSG
magnetization by first sweeping B to 1 T and then back to zero. The DC
current I resulting from a bias voltage VSD and the differential conductance
G = dI/dVSD, are then measured simultaneously using standard DC and lock-
in techniques (Vac = 10µV), at a base temperature of ∼ 50 mK.

In Fig. 8.1c, we plot the current I flowing through the DQD at VSD = 1 mV
and B = 0, as a function of VG1 and VG4. This map shows a typical DQD
charge stability diagram with several bias triangles characteristic for a weakly
coupled DQD. These triangles originate when a resonance from each QD aligns
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Figure 8.1. Double quantum dot (DQD) device. a Schematics and b
scanning electron microscope (SEM) image of the DQD device. c Current I
as a function of gate voltages VG1 and VG4, at VSD = +1 mV, showing bias
triangles characteristic for weakly coupled DQDs. d Schematics of a DQD
charge stability diagram illustrating the interdot transitions at which PSB is
expected (purple cross).

in energy within the bias transport window. [97] We expect an odd-even charge
filling of the DQD energy levels based on the Pauli exclusion principle, i.e.
every odd electron tunneling into a QD occupies a new level, while every even
electron pairs with the preceding odd electron to form a spin singlet. The exact
electron occupation number in each QD is denoted by (N,M), where N and
M are integers. However for the sake of simplicity, we use the notation (1,1)
instead of (N+1,M+1), otherwise stated, to denote the effective occupation of
the individual QDs in this chapter.

When the total number of electrons in the DQD is odd in the DQD as shown
in Fig. 8.1d (details in chapter 2), the current can flow uninhibited in both
bias directions inside the bias triangle via spin doublet states, as indicated by
the double-sided arrows [241]. In contrast, when the total number of electrons
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in the DQD is even, both QDs can have either an even number of electrons
resulting in a spin singlet ground state, or an odd occupancy resulting in a
charge state that can be either a spin triplet or spin singlet. For such bias
triangles with odd occupancy in both QDs, current is blocked for one bias
direction as marked by the red X in Fig. 8.1d when the applied bias voltage is
less than the singlet-triplet splitting in the doubly even occupied charge state,
i.e. energy gap between the singlet ground state and first triplet state. In the
opposite bias direction, current can flow uninterrupted via the singlet states.
This current blockade phenomenon is known as Pauli spin blockade (PSB)
effect. We discuss the relevant DQD energy diagrams for PSB along with its
experimental demonstration for the interdot charge transitions (1, 1) → (0, 2)
and (1, 1) → (2, 0) in the following section.

8.3. Standard Pauli Spin Blockade

The current I through the DQD as a function of gate voltages VG1 and VG4
at B = 0 is shown in Figure 8.2a,b and Figure 8.2c,d for the interdot charge
transitions (1, 1) → (2, 0) and (1, 1) → (0, 2) respectively. The left column
Figure 8.2a,c is measured at a negative bias voltage VSD = −1 mV, while the
middle column Figure 8.2b,d is measured at the positive bias voltage VSD =
+1 mV. PSB is observed for the corresponding charge transitions predicted in
Fig. 8.1d. For the (1, 1) → (2, 0) charge transition in Fig. 8.2b, we measure a
current suppression at VSD = +1 mV in the region enclosed by the white dashed
lines. The corresponding DQD energy diagram is illustrated in Fig. 8.2f (for
further details, see Chapter 2.1.7). An electron can enter the right dot into
either the triplet T(1,1) or singlet S(1,1) state. If it enters the S(1,1) state, it
can tunnel through the DQD via the S(2,0) state. However, if the T(1,1) state
gets occupied, current flow is blocked as the electron can neither tunnel into
the S(2,0) state as long as no spin flips occur nor it can go back into the right
lead due to the Fermi distribution that is re-established on a much faster time
scale [87]. Therefore, transport through the T(1,1) state requires a spin flip
or second-order spin exchange process with one of the leads. These processes
are relatively slow resulting in PSB. In contrast, at VSD = −1 mV in Fig. 8.2a,
current can flow from left to right through the S(2,0)→S(1,1) states as shown
in Fig. 8.2e.

For the mirror-symmetric (0, 1) → (1, 1) → (0, 2) → (0, 1) charge cycle, we
expect PSB at VSD = −1 mV, as is intuitively clear from Fig. 8.1d. The current
I through the DQD flows at VSD = +1 mV as shown in Fig. 8.2d. In contrast,
at VSD = −1 mV in Fig. 8.2c, we observe a current suppression in the region
enclosed by red dashed lines at the base of the bias triangle. The electron
transport mechanism for PSB in the (1, 1) → (0, 2) transition at VSD = −1 mV
is similar to the (1, 1) → (2, 0) transition at VSD = +1 mV (illustrated in
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Figure 8.2. Pauli Spin Blockade at B = 0. a-d Current I as a function
of gate voltages VG1 and VG4, at a,c VSD = −1 mV and b,d VSD = +1 mV for
the charge transitions a,b (1, 1) → (2, 0) and c,d (1, 1) → (0, 2) respectively.
The region enclosed by the white and red dashed lines in b and c show current
suppression due to PSB. e,f Energy level diagram showing electron transport
process for the (1, 1) → (2, 0) transition at e VSD = −1 mV and f VSD = +1 mV
respectively.

Fig. 8.2f), with the direction of current flow reversed. We note here that even
in PSB, electron transport can become unblocked resulting in a finite leakage
current due to coupling of the singlet and triplet states by various spin mixing
mechanisms based on spin-orbit interaction [242], spin-flip cotunneling [243],
hyperfine interaction [244] and g-factor differences in the DQD.

8.4. Magnetic Field Dependence

To experimentally investigate PSB, we perform magnetospectroscopy measure-
ments by applying an in-plane external magnetic field B parallel to the FSG
axes. The leakage current I as a function of VG1 and B along cross section
C1 and C2 marked by the red arrow in Fig. 8.2c and Fig. 8.2d is shown in
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8. Spin Blockade Effect at Large Magnetic Field

Fig. 8.3a and Fig. 8.3b respectively. Both maps show a sharp suppression of
the current at ∼ ±1.5 T irrespective of the applied bias direction, marked by
the green dashed line in Fig. 8.3a,b. We identify this transition as a singlet-
triplet (S-T) transition of the DQD ground state (GS) using a two electron
DQD model [43, 85, 192, 245]. A schematics of the expected energy spectrum
as a function of B at VSD = −1 mV and VSD = +1 mV is shown in Fig. 8.3e
and Fig. 8.3f respectively. At B = 0, the triplet T(0,2) states are inaccessibly
high in energy, similar to Fig. 8.2f. At finite B fields, the singlet states re-
mains unperturbed with B, while the degeneracy of the triplet states is lifted
due to Zeeman splitting, resulting in three distinguishable states T0, T+ and
T−. Assuming equal g-factors for the two dots, the T− state is shifted lower
in energy with B, while the T+ shifts higher in energy such that the energy
difference ∆E between the T+ and T− state is equal to the Zeeman splitting,
i.e. ∆E = gµBB.
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Figure 8.3. Magnetospectroscopy measurements. a,b Current I as
a function of gate voltages VG1 and B along the cross section marked by
white dashed arrows in a Fig. 8.2c and b Fig. 8.2d respectively. c,d Current
I as a function of gate voltages VG1 and B taken along the cross section
marked by green dashed line in Fig. 8.4c at c VSD = −1 mV and d VSD =
+1 mV respectively. e,f Energy level diagram as a function of B for the charge
transition (1, 1) → (0, 2) at e VSD = −1 mV and f VSD = +1 mV respectively

For VSD = −1 mV, the charge transport cycle through the DQD will be
(0, 1) → (1, 1) → (0, 2) → (0, 1). For the inter-dot transition (1, 1) → (0, 2),
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8.4. Magnetic Field Dependence

Fig. 8.3e shows that the ground state of the DQD changes from a S(1,1) state
to a T−(1,1) at the S-T transition field BS-T ∼ 1.5 T. For B < 1.5 T, an electron
can tunnel through the DQD via the ground state transition S(1, 1) → S(0, 2)
(blue arrows in Fig. 8.3e) as the spin is conserved during tunneling. However,
for B > 1.5 T, the T−(1, 1) state becomes the ground state as it shifts lower
in energy than the S(1,1) state. An electron tunneling into the T−(1, 1) state
gets blocked as the T (0, 2) states are inaccessible in energy and the transition
T−(1, 1) → S(0, 2) is forbidden due to spin conservation. The ground state
transition is hence blocked, resulting in a total suppression of current in the
DQD for BS-T ≥ 1.5 T (Fig. 8.3a). On the other hand, the charge transport
cycle through the DQD for the opposite bias direction VSD = +1 mV is (0, 1) →
(0, 2) → (1, 1) → (0, 1). Similar to the negative bias direction, an electron can
tunnel via the S(0, 2) → S(1, 1) states for B < 1.5 T (blue arrows in Fig. 8.3f),
while it gets blocked for B > 1.5 T as the T−(1, 1) state becomes ground
state. The ground state transition S(0, 2) → T−(1, 1) is thus forbidden and
the current I is suppressed beyond B ∼ 1.5 T, as shown in Fig. 8.3b (Fig. 8.3c
and Fig. 8.3d are discussed later).
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gate voltages VG1 and VG4 for the bias triangle in Fig. 8.2d at VSD = +1 mV
for a B = 1 T, b B = 1.25 T, c B = 1.5 T and d B = 2 T.

107



8. Spin Blockade Effect at Large Magnetic Field

To further investigate the S-T transition, we measure current I as a function
of gate voltages VG1 and VG4 at VSD = +1 mV for B = 1 T, 1.25 T, 1.5 T
and 2 T as shown in Fig. 8.4a-d. The bias triangle for the charge transition
(0, 2) → (1, 1), shown in Fig. 8.2d, is marked by the green star symbol in
Fig. 8.4a. On increasing B from 1 T to 2 T, we observe that the green star
bias triangle completely disappears at B ≥ 1.5 T. Simultaneously, another
bias triangle gradually begins to appear around VG1 = 73 mV at B ∼ 1.25 T
and becomes prominently visible from B ∼ 1.5 T onwards. We note that the
position of this new bias triangle does not have a significant shift along the
VG4 gate axis compared to the green star marked bias triangle. In addition,
the position of this emerging bias triangle fits the regular honeycomb pattern
shown in Fig. 8.1c. Quantitatively, the addition energy of the QDs determined
from the dimension of the corresponding hexagons taking into account the
emerging bias triangle is found to be around ∼ 2.2 meV, which is in good
agreement with the values determined from Fig. 8.1c as well as in Chapter 6.
Therefore, this new bias triangle emerging at large B corresponds to a different
charge transition, where the total number of electrons in the DQD is one less.
The inter-dot charge transition can thus be denoted by (−1, 2) → (0, 1), i.e.
(N − 1,M + 2) → (N,M + 1), such that the total number of electrons in the
DQD is now odd. We note that we also observe a similar characteristics of
these bias triangles at the opposite bias polarity VSD = −1 mV.

We note that the new bias triangle is completely suppressed at B = 0.
To explicitly understand its B dependence, we measure the current I as a
function of VG1 at a series of external magnetic field B along the cross section
C2 marked by the green dashed line in Fig. 8.4c. Such maps for both bias
directions VSD = −1 mV and VSD = +1 mV is shown in Fig. 8.3c and Fig. 8.3d
respectively. We observe a total suppression of I until B ∼ ±1.5 T irrespective
of the bias direction. At B = 1.5 T, we identify a sharp transition, termed
transition 1 (T1), where the current suppression gets lifted as indicated by the
red dashed line in Fig. 8.3c,d. We define the slope of transition 1 as the slope of
this red dashed line, which marks the onset of the transition. We find that this
slope in Fig. 8.3c,d is equal to the transition slope in Fig. 8.3a,b for similar bias
voltages. For same VSD, the current I for the charge transition in Fig. 8.3a
gets suppressed at the S-T transition BS-T ≈ ±1.5 T, while simultaneously
the current for the charge transition in Fig. 8.3c gets enhanced, i.e. the two
transitions appear to complement each other separated by a voltage difference
in VG1. This is consistent with Fig. 8.4 where one bias triangle gets completely
suppressed at BS-T ≈ 1.5 T, while another bias triangle simultaneously appears
at a different VG1. In short, S-T transition for different charge transitions
results in suppression either below or above BS-T.
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Figure 8.5. Unconventional spin blockade. Current I as a function of
gate voltages VG1 and VG4 for the new emerging bias triangle at B = 2 T and
a VSD = +1 mV and b VSD = −1 mV. The region enclosed by the white dashed
lines show unconventional spin blockade with an odd number of total electrons
in the DQD.

On further increasing B beyond 1.5 T, we identify another transition at B ≈
1.75 T for VSD = −1 mV as shown by the white dashed line in Fig. 8.3c. This
transition, denoted as the high field transition (THF), results in a total current
suppression of the charge transition at B > 1.75 T. However, no such high field
transition is observed in the mirror-symmetric VSD = +1 mV bias direction,
in contrast to transition 1 which was independent of the bias direction. This
asymmetry in bias is investigated by measuring the corresponding bias triangle,
i.e. I as a function of VG1 and VG4 at B = 2 T. The measured I maps for
VSD = +1 mV and VSD = −1 mV is shown in Fig. 8.5a and b respectively. We
observe a conductance suppression at VSD = −1 mV in the region enclosed by
the white dashed lines in Fig. 8.5b. For VSD = +1 mV, no such suppression
in the conductance is observed (Fig. 8.5a). We denote this phenomenon as
the unconventional spin blockade at large magnetic fields for an odd number
of total electrons in the DQD, which closely resembles traditional Pauli spin
blockade at B = 0.
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8. Spin Blockade Effect at Large Magnetic Field
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Figure 8.6. Schematics of charge and spin states and their transitions for the
(1, 2) → (1, 1) → (2, 1) → (1, 2) charge transport cycle. Transport is blocked
when the DQD achieves the state Q(2,1) with total spin S = 3/2 [235, 236].

8.6. Discussions and Conclusions

We now discuss the possible transport mechanisms which can result in such
unconventional spin blockade with odd number of total electrons in the DQD.
For the sake of simplicity, we consider the case of three electrons in the DQD
system such that the interdot charge transition is (2, 1) → (1, 2). Thus the
complete charge transfer cycle across the DQD is (1, 2) → (1, 1) → (2, 1) →
(1, 2). At large VSD, the charge state (2,1) can be classified into three sets
of spin states: a doublet DS(2,1) state with total spin S = 1/2 and a singlet
state in QD1; a doublet DT(2,1) state with total spin S = 1/2 and a triplet
state in QD1; and a quadruplet Q(2,1) state with total spin S = 3/2 (see
Fig. 8.6). When the Q(2,1) spin state is achieved via the tunneling pathway
shown in Fig. 8.6 [235, 236], further electron transport is forbidden due to Pauli
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8.6. Discussions and Conclusions

exclusion principle. This results in a current suppression similar to standard
PSB, but with an odd number of electrons in the DQD, as shown in Fig. 8.5b.

In conclusion, we demonstrated standard PSB at B = 0 for the interdot
charge transitions with an even number of total electrons in the DQD. On
applying an in-plane external magnetic field, we observe a complete suppres-
sion of the tunneling current at B ∼ 1.5 T, consistent with the singlet-triplet
ground state transition of the DQD. Simultaneously, we find an emergence of
the tunneling current for an adjacent charge transition with one electron less
(odd number of total electrons) in the DQD, which is completely suppressed
around B = 0. This charge transition exhibits unconventional spin blockade
effect for an odd number of total electrons in the DQD at magnetic fields
B > 1.75 T, which can potentially occur when the DQD achieves a quadruplet
spin state similar to a three electron DQD system [235, 236].
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9 Summary and Outlook

To summarize, we have developed a new approach to control electron spin
currents in semiconducting quantum dots (QDs) using the stray magnetic
fields locally generated from individual nanomagnets. Using this approach,
we demonstrated electrically tunable highly efficient spin injection and spin
detection in a serial double quantum dot (DQD) at zero and small finite ex-
ternal magnetic fields. This efficient spin detection scheme, using Zeeman-split
QDs, was then implemented in a Cooper pair splitter device to perform spin
sensitive CPS experiments, demonstrating a strong negative correlation be-
tween the spin currents in the CPS device. In addition, we also demonstrated
spin state engineering at very large magnetic fields for the DQD device via the
Pauli spin blockade (PSB) effect.

In detail: In Chapter 5 and Ref. [105], we presented proof-of-principle mag-
netoconductance (MC) experiments for a single QD using local stray magnetic
fields Bstr generated from a single pair of Permalloy (Py) FSG. Using this
novel approach, we demonstrated hysteretic smooth MC for multiple Coulomb
blockade resonances of the single QD, which changes abruptly with the reori-
entation of the FSG magnetization at the characteristic FSG switching field.
We observe only a single clear switching, suggesting that the two parts of the
FSG switch in unison as determined by its width. We indirectly extract a
stray magnetic field of ∼ 80 mT by exploiting the hysteretic behavior of the
measured MC. In addition, we demonstrated a negligible Bstr for a single QD
located away from the FSG in the same device, which reinforces the suitability
of our approach in close proximity to superconducting elements in nanoscale
electronic devices. We further investigated Cobalt FSG devices, which showed
a smooth change in the MC in contrast to Py, consistent with magnetocrys-
talline anisotropy dominating in Co strips.

Using such locally spin-polarized QDs, we demonstrated an alternative route
for spin injection and spin detection in a semiconducting InAs NW device in
Chapter 6 and Ref. [105]. We combined two QD-FSG units in series to form
a DQD spin valve for tunneling magnetoresistance (TMR) measurements. We
showed independent reorientation of the two FSG magnetizations, enabling
us to establish four distinct magnetization states (two parallel and two an-
tiparallel states) at zero external magnetic field B = 0. On applying a small
finite external field B = ±40 mT, we demonstrated an optimized TMR signal
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9. Summary and Outlook

electrically tunable between +80% to −90% by exploiting the non-constant
QD transmission DOS. This results in a gate and magnetic field tunable QD
polarizations of ±80%, significantly larger than found in devices with con-
ventional ferromagnetic contacts. Such large benchmark values demonstrates
that the DQD spin valve serves as a highly efficient spin injector and detector,
where electron transport can be electrically tuned from predominantly spin
down electrons to spin up electrons. The demonstration of large efficiencies
at such small finite fields and the location-specific nature of Bstr as shown
in Chapter 5 makes the QD-FSG units ideally compatible for detecting small
spin correlated non-local signals with superconducting contacts.

In Chapter 7, we therefore implement this efficient spin detection technique
by using QD-FSG units in both arms of a Cooper pair splitter device to per-
form spin readout of the CPS conductances. We performed bias spectroscopy
to establish the formation of single QD in both arms of the CPS device as
well as determine a superconducting gap of ∼ 110µeV, which gets completely
suppressed at B ≈ 90 mT. We demonstrated hysteretic MC in both QDs of the
CPS device along with independent switching of the respective FSGs, signify-
ing the presence of a non-zero Bstr in each dot. This confirms the coexistence
of Bstr and superconductivity at close proximity in our device. We further
demonstrated non-local signatures of Cooper pair splitting in the presence of
Bstr in one QD arm of our device. The investigation of this non-local CPS
conductance for the four FSG magnetization states showed suppressed con-
ductance for parallel magnetization states with respect to antiparallel states,
consistent with the interpretation and calculation of spin cross anti-correlation
for the spin singlet CPS ground state. However, spin readout of the CPS con-
ductance simultaneously in both QD arms is still missing, which is essential
for entanglement detection schemes in solid state systems.

In Chapter 8, we demonstrated electron spin state engineering via the Pauli
spin blockade effect in the DQD spin valve device at very large magnetic fields,
where the FSG magnetization states are always oriented in parallel in contrast
to Chapter 6. We showed standard PSB at B = 0 for the interdot charge
transitions with an even number of total electrons in the DQD. On applying
an in-plane external magnetic field, we observe a complete suppression of the
tunneling current at B ∼ 1.5 T, consistent with the singlet-triplet ground state
transition of the DQD. Simultaneously, we find an emergence of the tunneling
current for an adjacent charge transition with one electron less (odd number
of total electrons) in the DQD, which was completely suppressed around B =
0. This charge transition exhibits unconventional spin blockade for an odd
number of total electrons at magnetic fields B > 1.75 T, which can potentially
occur when the DQD achieves a quadruplet state similar to a three electron
system [235, 236].
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Outlook
Our spin injection and spin detection concept is not limited to InAs NWs,
but can be implemented in any material device with a finite g-factor and non-
constant transmission T (E).

The efficiency of the TMR signal and the QD spin polarization can be further
enhanced to near theoretical values by increasing Bstr, either by reducing the
FSG gap using smaller diameter NWs and precise lithography, or by using
harder ferromagnetic materials such as Fe, Co. In addition, decreasing the
QD lifetime broadening also leads to stronger polarization values. Such sharp
line shapes with tunnel couplings < 1µeV have been demonstrated in in-situ
grown InP tunnel barriers [83, 220, 221] as well as crystal phase engineered
barriers in InAs NWs [72, 166]. Such predefined tunnel barriers also ensure
precise location of the QD, enabling us to engineer homogeneous stray fields
at the QD location.

For the Cooper pair splitter, the CPS splitting efficiency can be increased
by reducing the tunnel coupling between S and the QD such that ∆ >> Γ.
Controllable tunnel barriers can be achieved either by etching the NW with
a dilute piranha solution [231], or by electrically tuning them using precise
bottom gate structures [54, 55]. In addition, the direct tunneling of electrons
through the NW segment beneath the superconductor can be suppressed by
cutting the NW using focused ion beam (FIB) [232, 233], which ensures two
completely decoupled QDs. Moreover, InP/InAs NW heterostructures with ∼
200 nm apart InP barriers also ensure precisely located strong tunnel barriers,
further supporting the ideal CPS working condition ΓS << ΓN [121].

It has been predicted that when a normal metal is coupled to a topological
superconductor with Majorana end states, electrons with spin pointing in a
specific direction n̂ are Andreev reflected as holes with the same spin [183],
in contrast to ordinary Andreev reflection where the incident electron and
reflected hole have opposite spin. In addition, electrons with opposite spin
projection −n̂ are totally reflected back as electrons with their spin unchanged.
The QD-FSGs units are ideally suited to verify this phenomenon known as
equal-spin Andreev reflection.

Furthermore, proposals for Bell tests [63, 64, 140] in a purely electronic
system, i.e. with massive particles instead of photons, can be achieved by
performing spin correlation measurements in a Cooper pair splitter. Using the
approach demonstrated in Chapter 7, the change in the non-local CPS con-
ductance with FSG magnetization states in both QD arms can be determined
along three orthogonal directions for an entanglement witness. Although this
is quite challenging to achieve, our work demonstrates that it is not impossible.
In addition, an array of FSGs can be optimized to create a spatially modulat-
ing magnetic field [246] equivalent to a synthetic and externally controllable
spin-orbit interaction [190, 225–227].

115





Bibliography

[1] G. E. Moore, Electronics Magazine 38 (1965).

[2] G. E. Moore, IEEE Solid-State Circuits Society Newsletter 11, 36 (2006).

[3] M. M. Waldrop, Nature 530, 144 (2016).

[4] G. A. Prinz, Physics Today 48, 58 (1995).

[5] G. A. Prinz, Science 282, 1660 (1998).

[6] A. Fert, Reviews of Modern Physics 80, 1517 (2008).

[7] E. D. Herbschleb, H. Kato, Y. Maruyama, T. Danjo, T. Makino, S. Yamasaki,
I. Ohki, K. Hayashi, H. Morishita, M. Fujiwara, and N. Mizuochi, Nature
Communications 10 (2019), 10.1038/s41467-019-11776-8.

[8] N. Bar-Gill, L. Pham, A. Jarmola, D. Budker, and R. Walsworth, Nature
Communications 4 (2013), 10.1038/ncomms2771.

[9] T. Kobayashi, J. Salfi, C. Chua, J. van der Heijden, M. G. House, D. Culcer,
W. D. Hutchison, B. C. Johnson, J. C. McCallum, H. Riemann, N. V. Abrosi-
mov, P. Becker, H.-J. Pohl, M. Y. Simmons, and S. Rogge, Nature Materials
(2020), 10.1038/s41563-020-0743-3.

[10] L. M. K. Vandersypen and M. A. Eriksson, Physics Today 72, 38 (2019).

[11] A. Hirohata, K. Yamada, Y. Nakatani, L. Prejbeanu, B. Diény, P. Pirro, and
B. Hillebrands, Journal of Magnetism and Magnetic Materials , 166711 (2020).

[12] R. Jansen, Nature Materials 11, 400 (2012).

[13] I. Žutić, J. Fabian, and S. D. Sarma, Reviews of Modern Physics 76, 323
(2004).

[14] S. D. Sarma, J. Fabian, X. Hu, and I. Zutic, IEEE Transactions on Magnetics
36, 2821 (2000).

[15] S. D. Sarma, J. Fabian, X. Hu, and I. Zutic, Solid state Communications 119
(2001).

[16] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L.
O’Brien, Nature 464, 45 (2010).

[17] M. N. Baibich, J. M. Broto, A. Fert, F. N. V. Dau, F. Petroff, P. Etienne,
G. Creuzet, A. Friederich, and J. Chazelas, Physical Review Letters 61, 2472
(1988).

117

http://dx.doi.org/10.1109/n-ssc.2006.4804410
http://dx.doi.org/10.1038/530144a
http://dx.doi.org/10.1063/1.881459
http://dx.doi.org/10.1126/science.282.5394.1660
http://dx.doi.org/10.1103/revmodphys.80.1517
http://dx.doi.org/10.1038/s41467-019-11776-8
http://dx.doi.org/10.1038/s41467-019-11776-8
http://dx.doi.org/ 10.1038/ncomms2771
http://dx.doi.org/ 10.1038/ncomms2771
http://dx.doi.org/ 10.1038/s41563-020-0743-3
http://dx.doi.org/ 10.1038/s41563-020-0743-3
http://dx.doi.org/10.1063/pt.3.4270
http://dx.doi.org/ 10.1016/j.jmmm.2020.166711
http://dx.doi.org/10.1038/nmat3293
http://dx.doi.org/10.1103/revmodphys.76.323
http://dx.doi.org/10.1103/revmodphys.76.323
http://dx.doi.org/ 10.1109/20.908600
http://dx.doi.org/ 10.1109/20.908600
http://dx.doi.org/ 10.1038/nature08812
http://dx.doi.org/10.1103/physrevlett.61.2472
http://dx.doi.org/10.1103/physrevlett.61.2472


Bibliography

[18] G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Physical Review B 39,
4828 (1989).

[19] B. Dieny, in Magnetoelectronics (Elsevier, 2004) pp. 67–377.

[20] T. Prevenslik, in 2013 13th IEEE International Conference on Nanotechnology
(IEEE-NANO 2013) (IEEE, 2013).

[21] R. Jansen, Journal of Physics D: Applied Physics 36, R289 (2003).

[22] D. Abramovitch and G. Franklin, IEEE Control Systems 22, 28 (2002).

[23] C. Chappert, A. Fert, and F. N. V. Dau, Nature Materials 6, 813 (2007).

[24] S. Sahoo, T. Kontos, J. Furer, C. Hoffmann, M. Gräber, A. Cottet, and C. Schö-
nenberger, Nature Physics 1, 99 (2005).

[25] A. Hernández-Mínguez, K. Biermann, R. Hey, and P. V. Santos, Physical
Review B 94 (2016), 10.1103/physrevb.94.125311.

[26] A. Cottet, C. Feuillet-Palma, and T. Kontos, Physical Review B 79 (2009),
10.1103/physrevb.79.125422.

[27] S. Datta and B. Das, Applied Physics Letters 56, 665 (1990).

[28] M. Johnson, IEEE Spectrum 31, 47 (1994).

[29] B. Huang, D. J. Monsma, and I. Appelbaum, Physical Review Letters 99
(2007), 10.1103/physrevlett.99.177209.

[30] V. A. Chitta, M. Z. Maialle, S. A. Leão, and M. H. Degani, Applied Physics
Letters 74, 2845 (1999).

[31] A. V. Vedyaev, Physics-Uspekhi 45, 1296 (2002).

[32] L. P. Kouwenhoven, C. M. Marcus, P. L. McEuen, S. Tarucha, R. M. Westervelt,
and N. S. Wingreen, in Mesoscopic Electron Transport (Springer Netherlands,
1997) pp. 105–214.

[33] L. P. Kouwenhoven, D. G. Austing, and S. Tarucha, Reports on Progress in
Physics 64, 701 (2001).

[34] R. J. Elliott, Physical Review 96, 266 (1954).

[35] T. Tanttu, B. Hensen, K. W. Chan, C. H. Yang, W. W. Huang, M. Fogarty,
F. Hudson, K. Itoh, D. Culcer, A. Laucht, A. Morello, and A. Dzurak, Physical
Review X 9 (2019), 10.1103/physrevx.9.021028.

[36] I. Aleiner and V. Falko, Physical Review Letters 87 (2001).

[37] M. Governale, Physical Review Letters 89 (2002), 10.1103/phys-
revlett.89.206802.

[38] P. Boross, B. Dóra, A. Kiss, and F. Simon, Scientific Reports 3 (2013),
10.1038/srep03233.

118

http://dx.doi.org/ 10.1103/physrevb.39.4828
http://dx.doi.org/ 10.1103/physrevb.39.4828
http://dx.doi.org/10.1016/b978-012088487-2/50003-0
http://dx.doi.org/10.1109/nano.2013.6720801
http://dx.doi.org/10.1109/nano.2013.6720801
http://dx.doi.org/10.1088/0022-3727/36/19/r01
http://dx.doi.org/10.1109/mcs.2002.1003997
http://dx.doi.org/10.1038/nmat2024
http://dx.doi.org/10.1038/nphys149
http://dx.doi.org/10.1103/physrevb.94.125311
http://dx.doi.org/10.1103/physrevb.94.125311
http://dx.doi.org/10.1103/physrevb.79.125422
http://dx.doi.org/10.1103/physrevb.79.125422
http://dx.doi.org/10.1063/1.102730
http://dx.doi.org/10.1109/6.278401
http://dx.doi.org/10.1103/physrevlett.99.177209
http://dx.doi.org/10.1103/physrevlett.99.177209
http://dx.doi.org/10.1063/1.124033
http://dx.doi.org/10.1063/1.124033
http://dx.doi.org/10.1070/pu2002v045n12abeh001270
http://dx.doi.org/10.1007/978-94-015-8839-3_4
http://dx.doi.org/10.1088/0034-4885/64/6/201
http://dx.doi.org/10.1088/0034-4885/64/6/201
http://dx.doi.org/10.1103/physrev.96.266
http://dx.doi.org/10.1103/physrevx.9.021028
http://dx.doi.org/10.1103/physrevx.9.021028
http://dx.doi.org/10.1103/physrevlett.89.206802
http://dx.doi.org/10.1103/physrevlett.89.206802
http://dx.doi.org/ 10.1038/srep03233
http://dx.doi.org/ 10.1038/srep03233


Bibliography

[39] L. Szolnoki, A. Kiss, B. Dóra, and F. Simon, Scientific Reports 7 (2017),
10.1038/s41598-017-09759-0.

[40] L. C. Camenzind, L. Yu, P. Stano, J. D. Zimmerman, A. C. Gossard, D. Loss,
and D. M. Zumbühl, Nature Communications 9 (2018), 10.1038/s41467-018-
05879-x.

[41] E. R. Andrew, Physics Bulletin 24, 741 (1973).

[42] D. D. Awschalom, L. C. Bassett, A. S. Dzurak, E. L. Hu, and J. R. Petta,
Science 339, 1174 (2013).

[43] D. Loss and D. P. DiVincenzo, Physical Review A 57, 120 (1998).

[44] C. Kloeffel and D. Loss, Annual Review of Condensed Matter Physics 4, 51
(2013).

[45] C. H. Bennett and D. P. DiVincenzo, Nature 404, 247 (2000).

[46] X. Hu and S. D. Sarma, Physical Review A 64 (2001), 10.1103/phys-
reva.64.042312.

[47] L. R. Schreiber and H. Bluhm, Science 359, 393 (2018).

[48] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Reviews of Modern Physics
74, 145 (2002).

[49] M. Bashar, M. Chowdhury, R. Islam, M. Rahman, and S. Das, in 2009 Inter-
national Conference on Computer and Automation Engineering (IEEE, 2009).

[50] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Reviews of
Modern Physics 81, 865 (2009).

[51] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Physical Review 108, 1175
(1957).

[52] L. Hofstetter, S. Csonka, J. Nygård, and C. Schönenberger, Nature 461, 960
(2009).

[53] L. Hofstetter, S. Csonka, A. Baumgartner, G. Fülöp, S. d’Hollosy, J. Nygård,
and C. Schönenberger, Physical Review Letters 107 (2011), 10.1103/phys-
revlett.107.136801.

[54] G. Fülöp, S. d’Hollosy, A. Baumgartner, P. Makk, V. Guzenko, M. Madsen,
J. Nygård, C. Schönenberger, and S. Csonka, Physical Review B (2014).

[55] G. Fülöp, F. Domínguez, S. d’Hollosy, A. Baumgartner, P. Makk, M. Mad-
sen, V. Guzenko, J. Nygård, C. Schönenberger, A. L. Yeyati, and S. Csonka,
Physical Review Letters 115 (2015), 10.1103/physrevlett.115.227003.

[56] A. Das, Y. Ronen, M. Heiblum, D. Mahalu, A. V. Kretinin, and H. Shtrikman,
Nature Communications 3 (2012), 10.1038/ncomms2169.

119

http://dx.doi.org/10.1038/s41598-017-09759-0
http://dx.doi.org/10.1038/s41598-017-09759-0
http://dx.doi.org/ 10.1038/s41467-018-05879-x
http://dx.doi.org/ 10.1038/s41467-018-05879-x
http://dx.doi.org/10.1088/0031-9112/24/12/035
http://dx.doi.org/ 10.1126/science.1231364
http://dx.doi.org/10.1103/physreva.57.120
http://dx.doi.org/10.1146/annurev-conmatphys-030212-184248
http://dx.doi.org/10.1146/annurev-conmatphys-030212-184248
http://dx.doi.org/10.1038/35005001
http://dx.doi.org/10.1103/physreva.64.042312
http://dx.doi.org/10.1103/physreva.64.042312
http://dx.doi.org/10.1126/science.aar6209
http://dx.doi.org/ 10.1103/revmodphys.74.145
http://dx.doi.org/ 10.1103/revmodphys.74.145
http://dx.doi.org/ 10.1109/iccae.2009.77
http://dx.doi.org/ 10.1109/iccae.2009.77
http://dx.doi.org/10.1103/revmodphys.81.865
http://dx.doi.org/10.1103/revmodphys.81.865
http://dx.doi.org/10.1103/physrev.108.1175
http://dx.doi.org/10.1103/physrev.108.1175
http://dx.doi.org/10.1038/nature08432
http://dx.doi.org/10.1038/nature08432
http://dx.doi.org/ 10.1103/physrevlett.107.136801
http://dx.doi.org/ 10.1103/physrevlett.107.136801
http://dx.doi.org/ 10.1103/physrevlett.115.227003
http://dx.doi.org/10.1038/ncomms2169


Bibliography

[57] S. Baba, C. Jünger, S. Matsuo, A. Baumgartner, Y. Sato, H. Kamata, K. Li,
S. Jeppesen, L. Samuelson, H. Q. Xu, C. Schönenberger, and S. Tarucha, New
Journal of Physics 20, 063021 (2018).

[58] L. G. Herrmann, F. Portier, P. Roche, A. L. Yeyati, T. Kontos, and C. Strunk,
Physical Review Letters 104 (2010), 10.1103/physrevlett.104.026801.

[59] J. Schindele, A. Baumgartner, and C. Schönenberger, Physical Review Letters
109 (2012), 10.1103/physrevlett.109.157002.

[60] Z. Tan, D. Cox, T. Nieminen, P. Lähteenmäki, D. Golubev, G. Leso-
vik, and P. Hakonen, Physical Review Letters 114 (2015), 10.1103/phys-
revlett.114.096602.

[61] I. V. Borzenets, Y. Shimazaki, G. F. Jones, M. F. Craciun, S. Russo, M. Ya-
mamoto, and S. Tarucha, Scientific Reports 6 (2016), 10.1038/srep23051.

[62] B. Braunecker, P. Burset, and A. L. Yeyati, Physical Review Letters 111
(2013), 10.1103/physrevlett.111.136806.

[63] N. M. Chtchelkatchev, G. Blatter, G. B. Lesovik, and T. Martin, Physical
Review B 66 (2002), 10.1103/physrevb.66.161320.

[64] G. Lesovik, T. Martin, and G. Blatter, The European Physical Journal B 24,
287 (2001).

[65] S. Csonka, L. Hofstetter, F. Freitag, S. Oberholzer, C. Schönenberger, T. Jes-
persen, M. Aagesen, and J. Nygård, Nano Letters 8 (2008).

[66] H. A. Nilsson, P. Caroff, C. Thelander, M. Larsson, J. B. Wagner, L.-E. Wern-
ersson, L. Samuelson, and H. Q. Xu, Nano Letters 9, 3151 (2009).

[67] J. Gramich, Andreev and Spin Transport in Carbon Nanotube Quantum Dot
Hybrid Devices, Ph.D. thesis, University of Basel (2016).

[68] G. Abulizi, Quantum transport in hexagonal boron nitride carbon nanotube
heterostructures, Ph.D. thesis, University of Basel (2017).

[69] J. Schindele, Observation of Cooper Pair Splitting and Andreev Bound States
in Carbon Nanotubes, Ph.D. thesis, University of Basel (2014).

[70] G. Fabian, Engineered Magnetoconductance in InAs Nanowire Quantum Dots,
Ph.D. thesis, University of Basel (2015).
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A Fabrication Recipes

The fabrication techniques used in this thesis are discussed in chapter 3. This
appendix provides details of the fabrication recipes.

A.1. Fabrication of InAs NW Devices

A.1.1. Wafer Characteristics
• Substrate Material: Highly doped Silicon

• Dopant: p-type, Boron

• Resistivity: 0.003 − 0.005 Ωm

• Capping Layer: 400 nm thick thermally grown SiO2

A.1.2. Wafer Cleaning
1. Dice the wafer into 2.5 cm x 2.5 cm pieces.

2. Sonicate in acetone for ∼ 20 min.

3. Sonicate in IPA for ∼ 20 min.

4. Blow dry with N2

A.2. E-beam Lithography, Development and Lift-off

A.2.1. PMMA resist for contacts and etching
• Resist: PMMA 950K dissolved in Anisole.

• Spin Coating: 4000 RPM for 40s resulting in a thickness of ∼ 300 nm.

• Baking: 180◦C on a hotplate for 5 minutes.

• Area Dose: 240 µC/cm2 at 20 kV and high current mode
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A. Fabrication Recipes

• Development: 3:1 Isopropyl alcohol (IPA) / Methylisobutyl ketone
(MIBK) for 60 seconds followed by a dip in IPA and blow dry with N2.

• Liftoff: 30 minutes in 50◦C warm acetone.

A.2.2. ZEP resist for Permalloy FSGs
• Resist: ZEP520A resist dissolved in the ratio 6:1 ZEP:Anisole.

• Spin Coating: 4000 RPM for 40s resulting in a thickness of ∼ 300 nm.

• Baking: 180◦C on a hotplate for 3 minutes.

• Area Dose: 35 µC/cm2 at 10 kV.

• Development: Pentylacetate for 60 seconds, followed by MIBK:IPA
(9:1 ratio) for 10 seconds and blow dry with N2.

• Liftoff: 30 minutes in 80◦C N-Methyl-2-pyrrolidone (NMP).

A.3. Reactive ion etching - O2 Plasma Etching

This process is used to remove residue with PMMA resist only.

• Parameters:
– O2 Flow: 16 %
– RF Power: 30 W
– Process Pressure: 250 mTorr
– Time: 60 s

• Etch Rates:
– SiO2: negligible
– PMMA: ∼20 nm/min

A.4. Etching of the NW native oxide

A.4.1. Sulphur passivation
1. Dilute 0.96195 g Sulfur in 10 mL of 20 % NH4Sx.

2. Stir for at least 12 hours at 35 °C.

3. Filter 2.5 mL of NH4Sx to remove sulfur residues.
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A.5. Contacts

4. Heat 25 mL of H2O on a hotplate at 40 °C for minimum 10 min.

5. Add NH4Sx right before etching, otherwise it degrades very fast.

6. Etch for 210 seconds on the hotplate.

7. Stop etching by stirring in H2O for 20 seconds.

8. Blow dry with N2 and immediately put the sample in vacuum.

A.5. Contacts

A.5.1. Ti/Au contacts
This process is used for the base structures and normal metal contacts and
gates.

1. Type: E-beam evaporation in the Sharon.

2. Pump to a base pressure of ∼ 9e−7 mbar.

3. Evaporate 5 nm of Ti (0.5 Å per second).

4. Evaporate 45 nm of Au (1.0 Å per second).

A.5.2. Ti/Al contacts
This process is used for Al as the superconducting contact.

1. Type: E-beam evaporation in the Balzers.

2. Pump to a base pressure of ∼ 5e−7 mbar.

3. Evaporate 5 nm of Ti (0.5 Å per second).

4. Evaporate 65 nm of Au (1.4 Å per second).

A.5.3. Permalloy Evaporation
This process is used for Permalloy (Py) as the ferromagnetic material for the
FSGs.

1. Type: E-beam evaporation in the Balzers.

2. Pump to a base pressure of ∼ 5e−7 mbar.

3. Evaporate 30-35 nm of Py (0.6 Å per second).
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B Additional data on a double quantum dot
spin valve

B.1. Determination of Bswitch
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Figure B.1. Determination of FSG switching fields. (a) ∆I = Imax
up −

Imax
down as a function of B for the experiment in Figure 2c at VSD = 500µV. (b)

∆I as a function of B for the experiment in Figure 3b at VSD = 10µV.

To determine the characteristic switching fields Bsw of the FSGs in the DQD-
SV, we plot ∆I = Imax

up −Imax
down as a function of B in figure B.1a, where Imax

up and
Imax

down refer to the up and down sweep in figure 2c of the main text, measured at
VSD = 500µV. We assign an average zero level of the measured data, shown as
black dashed line and define a lower and upper current limit for a significant
deviation of ∆I from the average zero. We use the B values at which the
upper horizontal line meets ∆I as the two switching fields, Bsw1 ≊ 140 mT and
Bsw2 ≊ 5 mT, respectively. We use a similar analysis for the lower horizontal
line. We point out that a similar analysis of Figure 3b, i.e. on a different
resonance, results in the same switching fields, as shown in figure B.1b.
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B. Additional data on a double quantum dot spin valve
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Figure B.2. Characterization of the double quantum dot. Colorscale
plot of the current I as a function of VG1 and VG4 at VSD = 1 mV.

B.2. DQD Characterization

Figure B.2 shows the current I as a function of VG1 and VG4 at VSD = 1 mV to
characterize the weakly-coupled serial DQD. The other gates are kept constant
at VBG = −0.25 V, VG2 = −0.2 V and VG3 = 0.0 V. From the honeycomb
structure [97], we obtain ∆VG1 = 25 mV, ∆VG4 = 30 mV, ∆V m

G1 = 3 mV and
∆V m

G4 = 4 mV, as shown in figure B.2. The capacitance between the QD and
the respective gate is given by: CG = e/∆VG. We find CG1 = 6.4 aF and
CG4 = 5.94 aF to the respective QD. The total capacitances of the two QDs
are C1 = 64 aF and C2 = 65.2 aF, while the mutual capacitance is Cm = 7 aF.
The addition energy of the QDs are Eadd,1 ≈ 2.5 meV and Eadd,2 ≈ 2.7 meV,
while the level spacings are δE1 ≈ 0.7 meV and δE2 ≈ 0.81 meV, respectively.
The lever arms for both dots are found as: a11 ≈ 0.1, a12 ≈ 0.015, a21 ≈ 0.0
and a22 ≈ 0.09, i.e. the cross lever arms are one order of magnitude smaller
than the direct lever arms.
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B.3. Width and Position of the DQD-SV resonances

B.3. Width and Position of the DQD-SV resonances
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Figure B.3. FWHM and position of the resonance maximum. (a)
Full width at half maximum (FWHM) of the DQD-SV resonance as a function
of B for the up (red) and down (blue) sweep for the experiments in Figure 3a
at VSD = 10µV. The black line shows the FWHM obtained from the resonant
tunneling model using the same parameters as in the main text. (b) Position
of the current maximum in VG1 as a function of B for the up (red) and down
(blue) sweep for experiments in Figure 3a at VSD = 10µV. (c) FWHM as
a function of B for the up (red) and down (blue) sweep for experiments in
Figure 2b at VSD = 500µV. (d) Position of the current maximum in VG1 as
a function of B for the up (red) and down (blue) sweep for experiments in
Figure 2b.

B.4. Bias Triangle for the Four Magnetization States

The current I as a function of VG1 and VG4 for the four magnetization states
at B = ±40 mT and VSD = 10µV is shown in Figure B.4. The (−,−) and
(+,−) magnetization states were measured at B = −40 mT, while the (+,+)
and (−,+) magnetization states were measured at B = +40 mT. For the same
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Figure B.4. Bias triangles for four magnetization states. I as a
function of VG1 and VG4 for the magnetization state (a) (−,−) at B = −40 mT
(b) (+,+) at B = +40 mT (c) (+,−) at B = −40 mT and (d) (−,+) at
B = +40 mT, measured at VSD = 10µV. The dashed red and blue lines are
guide to the eyes.

B, we observe that the anti-parallel states are shifted in VG1 relative to the
parallel states. For example, at B = +40 mT, the total magnetic field B

(1)
tot

at QD 1 changes when the FSG magnetization state switches from (+,+)
to (−,+). This consequently changes the transmission DoS of QD1 at EF,
resulting in a shift of the bias triangle position in VG1. We observe a similar
shift in VG1 for the magnetization states (−,−) and (+,−) at B = −40 mT,
thereby enabling us to optimize the TMR signal.

B.5. Analysis of a Third Resonance

We present additional data (figure B.5a) for the cross section C3 of bias triangle
R2 in Figure 1d of the main text. I as a function of VG1 and B are clearly
hysteretic for the up and down sweep, mirrored around B = 0. The hysteresis
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Figure B.5. Data for resonance R2 in figure 1d of the main text.
(a) I as a function of VG1 and B for the up (red) and down (blue) sweep for
VSD = 50µV measured along the cross section C3 in Figure 1d. (b) Imax vs B
for the up and down sweeps extracted from B.5a. (c) I as a function of VG1
for the four magnetization states measured at B = ±40 mT along the cross
section C4 in Figure 1d, parametrized by VG1.

is clearly visible in the Imax vs B curves (figure B.5b) extracted from figure
B.5a, showing similar characteristics as the resonance in figure 3b. In addition,
we measure I as a function of VG1 for each magnetization state at B = ±40
mT along the cross section C4 (figure 1d), similar to figure 3c in the main
text. The (−,−) [blue] and (+,−) [grey] magnetization states in Figure B.5c
were measured at B = −40 mT, while the (+,+) [purple] and (−,+) [black]
magnetization states were measured at B = +40 mT. Similar to Fig 3c, we
observe a suppression of 11% in I for the anti-parallel magnetizations relative
to the parallel ones.

The resonances R1 and R2 as well as resonance A in Figure 2 in the main
text can be reproduced by the resonant tunneling model with very similar
parameters, as summarized in table S1. The Bstr1 and Bstr2 values mentioned
in the main text are consistent with all the observed resonances. The model
curves for the four magnetization states at B = ±40 mT along cross section
C2 (figure 1d in the main text), reproducing the experiments of Figure 3c is
shown in Figure B.6.
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Figure B.6. Resonant tunneling model. (a) I as a function of VG1
extracted from the resonant tunneling model for all four magnetization states
at B = ±40 mT, reproducing experiments in Figure 3c of the main text. The
(−,−) [blue] and (+,−) [grey] magnetization states are measured at B =
−40 mT, while the (+,+) [purple] and (−,+) [black] magnetization states
measured at B = +40 mT.

Resonance g1 g2 E
(0)
2 (µeV)

R1 Up sweep 5.2 - 5.9 6.1 - 6.5 7.5 - 8.5
R1 Down sweep 5.0 - 5.6 6.1 - 6.5 7.5 - 8.5

A (Figure 2) 5.8 - 6.5 5.0 - 6.0 8.0 - 13.0
R2 5.0 - 5.6 5.1 - 5.4 8.0 - 9.0

Table B.1. Summary of the parameters extracted from the resonant tunnel-
ing model for the three resonances measured (g-factors and energy offset E(0)

of the two QDs).
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