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Introduction

For almost a decade indium arsenide nanowires (InAs) have been the work
horse for quantum transport in hybrid devices [1]. This is due to the large ver-
satility of available types of materials that form good contact, such as metals,
ferromagnets [2] and superconductors [3]. Combined with their low dimen-
sionality, low effective mass and intrinsically large spin orbit interaction, InAs
nanowires provide the ideal platform to study various fundamental transport
effects, like the entanglement of spins [4] or the ferromagnetic proximity ef-
fect [2]. Furthermore, this material system is a potential candidate to host
so-called spin-orbit qubits [5, 6], which enable storage and manipulation of
quantum information.

Alternatively, one can use topological qubits [7] based on topologically pro-
tected particles such as Majorana bound states (MBS) [8–13] or parafermions
[14–16] to encode qubits. Both rely on the combination of one dimensional
nanowires with strong spin orbit coupling proximitized by a superconductor.
Recent advances in growth synthesis and interface engineering have triggered
a new generation of nanowire devices. This enabled to create more complex
structures made of several NWs, like nanowire crosses [17–19] or nanowire net-
works (“hashtags”) [20]. Furthermore, radial [21] and axial [22, 23] nanowire
heterostructures can be grown in a controlled manner, allowing to implement
quantum dots (QDs) in-situ during the growth [24, 25]. The latest break-
through was to grow the superconducting contact epitaxially to nanowires
[20, 26–28] which resulted in numerous reports on the observation of MBS
[29–32]. However, the unambiguous identification of MBS is not straight for-
ward [33, 34].

Several theoretical proposals suggest to investigate these topological states
by using a QD as a spectrometer to probe their lifetime [35, 36], parity [37] or
spin texture [38]. Until now, there is one report published where the QD was
formed by electrical gates [30], which gave insight on the non-locality of MBS
[31]. However, spectroscopy of such superconducting bound states remains
challenging because of the lack of control on the QD in the nanowire.
The reason for this is the following: most QDs used in spectroscopy measure-
ments of superconducting nanowire hybrid devices are either defined by the
source drain contacts [39] or by electrostatic (bottom) gates [30, 40–43]. Both
methods hold various problems: neither the exact location, nor the electronic
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Introduction

characteristics of the QD can be predicted or systematically controlled. In ad-
dition, QDs defined by electrostatic gates are sensitive to the electrostatics of
the entire system, which is especially disadvantages when working with super-
conductors. Using this type of QDs as an electronic spectrometer is therefore
problematic, as it is not clear where the voltage drops in the system, which
has a strong impact on the determined energies and amplitudes of the signal.

Motivation of this thesis

In order to realise the above proposed systematic spectroscopy of MBS [35–38]
we present first steps towards unambiguous transport spectroscopy of topo-
logical states in nanowires.
Within the experiments described in this thesis, we demonstrate transport
spectroscopy on superconducting hybrid systems using a QD defined by hard
wall barriers in nanowires. In our case, this is realised by atomically precise
engineered tunnel barriers defining the QD both spatially and energetically.
Consequently, the size of the QD can be controlled and its electrical character-
istics can be predicted. Furthermore, the location of the QD in the nanowire
is precisely known.
This results in a fundamentally new experimental situation: as the location
of the integrated QD is known, we can clearly subdivide the system into the
segment forming the QD and the remaining nanowire lead segments. This en-
ables us to distinguish between the origin of individual physical effects. Most
importantly, the bias voltage drops on the barrier-defined QD, when the con-
ductance of this platform is measured. Consequently, the differential conduc-
tance is directly proportional to the density of states of the nanowire segment
being probed. This allows us to perform tunnel spectroscopy in a controlled
and systematic manner in NW hybrid systems.

The goal of this thesis is to use integrated QDs as tunnel spectrometers, in
order to probe the DOS and potential sub-gap states in the adjacent nanowire
lead segment. By investigating a large variety of effects in NW lead segments,
when they are coupled to a superconducting electrode, we pave the way to-
wards systematic spectroscopy of topological states in NWs.
We can use our platform essentially in two different ways: 1) as a controllable
single tunnel barrier, when the quantum dot is in Coulomb blockade and 2)
as an energy filter, when the quantum dot is on resonance.

By using both regimes, we demonstrate the evolution of the proximity in-
duced superconducting gap in the nanowire lead segment, when the nanowire
is coupled to one superconducting electrode. We can explain the observed
characteristic features as a transition between the long and the short junction
limit of the device (see chapter 5).
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Furthermore, we show spectroscopy measurements on a NW segment, in which
discrete subgap states form. These subgap states exhibit rich physics, due to
a competition between Coulomb and the Kondo effect (see chapter 6).

Moreover, we discuss electronic spectroscopy measurements performed in NW
devices with integrated QDs with two superconducting electrodes. Here, we
can access a large variety of transport regimes. Most remarkably, we find a
hybridisation of the quantum dot resonances with Andreev bound states in
the intermediate coupling regime (see chapter 7).

In addition, we present a first step towards devices, based on two nanowires,
a potential candidate for the detection of parafermions. For the first time, we
present a splitting of Cooper pairs into separated individual nanowires (see
chapter 8).

In the following we give the outline of this thesis:

Chapter 1 provides a short introduction to semiconducting InAs nanowires.
Afterwards, we introduce the relevant theoretical background on transport
with quantum dots and superconductivity (chapter 2). Chapter 3 covers the
standard fabrication process of semiconducting superconducting nanowire de-
vices as well as a detailed discussion on fabrication of InAs nanowires with an
epitaxial aluminum shell. Additionally, a brief introduction to the cryogenic
measurement set-up is given.

First results on crystal phase defined QDs in InAs NWs are presented within
the characterization of the QDs in chapter 4

Results based on spectroscopy measurements using crystal phase defined quan-
tum dots are presented in chapter 5, 6 and 7.

Chapter 8 provides first measurements of Cooper-pair splitting in a paral-
lel double nanowire device.

In chapter 9 we summarise the results of this thesis.

In addition, we present preliminary results on quantum dots in InAs NWs, de-
fined by InP tunnel barriers and supercurrent measurements in multi-terminal
nanowire superconductor junctions in the appendix F and G.
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1 InAs nanowires

The following chapter provides an introduction to the properties of InAs
nanowires, such as the growth process and basic electronic characteristics.
Semiconducting nanowires are single crystalline one-dimensional nanostruc-
tures. Typically, they have a diameter between 10 nm to 100 nm and lengths
up to several micrometer. Until now, synthesis of group III-V, II-VI and III
SCs have been reported [44]. Due to the large possible material variety, semi-
conducting nanowires can be used in a wide spectrum of applications [45] such
as LEDs [46], solar cells [47] or sensors [48]. However, they are also of special
interest in the field of nanoelectronics, as they can for example be used as
efficient transistors [49, 50].
This is especially the case for nanowires made of indium-arsenide (InAs), as
this material platform offers additional advantages: low effective mass, small
band gap, high mobility [51] and large spin orbit interaction [52], allowing
electrical control on the spin and the possibility to form a spin-orbit qubit [5].
In the following chapter, we briefly discuss the basics of nanowire growth and
provide a summary of electronic characteristics of InAs nanowires, following
Refs. [53–55].

1.1. InAs nanowire growth

For many decades, bottom up growth of semiconducting nanowires is based
on vapour-liquid-solid methods (VLS) [56], such as molecular beam epitaxy,
or metal organic vapour phase epitaxy to name just a few examples [54, 55].
The basic principal of these techniques relies on the accumulation of gaseous
atomic or metal-organic precursors inside a metallic catalyst particle [54]. The
catalyst particle (usually made of gold) can be deposited by different meth-
ods. For example by metal evaporation and subsequent annealing or by aerosol
techniques. Each techniques results in a random distribution of the nanowires
(situation I in Fig. 1.1 a) [54]. One can also obtain nanowire arrays by pre-
patterning the substrate by lithography, resulting in an array-like structure
(see Fig. 1.1 b). The nanowires grow from the catalyst particle when it gets
supersaturated by the precursor concentration (situation II/III). The main
difference in the above mentioned growth techniques is the way the catalyst
particle is fed by the semiconductor. By controlling the size of the catalyst
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1. InAs nanowires

a b

I II III

InAs
Au catalyst

5µm

InAs

Figure 1.1. Growth of InAs nanowires. a Illustration of a vapour-liquid-
solid growth process of InAs NWs. Situation I shows the pre-defined gold
catalyst particle (yellow) on the growth substrate (green), which is fed by In
(blue) and As (red) until it supersaturates (II) and grows (III). The ark grey
stripes inside the InAs nanowire illustrate an example of a controlled imple-
mentation of a hetero-structure, achieved by adjustment of growth parameters.
b Transmission electron micrograph of InAs NWs on a pre-patterned substrate.
Schematic adapted from [45, 54]. TEM image provided by S. Lehmann.

particle one can determine the diameter of the nanowire, whereas its length
depends on the growth time [54]. The growth direction and also the crystal
structure depend on many growth parameters and is therefore difficult to con-
trol [53–55].
In the case of InAs nanowires, it has been found that they usually grow in

a mix of wurtzite (WZ) and zincblende (ZB) crystal phase, whereas ZB is the
bulk crystal structure of InAs. In the extreme case of polytypic NWs, trans-
port properties can be drastically effected by band gap mismatches [57]. Due
to advances in growth techniques, it is possible to growth defect free single
crystal InAs NWs, meaning either pure WZ or ZB crystal phase. It has also
been shown that it is possible to switch between both crystallographic phases
in a controlled way, creating ZB-WZ homostructures with atomic precision
[23, 58]. Furthermore, the WZ segments act as potential barriers, which can
be used to create a quantum dot [25]. We will elaborate this system in more
detail in chapter 4, as it is the main working horse for experiments performed
in this thesis [59].
Within recent technical advances of nanowire synthesis, various types of nano-
wire heterostructures with different materials have been successfully grown.
This is mainly possible because strain originating from a large lattice mis-
match of different materials can relax at the NW surface, which is not possible
in bulk systems. It is, for example, possible to grow nanowires in radial het-
erostructures in a core-shell configuration [21, 60] or axially along the growth

2
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1.1. InAs nanowire growth

direction [22]. In Fig.1.2, we present an example of an InAs NW heterostruc-
ture made of InAs and InP. Fig.1.2 a shows a scanning electron micrograph
(SEM) of such a NW taken with the help of a quadrant back-scatter electron
detector. This detector allows us to distinguish different materials by contrast
in intensity. Therefore, we can extract the dimensions (in this case: ≈ 5 nm
thick; separation: ≈ 20 nm) as well as the location of the InP segments (dark
contrast), as shown in the inset of Fig. 1.2 a, within the otherwise InAs NW. In
Fig. 1.2 b we present a transmission electron micrograph of a such InAs/InP
hetereostructure, where we can observe the InP segments in more clearly.
However, TEM imaging is tedious and can not be done for every NW that is
fabricated. Therefore it is very helpful to have the capability to detect the InP
segments in these NWs by SEM techniques. For us, this is of special interest,
as the InP segments are acting as a hard wall barrier for electrons, forming
a well defined QD in between [24, 61–64]. These NWs have been grown and
thankfully provided by Prof. L. Sorba (NEST Pisa). In addition, it is possible
to grow more complex nanowire structures, due to controlled pre-patterning
of the growth substrate, such as nanocrosses [17–19] or so called nanowire
hashtags [20]. One of the biggest breakthrough within the last years was the
achievement of growing superconducting materials epitaxially on NWs, with a
defect free interface [20, 26].

a b

InP

InAs

20 nm

InP

InAs

Au catalyst

20 nm
20 nm

100 nm

Figure 1.2. InAs/InP nanowire heterostructure. a Scanning electron
micrograph taken with a quadrant back-scatter electron detector of InAs NW
with InP segments. Inset shows zoomed in image, revealing the InP segments
as dark stripes. b Transmission electron micrograph of InAs NW with InP
segments (dark stripes). TEM image provided by L. Sorba.
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1. InAs nanowires

1.2. Electronic properties

We now focus on the electronic properties of InAs nanowires, arising due to
intrinsic material properties and dimensional confinement, following [54, 55].
The electronic band structure of InAs NWs yields a parabolic dispersion re-
lation for the conduction band yielding an effective electron mass of m∗ =
0.023me. Here, me is the free electron mass [54]. The electronic states
form quantized transverse modes, caused by the radial two-dimensional con-
finement, described by the dispersion relation for each sub-band: En(kx) =
En+ ~2k2

x
2m∗ . Here, En is the minimum required energy, due to the quantization

in modes [55]. By connecting an electronic reservoir to one channel, results in
the current I = 2e2

h
N, which scales with the number of occupied modes N [54].

This means, whenever a new subband becomes occupied, we expect a stepwise
increase in quantized conduction [54, 55]. This, as well as ballistic transport,
has been confirmed lately by several groups [18, 65–67]. Furthermore, due
to the strong spin orbit coupling, we can further expect the appearance of a
so-called helical gap in such systems[68]. First signatures of an interaction
induced helical gap has also been reported lately in InAs NWs [69].
It has also been found that the diameter of the InAs NW strongly effects
transport. For InAs NWs with diameter less than ≈ 40 nm, a rapid decrease
of electron mobility was reported [70], most likely due to enhanced surface
scattering. Throughout this work we only used InAs NWs with diameters
between 60 nm to 100 nm for which mobilities up to 6600 cm2/Vs have been
reported [51].
Furthermore, the semiconducting energy gap differs for both crystal phases.
Since ZB is the bulk InAs crystal phase, the properties of the band are well
known: direct band gap EZB = 0.42 eV and g-factor g = −14.9 [71]. The WZ
crystal phase has a larger band gap of EWZ ≈ 0.52 eV to 0.54 eV, consistent
with what has been found in ZB-WZ homostructures [25]. In addition, it is
possible to achieve good low-ohmic contacts with many different contact ma-
terials, as the Fermi level is pinned to the surface [72]. Furthermore, the mean
free path in InAs nanowires has been reported to be ≈ 100 nm [66].
The presented characteristics of InAs NWs, such as: various controlled syn-
thesis possibilities (like different crystal phases, complex geometries, epitaxial
control on interfaces to superconductors), and their electronic properties like
strong spin-orbit interaction make InAs a perfect candidate to study transport
experiments. This platform especially gained renewed interest, as it can serve
as a host for topological states, such as Majorana fermions, and therefore con-
stitute a potential platform topological quantum information processing [73].
For a more detailed summary of electronic properties of InAs nanowires we
refer to Refs. [53–55].

4
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2 Quantum dots coupled to a superconductor

The following chapter will provide the theoretical basis for the experiments
performed in this thesis. After a brief introduction on quantum dots and su-
perconductivity, the most relevant transport mechanisms in nanowire hybrid
devices are discussed. We will explicitly discuss transport processes in super-
conductor - quantum dot - normal metal structures, such as Andreev bound
states and Cooper pair splitting. Furthermore, we will presents transport phe-
nomena that can occur in systems with only superconducting electrodes. Here,
we follow Refs. [54, 55, 74–76].

2.1. Quantum dots

One of the key ingredient of this thesis are quantum dots (QDs) - quasi zero-
dimensional islands, commonly referred to as “artificial atoms” [75]. Here, an
electron is confined in all three dimensions which results in a quantization of
the energy spectrum. However, QDs can be coupled to source drain electrodes
and electrostatic gates, allowing us to probe their characteristics in transport
experiments at low temperatures. Since they are very small, also the capaci-
tance of the island is small and therefore requires a large energy cost, to add
an additional electron [54]. This so-called Coulomb blockade (CB) is the most
universal property of QDs and has been observed in many different solid state
systems, such as two dimensional electron gases [77], graphene [78], carbon
nanotubes [79] and semiconducting nanowires [80].
In order to describe the entire energy spectrum of a single quantum dot, one
takes into account Coulomb interactions and quantum confinement [81]. Just
like the the “particle in a box” scenario, quantum confinement leads to an en-
ergy spacing between individual energy levels of δE. In systems where electrons
have a quadratic dispersion relation, δE decreases with the size of the QD L
as δE ∝ 1/L2 [74], which depends on the geometry of the QD. Furthermore,
the shell filling of the energy levels depends on the spin degeneracy and the
Pauli principle [76, 82].

5



2. Quantum dots coupled to a superconductor

2.1.1. Coulomb blockade
Coulomb interaction effects can be described by the constant interaction model
[75, 76, 81, 82], which makes two major assumptions: we can assign a constant
self capacitance to the QD and electron-electron interactions do not affect the
discrete energy spectrum of the QD.

In Fig. 2.1 a circuit diagram is shown, with a QD (orange) being tunnel cou-
pled to source (S) and drain (D) electrodes by a coupling strength ΓS/D and
capacitively coupled with capacitances CS/D, respectively [55, 76]. In addi-
tion, a voltage VG can be applied on the gate (G) that is only capacitively
coupled to the QD with capacitance CG. The QD capacitance is the sum of
all capacitances: C = CS+ CD+ CG, whereas its energy Etot is described by
the following formula (considering N electrons) [54, 82]:

Etot = 1
2C

[
−|e|(N −N0) +

∑
i

CiVi

]2
+

N∑
n=1

En, (2.1)

where i =S, D, G and N0 is the number of charges when the QD is not charged
(meaning all Vi = 0). The number of electron N varies discretely, whereas CiVi
are charges induced by the gate [76]. The electrochemical potential of the
system can be written as: µ(N) = Etot(N)− Etot(N − 1) [54, 55, 76, 81, 82]:

µ(N) = En + e2

C

(
N −N0 −

1
2

)
− |e|
C
CGVG. (2.2)

This is the energy which is needed to add the next electron and constitutes as
a “ladder” of discrete levels (illustrated in Fig. 2.1 b) [81, 82]. The difference
between those levels is the addition energy and is defined by [54, 55, 81, 82]:

Eadd = µ(N + 1)− µ(N) = e2

C
+ δE, (2.3)

D

QD

S

E

µN

µN+1

µN-1

µS= µD

QD

CG

S D
CS,ΓS CD,ΓD

D

G

VG

µN+2
I

VSD

 VG

a b

Figure 2.1. Quantum dot model. a QD schematically coupled to source
(C), drain (D) electrode and gate. b Schematic of energy diagram with elec-
trochemical potential energies of QD with N electrons. Adapted from [75, 81].
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2.1. Quantum dots

with EC = e2

C
the charging energy and δE the quantum mechanical level

spacing. By applying a gate voltage VG the ladder can be shifted linearly by
eαG∆VG = CG/C, where αG is the lever arm of the gate [55, 82].
Additionally, we can see in Fig. 2.2 b, electron transport is only possible when
the electrochemical potential of the QD is aligned with the electrochemical
potentials of S and D µS/D [55, 81]. This situation is called resonant tunneling
and results in peaks of conductance G, which are called Coulomb resonance
peaks [81]. In the case that the electrochemical potentials are not aligned,
as shown in Fig. 2.2 a, electron transport is blocked [55]. Consequently, the
gate dependent conductance G reveals Coulomb resonances whenever the QD
is on resonance, meaning µ(N) = µS = µD, which is shown in Fig. 2.2 c.
The Coulomb resonances are separated by Eadd and have a two-fold periodic
structure (in InAs NWs), due to spin degeneracy. This means, the first electron
which occupies a new NW shell needs the addition energy EC + δE, whereas
the next electron only needs EC [54, 55, 82].
Up to now, we assumed an isolated QD and neglected the tunnel couplings to
source (S) and drain (D) ΓS/D. However, even a small coupling Γ = ΓS + ΓD
leads to a finite electron lifetime on the QD, which enables electrons to tunnel
on and off the QD, even slightly off-resonance. This results in a finite, intrinsic
resonance width (Heisenberg’s uncertainty).

N N+2

EC+δEEC EC

eαVG

G

D

QD

S

E

µN

µN+1

µN-1

µS= µD

µN+2

D

QD

S

E

µS= µD

ΓS ΓD ΓS ΓD

a b

c

µN

µN+1

µN-1

µN+2

Figure 2.2. Energy diagram of QD and Coulomb resonances. Energy
diagrams with electrochemical potential of QD not aligned with µS/D a and
aligned with µS/D b. c Resulting gate dependent conductance G. Adapted
from [54, 75, 76, 82].
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2. Quantum dots coupled to a superconductor

In the limit of kT � Γ � δE,EC , which holds for sufficiently low enough
temperatures, the Coulomb resonance lineshape is described by a Lorentzian
[82, 83]:

G(VG) = 2e2

h

ΓSΓD
ΓS + ΓD

Γ
(eαVG)2 + (Γ/2)2 . (2.4)

For higher temperatures, the resonance is in addition thermally broadened and
takes a different lineshape [83]. The broadening (FWHM) is determined by Γ,
whereas the conductance maximum is given by the asymmetry of the tunnel
barriers ΓS/ΓD [76].
Analysing the shape of the peak enables to determine the transport regime
as well as the ratio of the coupling parameters ΓS/ΓD [54]. In a standard
two-terminal configuration, it is not possible to assign ΓS/D to the respective
electrodes [54, 55, 76, 82].

2.1.2. Transport spectroscopy with Coulomb diamonds
It is also possible to lift Coulomb blockade, by applying a source-drain bias
VSD, as schematically shown in Fig. 2.3 [76, 82]. Whenever a chemical poten-
tial level, i.e. µ(N) enters the opened bias window −|e|VSD = µS−µD, a step-
wise change in current I is obtained, which results in a peak in conductance
G. Consequently we observe a pattern which is called “Coulomb blockade dia-
monds”, when the conductance is measured with respect to VSD and VBG [84].
Fig. 2.3 presents a schematic of a CB diamond measurement of a QD. Inside
of the CB diamond, sequential tunneling is blocked, while outside of each CB
diamond the number of electrons is fluctuating [76]. The boundaries of each

DS

DS DS

µ∗
N

DS
µN

µN+1

µN

µN+1

µN

µN+1

µN

µN+1
Ι

ΙΙ

ΙΙΙ

IV

VSD

VG

Eadd ECδE
β-

β+ Ι
ΙΙ

ΙΙΙ

IV

n=2 n=3 n=4

Figure 2.3. Schematic Coulomb blockade diamonds. Center: Coulomb
blockade diamond with two fold symmetry. Schematics show different situa-
tions of applied bias voltage between source and drain. Schematics adapted
from [75, 76, 82, 84].
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2.1. Quantum dots

diamond is determined by the condition µQD = µS/D, which means, along the
positive slope β+ a QD level is aligned with the source µQD = µS , while on
the negative slope β− it is aligned with the drain µQD = µD. Hence, the bias
voltage at the tip of the diamond (situation II in Fig. 2.3) directly measures
the addition energy Eadd = EC + δE. This can also be used to extract EC
and δE, in case the two-fold periodic shell filling is observed [54, 55, 76, 82].
Assuming asymmetric biasing, we can calculate the two slopes β+/−. In this
case the shift of the resonance due to the S capacitance needs to be compen-
sated by the gate, leading to [82]: 0 = −|e|CG

C
∆VG + CS

C
∆VSD [76]. This

gives for the negative slope β− = −CG
CS

and for the positive slope β+ =
CG

C−CS
. Consequently, we obtain for the lever arm of the gate αG = β+|β−|

β++|β−|
.

[54, 55, 76, 82].

Excited states and cotunneling

Until now, we only considered ground state transitions. In case the applied
bias voltage is larger than δE, the electrons can also be excited to the consec-
utive orbital and relax back to the ground state [76, 82]. These excited states
can be detected as additional resonances in G whenever a level of an excited
state µ∗N lies within the bias window (shown in Fig. 2.3) [76].
By increasing the coupling ΓS/D, higher order tunneling processes can become
possible, like the second order process called “cotunneling” [85]. In this pro-
cess, the electron is able to escape the QD, even in the CB regime, as long
as another electron enters the QD within the uncertainty time ∼ h/EC [76].
This process gives rise to a current ∝ VSD, and thus a constant G inside the
CB diamond. When the QD stays in the ground state after this process, it is
called elastic cotunneling, whereas it is called in-elastic cotunneling, when the
QD is left in an excited state [54, 55, 76, 82].

Kondo effect in quantum dots

Another physical process that can occur, when the coupling of the metallic
reservoir to the Quantum Dot is large. This effect is called “Kondo effect” and
manifests as an enhancement of the conductance within the blockade regime
of a QD for an odd number of occupation [86, 87] (see Fig. 2.4 b). The origin
of this is the hybridisation of an unpaired electron and the fermionic ground
state of the metallic electrodes, generating a spin singlet ground state [54, 55].
This results in additional transport channel mediated by a spin-flip cotun-
neling process (see Fig. 2.4 a) [55]. By applying a bias, the electrochemical
potentials of the leads are shifted, resulting in a conductance decrease, because
the Kondo effect can no longer occur. The FWHM of the Kondo peak can be
characterized by the Kondo temperature TK . This can be thought of as a
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2. Quantum dots coupled to a superconductor

DS

µS= µD

ΓS ΓD

a b

even even

even even

odd

odd

VG

eVSD

VG

2EZ

d

eVSD

DS

ΓS ΓD
c

eVSD

EZ

TK

Figure 2.4. Schematic illustration of Kondo effect in quantum dots.
a Schematic energy diagram of a QD with additional DOS at the Fermi level of
the leads due to Kondo correlations [86]. b Schematic of CB diamonds (green)
with Kondo ridge (blue) at zero bias in odd charge state. c Energy diagram of
spin flip process at applied magnetic field. d CB diamonds at finite magnetic
field with a Kondo split ridge (blue). Adapted from [54, 55].

crossover temperature, such that Kondo correlations can form. In addition,
the Kondo temperature depends on the coupling Γ to the metallic reservoirs
as well as EC [54, 55, 87]:

kBTK = 1/2
√

ΓECexp
(
πε(EC + ε)

ΓEC

)
. (2.5)

In this expression, ε is the energy of the occupied level with respect to EF of
the leads.
The spin degeneracy of the odd level can be lifted by applying an external
B field, which leaves the spin down level as an excited state (Fig. 2.4 c) [55].
A spin flip is still possible, leaving the QD in an excited state. The required
energy for this inelastic cotunneling process must be provided by the applied
bias. Therefore the applied bias eVSD needs to match the Zeeman energy
EZ = g∗µBB, which results in an splitting of the Kondo ridge by [54, 55, 86–
89]:

δ = 2EZ = 2g∗µBB. (2.6)
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2.2. Superconductivity

As shown in Fig. 2.4 d, the original single Kondo ridge at zero bias voltage
(and also B = 0), developed into two peaks, separated by 2EZ for a finite
applied magnetic field B [55]. Furthermore, by following the Kondo splitting
as a function of B, it is possible to extract the effective g-factor g∗ [54, 55].

2.2. Superconductivity

As discussed in the previous section, QDs allow electrons to pass successional
due to their large charging energy. In contrast, superconductivity is based on
a macroscopic condensate consisting of pairs of electrons. Therefore, coupling
a superconductor to a QD results in a conflict of competing transport mecha-
nisms. However, the arising interplay of repulsive and attractive interactions
in such hybrid systems enabled observations of interesting effects such as An-
dreev or even Majorana bound-states [30, 90]. This following section we will
give a brief introduction to superconductivity (following Refs. [91, 92]), before
we focus on transport phenomena arising in hybrid devices, while following
Refs. [54, 76, 81, 82].
The most striking feature of superconductivity is the fact that certain super-
conducting materials, such as aluminum, lead or niobium have an undetectably
small electrical resistance below their critical temperature TC . Typical critical
temperatures of elemental superconductors are in the range of mK up to 10 K.
The first theory describing superconductivity in a macroscopic picture has
been invented by Bardeen, Cooper and Schrieffer [82, 93]. Their so called
“BCS theory” is based on the following fundamental theorem: the “Fermi
sea” (fermionic ground state) is not stable against an attraction of two elec-
trons [76]. Therefore, it is possible that two individual electrons are bound
together and form a so-called “Cooper pair”, which no longer follows Fermi-
Dirac statistics, but rather Bose-Einstein statistics [93]. Here, the phonons of
the ionic lattice are acting as a mediator of this attractive interaction [76, 82].
Intuitively, one can picture an electron moving across the solid, which con-
sequently deforms the lattice of the ion cores with positive charge [76]. This
drags a cloud of positive polarization behind its path, which can then attract
another electron, as the motion of ion cores lag behind the electron [54]. It
is found that the attractive interaction between the electrons is maximized,
when one electron has the opposit momentum of the second electron k1 = −k2
[54, 82]. As a result, the orbital wave function is symmetric and in a spin singlet
state |ΨS〉 = 1√

2 (|↑↓〉 − |↓↑〉) restoring the antisymmetry required by Pauli’s
exclusion principle [54, 76, 82].
As Cooper pairs have a total spin of zero, they can condense into a coherent
ground state, which is described by a macroscopic wavefunction. Addition-
ally, the excitation spectrum of a superconductor has a gap around the Fermi
energy EF of 2∆, which is the required energy for excitations of the ground
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2. Quantum dots coupled to a superconductor

state, or in other words: to break up a Cooper pair. Their energy dispersion
of these so called quasiparticles is described by [54, 82]:

E(k) =
√
ε(k)2 + ∆2, (2.7)

where ∆ is the superconducting gap parameter and ε(k) = ~2k2

2m − EF the
energy of a single free electron [91]. Calculating the density of states (DOS) of
the quasiparticles DS shows that the quasiparticles are separated by ∆ from
the Cooper pair condensate [54, 82]:

DS(E) = DN (ε) dε
dE

{
DN (ε) E√

E2−∆2
(E > ∆)

0 (E < ∆)
, (2.8)

assuming a constant normal state DOS DN around EF . For energies E < ∆,
the DOS is zero and consequently there are only Cooper pairs and no quasi-
particles [82]. For energies E → ∆ the DOS diverges and starts to decrease
for higher energies until the normal state DOS is resembled for E >> ∆.
Quasiparticle excitation also takes place when the temperature is increased
from T = 0, which reduces the number of Cooper pairs. Hence, the gap
∆ is becoming reduced until it vanishes at a critical temperature TC . The
dependence of ∆ on the temperature is given by [54, 82, 94]:

∆(T ) ≈ ∆0

(
1− T

TC

)1/2
. (2.9)

with ∆0 the gap at T = 0. With further assumptions, one can relate ∆ to
the critical temperature: ∆0 ≈ 1.76 kTC . The BCS theory also provides an
additional relevant parameter, which is called the BCS coherence length [92]:

ξ = ~vF
π∆0

, (2.10)

where vF is the Fermi velocity. The coherence length ξ is essentially the
spatial extension of a Cooper pair and is typically of the order of a few nm to
hundreds of nm [76, 82]. Consequently, Cooper pairs are spatially overlapping
in the condensate [54, 82].

2.3. Transport in superconductor - normal metal structures

In the following section, we first focus on transport phenomena which arises,
when a single quantum dot (QD) is embedded between one normal metal (N)
and one superconducting (S) electrode. We can categorize different transport
regimes, which we distinguish by the coupling strength Γ of the superconduct-
ing electrode to the quantum dot [76]. First, we discuss the regime where
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S is weakly coupled and transport is dominated by quasiparticle tunneling
(Sec. 2.3.1). We then introduce the general concept of Andreev Bound states
(Sec. 2.3.3), before we investigate the case of Andreev bound states in strongly
coupled S - QD systems (Sec. 2.3.4).

2.3.1. Quasiparticle transport
We consider an N - QD - S device with a single QD between a normal metal
(N) and a superconducting (S) contact. The QD is characterized by its charg-
ing energy EC and level spacing δE (as discussed in section 2.1). A schematic
of the considered system is shown in Fig. 2.5 a. Here, ΓS/N describes the cou-
pling strength of the QD to the S/N contact with the total coupling strength
Γ = ΓS + ΓN . We further denote the electrochemical potentials of the S/N
contacts µS/N and the superconducting gap ∆. For this section, we restrict
ourself to the regime where transport is mainly governed by quaiparticle tun-
neling and Andreev processes are suppressed due to a weak coupling to the
superconductor ΓS [95, 96]. Hence, this assumption holds for the following
relation of the relevant parameters: ΓS � ΓN � ∆ < δE � EC . Within this
limit, transport spectroscopy measurements reveal the quasiparticle DOS in
the superconductor [76].
In Fig. 2.5 b a qualitative schematic shows the expected impact of the super-
conducting gap ∆ on the shape of the Coulomb resonance. The CB diamond

a

+∆/e

-∆/e

VSD

VBG

µQD
µS

µN

µQDµS

µN µQDµS

µN

µQD
µS

µN

µQD

µS
µN

µQD

µS
µN

µQD
µS

µN

∆

-∆

∆VBG

EC

S N
QD

µS µN

b

0

-β

ΓS ΓN

Figure 2.5. Quasiparticle transport in N - QD - S. a Schematic en-
ergy diagram of a superconductor (blue), QD (defined by green barriers) and
normal metal contact (yellow). b Expected conductance (green solid lines)
with respect to source drain bias VSD and gate voltage VBG. Adapted from
[76, 97].
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2. Quantum dots coupled to a superconductor

tips constitute the onset of quasiparticle tunneling, which are consequently
shifted by 2∆/e in bias. In addition, we expect the Coulomb blockade di-
amond tips to be shifted in gate voltage VG, because of the finite capacitive
coupling between both electrodes and the QD [76]: ∆VBG = 2∆/β−e, with β−
being the negative slope of the CB resonance [97]. This type of system can be
further described in a resonant tunneling model (neglecting superconducting
correlations and charge dynamics like excited states of the QD), considering
single electron transport [95]. Applying the bias to S, the resulting current I
can be written as [76, 95, 97]:

I ∝
∫
dEDN (E) ·DS(E+eVSD) ·TQD(E, VBG, VSD) · [fN (E)−fS(E+eVSD)],

(2.11)
whereDN (E) is the constant DOS of the normal metal contact. The Lorentzian
transmission function TQD(E, VBG, VSD) accounts for sequential tunneling via
the quantum dot. The Fermi distribution functions of the respective electrodes
are taken into account by fS/N . We further note: here we use an ideal BCS
like DOS for the superconducting electrode DS = |E|/

√
E2 −∆2 for |E| ≤ ∆

and DS = 0 for |E| < ∆. As we will see later, the expression for DS needs to
be adjusted when the DOS that is probed is not BSC-like [76].

2.3.2. Andreev reflection
In the following section, we first consider the case of a fully transparent N-S
interface and an electron with subgap energy E < ∆. When the electron,
coming from N, impinges at the S surface, it does not have enough energy to
create a quasiparticle and can simply not enter the superconductor. On the
other hand, the electron can also not be normal reflected: as the S constitutes
a potential barrier of ∆ with a maximal momentum of δk ∼ ∆

vF
, the required

momentum transfer for a normal reflection of ∼ kF can not be provided [98].
To resolve this, a second order process called Andreev reflection (AR) occurs
[100]. The impinging electron can be retro-reflected as a hole, with opposite
momentum and spin. The hole will therefore travel backwards with the oppo-
site trajectory as the incident electron (see Fig. 2.6 a, b). In the SC the total
charge of 2e is taken up by the formation of a Cooper pair [82].
This transport process is theoretically well described in the BTK model [99].
Here, the scattering potential at the Normal - Superconductor interface is
modelled as a δ function with the barrier strength parameter Z, which ac-
counts for elastic scattering processes [76]: V(x)= Z~vF δ(x) [99]. For Z = 0,
no elastic scattering takes place and the only possible process is AR, resulting
in a doubling of the current for electrons with energy |E| < ∆ [54]. In real
samples Z 6= 0, as this would require that both materials are exactly equal and
also have the exact same vF , resulting in an increase of probability for normal
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Figure 2.6. Andreev reflection at superconducting - normal metal
interface. a Schematic illustration of Andreev reflection of electron (filled
black circle) in real space at Normal - Superconductor interface. Retro-
reflected hole is represented as white/black circle. Cooper pair, consisting
of two electrons (black circles) depicted in S. Normal reflection is depicted
with reflected electron in direction of black dashed line. b Andreev reflection
in energy space, same notation as in a. c Normalized differential conductance
GS/ GN for an Normal - Superconductor junction, based on the BTK model
at zero temperature. Curves in different colours show the expected behaviour
for several values of the Z parameter. Adapted from [76, 98, 99].

reflections [54]. For increasing Z, AR becomes continuously suppressed and
one starts to observe the quasiparticle DOS in the S for |E| > ∆ (see Fig. 2.6
c). This limit describes tunnel spectroscopy experiments in N - insulator - S
structures very well [54, 82].
In order to complete this picture, one has to discuss the time reversed process
as well. A Cooper pair is removed from the condensate, by an incoming hole
and a retro-reflected electron. The AR electron and hole stay phase-coherent
for a certain distance and time in the N, corresponding to a non-zero proba-
bility to find a Cooper pair in the adjacent N region. Hence, the Cooper pair
density decays continuously in N on a length scale of the coherence length
ξ. This is also know as the superconducting proximity effect [101, 102]. This
means, superconducting correlations “leak” into the non-superconducting ma-
terial when it is in electrical contact with a superconductor. In addition, the
reverse process can also take place, the “inverse proximity effect”, and results
in a decrease of the Cooper pair density in S close to the interface.
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2. Quantum dots coupled to a superconductor

2.3.3. Andreev bound states
The connection between the proximity effect and AR can be refined, when
discussed in a mesoscopic system [103]. In the following section, we assume
a mesoscopic Superconductor - Normal metal - Superconductor junction, in
which the length L of the sandwiched Normal segment is shorter than the
phase coherence length ξ, following Refs. [76, 104–106]. We furthermore as-
sume that only a few channels participate to transport, such that the system
can be described in a scattering matrix formalism. In addition, we assume
a ballistic channel and perfect transmission (t=1) in the junctions. We can
now ascribe a pairing potential to each of the superconducting contacts S1/2
to ∆1/2 = ∆eiϕ1/2 , with ϕ1/2 being the respective phase (see Fig. 2.7). An
electron that is moving from left to the right (at low energy E < ∆) will be
Andreev reflected at the N-S interface into a hole, moving to the left and thus
create a cooper pair in S2. When the left moving hole reaches S1 on the left
side, it will be reflected as a right moving electron by taking two electrons
from S1. Consequently, a pair of charge of 2e is transferred from S1 to S2.
The finite length L of the normal metal segment leads to the generation of
discrete energy levels. Depending on the difference in phase ϕ = ϕ1 − ϕ2,
standing waves with quantised energies arise in this structure. These subgap
states are thus called Andreev bound states (ABS) [107]. The general require-
ment for the existence of bound-states (in one dimensional systems) is: the
acquired phase during one loop must be a multiple of 2π. This leads to the
following equation [104, 105, 108]:

−2arccosE
±
n

∆ +L
(
k+(E±n )−k−(E±n )

)
±(ϕ1−ϕ2) = 2πn, (n = 0,±1, ...) (2.12)

with k±(E) = kF
√

1± E/µ and kF =
√

2mµ/~2. Depending on how the
process began, the sign of ±(ϕ1 − ϕ2) corresponds to a left or right moving

S1 S2

e

h

e

N

h

∆eiϕ2∆eiϕ1

Figure 2.7. Andreev bound states. Formation of Andreev bound states
in a mesoscopic devices, consisting of normal metal N sandwiched between
two superconductors S1/2. Adapted from [76, 106].
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electron. This equation can be solved for two extreme cases: L→∞ or L→ 0.
For E � µ we can approximate the term

(
k+(E±n )−k−(E±n )

)
≈ 2E/~vF . We

can now characterize such S - N - S systems for the two cases, based on the
relation between the length of the normal part L and the superconducting
coherence length ξ = ~vF /∆. The case L � ξ is referred to as the short
junction limit, whereas the case L � ξ is referred to as the long junction
limit [109].
In the short junction limit L→ 0 the second term of equation 2.12 vanishes,
resulting in two degenerate ABSs at energies

E±(ϕ) = ±∆cos
(
ϕ

2

)
, (2.13)

depending only on the phase difference ϕ of the two superconductors S1/2.
In the long junction limit L→∞, for E � ∆ we can simplify arccos(En/∆) =
π/2. This results in the following expression:

En±(ϕ) = ~vF
2L

[
π
(
2n+ 1

)
± ϕ
]
, n = 0,±1, .... (2.14)

This describes a set of energy levels which are equally spaced, until they reach
∆. Furthermore, the position of these levels is defined by the difference in
phase ϕ. In Fig. 2.8 we present the obtained result for the short Fig. 2.8 a and
the long junction limit Fig. 2.8 b.
So far we considered a clean N - S interface with a transmission probability
t = 1. When scattering at the N - S interface is taken into account, the energy
of the ABS is given by [107, 108]:

E±(ϕ) = ±∆
√

1− t · sin2 φ

2 . (2.15)
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Figure 2.8. Energy levels for long and short junction limit. Energy
levels of ABS as a function of phase difference ϕ in the short junction limit a
and long junction limit b. Adapted from [104, 105].

2

17



2. Quantum dots coupled to a superconductor

In Fig. 2.9 a the phase dependent energy spectrum, based on this equation
is illustrated for different transmission values t. For low values of t, the two
ABS are very close to the gap edge ∆. In a very similar way, one can illustrate
the ABS in a mesoscopic N - S junction, with a N-vacuum interface. This is
schematically depicted in Fig. 2.9 b.
It has also been shown that this scattering approach can be used to describe a
QD as a weak link between two superconductors, assuming that the QD does
not interact.

E
/∆

0

0

1

-1
π 2π

t = 1
t = 0.9
t = 0.2

φ

t = 0.02

vacuum

S

e

h

e

N

h

a b

Figure 2.9. ABS for finite transmission and in N - S system. a Energy
levels of ABS as a function of phase difference ϕ for different transmission
probabilities t. b Formation of Andreev bound states in a mesoscopic N - S
device. Adapted from [76, 105, 106].

2.3.4. Andreev bound states in S - QD systems

In section 2.3.1 we assumed the coupling of the QD to the superconducting
electrode ΓS to be small. When the coupling strength to the superconductor
ΓS is increased such as ΓS ∼ ∆, the energy spectrum of the QD is drastically
modified [82], as we will present in this section by following Refs. [76, 82, 110,
111]. Just like the metallic normal - superconductor junction discussed in
section 2.3.3, the strong coupling ΓS can also form ABSs, in the quantum qot
- superconductor spectrum [76]. ABS in such systems can be directly observed
by means of transport spectroscopy, when a normal metal contact is weakly
coupled to the this type of system [82, 90].
A QD-S system can be described by the so called superconducting Anderson
model [82]. Here, a Hamiltonian of the following form is considered [82, 110]:

Htot = HQD +HS +HT (2.16)
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where the QD with a the spin-degenerate single level orbital εd is written as:

HQD =
∑
σ

εdd
†
σdσ + Un↑n↓. (2.17)

In this equation, d†σ/dσ are the creation/annihilation operators of the electrons
respectively, and nσ = d†σdσ the number operator of the QD [82]. The Coulomb
interaction of the QD is described by U , which only appears when an energy
level is occupied by two electrons n↑ = n↓ = 1.
The superconducting lead itself is denoted by the BCS Hamiltonian [82]:

HS =
∑
k,σ

εkc
†
kσckσ −∆

∑
k

(
c†k↑c

†
−k↓ + h.c.

)
(2.18)

which is coupled to the QD via the tunnel Hamiltonian [82, 110]:

HT = tS
∑
k,σ

(
d†σck,σ + h.c.

)
(2.19)

In this equation, ∆ is the gap of the superconductor and k is the wavevector
[76, 82]. The tunnel probability tS is associated with the coupling as fol-
lows: ΓS = 2πt2Sρ0, where ρ0 = 1/2D, representing a constant DOS around
the Fermi energy. Unfortunately, the described Hamiltonian Htot can only be
solved either numerically or in a certain limited regime [76].
It has been shown that it is analytically possible to find solutions for the so
called “superconducting atomic limit”. Here, the superconducting energy gap
∆ → ∞, which decouples the QD from the quasiparticle continuum. Conse-
quently, one can consider the following effective Hamiltonian [82, 112, 113]:

Heff = HQD −
ΓS
2 (d†↑d

†
↓ + d↑d↓) (2.20)

where the second term denotes the proximity effect, which creates and anni-
hilates Cooper pairs on the QD. This process is referred to as virtual Andreev
reflections and couples the singlet states |0〉 and |↑↓〉, which are no longer
eigenstates of the QD as a result, whereas the doublet state |σ〉 remains an
eigenstate (see Fig. 2.10 a). Due to proximity effect, the new doublet state has
an eigenenergy of Eσ = εd + U/2 = δ. Following the Bogoliubov transforma-
tion, one can diagonalize the effective Hamiltonian with the new eigenstates
[82]:

|−〉 = u |0〉 − v∗ |↑↓〉
|+〉 = v∗ |0〉+ u |↑↓〉 , (2.21)
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Figure 2.10. Energy spectrum of QD coupled to S. a Illustration of
energy spectrum of single level QD. Virtual Andreev reflections couple even
charge states (double arrow). b Energy spectrum of coupled quantum dot -
superconductor system for superconducting atomic limit [76, 82]. ζ+/− denote
the elementary excitation energies. Adapted from [76, 82, 112].

where u, v are the Bogoliubov-de Gennes amplitudes u = 1/2
√

1 + δ/
√
δ2 + Γ2

S

and v = 1/2
√

1− δ/
√
δ + Γ2

S . The resulting states |±〉 are Andreev Bound
states with respective energy [82, 112, 113]:

E± = U

2 ±
√
δ2 + Γ2

S + δ. (2.22)

The resulting excitation spectrum is shown in Fig. 2.10 b with the elementary
first order transitions |σ〉 ↔ |+〉 and |σ〉 ↔ |−〉 and the respective excitation
energies ζ− and ζ+. These excitation energies are measurable as subgap peaks
in conductance at eVSD = ±ζ± by tunneling spectroscopy in an normal - quan-
tum dot - superconductor system and are referred to as Andreev resonances
[82, 111].

Finite superconducting gap
In the previous section, we considered a infinite superconducting gap ∆ where
quasi particles played little/no role. However, when a finite superconducting
gap ∆ is considered, the interaction with the quasiparticle continuum mod-
ifies the energy spectrum of the resulting Andreev resonances [76, 82, 111].
Fig. 2.11 a-c illustrates the expected gate dispersion of Andreev resonances in
a N-QD-S device for different ratios of ΓS/U [82, 111]. For applied bias above
∆, standard Coulomb diamonds in a N-QD-S setup are observed. Within the
energy window of the gap ∆, we see a pair of symmetric Andreev resonances
at ±ζ−. The transition of ±ζ+ is generally not observed, as E+ > ∆. The

20

2



2.3. Transport in superconductor - normal metal structures
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Figure 2.11. Andreev bound state resonances as a function of gate.
a-cQualitative schematic of gate dispersion of ABS resonances (blue) in charge
stability diagram of QD (green). The coupling strength to the superconductor
ΓS is increasing from let to right. d,e,f Predicted phase diagram (schemat-
ically) and the according ground state with respect to ΓS/U and VG [82].
Adapted from [76, 82, 114, 115].

essential difference to the previously discussed limit (where ∆ → ∞), the ζ−
excitation has now an upper limit of ∆. Consequently, the Andreev resonances
are pinned to the gap ζ− ≈ ∆ in the even charge states (see Fig. 2.11 a-c). The
competition between Coulomb repulsion and superconducting pairing becomes
visible in the odd charge state, as shown for n = 1 in Fig. 2.11 a-c. For low
values of ΓS/U , a singlet-doublet transition takes place, with ζ− being close to
∆ (Fig. 2.11 a,d) [76]. When the ratio ΓS/U is increased (Fig. 2.11 b,e), the ζ−
resonance forms a loop in the odd charge state and the singlet-doublet tran-
sition occurs within the CB diamond. For large values of ΓS/U , the ground
state remains always the singlet state and ζ− reveals an anti-crossing in the
odd charge state [82, 111].
The first experimental detection of ABS in such systems have been demon-
strated by [90, 114, 116, 117] in CNT and also in NWs [115]. The physics of
ABS is currently of great interest for many research groups, as so called An-
dreev qubits [118] might provide a possible platform for quantum information
processing.
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2. Quantum dots coupled to a superconductor

2.4. Transport in S - QD - S

In this section, we consider a S - QD - S system, with a single QD between two
superconducting contacts S1/2, schematically shown in Fig. 2.12 b. In such
a system, one can distinguish three different transport regimes, depending on
the coupling strength Γ relative to the superconducting gap ∆ and the addition
energy Eadd of the QD [1, 119]:

• strong coupling: Γ� ∆, Eadd or Eadd > Γ� ∆,

• weak coupling: Γ� ∆, Eadd,

• intermediate coupling: Γ ∼ ∆ ∼ Eadd.

In the following, we will describe the basic characteristics of each of the three
transport regimes, following Ref. [119].

2.4.1. Strong coupling regime

In the strong coupling regime Γ � ∆, Eadd or Eadd > Γ � ∆, the Coulomb
blockade effect can be neglected and the system behaves like a S - N - S
junction, as illustrated in Fig. 2.12 a. When the length of the junction (also
referred to as “weak link”) L between the two superconductors is smaller than
the coherence length L < ξ, a supercurrent can flow between both supercon-
ducting contacts S1/2 (at VSD = 0) transferring Cooper pairs from one contact
to the other. This effect is well known as the Josephson effect and can also
be observed when the weak link is made of an insulating barrier [92] or in our
case a semiconducting NW [3, 119].
Following the ABS description of section 2.3.3, we can describe the resulting

a

∆

-∆
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∆

-∆

S1

L

N

φ1 φ2

b

∆

-∆

S2S1

QD

φ1 φ2

EC

Γ

µS2µS1
µS2µS1

∆

-∆

Figure 2.12. Energy diagrams for Josephson junctions. a Schematic
energy digram of S - N - S structure with supercurrent carrying ABS. b Energy
digram of QD between two superconductors S1/2. Adapted from [119].
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2.4. Transport in S - QD - S

supercurrent with the the following equation [81, 92, 105]:

IS = 2e
~

∑
±

∂E(ϕ)
∂ϕ

tanh
(
E±

2kBT

)
. (2.23)

This can be simplified, for low temperatures and for the absence of quasipar-
ticle exchange between the superconductors and the ABSs, where exclusively
E− is transmitting the supercurrent [81]. In case the transmission coefficient
t � 1 (tunnelling limit), we arrive at the first Josephson equation, the DC
Josephson current[81, 92]:

IS(ϕ) = ICsin(∆ϕ). (2.24)

Here, IC is the maximal critical current: IC = e∆t/2~. The supercurrent IS
depends on the phase difference ∆ϕ = ϕ2 − ϕ1 of the two superconductors
S1 and S2. When the junction is biased with a voltage V , the phase varies:
d∆ϕ

dt = 2eV
~ . This is known as the second Josephson equation or the AC

Josephson effect [81, 92].

2.4.2. Weak coupling regime
In the weak coupling regime Γ � ∆, Eadd, the Josephson effect is suppressed
by the Coulomb interaction and transport is mainly governed by quasiparticle
transport when |VSD| > 2∆ (c.f. situation I in Fig. 2.13). However, it has also
been shown that coherent tunneling of Cooper pairs can, in fact, occur when
the QD is on resonance with the Fermi energies of the superconductors [97,
120]. For now, we only consider quasiparticle transport [95, 96]. In Fig. 2.13 we
provide a schematic illustration of a S - QD - S device in this regime assuming
two S contacts S1/2 with the same superconducting gap ∆1/2. We observe
that the tips of the diamond are separated in energy by: eV SD = ±2∆,
but effectively not shifted in gate voltage VG. As a reference, the green/blue
dashed lines show the expected resonances of an N - QD - S device for the
right/left contact being a normal metal. We can describe this type of system,
using a resonant tunneling model, similar to the one used in Sec. 2.3.1, by
replacing the constant DOS of the normal metal in equation 2.11, by the DOS
of a second superconducting electrode [119].

2.4.3. Intermediate coupling regime
In the intermediate-coupling regime Γ ∼ ∆ ∼ Eadd, the situation is more
complex as all relevant energy scales are comparable. Transport is dominated
by the competition between repulsive interactions of electrons confined in the
QD and pairing of electrons due to superconducting order. For example, in
this regime transport processes like resonant Andreev tunneling have been
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Figure 2.13. Quasiparticle transport S - QD - S. a Schematic depiction
of expected charge stability diagram for quasiparticle tunneling. Shifted CB
diamond tips depicted in green, whereas quaiparticle tunneling in the Coulomb
blockade region is shown in blue. On the right: Schematic energy diagrams
for two distinct situations, as depicted in a. Adapted from [1, 39, 119].

detected recently [97].
Generally in such devices, a quasiparticle current can be observed within the
Coulomb blockade diamonds due to second order cotennling processes (see
section 2.1.2). In the superconducting phase of both contacts, a minimum
bias voltage of 2∆ is required in order to bring the occupied states of the
source into resonance with the unoccupied states of the drain (situation II
in Fig. 2.13). In contrast to single-electron tunneling, this threshold does
not depend on the applied gate voltage VG [1, 121, 122]. We schematically
indicate the expected elastic cotunneling current at the onset of eVSD ± 2∆
in Fig. 2.13. In addition, negative differential conductance along the gap edge
has been observed in this type of systems and can be attributed to peaks in
the DOS [43, 123–125]. For a more complete overview of this regime, we refer
to Refs. [1, 119].

2.5. Crossed Andreev reflection

Considering the spatial extension of Cooper pairs, it is clear that the hole can
also be reflected within a length l < ξ [54]. When devices with multiple termi-
nals are used, this can happen in different leads, resulting in cross conductances
based on this non-local AR process called crossed Andreev reflection (CAR).
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2.5. Crossed Andreev reflection

S

N1 N2

S

h e

l < ξ

S

N1 N2

S

e e

l < ξba

Figure 2.14. Schematic of crossed Andreev reflection. a Splitting of
cooper pair by impinging hole from N1 to S and reflected electron into N2. b
Elastic cotunneling of electron coming from N1, being transmitted to N2 via
virtual state in S. Adapted from [76, 82]

For example, one can consider a multi-terminal system as shown in Fig. 2.14 a.
A single superconducting contact is connected to two individual normal metal
leads N1,2, where the hole which is arriving at N1 can be retroreflected as an
electron to N2 [54]. In other words, this can be described as a Cooper pair,
originating form S, which is split into 2 different normal metal electrodes [76].
Since the process is still phase coherent, this platform can be potentially used
as a source for spatially separated spin-entangled electrons [54, 76, 82].
In purely metallic N - S - N structures, crossed Andreev reflection is difficult
to detect, because it competes with elastic cotunneling which has a similar
probability amplitude (see Fig. 2.14 b).

2.5.1. Cooper pair splitting using quantum dots
The following section follows the explanation from Refs. [54, 76, 82] on “Cooper
pair splitting” using QDs. As discussed in the previous section, crossed An-
dreev reflection can be used as a basic mechanism for the creation of spatially
separated spin entangeled electrons in metallic structures. Unfortunately,
these metallic systems offer nearly no control over the present transport mech-
anisms. Hence, it is hard to identify CAR from local processes. To circumvent
this problem, the theoretical proposal of Recher et al. [126] suggested to add
QDs as an controllable energy filter between the superconductor and the nor-
mal metal leads. In Fig. 2.15 a a schematic of such a system is presented,
which we will refer to as the Cooper pair splitter (CPS) from here on. The
illustration also contains the most important device parameters: the coupling
between each QD to the superconductor ΓS1/2 and to the normal metal leads
ΓN1/2, as well as the coupling between the QDs Γ12. Each of the the QDs
have an individual charging energy of EC1/2 and the electrochemical potential
of each QD µQD1/2 can be tuned separately by local gates. Furthermore, the
spatial distance between the tunneling points is denoted as δr.
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Figure 2.15. Cooper pair splitting with QDs. a Schematic of Cooper
pair splitter setup with two QDs, QD1/2 coupled to normal metal leads N1/2.
b Energy diagram of CPS process. Adapted from [54, 76, 82].

The basic principle of a CPS relies on the following idea: due to the present
on-site Coulomb interactions of the QDs, a double occupancy of the individual
QDs is prohibited which should enhance the CAR transport process. There-
fore, by adjusting the QD characteristics and device parameters, local tunnel-
ing of Cooper pairs into the same normal lead can be suppressed. This local
pair tunneling (LPT) can occur via two different channels. One possibility is,
that a cooper pair tunnels simultaneously to the same QD, which is suppressed
by Coulomb interaction ∼ EC ; a parameter adjustable by the size of the QD.
The second possibility is that the Cooper pair is broken and one electron tun-
nels after the other through the same QD [54]. This only works when the
second electron is excited into a quasi-particle state with energy larger than
∆, while the other electron can tunnel through QD [54]. This sequential tun-
neling process is therefore suppressed by the quasiparticle excitation energy
∼ 1/∆. A quantitative description can be found in Refs. [54, 82].
It has also been theoretically proposed that a higher order CPS process "quar-
tets" can occur in junctions made of three superconducting electrodes [127,
128]. First signatures of this non-local CPS have been recently reported in
InAs NW multi-terminal superconducting junctions [129].
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3 Fabrication

In the following chapter we will discuss the methods which are used to fabricate
nano-scale samples, which are investigated within this thesis. First, we present
the fabrication process of standard nanowire devices, using InAs nanowires.
Within the scope of this thesis, we mainly fabricated InAs nanowire devices
with either one superconducting and one normal metal contact, or two super-
conducting contacts. In both case, the fabrication steps are very similar. We
further discuss an established etch process of InAs nanowires with an epixal
shell, made of aluminum. To conclude, we present a brief introduction to the
basics of cryogenic measurement techniques.

3.1. Device fabrication

The most important tool which is needed to fabricate nano-scale devices, is
electron beam lithography (EBL). We used this technique to fabricate devices
consisting of a single InAs NW with two electrical contacts. In order to place
the contacts with the desired size at the correct location, we have to perform
a sequence of EBL steps, as described in the following section.

3.1.1. Standard nanowire devices
Wafer cleaning

All of the discussed devices were fabricated on a highly p-doped silicon wafer.
The silicon wafer has a 400 nm thick capping layer made of silicon oxide (SiO2)
which is used as the gate oxide for the global backgate. After cleaving the
wafer into smaller pieces (2.5 cm×2.5 cm), the surface of the wafer is cleaned
by immersing it in acetone and placing it in a ultrasonic bath for 10 min. Then,
it is rinsed in isopropanol (IPA) and exposed to an UV/ozone plasma for 5
minutes.

Base structure fabrication

Standard EBL is used to define a marker grid, which is required to localize
the nanowires with high precision and to align the following EBL steps. For
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3. Fabrication

a b Au catalyst

Figure 3.1. Base structure layout. a Optical microscope image of base
structure with markers and NWs. b SEM image of area marked with red in
a. Inset shows SEM image of single NW with an Au catalyst particle on the
end.

a more detailed description on the EBL process we refer to other PhD theses
of our group [54, 55, 76]. The markers are arranged in a square pattern,
have a spacing of 20 µm (see Fig. 3.1), and cover an area of 400 µm×400 µm.
Around this pattern, the “outer” contact leads and bond pads are predefined
as well (see Fig. 3.2 b). A single base structure, including bond pads, has a
size of 2.5 mm×2.5 mm, meaning one can define about ∼50 base structures
on one piece of wafer. Subsequently, a titanium/gold layer (5 nm/45 nm) is
evaporated onto the wafer.

NW deposition and read out

In order to transfer the NWs from the growth wafer to one of the base struc-
tures, we used the tip of a cleanroom tissue. By touching the growth chip with
the of the tip of the tissue, several NWs break off from their growth origin and
become attached to the tissue. By dabbing the tissue tip on the the marker
area of the base structure, the NWs detach and stay on the sample surface.
A coarse localization of the transferred NWs can be done with the optical mi-
croscope (Fig. 3.1 a). Afterwards, the precise NW localization was extracted
by using a SEM image. It is important to know on which end of the NW the
Au-particle is located (see inset of Fig. 3.1 b). This information is required,
because the location of the in-situ grown QD is known with respect to the
gold catalyst (as discussed in detail in chapter 4). For designing the contacts,
we read out the NW position with respect to the small markers of the grid by
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3.1. Device fabrication

using a Python based program written by O. Faist.

Contacting InAs nanowires

In order to make electrical contact to NWs, one has to remove the 2 nm to
3 nm thick native oxide, which is formed, after the NWs have been taken out
of the growth chamber. In principal, there are several ways to remove the na-
tive oxide prior to metallization. One can either use a wet etch method called
“sulphur passivation”, which consists of a NH4Sx solution [130]. Another pos-
sibility is to use an in-situ argon plasma, which mechanically removes the oxide
with a directed bombardment of argon ions. Both methods are well established
in our group and details can be found in the appendix in section A.4.
The contacting method has a strong influence on the electrical behavior of
the NWs. Using the sulphur passivation, the contact area1 is doped by the
remaining sulphur atoms, such that the Fermi energy is shifted further up in
the conduction band. This helps to achieve good ohmic contacts, whenever
we use InAs NWs grown in WZ crystal phase, having lower electron densities,
compared to ZB. In this case, using the argon plasma seems to deplete the
NW contact area, making it more difficult to get good contacts.
On the other hand, when we use InAs NWs which are mainly grown in the ZB
crystal phase, sulphur passivation is counterproductive. As InAs in ZB has an
intrinsically higher electron concentration, the Fermi energy is shifted so far
up in the conduction band (when using sulphur passivation) that it is difficult
to deplete the NWs afterwards. Therefore, all measurements involving NWs
with crystal phase defined QDs are contacted by using argon plasma. Recently
we also began to work on a wet etch process based on HCl for NWs consisting
of ZB crystal phase, following the recipe of Ref. [25], but did not explore this
in great detail yet.
As a normal metal contact, we mostly used a bilayer consisting of titanium/gold
(5 nm/80 nm). The final evaporation step is the superconducting contact,
which is a titanium/aluminum (5 nm/90 nm) bilayer. Further details of the
etch recipes and parameters of the evaporation process can be found in the
Appendix (see section A.4).

Chip carrier

As a last fabrication step, the sample wafer is cleaved into smaller pieces
(4 mm×4 mm), in order to fit in the chip-carrier. Then the sample is glued into
the chip-carrier with silver paste to ensure electrical contact to the substrate,
which we are using as a backgate [54, 55]. The contact pads of the sample are
then connected to the chip-carrier via standard wire bonding by using a gold

1and maybe also parts of the NW, caused by NH4Sx creeping along the NW below the
resist etch mask
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5 mm
0.5 mm

a b c

500 nm

Figure 3.2. Device in a chip carrier. a Scanning electron micrograph of
NW device with evaporated titanium/gold (yellow) contacts. b Bonded base
structure with leads to devices. c Chip which is glued into the chip carrier by
silver paste and bonded with gold wires.The backgate is connected via silver
paste to one of the contact pads.

wire (see Fig. 3.2 c). The chip-carrier has 20 contact pads (due to the fact
that the cryostats are wired with a total number of 20 electrical lines), which
limits the number of possible devices to a maximum of nine (for the simplest
possible two terminal devices), since one line is used for the backgate. After
bonding, one has to take special care of electrostatic discharge (ESD) which
can easily blow up devices. Therefore, it is recommended to ground everything
properly and wear ESD safe shoes. Once the sample is ready to be measured
it is either stored in a vacuum chamber to avoid oxidization or directly built
into a cryogenic measurement set-up which is discussed in the last part of this
chapter.

3.1.2. Epitaxial Al shell devices

The following subsection will discuss the established etch process of an alu-
minum shell, which is grown epitaxially on InAs nanowires. The recipe is
based on information we received from Dr. M.T. Deng from the University of
Copenhagen. The etch process was adapted and established in our group to-
gether with R. Haller. The NWs discussed below have been grown by Prof. P.
Krogstrup and thankfully provided by Prof. J. Nygård (University of Copen-
hagen.)
In contrast to standard NW devices, where the electrical contact is evaporated
after removing the natural oxide of the NW (as discussed in the previous sec-
tion), it has been demonstrated a few years ago that it is possible to grow the
contact material epitaxially within the growth vacuum chamber, before the
NW surface becomes oxidized [26]. This is of special interest when the contact
material is a superconductor, as in this case aluminum.
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Figure 3.3. InAs NW with epitaxial aluminum shell. a Transmission
electron micrograph of interface between InAs NW and epitaxially grown,
provided by P. Krogstrup. b Schematic of NW with full Al shell (top) and
half shell (bottom). Scanning electron micrograph of selectively etched NW
devices with Al full shell c and half shell d. SEM images done by R. Haller.

Fig. 3.3 a shows the transmission electron micrograph of an epitaxially grown
aluminum shell on an InAs NW, which shows no defects or perturbations at
the interface. Fig. 3.3 b shows schematic cross sections of two different types
of aluminum shell NWs: in the top panel, the aluminum covers all facets of the
NW and is grown ∼30 nm thick (which we will refer to as “full shell”), whereas
in the bottom panel the aluminum covers only three facets and is grown with
a thickness of 5 nm to 7 nm (referred to as “half shell”).
In order to fabricate functional devices, based in this type of NWs, one needs
to selectively remove the aluminum shell, which can be challenging, especially
for small trenches, due to possible over etching. In the following we will now
describe the established fabrication process of InAs NWs with an epitaxial
aluminum shell.
After standard NW deposition and location read out, the etch mask needs to
be defined by EBL resist. Since it is a wet etch process, it is crucial to have a
good adhesion between the etch mask and the NW to prevent the etchant from
creeping along the NW, resulting in an uncontrolled over-etching. Therefore,
we use the commercially available MMA based resist called EL6 from the com-
pany MicroResist, which adheres better than the PMMA etch mask. Further-
more, the resist is less viscous as PMMA, which may lead to better coverage
of the NW. Since a certain resist thickness is required, the resist is spun twice
and baked on a hotplate at 180◦. This results in an etch mask thickness of
≈250 nm. By performing standard EBL writing, square shaped etch windows
or lines (for small trenches) are opened in the etch mask. After development,
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remaining resist residuals are removed by an oxygen plasma. Before the etch
process itself is performed, it is important to prepare two additional beakers
with DI water, next to the beaker with the etchant. As an etchant the TMAH
based optical developer MF321 is used. This etchant has several advantages
in comparison to the otherwise widely used “Transine aluminum etch type D”:
it can be used at room temperature, has an etch time of around of roughly
one minute and degrades on a longer timescale. During the etch process, the
etchant is constantly stirred with a magnetic stirrer to provide fresh etchant
to the etch-window. For the half shell NWs, we immerse the sample with a
metal tweezer vertically in the etchant for 75 s (full shell: 85 s). Subsequently,
the sample is immersed in the first water beaker for 20 s and heavily shook to
stop the etch process as fast as possible. Next, the sample is immersed in the
second water beaker for another 30 s to dilute the remaining etchant.
As a final step, the etch mask is removed by hot acetone. Fig. 3.3 c shows
a SEM image after a full shell NW has been etched. A gap of about 100 nm
has been opened successfully, without over-etching the Al shell. Fig. 3.3 d
presents a SEM micrograph of a half shell NW, which has been etched as well.
For further details on the process see appendix A.5.
To demonstrate the success of this fabrication process, we present a measure-
ment of a device with one contact made of a normal metal (titanium/gold) and
the other one formed by the epitaxial aluminum full shell (shown in Fig. 3.4 a).
In Fig. 3.4 b we present the measured normalized (by the normal state dif-
ferential conductance GN ) G with respect to the bias voltage VSD, revealing
a hard superconducting energy gap of ∆ ≈ 170 µeV. We further observe a
conductance suppression of about ∼ 100 inside the superconducting energy
gap, similar to Ref. [131].
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Figure 3.4. Hard gap in InAs NW with epitaxial aluminum shell. a
Device consisting of InAs NW with Al shell and a bare InAs NW segment of
about 300 nm. b Normalized G/GN with respect to source drain bias voltage
VSD.
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3.2. Cryogenic measurement set-up

3.2. Cryogenic measurement set-up

To be able to measure quantum mechanical effects, not only the temperature
of the crystal lattice, but also the electronic temperature mus be sufficiently
low. Here, we give a short description of the cryogenic measurement setup,
which was used within this thesis and refer to other PhD thesis of our group
for more detailed information [54, 76, 132] .
As liquid 4He has a temperature of 4.2 K, we can cool down the sample to this
temperature very fast. When we start pumping on the surface of the liquid
helium, we remove latent heat because of the evaporation and the tempera-
ture of the liquid gets reduced to ≈1.4 K. We can reach lower temperatures,
by using so called “dilution refrigerators”. The working principle is based on a
mixture of 3He and 4He. At a temperature of about ∼870 mK this mixture is
separated in one phase which is rich of 3He and another one which is 3He-poor
[132, 133]. The cooling power is generated by the dilution of the 3He from a
3He-rich to the 3He-poor phase. Due to this, we can reach a base temperature
of ≈20 mK.
Once the chip-carrier (Fig. 3.2 c) is mounted to the holder of the cryogenic in-
sert, it is electrically connected to a so called “ break-out box” [54, 132]. From
here on, we can use BNC cables to connect all required measurement electron-
ics. All measurement lines inside the insert of the cryostat are thermalised
at the coldest accessible place of the insert. In order to protect the sample
from radiation of high frequencies a few stages with filters are mounted [132].
The brake-out box has a commercially available filter-stage with a cut-off fre-
quency of around 1 MHz. In addition, we employ tape-worm filters, which
are manufactured in-house, having a cut-off frequency of 10 MHz [54, 76, 132].
Furthermore, the devices are protected from thermal radiation by a Faraday
cage. Typically, we reach electronic temperatures below 100 mK in our setups.
In order to measure differential conductance/resistance, we used low-frequency
lock-in techniques (lock-in: Standford SR830). In Fig. 3.5 we shows an illus-
tration of a typical measurement setup. Within the detection setup, we used
low-noise and low-drift I/V-converters and voltage amplifiers, manufactured
by the in-house electronics workshop. As a DC bias source we use the com-
mercially available Yokogawa YK7651. The AC voltage was superimposed on
the DC voltage by using a standard transformer. The DC gate voltages are
applied via a high-resolution DAC, which is also home built by the electron-
ics workshop. We controlled all measurement units by home made routines
written in Igor Pro on the computer. For a more detailed description of the
measurement setups we refer to Refs. [76, 132]
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Figure 3.5. Schematics of a cryogenic measurement set-up: Schematic
depiction of standard measurement. The measurement configuration shows a
Gmeasurement with applied V bias at cryogenic temperatures [76, 132]. Image
adapted from [76, 132].
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4 Crystal phase defined quantum dots

In the following chapter we discuss the material platform which gives the basis
for most experiments performed in this thesis: InAs nanowires with quantum
dots defined via controlled tunnel barriers, based on the alternation of crystal
phases [59]. Here, the QD is formed in between two wurtzite (WZ) segments,
in the otherwise zinc-blende (ZB) nanowire. First, we present basic properties
of both crystal phases and afterwards show how we extract the dimensions and
position of the QD using sophisticated SEM techniques. The last part focuses
on the characterization measurements of the specific nanowires we were using.
One of the main goals of this thesis was to perform spectroscopy measurements
using a well defined QD, in order to probe the DOS in the NW lead segment.
Until now, most spectroscopy studies in such systems have been performed
by either using QDs formed by electrostatic gates [30, 40–43] or by the source
drain contacts themselves [39]. However, both approaches have disadvantages,
creating difficulties in the interpretation of the spectroscopic results: barriers
defined by electrostatic gates are not sharp, the QDs are sensitive to elec-
trostatic fluctuations, the precise location and size is unknown and they are
highly non reproducible (especially in the case of source-drain defined QDs).
Therefore, the origin of the measured DOS is unclear.
To resolve these issues, we use QDs defined by integrated tunnel barriers. Due
to recent advances in synthesis, it is possible to grow such QDs by a controlled
switching between the WZ and the ZB crystal phase of InAs [58]. In this sys-
tem, the WZ segments define a potential step for the electrons, as this crystal
phase induces a positive conduction band offset in the bandstructure, resulting
in the formation of a QD in between the WZ barriers. Most importantly, the
QDs dimensions and location are defined with atomic precision. Furthermore,
we can precisely locate its position, making this the ideal platform to perform
tunneling spectroscopy in NWs.
The NWs presented here, are grown and developed by the group of K. Dick-
Thelander, S. Lehmann, M. Nilsson and C. Thelander (University of Lund),
who thankfully provided the NWs. We therefore follow the explanation of Ref.
[59] in the following part of this chapter.
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4. Crystal phase defined quantum dots

4.1. Zincblende and wurtzite crystal phase of InAs nanowires

The two important crystal phases here are ZB and WZ, which are described
by the sequence of the atomically layered stacks. The WZ crystal phase is a
hexagonal close-packed (hcp) structure (see Fig. 4.1 a top) whereas ZB is a
cubic close-packed (ccp) structure (see Fig. 4.1 a bottom). In the WZ case,
the bilayers follow a ABAB order, whereas ZB follows a ABCABC order (see
Fig. 4.1 b). This so called homostructure is grown by metal-organic vapour
phase epitaxy (MOVPE) [59]. The details of the growth process can be found
in Ref. [59, 134]. First, the growth substrate with the gold catalyst parti-
cles was annealed (∼ 550 ◦C) such as contaminations are desorbed from the
surface and to melt the Au particles. For the nanowires within this thesis
Au aerosol particles of ∼40 nm diameter as seed particles were used. The Au
seed particles had a variation in diameter of about 2 nm to 3 nm and were
randomly distributed on the growth substrate. During the annealing process
an over-pressure of H2 and Arsine (AsH3, the As precursor) was maintained.
Afterwards, the temperature was kept at constant temperature of ∼460 ◦C for
the entire process. Next, the indium - precursor trimethylindium (TMIn) was
introduced. When coming into contact with the substrate, the vapor-phase
precursors decomposed into In and As, diffused and dissolved in the gold cat-
alyst. When the gold particle is supersaturated by In and As, local nucleation
begins to form at the interface of the substrate and the Au particle. The epi-
taxial growth of the NW continues, until no new material is supplied. The
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Figure 4.1. Wurtzite and zinc-blende crystal structure. a, Schematic
of wurtzite and zincblende crystal phase. b Schematic of a stack of WZ and
ZB. The respective sequences ABAB (wurtzite) and ABCABC (zinclende) are
marked. c TEM micrograph of a QD (ZB segment in the middle) in nanowires.
Freely adapted from [59, 81, 135]; TEM image provided by S.Lehmann [136].
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4.2. Crystal phase defined quantum dots

crystal phase can be controlled in various ways. Typically, NWs with smaller
diameters tend to grow in the WZ phase, while NWs with larger diameter tend
to grow in ZB phase [137]. One can modulate the crystal phase by tuning the
temperature [138] or incorporate dopants [135]. In this thesis, we used NWs
where the crystal phase was controlled by changing the ratio of the In/As
precursors, whereas ZB is grown with a higher In/As precursor ratio. Due to
technical advances of this method, one can controllably switch between ZB and
WZ with atomically precision (see Fig. 4.1 c on the right) [58, 138]. Fig. 4.1 c
shows transmission electron micrographs (TEM) of a NW with a built-in QD
defined by WZ (green) tunnel barriers and a ZB (orange) segment in between,
in which the QD will be formed.

4.2. Crystal phase defined quantum dots

This section will discuss, how a QD is formed inside an InAs NW, when con-
trolling the crystal phase along the growth direction. Segments of WZ crys-
tal phase, in a otherwise ZB InAs nanowire, act as hard wall potentials to
electrons, as the bandstructure of both phases is aligned with an offset (posi-
tive) of 126 meV in the conduction band, according to theoretical calculations
[139, 140]. Growing two segments of WZ crystal phase, with a ZB segment in
between, consequently results in the formation of a QD in the ZB segment. In
Fig. 4.2 a we present an illustration of a QD formed within two WZ barriers.
We assume that the WZ segments create a square shaped, hard wall potential
at the edge of the conduction band (see Fig. 4.2 b). Experimentally, first mea-
surements have been reported in Ref. [23], whereas a barrier of potential of at
least ∼95 meV [25] has been found, similar to the value obtained by thermionic

WZ WZ

QD

a

ECB

≈100meV EF

b

ZB ZB ZB

InAs

Figure 4.2. Schematic of crystal phase defined QD in NW. a
Schematic of a InAs NW with a built-in QD defined by WZ tunnel barri-
ers (light grey) and ZB leads (dark grey). b Illustration of the energy diagram
of the conduction band edge ECB relative to the Fermi energy EF [59, 136].
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4. Crystal phase defined quantum dots

emission measurements ∼135 meV [141].

SEM imaging of crystal phase defined quantum dots

As already mentioned, InAs NWs with crystal phase defined QDs have been
used, which were grown by randomly distributed Au aerosol particles with a
variation in diameter (2 nm to 3 nm). The difference in diameter not only di-
rectly affects the resulting diameter of the NW, but also the total length of the
grown segments, due to a slower growth rate. This results in shorter segments
for larger seed particles, which also depends on the crystal phase [137]. In
addition, the random distribution of the particles on the substrate also affects
the segment length. Areas where Au particles are located less dense on the
surface, are effectively exposed to a higher concentration of precursor material,
leading to an increase in growth rate. As a result, the size of the WZ barrier,
the ZB QD and also the loaction of the QD varies within one growth batch.
However, it is required to know the location and also the dimension of the

QD, in order to fabricate well defined devices. Unfortunately, it is not possible
to detect the location of the WZ tunnel barriers (i.e. the QD) with standard
standard scanning electron microscope (SEM) techniques, as only the crys-
tallographic structure varies, not the material. However, it is still possible
to observe the change in crystal structure, by using “electron channeling con-
trast imaging” (ECCI), an SEM technique, which is used to detect defects
in crystalline materials [142, 143]. Here, we follow closely the approach of
Refs. [25, 59]. This method is based on the interaction of the electrons in-
cident from the beam of the SEM and the crystal lattice of the material. A
standing electron density wave is formed, after the electrons entered the sam-
ple. Depending on the relative orientation of the impinging electron beam and
the crystal lattice, the amount of backscattered electrons varies. An increase
of the amount of backscattered electrons is observed when the maxima of the

Au
ZB

WZ WZ twinned ZB100 nm

Figure 4.3. InAs NW with WZ tunnel barriers. ECCI SEM image
under an angle of 5◦. The ZB segment, defining the QD, is seen between two
WZ segments. SEM image taken with the help of E. Bieler (Nano Imaging
Lab, SNI).
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4.3. Characterization of crystal phase defined quantum dots in InAs
nanowires

electron-density wave match the position of the atomic-sites. This enables
us to distinguish between the the ZB and the WZ segments of the NWs, be-
cause they have different atomic orientations and will therefore give a different
contrast in the ECCI signal. Consequently, we can estimate the geometrical
dimension of the QD and also its location.
The drawback of this method is that it is very time consuming and is prefer-
able done after electrical measurements, because the NWs could be damaged
after being exposed with the electron beam for a long time. In our case, we
performed the measurements together with the help of E. Bieler from the Nano
Imaging Lab of the Swiss Nanoscience Institute. In Fig. 4.3 an SEM image
done by ECCI can be seen. One can clearly see the gold particle on top of the
NW as well as the WZ segments (bright) enclosing a ZB segment. In addition,
we observe several shorter variations in contrast within the long ZB segment,
towards the right of Fig. 4.3. We can attribute this, to rotational twinning of
the ZB crystal segments itself, which means the atomic layer is rotated by 60◦
around the growth direction [135].
By using this method, we can measure the thickness of the WZ barriers and
the size of the QD of individual nanowires. Within one growth batch the size
of the the QD varies from 20 nm to 25 nm and the thickness of the WZ bar-
riers 30 nm to 35 nm. Based on statistics of ECCI SEM images, we are also
able to give an estimation of the location of the QD, before device fabrication,
based on the diameter and total length of the NWs, within an error of ±50 nm.
We note, that it is possible to gain control on reproducibility of the desired
dimensions by using pre-defined arrays of seed particles [59].

4.3. Characterization of crystal phase defined quantum dots
in InAs nanowires

The next section will characterize the QDs which are mainly used in this
thesis. Before we can perform measurements, we need to fabricate functional
devices using standard electron beam lithography, described in chapter 3. All
measurements have been performed at a temperature of about ∼20 mK.

Dependence of the life-time broadening on the gate voltage

In Fig. 4.4 we present the measured dI/dV with respect to VBG at zero source
drain voltage VSD. We observe regular CB resonances over a large backgate
voltage range VBG ≈ −1 V to 7 V. Already here, we can notice that not only
the height, but especially the FWHM of the CB resonances increases with in-
creasing gate voltage. In order to quantify this, we fit each resonance assuming
a Lorentzian shape in the limit of kT � Γ (see equation 2.4 in Sec. 2.1.1) and
extract the resonance broadening Γ. In Fig. 4.5 we plot the extracted res-
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Figure 4.4. Coulomb resonances of crystal phase defined QD. Differ-
ential conductance dI/dV with respect to the applied backgate voltage VBG
[136]. c© 2019 by SpringerNature.

onance broadening Γ with respect to the applied VBG. We observe a clear
systematic increase of the average broadening Γ with increasing VBG, with a
strong variation between neighbouring charge states, possibly due to orbital
effects. At low gate voltages (VBG ≈ 0 V), the resonance broadening is ≈
50 µeV and increases up to ≈ 1 meV at large gate voltages (VBG ≈ 7 V). This
is consistent with a exponential increase with a linear reduction of the barrier
height with respect to EF .

Following the analysis of Ref. [144], we can qualitatively fit our data by
assuming the simple case of an electron between two square shaped tunnel
barriers (see inset of Fig. 4.5). We assume the barriers to be sharp defined,
the bias voltage to be small and the same conduction band edge ECB align-
ment in all nanowire segments. Therefore the remaining free parameters in our
model are: the barrier thickness a, the distance between the barriers s, the bar-
rier height V0, the pinch-off voltage (ECB = 0) and the gate lever arm. Based
on the previously described SEM techniques (section 4.2), we can estimate the
WZ barrier thickness to be a = 30 nm and the distance between the barriers
s = 20 nm (i.e. the QD). We further know the height of the barriers V0 ≈
100 meV from previous measurements [25]. Based on our experience from pre-
vious nanowire measurements, we know that the pinch-off voltage can strongly
differ for individual nanowire devices. This might be, due to differences in the
fabrication process (like the contacting method) or individual charging effects
during the cool down of the samples.
The tunnel probability through one of the barriers is well described by the
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4.3. Characterization of crystal phase defined quantum dots in InAs
nanowires

transmission coefficient TL/R for left/right barrier respectively [74]:

TL/R(E) =
(

1 + V 2
0 sinh2(ka)

4E(V0 − E)

)−1

; k =
√

2m∗(V0 − E)/~2. (4.1)

We can then describe the lifetime broadening Γ by:

Γ = ~vF
2s (TL + TR), (4.2)

where vF /2s is the attempt frequency, in this semi-classical model, and vF
the Fermi velocity. Using this expression, allows us to fit the extracted data
(red line in Fig. 4.5). Here, the bottom of the conduction band edge ECB
(pinch - off voltage) is VP = −9 V, which is unknown for this specific device.
Furthermore, the lever arm, converting energy to the respective gate voltage
is set to 0.5%, which is 10 times smaller than what we extracted from the QD
measurements (≈ 5%). One possible reason for the large discrepancy between
the experimental and the model lever arm, could be the fact that the extracted
lever arm is the one of the QD, which is not necessarily the same for the leads.
However, this is qualitatively in agreement with the lead segments being much
longer, compared to the quantum dot. In the model, we further assumed a
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Figure 4.5. Backgate dependence of QD broadening. Logarithmic plot
of QD resonance width Γ as a function of VBG (green circles). Resulting fit
with square shaped potential barriers. Inset on the right shows schematic of
considered model, consisting of two square shaped tunnel barriers, illustrating
the conduction band off-set due to the WZ segments in the ZB NW. Inset on
upper left shows the Fermi velocity vF as a function of gate voltage VBG.
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4. Crystal phase defined quantum dots

constant density of states in the leads of DN = 1, which might not be the
case in the experiment. In addition, the Fermi velocity vF varies from vF =
0.8× 106 m/s to 1.1× 106 m/s, as the inset shows.
We further note, that our data spans only one order of magnitude, which is
not ideal for an exponentially dependent fit.
However, we conclude that we can qualitatively fit our data very well, by using
a very simple model. This allows us to give an estimate on the resulting QD,
based on the growth size of the WZ and ZB segments, which is not possible for
gate-defined QDs. A more detailed study of broadening mechanisms of tunnel
barrier defined QDs can be found in Ref. [144].

Coulomb blockade diamonds
In Fig. 4.6 we present CB diamond measurements1: dI/dV is measured with
respect to the bias voltage VSD as well as backgate voltage VBG. We observe
a very regular Coulomb blockade pattern from which we can extract the ad-
dition energy Eadd ≈ 10 meV and charging energy EC ≈ 7 meV. The energy
level spacing is estimated to be ∼ 1 meV to 3 meV. Within the presented gate
range, the resonance broadening of the CB resonances is estimated to be ≈
50 µeV. Outside of the Coulomb blockade region, we observe positive conduc-
tance lines perpendicular to the CB diamond edges, which we attribute to
excited states of the QD (one excited state is indicated with a white arrow).
As described in section 2.1.2, transport is still sequential in this regime, but
takes place with the ground or excited state of the QD2.
In addition, we observe positive and negative conductance lines outside the CB
diamonds. These resonances result from tunnel coupling fluctuations between
the QD states and the one-dimensional subband states in the semiconducting
NW lead segments between the QD and the metallic contacts. When tuning
the backgate voltage VBG the coupling between those states and the QD states
varies, resulting in an increase or decrease of conductance. Similar signatures
have already been observed in such QD systems before [59].
The important conclusion from this measurement is, that the crystal phase
defined QDs are electrically very well defined and behave as expected. We can
describe the detected dependence of the life-time broadening with respect to
the applied gate voltage with a very simple model. This enables us to predict
the QD, based on its growth size. Furthermore, we can access a wide range of
coupling strengths, as Γ can be tuned from ∼50 µeV up to a few meV. This is
especially interesting, when working with aluminum as a superconducting elec-
trode for example, as the superconducting energy gap is ∆Al,bulk ≈ 220 µeV.
In addition, we detect a large energy level spacing of δE ≈ 1 meV to 3 meV

1of a similar device of the same nanowire growth batch.
2For a detailed study of the excited state spectrum of crystal phase defined QDs, we refer
to Ref. [59].
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Figure 4.6. Coulomb blockade diamonds of crystal phase defined
QD. Differential conductance dI/dV (G), with respect to the voltages VSD
and VBG at a temperature of T = 20 mK. Addition energy Eadd, charging
energy EC and excited state (white arrow) as indicated.

and charging energies of EC ≈ 7 meV. This means, the QD levels are well
separated from each other and can be very sharp, compared to the sample to
be probed. These characteristics allows us to use crystal phase defined QD as
a proper tunnel spectrometer for the DOS in the adjacent NW lead segments.
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5 Spectroscopy of the superconducting
proximity effect in InAs nanowires using
built-in quantum dots 1

In the following chapter, we introduce a new material platform that allows
us to perform ideal tunnel spectroscopy, by using a tunnel barrier defined
(“integrated”) quantum dot in an InAs nanowire. This allows us, to probe
the superconducting proximity region of a nanowire segment close to the su-
perconducting contact. The QD is formed with two tunnel barriers, defined
by alternating the crystal phases, as described earlier in section (section 4.1)
[23, 58]. As discussed earlier, the QD is both electrically and spatially well
defined, which allows us ultimately to investigate the induced superconduct-
ing proximity gap inside the NW. Furthermore, this system enables us to
predict the coupling strength, based on a similar analysis as outlined in Ref.
[144]. Here, we use such artificial QDs to study the evolution of the prox-
imity induced superconductivity in a controlled and systematic manner. We
demonstrate this type of spectroscopy using two different transport regimes of
the QD: the cotunneling regime and the resonant tunneling regime. In the co-
tunneling regime, we can picture the quantum dot as one single barrier, while
in the resonant tunneling regime, the QD is essentially an energy filter. The
results of both measurement regimes enable us to provide an intuitive descrip-
tion of the formation of the induced superconducting gap in a bare InAs NW
lead segment. In addition, we discuss results based on numerical calculations,
which support our interpretation quantitatively. The numerical calculations
were done in collaboration with Denis Chevallier.

5.1. Sample and characterization

Here, a NWmade of InAs is used, in which the QD is already integrated during
the NW growth process [58] by alternating its crystal phases. The segments
made of WZ crystal phase (∼30 nm thickness) create tunnel barriers in the
ZB nanowire as their bandstructure aligns with a conduction band offset of ∼
100 meV [25, 141]. This results in the formation of a well defined quantum dot

1Parts of this chapter are published similarly in Ref. [136]. All figures and text are reused
with permission by c© 2019 SpringerNature.
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using built-in quantum dots
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Figure 5.1. Crystal phase engineered QD in an S - QD - N sample.
a SEM picture of examined sample, made of a superconductor S (blue) - InAs
NW - normal metal N (yellow) (scale bar: 100 nm). The QD is created by two
built in tunnel barriers (green), made of WZ crystal phase. We illustrate the
measurement geometry as a scheme. A TEM image of an ZB/WZ interface
within the InAs NW is shown as an inset. b Illustration of an NW S - N device
structure with a schematic of the energy diagram of the conduction band ECB
relative to the Fermi energy EF [136]. c© 2019 by SpringerNature.

in the ZB segment (∼20 nm to 30 nm) [25]. A SEM picture of the investigated
sample is presented in Fig. 5.1a. In addition, we show a TEM image of the
sharp interface between both crystal phases. We use standard E-beam lithog-
raphy, in order to evaporate one contact made of aluminum and the second
one made of gold. By measuring the differential conductance G = dI/dV with
respect to VBG, we detect very regular CB resonances in the normal state,
meaning we applied a magnetic field of B = 50 mT in order to quench su-
perconductivity (see Fig. 4.4 and Fig. 4.5 in section 4.3). Here, we detect a
broadening of the resonances when going from low to high backgate voltages.
The observed exponential behaviour is in agreement with the lowering of the
effective tunnel barrier when the bandstructure is tuned to lower energies as
a function of the Fermi energy (see schematic in Fig. 5.1 b) [25]. For further
investigation of this effect, see Ref. [144].
For the investigated sample, the location of the QD is about L ≈ 350 nm to
the superconducting contact. This leaves a bare InAs NW segment with this
length between the quantum dot and the superconductor. In the following,
we will call this segment the “lead segment” (LS) of the NW (see Fig. 5.1) .
One has to realize, that this gives a fundamentally new experimental situa-
tion: we are convinced, that the quantum dot is not connected directly to the
superconducting reservoir, which is likely the situation in previously studied
systems [39, 97, 117]). This situation allows us to investigate the NW LS. We
note, that the backgate voltage VBG changes the electrochemical potential of
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Figure 5.2. Energy diagram of S - LS - QD - N system. Schematic
illustration of energy diagrams of the investigated system, for two different
transport regimes: cotunneling regime a and resonant tunneling regime b.
The induced superconducting gap ∆* in the lead segment of the NW is shown
in red [136]. c© 2019 by SpringerNature.

the LS as well as the QD simultaneously. In the following, we will investigate
the G with respect to VSD between the superconductor and the normal metal.
In case, the electron tunnels from the QD to the SC directly, it is expected to
observe the superconducting bulk gap of aluminum ∆ ≈ 210 µeV [147], which
does not depend on the applied VBG. Assuming that the bias mainly drops
on the QD, we expect the measured G ∝ DOS in the LS. As a consequence,
we are convinced, that we are performing ideal tunneling spectroscopy on the
LS of the NW, using the quantum dot as a spectrometer (see Fig. 5.2).
Fig. 5.3 a-c presents CB diamond measurements of the device in the super-

conducting state for three different regimes of VBG. The characteristics of the
quantum dot are found to be: charging energy Ec ≈ 6 meV, level spacing ε ≈
1.5 meV to 2 meV, consistent with previous results of this platform. Already
on this scale, we detect a peculiar transition, as for large VBG & 3 V there
seems to be an induced gap around zero bias (c.f. Fig. 5.3 c), which is not
the case for low values of VBG (c.f. Fig. 5.3 a). In the intermediate regime,
shown in Fig. 5.3 b, it is not clear if we detect a superconducting gap, as the
measurement resolution is not good enough on this scale. However, at low gate
voltages (Fig. 5.3 a), we detect a regular sequence of CB diamonds, without
signatures of induced superconductivity.
In the following part, we will demonstrate that we can use the quantum dot
as a spectrometer in both regimes: the cotunneling regime, as well as in the
resonant tunneling regime. When we are in the cotunneling regime [148], the
number of charges on the quantum dot is fixed, as ∆* << Ec. For this regime,
we can picture the quantum dot as a single tunnel barrier. In the resonant
tunneling regime, the electrochemical potential of the QD is aligned with the
one of source and drain.
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using built-in quantum dots
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Figure 5.3. Crystal phase engineered QD in an S - QD - N device.
G with respect to VBG and VSD in the superconducting state. We show a
zoom-in of the respective resonance in the insets. Diamond measurements in
the low gate voltage regime a and intermediate regime b , showing regular
diamonds. c CB diamonds at higher backgate voltages revealing an energy
gap around zero bias [136]. c© 2019 by SpringerNature.

5.2. Proximity gap in cotunneling regime

We will now focus on the investigation of the cotunneling regime. Here, we
interpret the SC - LS structure as an S-N junction with weak coupling to the
quantum dot. The data of the spectrum is shown in Fig. 5.4 a. We can now
characterize four quantities: the observed induced gap ∆*, the broadening
(FWHM) of the peaks at energy ∆*, the conductance GN in the normal state,
which is measured at a bias |VSD| > ∆*/e and GS the conductance at VSD = 0.
In addition, we quantify the suppression of the conductance at low bias using
a suppression factor S = GS/GN , as it is not completely suppressed, i.e. the
gap which we observe is “soft”.
In Figs. 5.4 a-c we show the measured G with respect to VBG and VSD for
three different backgate regimes. The cross sections of several different values
of VBG are depicted as blue lines within Figs. 5.4 a-c.
For high gate voltages (VBG ≈ 7 V, c.f. Fig. 5.4 a) a clear proximity induced
superconducting gap∆* is observed around VBG ≈ 0. We are able to detect
this gap to a gate voltage of about VBG ≈ 2.6 V (shown in Fig. 5.4 b).
In Fig. 5.5 a we plot a selection of cross sections which are normalised to GN
for several different values of VBG. Every cross section shows a conductance
suppression of G at around zero bias. The induced superconducting energy
stays constant for this gate range and is found to be ∆* ≈ 150 µeV. Further-
more, we can extract the broadening of the peaks at energies ≈ ∆*, as well as
the suppression factor S from this plot. In Fig. 5.5 b, we plot the extracted
values of these characteristic quantities as a function of the applied backgate
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Figure 5.4. Proximity gap detected in cotunneling spectroscopy.
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and c low VBG. The blue lines represent cross sections, which were taken in
the blockade regime of the quantum dot [136]. c© 2019 by SpringerNature.

voltage VBG. We find that both, the FWHM as well as the suppression factor
S, are almost constant in this gate regime. We estimate the FWHM to be
≈ 65 µeV ± 10 µeV and the suppression factor S ≈ 0.5± 0.1.
For a perfect superconducting contact in the weak coupling regime, the sup-
pression factor S is supposed to be zero in the limit of a tunnel barrier. How-
ever, higher values are very often detected in the case of induced supercon-
ducting gaps, which we refer to “soft gaps” [3, 149, 150].
In the gate regime, where VBG < 2.6 V (Fig. 5.4 b) the detected cotunneling
signal is very weak, which is why we are unable to do the same quantitative
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VBG [136]. c© 2019 by SpringerNature.

analysis. Despite this fact, we are still able to detect broad peaks down to
a backgate voltage of VBG ≈ 1.8 V. Once, the applied backgate voltage is
VBG < 1.8 V the detected G is too small to detect a signature of the induced
gap, within the measurement resolution of our setup. When gate voltages
are applied smaller than VBG ≈ 0.2 V (Fig. 5.4 c), we can not resolve any
signatures within the blockaded region of the quantum dot any more. To
summarize: within the regimes, where we are able to extract an induced gap
in the cotunneling regime, the gap does not depend on the applied backgate
voltage VBG.

5.3. Proximity gap in sequential tunneling regime

In the next part of this chapter, we will examine the regime, where the level of
the QD is on resonance, i.e. the sequential tunneling regime. Here, we are able
to investigate a bigger gate range, as compared to the cotunneling regime. The
left figure (“Exp.”) of each panel in Fig. 5.6 a-d shows zoom-in measurements
CB resonances at different VBG voltages. The central panel shows a calculated
map which is discussed below, whereas the panels to the right present cross
sections at gate voltages VBG as indicated in the left and central panels.
For an ideal SC - QD - N device we expect the CB diamond pattern to be
strongly modified compared to the standard N - QD - N configuration, as
shown in Fig. 5.6 e. First, we expect the CB diamond tips to be shifted apart
by 2∆*/e in bias (energy). Secondly, we also expect the diamond tips to be
also shifted in gate voltage by a value of ∆VBG = 2∆*/βe. Here, β is the gate
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lever arm of the quantum dot. For further discussion, see section 2.3.1 as well
as Refs. [97, 151].
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By analysing the characteristic quantities of the quantum dot in the normal
state (compare Fig.4.5), we find that the coupling strength Γ is increased for
gate voltages VBG > 2.5 V. In the regime, where Γ is high, at VBG ≈ 6.6 V
for example, the CB diamond is presented in Fig. 5.6 a. Here, the resonance
of the CB diamond is very broad. However, we can detect a supression of
the G around VSD ≈ 0. Furthermore, we observe an induced superconducting
proximity gap of ∆* ≈ 150 µeV, which is consistent with what we found earlier
in the cotunneling regime (Fig. 5.4).
In Fig. 5.6 b we present a CB resonance, where the coupling strength Γ is
reduced, compared to the resonance of Fig. 5.6 a, for a backgate value of
VBG ≈ 2.1 V. Here, we observe an additional resonance, which we will explain
below. In addition, we see a shift of the diamond tips of ±∆∗/e in bias and
by ∆VBG in gate voltage, consistent with what we expected (see Fig. 5.6 e).
Both yields a value of the induced gap of about ∆∗ ∼ 150 µeV. As already
mentioned, we detect one additional resonance which crosses the gap (indicated
with white arrows). This additional resonance corresponds to the situation,
when the Fermi level of the two reservoirs is aligned with the level of the
quantum dot. Consequently, we interpret this as tunneling via the non-zero
DOS which remains around VBG ≈ 0, due to the softness of the gap (see
position I in Fig. 5.6 e).
For a gate value of VBG ≈ 0.2 V we observe, that the suppression of G is
reduced, presented in Fig. 5.6 c. We further notice, that the tip of the CB
diamond is only slightly separated and also only slightly shifted in gate. As
already mentioned, we are not able to resolve any signal for this gate value in
the cotunneling regime, as seen in Fig. 5.4.
For gate values of VBG ≈ 80 mV (Fig. 5.6 d), it is impossible to detect a
modification of the CB resonance, caused by the superconductor. We rather
observe the well known CB resonance pattern, which we found in the normal
state of the device.
In order to examine the characteristic quantities using the presented data of
the sequential tunneling regime, we can use a standard resonant tunneling
model based on the assumpion of an S - QD - N structure. We can then
calculate the expected current to be [95, 97]:

I =
∫ ∞
−∞

dEDN (E)·DS(E+eVSD)·TQD(E, VBG, VSD)·[fN (E)−fS(E+eVSD)].

(5.1)
In this equation, DN (E) is the DOS of the normal metal, while
TQD(E, VBG, VSD) is the Lorentzian transmission function of the quantum
dot, which accounts for the resonant tunneling of electrons trough the QD.
Furthermore, fS/N are the Fermi functions of the normal and the supercon-
ducting electrodes respectively. In order to take into account the observed
“soft gap”, we can use the phenomenological Dynes parameter δ [152], which
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then gives us the following description of the DOS of the proximitized LS:

DS =
∣∣∣Re
(
E − iδ/

√
(E − iδ)2 −∆*2

)∣∣∣. (5.2)

We can now model the G maps presented in Figs. 5.6a-d (“model”), by ad-
justing the amplitude of the induced superconducting proximity gap ∆∗, the
coupling strength of the quantum dot Γ as well as the Dynes parameter δ.
With a coupling strength Γ = 150 µeV, we can reproduce the resonance of
Fig. 5.6 a very well. Here, we get ∆* to be ∆* ≈ 165 µeV, and δ = 0.4 · ∆*

(δ =65 µeV). This results in a suppression factor of S ≈ 0.5, which is consis-
tent with the value extracted in the cotunneling regime.
In order to model the resonance, which is shown in Fig. 5.6 b we find Γ = 40 µeV,
∆* ≈ 145 µeV and δ = 0.4 ·∆*(δ ≈ 60 µeV). This means, that the parameters
of the model are almost the same, as the ones found in the cotunneling regime
at larger VBG. Furthermore, the resulting cross section of the model is also in
good agreement with the cross section of the experimental data. In addition,
we see, that the enhanced conductance at the edge of the superconducting
gap, as well as the negative differential conductance are also reproduced by
the theoretical model. We note: in the sequential tunneling regime, we are
able detect and characteristics of the superconducting proximity gap, down to
a value of 0.2 V, which was impossible in the cotunneling regime.
In the following part we will focus on the CB resonance presented in Fig. 5.6 c
(VBG ≈ 200 mV). Here, the coupling strength is almost the same as the one
of the resonance in Fig. 5.6 b (Γ = 60 µeV), and δ = 0.5 · ∆*(δ ≈ 40 µeV).
In contrast, the proximity induced superconducting energy gap is reduced to
∆* ≈ 85 µeV, which is smaller than what we extracted at higher VBG. The
cross sections confirm, that the model is able to reproduce the experimental
data with good agreement.
When trying to reproduce the CB resonance, which is shown in Fig. 5.6 d,
at a backgate value of about VBG ≈ 80 mV, we find an upper limit for ∆* of
10 µeV and a coupling strength of about Γ = 50 µeV.
We find, that the presented experimental data is very well modelled with the
presented parameters and effectively corresponds to a regular N - QD - N de-
vice. We further note, that the resonance in the data at larger bias voltage
outside of the CB region, is due to an excited state, which is not taken into
account in our model.
We can summarise the presented data of the resonant tunneling regime in the
following manner, i.e. Fig. 5.6: we detect a transition from a regime where
the LS acts as a superconducting lead (at high VBG) with a constant gap of
∆* ≈ 165 µeV to 150 µeV down to a regime where the induced gap is smaller
∆* ≈ 85 µeV, to a regime where superconductivity has no effect at all any
more. We therefore conclude, that our data demonstrates a clear evolution
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of the induced proximity gap ∆* of the LS with respect to the applied gate
voltage VBG.

5.4. Discussion

In Fig. 5.7 a we present a summary of the experimental results of both dis-
cussed transport regimes. Here, we plot the extracted magnitude of the prox-
imity induced gap ∆* in the NW LS with respect to the applied backgate
voltage VBG. We clearly observe a relatively abrupt transition from a resolved
induced gap for VBG > 0 to a fully suppressed gap at VBG < 0.
As discussed, we are able to fit the detected features with a broadened BCS
DOS qualitatively. However, might not be the adequate description, since
there is only a small number of states in the quasi 1D nanowire segment. As-
suming only a few modes in the NW LS, we can give a clear picture of the
process causing the observed transition of Fig. 5.7 a. Every electron with an
energy smaller than ∆* will be Andreev reflected at the superconductor, which
then gives rise ABSs.

Qualitative understanding

We can understand the detected transition of ∆* qualitatively as a transition
of the ABSs created in the LS, caused by the change in gate voltage. We
essentially turn the system from the short junction limit into the long junc-
tion limit, as described in section 2.3.3). We can distinguish both limits, by
comparing the actual length of the junction, L, to the critical length-scale
Lc = ~vF /∆̃, which is essentially the coherence length [153]. In this equation,
vF is the Fermi velocity in the NW LS, ~ the Planck constant and ∆̃ the
proximity induced superconducting gap in the NW below the superconduct-
ing contact, as shown schematically in the inset of Fig. 5.7 a. Considering the
short junction limit, meaning L << Lc, the Andreev bound state energy in the
LS is determined by the acquired phase, because of Andreev reflection at the
interface of the superconductor and the LS. Here, we have to assume a sudden
change of ∆̃. For this situation, the Andreev bound states are “pushed” to
the gap edge, meaning EABS ∼= ∆̃. Consequently, this results in the formation
of a superconducting proximity gap LS which is of the magnitude of ∆̃, i.e.
∆∗ ∼ ∆̃ [104].
When moving on to the long junction limit of the junction, L >> Lc, EABS is
now dominated by the change in phase in the LS. This scales with
kf = m* · vF / ~ ∝ vF , where m* is the effective mass of the elec-
trons. Here, EABS can have values which are smaller than ∆* and therefore
start to fill the induced superconducting gap [153].
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Consequently, we realize that we can also modify the EABS by tuning vF as
well as the electron density in the LS by changing the backgate voltage VBG.
In our data, we see that vor very high gate voltages, the Fermi energy EF is far
up in the conduction band and thus the Fermi velocity vF is also large. This
results in an effectively long Lc, which drives the LS into the short junction
limit, as L < Lc.
In the other limit, meaning the Fermi energy EF is tuned to the bottom of the
conduction, the Fermi velocity vF is lowered and therefore also Lc is smaller.
This is the situation for lower values of the backgate voltage VBG and brings
the LS into the long junction limit, meaning L > Lc, and the energy of the An-
dreev bound states EABS < ∆̃. Consequently, the induced gap that appears
∆* is reduced, because of the ABSs which move to smaller energies inside the
gap. Note, that the NW segment below the superconducting electrode is not
tuned by the backgate voltage, as it is screened by the superconductor.

Numerical calculations

In order to support this interpretation, we examine a numerical model, that
combines the Green‘s function method with a tight binding model. We ac-
count for the properties of the superconductor as a self energy dressing the
bare Green‘s function in a NW section below the superconductor, in which
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the gap ∆̃ is induced, which depends on the coupling strength to the super-
conductor. In the supplementary of Ref. [136], we present more details of the
performed calculation, which was done by Denis Chevallier. This segment is
directly connected to a bare InAs NW segment (of length L = 350 nm) which
models the LS, as presented in the inset of Fig. 5.7 a. We now look at the
local density of states (LDOS) for a distance of L = 350 nm as a function of
the applied gate voltage VBG. The results are shown in Fig. 5.7 b for a few
selected values of VBG, indicated by different colours. Similar to the measured
data, the magnitude of the induced gap ∆* is extracted from the model, as
the distance between the peaks of the DOS. As described before, the energy
of the Andeev bound states, as well as the number of bound states, is a conse-
quence of the physical length of the LS. We plot the extracted values of ∆* of
the numerical calculation with respect to the applied backgate voltage VBG in
Fig. 5.7 a (red solid line). Similar to the measured data, we see a transition of
the extracted induced gap size, which corresponds to the transition from the
short to the long junction limit. Within the model, the induced gap ∆* goes
to zero in case the Fermi energy EF is tuned to the bottom of the conduction
band (VBG ≈− 0.2 V. This is right before the NW LS is completely depleted
and the Fermi velocity is vF → 0. In the appendix, in Fig. B.1 a, we plot the
behaviour of a single Andreev bound state with respect to the applied gate
voltage, for a fixed length L. In addition, we present cross sections for different
lengths L for a fix value of the backgate voltage VBG (see Fig. B.1 b).
As already mentioned, we do observe a “soft” gap in our spectroscopy measure-
ments, meaning the suppression of G around zero bias is lower than in NWs
with an epitaxial aluminium shell [26, 131]. The origin of this softness is not
clear and is also not expected from our model. As a reference, we measured
evaporated bulk Al in a standard large area metallic S - I - S tunnel junc-
tion configuration which shows a “hard gap” in a similar measurement setup
(see Fig. B.3 in the appendix). In addition, we tried to reproduce the soft-
ness of the proximity gap, by adding random spatial potential fluctuations at
the nanowire - superconductor interface [154, 155] in the presented numerical
model, which also could not account for the detected soft gap either (presented
in Fig. B.2 in the appendix).
Within the framework of Andreev bound states, the broadening of the Andreev
bound states in the LS depends on their lifetime, which results in a softening of
the measured induced gap. This broadening can originate from different mech-
anisms: tunneling to the quantum dot (which should have a similar tunability
as the life time of the quantum dot), single particle tunneling to the nanowire
segment below the superconductor (due to the inverse proximity effect caused
by the gold nanoparticle at the top of the nanowire), as well as quasiparticle
excitations, due to absorption of microwave radiation which might differ in
semiconducting nanowire samples in comparison to metallic junctions.
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Conclusion

In conclusion, our work demonstrates a systematic study of the supercon-
ducting proximity gap in a bare InAs nanowire segment, originating from the
close by superconducting electrode. The basis of our measurements is con-
trolled tunnel spectroscopy performed by an integrated quantum dot, which
is formed by built-in tunnel barriers. We detect a transition, which is tunable
by the gate voltage, from a fully induced superconducting gap, at high gate
voltages to a reduced gap size and ultimately a complete gap suppression at
low gate voltages. Our measured data is in good agreement with the transition
from the short to the long junction limit in an superconductor - normal con-
figuration, where Andreev bound states have been formed at energies smaller
than the induced gap. We observe this transition, in case the Fermi energy
is aligned with the conduction band edge, where the Fermi velocity is conse-
quently tending to zero. We furthermore present a new platform, nanowires
with integrated tunnel barriers, which are in our case formed by an alterna-
tion of crystal phases, which can be extremely useful to perform unambigu-
ous transport spectroscopy in superconductor-semiconductor hybrid devices in
general. Therefore, we have presented a novel spectroscopy tool, well suited to
investigate superconducting bound states in semiconducting nanowires, which
can be used to battle fundamental limitations, which are found in the latest
studies of Majorana bound states [33, 34].
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6 Spectroscopy of superconducting sub-gap
states in InAs nanowires1

In the following chapter we use InAs nanowires (NWs) in which the quantum
dot (QD) is predefined by crystal phase engineering (see chapter 4). In this
case the QD size is ≈ 20 nm (made of zinc-blende crystal phase) whereas the
tunnel barriers, defined by wurtzite segments are ≈ 30 nm. As already dis-
cussed in chapter 5, the usage of a built-in QD provides a new experimental
situation: instead of being directly coupled to metallic reservoirs, the QD is
coupled to a bare nanowire segment, forming nanowire leads (see Fig. 6.1 (a)).
In chapter 5, we used this setup to investigate the gate dependence of the prox-
imity induced gap in a NW with one superconducting contact and a metallic
one [136]. In contrast to the previous chapter, we now use the integrated QD
as a spectrometer to resolve individual sub-gap states in the adjacent NW
lead segment. Complex features appear spontaneously in the proximitized
nanowire at low magnetic field, involving the Kondo effect competing with
the Coulomb interactions and the superconducting proximity effect to form
superconducting sub-gap states.

6.1. Device and characterization

The nanowires are contacted by one superconducting contact made of evap-
orated titanium/aluminium (Fig. 6.1. (a) and (b)) and one contact made of
titanium/gold. The spacing between the metallic contacts is L = 400 nm and
the total size of the barrier defined QD is roughly 70 nm, such that the QD is
connected to the reservoirs by bare nanowire segments. The contacts are de-
signed such that the spacing between the superconductor and the first tunnel
barrier ∼250 nm, yielding a NW segment between the gold contact and the QD
much smaller than the one between the aluminium and the QD. The chem-
ical potential of the whole sample (the QD and nanowire segments) can be
tuned using an electrostatic backgate (VBG). An additional side gate (VSG)
is placed in the vicinity of the wire to allow a finer tuning. The sample is
cooled down using a dilution fridge with a base temperature of 50 mK and its

1Parts of this chapter are accepted for publication in a similar form in Physical Review
Letters and are available as a pre-print in in Ref. [156]. All figures and text are reused
with permission by c© 2020 American Physical Society.
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Figure 6.1. Device and characterization. (a) Scanning electron micro-
scope image of the sample, and (b) associated schematics. A nanowire, in
which two tunnel barriers (TB) have been grown in situ, is contacted with
one SC and one N electrode. The electrostatic potential can be tuned using a
backgate VBG and a side gate VSG. (c) Differential conductance with respect
to VBG and VSD. Inside of the CB diamonds, one can see a gate dependent
conductance background which looks independent from the barrier defined
QD (indicated by white arrows). Note the logarithmic scale of the colour-code
[156]. c© 2020 by American Physical Society.

differential conductance dI/dVSD is measured using a standard low frequency
lock-in technique.
The Coulomb blockade (CB) diamond measurement of the sample is presented
in Fig. 6.1. (b). We observe clearly-defined diamonds over a large gate voltage
range that correspond to the QD with a charging energy of to Ec ≈ 5 meV
and inter-level spacing δE ≈ 1 meV. Inside of the CB region, the conductance
is not homogeneous: broad conductance lines extend over three consecutive
diamonds. These conductance lines are not excited states of the QD, which
would give rise as well to parallel lines outside of the diamonds, like the excited
states that can be seen very clearly between VBG = −6.2 and VBG = −5.9V
for negative VSD. These features are independent from the QD, since they
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can be tuned independently by a side gate (see appendix C) or undergo charge
rearrangements that do not affect the QD (Fig. 6.1. (c)). Note that the lever
arm of the side gate is very small, such that we cannot use it to efficiently
tune one chemical potential independently of the others. In the following, we
set the side gate to VSG = 0.

6.2. Spectroscopy of superconducting sub-gap states

To understand the features inside the Coulomb blockade region, we focus now
on small bias voltages of the order of the superconducting gap of aluminium
(∆ ≈ 200 µeV). This is what is presented in Fig. 6.2, in both normal and
superconducting states.
Inside the Coulomb diamonds of the integrated QD, the current is carried by
second order cotunneling processes (Sec. 2.1.2) such that the transmission of
the QD is strongly reduced [85]. Consequently, the bias voltage drops mainly
over the QD, which can thus be considered as a tunnel barrier [30]. As a con-
sequence, G ∝ DOS in the NW segment. In that respect, the barrier-defined
QD can be seen as a probe of the NW segment, which is why we refer to
this QD as the “probing QD”. In the normal state, around zero bias, most
of the broad conductance lines remain at zero bias over a gate range around
25 mV. This is a characteristic feature of the Kondo effect as observed in a QD
occupied by an odd number of electrons [87, 157]. The associated Coulomb
diamonds are smeared out, asymmetric in VSD and have a small signal (see
dashed blue lines on Fig. 6.2. (a)). The charging energy is evaluated to be
≈ 0.5 meV, indicating a large QD (typically ten times larger that the probing
QD, i.e ∼ 500 nm). These characteristics suggest that a large QD forms in
a nanowire segment, which is strongly coupled to one metallic reservoir (the
closer one) and very weakly coupled to the other reservoir, which is separated
by the tunnel barriers from the probing QD.
The nanowire lead QD is coupled in series with the probing QD, as the re-
sistance of the tunnel barriers are very high, such that the voltage bias drops
mainly on the probing QD. This is why we measure a combination of the DOS
of the QD in the NW lead and the Coulomb diamonds of the probing QD.
The superconducting state data, presented on Fig. 6.2. (b) supports this pic-
ture. The cotunnelling regime reveals the opening of a gap with peaks at
∆∗ =150 µeV (inset of Fig. 6.2. (b)), consistent with the value of supercon-
ducting gaps induced by evaporated aluminium (with a bulk gap ∆ ≈ 220 µeV)
in semi-conducting nanowires in literature [3, 131, 150, 158]. This gap is the
one induced by the superconducting proximity effect in the nanowire segment
located between the probing QD and the superconducting contact. Note that
the current is not fully suppressed at zero bias, suggesting a soft gap, simi-
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lar to previous experiments using evaporated aluminium to contact the InAs
nanowire [13, 131, 136]. The fact that the features observed in the normal
states are strongly modified in the superconducting state also proves that they
originate from the NW segment located between the superconducting contact
and the probing QD.
Each region (A-D) of Fig. 6.2. (a) gives rise to characteristic sub-gap states
consistent with bound-states due to a localized impurity coupled to a supercon-
ducting reservoir (see Fig. 6.2. (b)). In general, we can categorize two different
types of sub-gap states in such systems, namely Andreev Bound states (ABS)
and Yu - Shiba - Rusinov (YSR) states. The ABSs are formed by the transfer
of Cooper pairs via Andreev reflection at interfaces [90, 117, 123, 159] (see sec-
tion 2.3.4). In contrast, the YSR states are formed by the coupling between
a magnetic impurity and a quasiparticle in the superconductor [124, 150, 160,
161]. Both processes can be described as a competition between the Kondo
screening of the impurity by the reservoir that favours a singlet state and the
Coulomb interaction that favours a doublet state [114, 115, 162–164].
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6.2. Spectroscopy of superconducting sub-gap states

Detailed measurements of the sub-gap states in this system are presented in
the bottom panel of Fig. 6.2. Due to instabilities in gate voltage, we corrected
the data presented in this figure. We note, that no gate jumps occurred in the
regions which are of relevance for the interpretation of the data.
In the following we study four sub-gap states in more detail labelled as A, B,
C and D in Fig. 6.2. (b). In the normal state (Fig. 6.2. (a)), we detect Kondo
resonances for A, C and D. In contrast, we can not detect any conductance
features for region B in the normal state.
In region A (Fig. 6.2, bottom left), we observe sub-gap states at energies below
the superconducting gap, which do not cross zero energy. In the cross section
we further see, that there is no resonance peak remaining at the gap edge.
Similar to this region, the sub-gap states in region B we detect one resonance
at the gap edge E1 = ±∆∗ and a second resonance at energies E2 which de-
taches from the gap edge but does not cross zero bias. In addition, the cross
section reveals an additional resonance with low amplitude at zero bias.
The sub-gap states of region C show qualitatively different characteristics, as
they cross at zero energy and form a loop structure with an additional peak
along zero bias. We further do not detect resonance peaks along the gap edge
in the cross section.
In region D, the sub-gap states detach from the gap edge and form a peak at
zero bias. The cross section further reveals no resonance peak along the gap
edge. The detected characteristics of the sub-gap resonances in regions A, C
and D are consistent with the ABS picture [90, 117, 123, 159] . Even though
the sub-gap resonance in region B forms a similar half-loop as region A, it is
not consistent with the ABS framework, as there is no conductance feature in
the normal state.
In order to quantify the observed sub-gap states, we perform magnetic field
dependent measurements in the following section. In general, we can char-
acterize the type of sub-gap states by comparing the relevant energy scales,
namely the Kondo temperature TK (see Eq. 2.5) and the superconducting gap
∆.
For kBTK � ∆ the system is in a doublet state. In a QD system, for an odd
number of occupation, the system undergoes a singlet to doublet transition,
which manifests in a crossing of the bound-states at zero.
When kBTK � ∆, the system goes from a BCS-type singlet to a Kondo-type
singlet. When the number of electrons is odd, the bound-states separate from
the gap but do not cross zero, since there is no singlet-doublet transition.
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6.3. Magnetic field dependence

For low magnetic fields, regions A, C, D show the expected magnetic field
dependence, as shown in Fig. 6.3. These resonances scale with the energy gap
∆ and vanish at the critical magnetic field BC (see waterfall plots in Fig. 6.3).
This characteristic behaviour is also found for the resonance at energy E1 in
region B. However, the resonance which forms the loop in region B at E2 does
not depend on the applied magnetic field but stays at constant energies for
B < BC .
For higher magnetic fields, we detect the broadening of the zero bias peak
(Kondo peak) in region A (Fig. 6.3. A , which broadens up to B = 0.6 T and
vanishes for even higher values. From the width of the peak, we can estimate
kBTK ≈ 150 µeV. We attribute this to the very weak signal, associated with a
high Kondo temperature (and thus a very broad peak), such that the splitting
is not visible. The sub-gap state in region A reveals bound states which hold
very similar characteristics to those expected from a spin 1/2 state coupled to
a superconducting reservoir in the limit TK � ∆ described above.
According to the magnetic field dependence of the conductance, presented
on the panel C of Fig. 6.3, the Kondo peak is already split at B = 50 mT.
This means, kBTK < 25 µeV < ∆ with an extracted g-factor of g ≈ 13.5± 2,
resulting from the Zeeman splitting of the peak at higher magnetic fields. This
supports our interpretation that we are in the limit of TK � ∆. We note that
we do not expect the observed (small) zero bias peak at zero field. However,
we speculate that it is a weak Kondo peak that forms due to the presence of
quasiparticles in the soft gap [124].
Region D presents the intermediate regime kBTK ≈ ∆, resulting in the crossing
of the bound-states over the entire Kondo ridge. By investigating the FWHM
of the peak in the normal state, we estimate kBTK ≈ 110 µeV (Fig. 6.3. D).
This order of magnitude is confirmed by the magnetic field evolution of the
Kondo peak: it splits for B > Bc ≈ 0.3T ≈ kBTK/(gµB) [165].
In magnetic field, the Kondo peak is expected to split, resulting in a Zeeman
shift of

∆E = 2×ms|g|µBBZ , (6.1)
with BZ the Zeeman field, ms the spin number and |g| the absolute value of
the landé factor (Sec. 2.1.2).
From this we can conclude, that the bound-states observed in region C and
D are consistent with a splitting of the Kondo peak a spin ms = 1/2 and a
g-factor |g| = 12 ± 2. The obtained value is also consistent with reported g-
factors in InAs NWs [89, 166]. We further note, that this is not the g-factor of
the built-in QD, but from the one in the nanowire lead, which is why its value
is close to |g| = 15, as found in bulk InAs or in large dots [167]. The sub-gap
states in regions C and D are therefore in good qualitative agreement with the
presence of a spin 1/2 state located in the NW lead segment (as presented on
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Fig. 6.4. (a)).
However, the magnetic field dependence of the sub-gap state in region B re-
veals a more complex situation. At higher magnetic field, several conductance
peaks appear. These peaks arise at voltage bias larger than the charging en-
ergy and are thus probably excited states involving two resonances, which are
shifted by the Zeeman field. We detect one resonance with an energy that is
almost constant with magnetic field, i.e. the slope is ∼ zero. A second reso-
nance occurs with the same slope as detected in regions C and D. In addition,
we find a resonance which has twice the slope. This suggests the presence of
two spin 1/2 energy levels, that form either a singlet (S = 0,ms = 0) or a
triplet state (S = 1,ms = 0,ms = ±1). Considering the value of the g-factor
measured above |g| ≈ 13 for the Kondo resonances, one of these peaks cor-
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Figure 6.3. Magnetic field dependence. Discrete sub-gap states with
respect to external B field for the four regions defined in Fig. 6.2. (b). The
magnetic field is applied out of plane. For each region, the left panel shows a
focus on small magnetic field, below the critical field of the aluminium contact
(Bc ≈ 35 mT), emphasizing the field evolution of the proximity induced gap
and of the bound-states. The right panels show the evolution of the conduc-
tance for larger B fields. The evolution of the peak positions is shown on the
very right [156]. c© 2020 by American Physical Society.
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6. Spectroscopy of superconducting sub-gap states in InAs nanowires

responds to ms = 0, which is constant as a function of magnetic field. The
triplet |ms = 1| occurs with twice the slope compared to the single spin 1/2
level (Fig. 6.3. B).
While most A, C, D of these sub-gap states can be at least qualitatively un-
derstood by the standard picture of ABS or YSR states, we found two (and
discuss one) type of resonances that does not follow these pictures. To at
least tentatively explain these states we propose an anomalous shell filling in
the (confined) lead segment with a s = 1 filling. These states might form su-
perconducting bound states when coupled to the superconductor, with rather
different dependence on an external magnetic field, an anomalously large Zee-
man shift (two times) and a normal state Kondo effect rather different from
the s = 1/2 states. Alternatively, the coupling of a s = 1/2 state to S might
also result in more than one superconducting bound state forming below ∆,
and a possibly rather different field dependence.

B0

E

Bc~kBTK/(gµB)

Kondo

Probing 
QD

NW lead
(long QD)

Figure 6.4. Schematic of considered system and qualitative magnetic
field dependence. The regions C and D of Fig. 6.3 are compatible with the
existence of a single impurity (blue arrow) in the nanowire lead. The magnetic
field evolution of the associated energy level shows a splitting of a Kondo peak,
once the Kondo singlet is broken (for BC > kBTK/gµB).

6.4. Conclusions

In this chapter, we performed tunnel spectroscopy on a nanowire lead segment,
in presence of a Kondo impurity. When superconducting correlations are in-
duced in this segment, the lead segment obtains sub-gap eigenstates, some of
them being consistent with Andreev bound states expected when a spin 1/2
state is coupled to a superconducting reservoir. Surprisingly, one (or two) of
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6.4. Conclusions

these sub-gap states exhibit a rather different characteristics, not consistent
with the standard ABS picture, possibly related to an unconventional shell
filling and corresponding sub-gap states.
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7 Hybridization of quantum dot and Andreev
bound states

In the following, chapter we discuss measurements based on nanowire devices
with two superconducting contacts. We present different transport regimes,
in which we can explore various physical effects, such as Josephson (super)
current and the hybridization of the quantum dot states with Andreev bound
states.

The devices presented in the following sections consist of InAs NWs with
a crystal-phase engineered quantum dot (QD) contacted by aluminum elec-
trodes. The devices exhibit a variety of transport regimes accessed by different
gate voltages. We begin with the regime at large positive gate voltages, where
the NW acts as a Josephson “weak link” between the two superconductors and
the QD has no significant influence on transport (Sec. 2.4.1). Afterwards, we
discuss briefly the opposite regime, where the Fermi energy in the NW lead
segment is aligned with the conduction band edge and transport is dominated
by the QD (Sec. 2.4.2). In the intermediate regime, transport is governed
by a combination of Andreev bound states and QD states, resulting in new
hybridised states.

Device and setup

In Fig. 7.1 a scanning electron micrograph of a representative device in a
superconductor (S1) - QD - superconductor (S2) configuration is shown. The
QD in the InAs NW grown in ZB crystal phase is defined by two tunnel barriers
grown in WZ crystal phase (thickness: ∼ 30 nm). The QD in the enclosed
ZB segment is electrically and spatially well defined with a size of ∼ 20 nm.
Similar to the experiment performed in chapter 5, this allows us to probe the
density of states (DOS) in the NW segments surrounding the QD. The total
length of the junction is ≈ 450 nm and the QD is located closer to one of the
superconducting contacts S1 (L1 ∼ 50 nm) than to the other superconducting
contact S2 (L2 ∼ 320 nm). The superconducting contacts consist of evaporated
titanium/aluminium (Ti/Al: 5 nm/80 nm) and the devices are measured in a
two terminal configuration, as shown in Fig. 7.1. A voltage VBG is applied to
the bottom of the wafer, therefore it acts as a global backgate tuning both the
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S1

QD

S2

 VBG

I
VSD

100nm

 VBG

L2L1

Figure 7.1. Device and setup. SEM image of a similar sample. The device
consists of an InAs NW, which inherits an integrated crystal phase defined QD
and two contacts made of aluminium S1/2. The distance between S1/2 and the
QD is indicated with L1/2, whereas L1 < L2.

QD and NW lead segments. The lead segments LS1 and LS2 are the portion
of the NW between the contact S1/2 and the QD. We stress again that LS2 is
significantly longer than LS1: L1 ∼ 50 nm < L2 ∼ 320 nm.

7.1. Supercurrent in open regime

First, we discuss the regime where the Fermi energy lies well in the conduction
band due to the large electron density at positive backgate voltages VBG ≈
11 V to 16 V. In this gate regime, we do not observe any influence of charging
effects of the QD and the system acts as a S - NW - S junction.

Normal state - Fabry-Pérot resonances
Fig. 7.2 a presents a dI/dV measurement with respect to VBG and the applied
voltage VSD in the normal state (applied external perpendicular magnetic field
Bext = 50 mT). A clear chessboard-like pattern due to Fabry-Pérot resonances
is observed. This demonstrates that the contacts are reasonably transparent
and transport is likely to be ballistic in this gate range. Furthermore, we can
distinguish between different Fabry-Pérot subpatterns, indicated as dashed
white lines in Fig. 7.2 a. Similar multiple interference patterns have been
observed in semiconducting nanowires and have been attributed to multiple
subbands with different Fermi velocities, resulting in multiple sets of oscilla-
tions [168, 169]. This raises the question: where is the Fabry-Pérot cavity
formed? By following the approach of Ref. [168], we estimate the length of the
cavitiy LFP = 2e/(Cg∆VFP ), where Cg is the gate capacity per unit length
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and ∆VFP the respective oscillation period in gate [170]. For this device, we
extract a cavity length of LFP1 ≈ 50 nm. This suggests that the cavity is
formed in LS1, which is of similar length L1 ≈ 50 nm. This leads to the con-
clusion that the cavity is not formed between the WZ barriers (i.e. the QD),
but in one of the lead segments LS1,2.

Superconducting state - supercurrent

We now turn our attention to the superconducting state of the electrodes for
the same gate region, presented in Fig. 7.2 b. Here, we observe an enhance-
ment of conductance for |VSD| < 320 µeV, which we associate with multiple
Andreev reflections (MAR) [171, 172]. We can observe MAR peaks up to
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Figure 7.2. Fabry-Pérot and supercurrent in strong coupling regime.
Differential conductance dI/dV with respect to VBG and VSD in the normal
a and superconducting b state showing Fabry-Pérot resonances. The green
line shows dI/dV with respect to the gate voltage for VSD = 0. c Detected R
(dV /dI) with respect to the applied back gate voltage VBG of the same gate
region as in a,b in the superconducting state. The blue line follows the critical
current IC . d ICRN product as a function of VBG.
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n=3, where VSD ∼ 2∆/en. The suppression of higher order MAR in differen-
tial conductance can be attributed to inelastic processes in the junction [171].
Furthermore, we can extract the magnitude of the superconducting gap to be
∆ ≈ 160 µeV, assuming that the induced gap of both aluminum contacts is
the same.
In Fig. 7.2 c, we present differential resistance dV /dI measurements with
respect to the current I and VBG. We observe a gate tunable supercurrent,
similar to what has been found before in semiconducting NWs [3], with a max-
imal critical current of IC ≈ 5 nA. The blue line corresponds to the transitions
from the the superconducting to the dissipative state, revealing oscillations as
function of VBG. Theoretically, one can expect the product of the critical
current and the normal state resistance ICRN in the short-junction limit to be
of magnitude π∆/e ≈ 470 µV [103]. However, in our measurements, we find
much smaller values of ICRN ≈ 5 µV to 25 µV (see Fig. 7.2 d), which has been
observed before and attributed to a switching caused by thermal activation
in Josephson junctions [3, 169, 173]. The oscillations of the RN IC product
with respect to VBG have been observed previously [174] and was attributed
to the influence of the electromagnetic environment, which has a large impact
for small supercurrents.
To summarize the measurement results of the open regime of this device, we
observe Fabry-Pérot resonances in the normal state and a gate dependent su-
percurrent in the superconducting state, despite the presence of the built-in
QD defined by two WZ barriers. This is likely due to the Fermi level lying
above the height of the tunnel barriers EF > 100 meV. The detected critical
current is small compared to the critical current measured in the same type of
NWs (IC ≈ 5 nA to 20 nA), in NW segments made of ZB, without WZ tunnel
barriers (see Fig.D.1 in appendix D). However, we find the ICRN product to
be of similar magnitude ICRN ≈ 8 µV to 16 µV in the ZB segment. In the
next section, we discuss measurements of the same device in the regime of low
electron density.

7.2. Single electron characteristics in weak coupling regime

In this section, we present characterization measurements in the weak coupling
regime Γ < ∆ (at low electron density) where transport is dominated by the
QD. This enables us to characterize the QD, which we use as an electronic
spectrometer in the next section.
For the remaining part of this chapter we consider the system in the config-
uration, which is schematically shown in Fig. 7.3 a. Here, ∆1/2 denotes the
bulk superconducting gap, ∆̃1/2 the induced superconducting gap in the NW
segment directly below the electrode and ∆∗1/2 the induced gap in the respec-
tive NW lead segments LS1/2. In Fig. 7.3 b we show the corresponding energy
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Figure 7.3. Schematic of system and energy diagram. a Schematic
depiction of NW (grey) with two superconducting electrodes S1/2 and barrier
(green) defined QD. The distance between the QD and the electrodes is L1/2,
dividing the NW in lead segment LS1 and LS2. b Illustration of the energy
diagram of the considered system, shown in a.

diagram for this type of system. We now turn to the gate region, where the
QD is weakly coupled to the electrodes, meaning Γ < ∆1/2. The measured
differential conductance as a function of VBG, which is now close to VBG ≈
0 V, is presented in Fig. 7.4 (in the superconducting state of the electrodes).
We find well defined CB diamonds, with a charging energy of EC ≈ 7 meV and
an energy level spacing of about δE≈ 0.5 meV to 2 meV. For the resonance
broadening Γ we extract Γ ≈ 50 µeV for this gate range in the normal state
(not shown). We note, that the two slopes (positive β+, negative β−) of the
CB resonances differ by a factor of three, suggesting a difference in the capac-
itive coupling to source and drain contacts. We detect a strong suppression of
conductance within the Coulomb blockade regions and no cotunneling lines.
In Fig. 7.4 b we present a detailed measurement of the resonance marked by
A in Fig. 7.4 a. We detect a shift of the Coulomb diamond tips in energy
e∆VSD, as well as in gate voltage ∆VBG. From both we can extract a shift in
energy of ≈ 150 µeV, consistent with the magnitude of one superconducting
contact, with a gap of ∆∗ ≈ 150 µeV (see chapter 5). This is contradictory
to the fact that both contacts are superconducting. In the standard S-QD-S
system, we expect a shift of the diamond tips in energy e∆VSD = ±2∆ and
no shift in gate voltage ∆VBG = 0, as discussed in section 2.4.
We can interpret our observations as follows: in this gate region, only the
shorter lead segment LS1 is fully proximitized by S1, whereas the longer seg-
ment LS2 is not proximitized. This is consistent with results obtained in N -
QD - S devices, where we detect a fully developed induced gap for large elec-
tron densities, whereas the gap vanished for very low electron densities. We
explained this by a gate tunable transition from one limit to the other limit of
the junction, as discussed in chapter 5. Similar to chapter 5, we interpret this
as LS2 is in the long junction limit for such low electron densities, whereas LS2
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Figure 7.4. CB diamonds in weak coupling regime. a CB diamonds
in superconducting state (Bext = 0), with charging energy EC ≈ 7 meV and
energy level spacing δE ≈ 0.5 meV to 2 meV. The CB resonance broadening is
Γ ≈ 50 µeV. b Detailed measurement of CB resonance labeled A in a.

is still in the short junction limit, which is reasonable for L1 < L2. This is why
we observe only the induced gap ∆∗1 originating from one superconducting
contact S1 in LS1, while LS2 behaves essentially as in the normal state.
Considering the results of the N- QD - S devices, we can further explain the
additional resonance between the main CB resonances, crossing the induced
gap (indicated by white arrow). Here, the Fermi level is aligned with both
electrodes and the quantum dot level. Consequently, we can explain this by a
remaining finite DOS around zero bias, which means that the induced gap is
soft [43] (see also Fig. 5.6 in chapter 5). However, we can not provide proof of
this interpretation, because we did not measure this resonance with sufficient
resolution in the normal state. It is unlikely that the detected characteristics
is due to an excited state, as δE ≈ 0.5 meV to 2 meV which is larger than the
observed difference of 150 µeV.
We conclude, that the system in this gate regime appears to be N-QD-S, pos-
sibly due to one NW segment (LS2) being close to depletion.

7.3. Intermediate coupling regime

The following section will present the gate regime for which the coupling
strength Γ of the QD is similar to ∆: Γ ∼ ∆1/2, resulting in effects aris-
ing from both competing mechanisms, but no Josephson effect.
In Fig. 7.5 a,b we plot the measured G with respect to VSD and VBG (in the
range of ≈ 0.1 V to 0.6 V). We observe CB diamonds, and a general increase in
G with increasing VBG, which we mainly attribute to larger electron densities
in the NW lead segments. Especially outside of the CB diamonds we start
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to see many additional resonances, only partially related to excited states of
the QD. In addition, we detect resonances which have a different capacitive
coupling compared to the QD, as they exhibit different dependence on VBG.
Therefore, we attribute these additional resonances to states in the NW lead
segments LS1/2. We note that it is not possible to detect effects originating
from superconductivity on this large bias scale.
In Fig. 7.5 c,d we show measurements performed in the same gate range as
in Fig. 7.5 a,b, but for smaller VSD. In the following we use the integrated
QD as an electronic spectrometer in two different transport regimes: First,
we discuss the Coulomb blockade regime of these measurements, where the
charge is fixed and transport is mediated by cotunneling through the QD (see
section 2.1.2). Afterwards, we focus on the resonant tunneling regime.

7.3.1. Andreev bound state spectroscopy in cotunnelling regime

In the Coulomb blockade regime, we observe a few standard cotunnnel reso-
nances for energies |VSD| ≈ 0.5 mV to 0.8 mV originating from excited states of
the QD (marked with white arrows). At lower energies, we do not observe any
cotunneling resonances. By increasing VBG, we start to detect the induced
superconducting gaps of the lead segments LS1/2, see Fig. 7.5 d. The white
lines correspond to cross sections taken at the respective gate voltage inside
the Coulomb blockade region. We can clearly observe a peak-dip structure for
VSD ≈ ±320 µeV corresponding to cotunneling arising from the induced gaps
at eVSD = ∆∗1 + ∆∗2. Consequently, we can summarise, that we can not detect
the induced gaps in the cotunneling (in the Coulomb blockade regime) for
gate voltages VBG < 470 mV, i.e. for low electron densities. For higher gate
voltages, the cotunneling signal increases and the induced gaps become visible,
see cross sections in Fig. 7.5 d. In this gate region we detect the induced gaps
of both superconductors, meaning both LS1/2 are in the short junction limit,
holding the same value ∆∗1/2 = ∆∗ ≈ 160 µeV.
The peak-dip characteristic with negative differential conductance along the
gap edge is well known for tunneling transport between two superconducting
gap edges and originates from two peaks in the DOS [43, 123–125]. We can
therefore conclude that we observe both induced gaps being fully evolved in
the cotunneling regime starting from VBG ≈ 470 mV.
The observed evolution of the induced gap in the cotunneling regime as a func-
tion of electron density is also consistent with the results obtained in the N -
QD - S system (see chapter 5).
We start to see a strong influence of both induced superconducting gaps ∆∗1/2
at the charge degeneracy points of the CB diamonds. Therefore, we now focus
on the CB resonances labeled with A-F in Fig. 7.5 c,d.
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Figure 7.5. CB diamonds in intermediate regime. a,b Overview of
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d show cross sections for respective gate region in CB. The CB resonance
broadening for this gate region is Γ ≈ 150 µeV.

7.3.2. Andreev bound state spectroscopy in sequential tunneling
regime

Next, we turn our attention to detailed measurements of the charge degeneracy
points of the QD, where transport is mediated mainly by first order sequen-
tial tunneling. In Fig. 7.6 a-c, we present measurements of the resonances
labelled A-C in Fig. 7.5 c, whereas Fig. 7.6 e-g presents the resonances D-F
of Fig. 7.5 d. In contrast to the cotunneling regime, we already observe an
influence of both superconducting gaps from VBG ≈ 100 mV.
CB resonances A-C revealing asymmetric anti-crossings of a QD resonance
with a subgap resonance. or. The basic structure of the CB resonances in
Fig. 7.6 a-c are very similar. One CB resonance (with negative slope β−) does
not change direction and crosses almost linearly the superconducting gap. In
contrast, the resonance with positive slope β+ does not cross the energy gap,
bends away from its original direction, and aligns in horizontal direction at
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±2∆∗. In addition, this CB resonance is accompanied by NDC on the low-
bias side (see Fig. 7.6 d), in contrast to the resonance with negative slope β−.
We find the Coulomb diamond tips to be shifted similarly to the weak coupling
regime. This is unexpected, as it suggests a N - QD - S system. However, we
also observe several subgap states up to |2∆∗| (vanishing in the normal state,
not shown), suggesting a S - QD - S system.
For eVSD < |2∆∗|, we observe three different types of resonances: one, occurs
between |∆∗| and |2∆∗| (labeled by I) and another set of resonances at lower
energies, labeled by II and III, respectively.
For the resonance of type I we can extract a full width at half maximum
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7. Hybridization of quantum dot and Andreev bound states

(FWHM) of ≈ 30 µeV. It originates from the CB resonance with negative
slope at energies of eVSD = ±∆∗. This subgap resonance runs almost linearly
towards higher energies and bends away from the Coulomb resonance (with
slope β+) while approaching the gap edge at 2∆∗ horizontally. In addition,
we observe NDC between this subgap resonance and the CB resonance. For
the resonances A-C this anti-crossing appears to be, i.e. only with one CB
resonance (with β−).
The type II and III resonances both have a smaller amplitude than type I
(factor of 10 to 20 different) and a similar FWHM ≈ 30 µeV. In addition,
both occur at lower energies and run in parallel: type II originates where
the CB resonance (β−) crosses energies of eVSD ≈ ±50 µeV ≈ ±∆∗/3. It
runs linearly with VBG towards higher energies, bends the vanishes at around
|eVSD| ≈ 190 µeV > ∆∗ (< 2∆∗). The energetic spacing between this type of
resonance and type III is ≈ 50 µeV.
The type III resonance has the unique characteristic that it crosses the charge
degeneracy point at VSD = 0 (with the same slope as type II) and vanishes
at energies of |∆∗|.
We can summarize the measurements of Fig. 7.6 a-c (i.e. gate region of VBG ≈
200 mV to 400 mV) as follows: we observe shifted Coulomb diamond tips, sug-
gesting a N-QD-S system. However, we also observe three different types of
sub-gap states up to eVSD = ±2∆∗, suggesting a S - QD - S system. Remark-
ably, one type of sub-gap level strongly anti-crosses with the QD level.
For slightly higher gate voltages, the CB resonances show different charac-
teristics, shown in Fig. 7.6 e-g. First, the Coulomb tips are shifted less with
respect to each other and do not cross the superconducting gap, which is what
one would expect from a S - QD - S system. Secondly, the sub-gap states of
type I are now bending in both directions and anti-cross with both Coulomb
resonances at |2∆∗| in a more symmetric way. Furthermore, the type II res-
onances start to bend in both directions, especially in Fig. 7.6 f where they
form a cross like structure.
We interpret the type I sub-gap resonance as a Andreev bound state (ABS)
that formed within one lead segment. In contrast to previous samples, the
ABS seems to be much stronger coupled to the QD, such that it starts to form
a hybridized state in the energy window of ∆∗ < |eVSD| < 2∆∗. In order to
quantify the coupling strength we extract the energetic difference between the
QD resonance and the ABS. The peak to peak distance yields values of 60 µeV
to 150 µeV (see Fig. 7.7 a), which is almost the size of ∆∗1/2 ≈ 160 µeV of each
electrode. Within the detected range the anti-crossing strength stays roughly
constant at 70 µeV, which is consistent with only small change of Γ. To shed
more light on the complex subgap structure of these measurements, we follow
a resonant tunneling model approach to understand the origin of the observed
characteristics.
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7.3.3. Resonant tunneling model
To obtain a qualitative understanding of the presented data, we employ a
model based on resonant tunneling, in an S - QD - S configuration. Due to
the complexity of the observed features, we need to make several adjustments
to the previously used model (chapter 5). In general, the current I is given by
[95, 97]:

I =
∫ ∞
−∞

dEDS1(E + eVSD) ·DS2(E) · TQD(E, VBG, VSD)[
fS2(E)− fS1(E + eVSD)

]
, (7.1)

with DS1,2(E) the DOS in the respective lead segments LS1,2 and fS1/2 repre-
sent the Fermi distribution functions, while TQD(E, VBG, VSD) is the Lorentzian
transmission function accounting of the quantum dot. We artificially add sin-
gle particle levels ζ+/−

1/2 symmetrically at energies EA,1/2 (see. Fig. 7.7 b),
similar as Ref. [43]. By doing so, we mimic the excitations of an ABS in the
respective lead segment LS1/2. In the model, these levels are pinned to the
chemical potential of source and/or drain, i.e. in LS1 and/or LS2. We note,
that we do not include the theoretically expected gate dependence of the ABS
(Sec. 2.3.4). Furthermore, the levels ζ+/−

1/2 can couple to the QD level εQD (set
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7. Hybridization of quantum dot and Andreev bound states

to 0), which we model by a coupling strength ΓA,1/2 (c.f. Fig. 7.7 b), resulting
in the following matrix written in the basis (εQD, ζ+

1 , ζ
−
1 , ζ

+
2 , ζ

−
2 ):

M =


0 ΓA,1 ΓA,1 ΓA,2 ΓA,2

ΓA,1 −eV1 + EA,1 0 0 0
ΓA,1 0 −eV1 − EA,1 0 0
ΓA,2 0 0 −eV2 + EA,2 0
ΓA,2 0 0 0 −eV2 − EA,2


where EA,1/2 is the energy of the respective levels ζ+/−

1/2 and ΓA,1/2 is the
coupling to the QD level. The ABS energies EA,1/2 are pinned to the chemi-
cal potential V1/2 of the respective electrodes LS1/2. After diagonalising this
matrix, we obtain new eigenvalues for all energy levels. We assume the same
Lorentzian shape for all levels and combine them in the Lorentzian transmis-
sion function TQD (see equation 7.1). We stress that the resulting amplitude
is therefore not calculated correctly within this simple model.
In addition, we can model the soft edges of the peaks at the gap edge by
expressing the LS1/2 DOSs by using the phenomenological Dynes parameter
δ1/2 [152]:

DS1/2 =
∣∣∣Re
(
E − iδ1/2

)
/

√
(E − iδ1/2)2 −∆*2

1/2

∣∣∣. (7.2)

Softening the superconducting gap with the Dynes parameter does not al-
low to reproduce our experimental findings. In addition, we need to add a
constant background DOS DBG1/2 to both DS1,2(E), accounting for a finite
single particle DOS in the energy gap, while the edges of the gap remain sharp.
Increasing the Dynes parameter δ1/2 also adds a finite DOS inside the gap,
but smears out the BCS coherence peaks. Since we do not see any sign for a
change in magnitude of the gap, we keep ∆∗1/2 for both LS1/2 fixed at ∆∗1/2 =
160 µeV. Furthermore, as the QD resonance broadening stays constant for this
gate range, we set it to Γ = 20 µeV. The Dynes parameters δ1/2 are fixed to
δ1/2 = 10 µeV, as well as the constant DOS background DBG1/2 = 1 on both
sides with respect to the DOS in the normal state. By turning on the gate in-
dependent transmission of the single electron levels ζ+/−

1/2 , mimicking the ABS
transitions, at ±∆∗ as well as the coupling between the artificial ABS levels
and the QD level ΓA,1/2, we can reproduce most of the detected characteris-
tics.
Fig. 7.8 and Fig. 7.9 show a step by step construction in this toy model,
whereas the top row shows the resulting conductance maps, based on the en-
ergy diagrams presented in the respective lower row.
We begin with the simplest situation, a S - QD - S system with a soft gap

and in the absence of Andreev levels (see Fig. 7.8 c). The resulting conduc-
tance map yields a shift of the CB diamond tips in energy by ±2∆∗/e and

80

7



7.3. Intermediate coupling regime

in gate voltage by ∆VBG = 2∆∗/β−e, as shown in Fig. 7.8 a, as discussed in
section 2.3.1 [97]. In addition, we observe a resonance running through the
superconducting gap (indicated with white arrow), which is a result of the
softness of the gap. Here, the Fermi level of both reservoirs is aligned to the
QD resonance, resulting in this line for a remaining non-zero DOS at zero
bias. This is only observable for a soft gap and for a resonance broadening of
the QD significantly smaller than the superconducting gap Γ < ∆∗ (see also
chapter 5). We note that NDC is also present inside one CB resonance. This
part of the model accounts for the detected shift of the CB diamond tips and
the NDC in the measurements, but can not reproduce the observed sub-gap
resonances.
We therefore artificially add the single particle levels ζ

+/−
2 at energies

EA,2 =160 µeV = ∆∗ in LS2 with ΓA,2 = 0 (see Fig. 7.8 d). This result-
ing conductance map is shown in Fig. 7.8 b. We now observe resonances at
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energies of EA,2 and ∆∗+ EA,2 that are gate independent. Furthermore, the-
ses resonances cross the QD resonances unaffected. This is consistent with
our experiments, where the ABSs at the gap edge occur in the cotunneling
spectrum inside the CB region, which are weakened when moving away from
the charge degeneracy point. The characteristics which is missing, compared
to the resonances shown in Fig.7.6, are the anti crossing of the ABS (type I)
with the Coulomb resonance at ∆∗ + EA,2 as well as the subgap resonances
of type II, III at lower energies.
In order to account for the observed anti-crossing/hybridisation of the QD

level with the ABS, we introduce a finite coupling ΓA,2 between them
(Fig. 7.9 c). The resulting conductance map for a coupling strength of ΓA,2 =
60 µeV is shown in Fig. 7.9 a. We observe an asymmetric anti-crossing t of
the resonance at ∆∗+ EA,2 with the CB resonance (with positive slope), while
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the QD resonance with negative slope is unaffected and runs straight through
the gap. This resonance begins to bend towards energies of EA,2 (= ±∆∗),
where it stops when meeting the Coulomb resonance with negative slope. Fur-
thermore, we observe NDC within the anti-crossing of this level and the CB
resonance. In order to directly compare the results of this part of the toy
model with a representative CB resonance, we directly compare resonance D
of Fig. 7.6 with the result of Fig. 7.9 a in Fig. 7.10. Here, the anti-crossing of
the ABS at the gap edge (type I) with the QD level is reproduced well with
the model. We observe a resonance running at energies ±∆∗, which bends
towards lower energy, when approaching the charge degeneracy point where it
crosses zero. Qualitatively, this reproduces the observed characteristics of the
resonances of type III very well, but can not account for the observation of
resonance type II. We note that we can only create this feature with a con-
stant background density on both sides DBG1/2, accounting for the required
DOS inside the gap. Furthermore we stress that the asymmetry in the result
of the model is caused by the fact that the artificial ABS level ζ+/−

2 is added
only on one side (LS2).
In order to reproduce the resonances of Fig.7.6f at larger VBG and the charac-
teristics of the subgap resonances, we need to add an additional single electron
level mimicking a second ABS at energy EA,1(= EA,2) in LS1. We further cou-
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7. Hybridization of quantum dot and Andreev bound states

ple this level ζ+/−
1 with the same coupling strength ΓA,1 to the QD as ζ+/−

2 in
LS2 (ΓA,1/2 =60 µeV), as illustrated in Fig. 7.9 d. We now observe a cross-like
structure for the resonances running at EA,1 = EA,2 (=±∆∗)(Fig. 7.9 b), very
similar to the resonances shown in Fig. 7.6 f,g. We also note that for this con-
figuration we can’t reproduce the symmetric anti crossing with both Coulomb
resonance at ±2∆∗, that we observe in the measurement.
Our model reproduces most of the observed features by using a modified res-
onant tunneling model mimicking ABS transitions with single electron levels,
coupled to a single QD level. Adding artificial ABS levels in only one lead seg-
ment results qualitatively in the detected asymmetric anti-crossing, i.e. the
hybridisation of an ABS with the QD. What we are missing in our toy model
is the resonance of type II and the anti crossing in the symmetric case. We
further point out, that adding more discrete levels (ABSs) into the model leads
to more complex structures, but does not describe the resonance of type II
(see appendix D.2). We therefore interpret the observed type II resonance
as a replica of type III, because of there similarity of characteristic proper-
ties (FWHM, amplitude). The origin of this resonance might be related to
coupling to a bosonic bath of the environment, similar to Ref. [97].

7.3.4. Conclusions
We performed measurements in three distinct transport regimes, detected a
supercurrent in the open regime with no signature of the integrated QD and
saw transport being dominated by the QD in the weak coupling regime.
In the intermediate regime, where Γ ∼ ∆∗, we observe a hybridisation of the
QD states with the ABS in the NW lead caused by the strong coupling of the
ABS to the QD. By using a resonant tunneling model, we can account for most
of the observed characteristics. By mimicking the ABS transitions with single
electron levels, the model reproduces the subgap resonances I and III, as well
as the asymmentric anti-crossing of the ABS (I, in LS1/2) with the QD level.
We point out, that in the model the discrete single electron levels ζ+/−

1/2 hold
the same properties as the QD level, despite one crucial difference; these levels
are symmetric around zero energy, mimicking the electron hole symmetry of
a superconducting state. Furthermore, the detected NDC is also reproduced
well by the model.
This suggest that an ABS in only one of the NW leads is strongly coupled
to the QD. However, we can not fully reproduce the symmetric case. The
observations in the measurements, suggest a change in coupling to the second
NW lead, dependent on the applied gate voltage.
Based on the model, we can not provide a clear explanation for the detected
type II resonance but suggest that it as replica of type III, possibly related
to a coupling to a bosonic bath of the environment [97].
In order to reproduce the detected features, we needed to add a constant
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background DOS to the BCS like DOS of each lead segment. Using only the
phenomenological Dynes parameter did not reproduce our results sufficiently.
We suggest, that our experimental findings could be the result of a finite
coupling between even/odd parity states of the ABS with the even/odd states
of the QD, leading to the detected hybridisation. An alternative explanation
for the type II resonance might be a finite coupling between an ABS in one
lead segment LS1 and a second ABS in LS2. In order to shed more light
on this, further investigations and a more sophisticated theoretical model are
required.
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8 Cooper-pair splitting in two parallel InAs
nanowires1 2

In the following chapter we demonstrate fabrication and electrical character-
ization of an InAs double - nanowire (NW) device consisting of two closely
placed parallel NWs. Both NWs are connected to one common superconduct-
ing contact, whereas the two NWs are individually connected to separated
normal metal electrodes. We observe Cooper-pair splitting (CPS) in this new
generation of devices, with a sizeable efficiency of correlated currents in both
NWs (see also section 2.5.1). Compared to previous reports, where Cooper-pair
splitting was detected in devices which are based on single NWs [4, 176–179],
we detect an interwire interaction mediated by the common superconductor,
instead of an intrawire electron pairing. Interwire interaction is especially im-
portant, as it plays an important role in the realization of zero-magnetic field
Majorana bound states [13, 29, 30, 180, 181], or Parafermions [15]. Further-
more, we detect additional resonances, only apparent in the superconducting
state, which we attribute to Andreev Bound states [90, 117, 182] and/or Yu-
Shiba resonances [150], which are most likely formed in the proximitized NW
segment.

8.1. Double nanowire device and characterization

The investigated sample is presented schematically in Fig. 8.1 (a). Two InAs
semiconducting NWs with large spin orbit interaction are aligned in parallel
(NW1 green, NW2 red) and electrically coupled to a (single) common super-
conductor S (blue). The two NWs are individually connected to normal metal
electrodes N1/2 (yellow). Two sidegates SG1/2 are placed on each side of the
NWs, to tune the chemical potentials of both quantum dots (QDs) individu-
ally, which are created between N1/2 and S respectively. The precise location
of both quantum dots is unkown, since no additional barrier gates are used in
this experiment [183].
We already would like to point out here, that the electronic boundary condi-

1Parts of this chapter are results from a collaborative work together with Shoji Baba in
the group of Seigo Tarucha from University of Tokyo.

2Parts of this chapter are published similarly in Ref. [175], with permission of c© 2018
IOP Publishing.
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Figure 8.1. Cooper-pair splitting setup in two parallel nanowires.
(a) Scheme of the double NW Cooper-pair splitting device. Two individual
InAs NWs, NW1/2, are placed in parallel, having one common superconducting
electrode (blue) and two separated normal metal contacts, N1/2. Two quantum
dots (QD1/2) are formed in the NWs and tuned individually by the local
sidegates SG1/2. (b) SEM micrograph of the measured sample, which consists
of two NW1/2 with a common superconducting contact, made of Al. Individual
normal metal contacts, N1/2, are made of Au, as well as the sidegates SG1/2.
The measurement geometry is presented schematically [175]. c© 2018 by IOP
Publishing.

tions on the side of the superconductor might be changed, when the super-
conductor is in turned into the normal state, because of the proximity effect.
Besides local Cooper pair tunneling from the superconductor to the normal
metal contacts N1/2 [97], Cooper pairs (white circle with red/black dot) can
also be split, which then results in a non-local current consisting of entangled
single electrons. This effect is expected to be enhanced, when both quantum
dots, QD1/2, are in the sequential tunneling regime, which allows electrons to
tunnel sequentially from the superconductor to both normal metal contacts.

Fabrication

The NWs which we use in this study are made of InAs (wurtzite crystal phase),
having a diameter of ∼80 nm. In order to fabricate a device, we first trans-
ferred the NWs from their growth ship to the substrate and afterwards post
selected NW pairs which lie next to each other by using standard SEM imag-
ing. Importantly, we note that the NWs are not electronically connected, as
they are separated by their native oxide (thickness of about 2 nm to 3 nm),
which surrounds each of the NW. In the next step, we place the common
superconductor, consisting of Ti/Al (3 nm/90 nm) after removing the native
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oxide using a solution of (NH4)2Sx [130]. Next, both normal metal electrodes
N1/2, which consist of Ti/Au (3 nm/130 nm) are evaporated together with the
sidegates SG1/2. In Fig. 8.1(b) we present a SEM image of the actual sample.
The superconductor and the normal metal electrodes are separated by 250 nm.

Characterization
All measurements have been performed at a temperature of about 50 mK. We
measure differential conductance dI/dV of both NWs simultaneously, by us-
ing synchronized lock-in techniques (as shown schematically in Fig. 8.1 (b)).
Fig. E.1 in the appendix shows characteristic CB diamond measurements,
indicating two individual QDs, QD1 and QD2, in each of the NW, similar to
previous results [184]. From these measurements, we can determine the follow-
ing parameters for the two individual QDs: charging energy U , single particle
level spacing ε and the life-time broadening Γ: U1,2 = 0.5 − 0.7meV, ε1 =
0.3− 0.5meV, ε2 = 0.1− 0.3meV, Γ1 = 0.1− 0.2meV and Γ2 = 0.2− 0.3meV
for QD1 and QD2, respectively. The characteristic properties of both QDs are
rather similar and suggest that each QD is created between the superconduct-
ing Al electrode and the normal metal Au reservoirs. Furthermore, we detect a
suppression of conductance for some regions for energies lower than the super-
conducting energy gap ∆, which we find to be ∼150 µeV, similar to previous
studies [177]. Consequently, we are in the limit where ∆ < Γ, meaning that
local pair tunneling should exceed Cooper-pair splitting [185, 186]. We further
note, that it is not possible to distinguish individual tunnel couplings Γ1/2 of
each QD to either S or N. The ratio of the tunnel rates has an important
influence on the magnitude of Cooper-pair splitting. As observed in previous
experiments, CPS can be substantially suppressed when tunneling out of the
QD into the drain electrode is the rate-limiting step [179, 186]. In addition, we
expect no influence of inter dot tunnel between both QDs, as they are placed
in two different NWs, in contrast to earlier experiments.

8.2. Cooper pair Splitting in double NW

Figs. 8.2 (a) and (b) present simultaneously measured differential conductance
G1 of QD1 and G2 of QD2 with respect to the applied gate voltages VSG1/SG2
respectively. The measurement have been performed at zero bias and no ex-
ternal magnetic field was applied. Tuning the sidgate VSG1 shifts QD1 through
several CB resonances, which results in a series of conductance peaks recorded
in G1. Very similar, changing VSG2 shifts the resonances of QD2 in NW2.
For each detected resonance, the charge state of the respective QD is changed,
which can be sensed by the other QD, since both QDs are coupled capacitively.
Here, QD2 plays the role of a good charge sensor of the charge on QD1, as
the CB resonances of QD1 shift substantially every time the charge on QD2

8
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Figure 8.2. Cooper pair splitting with quantum dots in two parallel
nanowires. (a) Differential conductance G1 of QD1 with respect to VSG1/2.
(b) G2 of QD2as a function of VSG1/2. (c) cross sections taken at the white
lines of (a) and (b). (d) cross sections taken at the black dashed lines of (a)
and (b) [175]. c© 2018 by IOP Publishing.

is changed by one electron (presented in Fig. 8.2 (b)). Because of capacitive
crosstalk from VSG1 on QD2 (and VSG2 on QD1) the position of the resonances
is a bit tilted in each of the graphs.
For some settings of side gate voltages VSG1/2, an increase of conductance on
both sides is very clearly detected, in case both QDs are on resonance. This is
best seen in the cross sections, presented in Figs.8.2 (a) and (b). By following
the cross section (black line) in Fig. 8.2 (a) we detect an enhancement of G1 at
the same position of the peak of G2 for the two resonances at VSG2 ≈ 1.87V
and VSG2 ≈ 1.91V (see arrows), while other possible correlations are less clear.
Following the white dashed line, similar correlations are observed in the cross
sections of G2 at the peak positions of G1, as shown in Fig. 8.2 (b). The
positive correlation is clearly seen at VSG1 ≈ 0.32V (arrow), whereas the cor-
relation is only weakly detected for the other two resonances at VSG1 ≈ 0.4V
and VSG1 ≈ 0.49V. Consequently, we believe that we see a positive correlation
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8.2. Cooper pair Splitting in double NW

between G1 and G2 on three resonances, which we can assign to Cooper-pair
splitting from the superconducting electrode into QD1 and QD2. When an
external magnetic field (250 mT, out of plane) is applied (see Fig. 8.3), which
is larger than the critical magnetic field BC of the aluminum electrode, the
former positive correlations between G1 and G2 are completely absent. This
proofs that the positive correlations in conductance originate from Cooper-
pair splitting. The Cooper-pair efficiency is defined as: 2GCPS/Gtotal, which
results in a maximum efficiency of ≈ 20%, which is similar to what has been
reported earlier in samples based on a single NW.
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Figure 8.3. Normal state measurements. (a), (b) G1 and G2 of QD1/2
with respect to the sidegate voltages VSG1/SG2. Out of plane external magnetic
field of 250 mT is applied. (c), (d) Cross sections taken at white/black dashed
line of (a) and (b). Positively correlated signal, shown in Fig.8.2 is absent in
the presence of external magnetic field. In (d) a linear background has been
removed of G1, which is why we call it ∆G1 [175]. c© 2018 by IOP Publishing.
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Cooper pair splitting with second type of resonances

We now discuss a very similar type of measurement, as presented in Fig. 8.2,
in a different sidegate regime, depicted in Fig. 8.4. For this setting of gate
voltages, we detect two sets of resonances for QD1. In addition to the QD
resonances, which we presented in Fig. 8.2 (indicated here with type I), we
observe a second set of resonances (from now on referred to as type II). In
contrast to this, we detect only one set of QD resonances for QD2. We will
demonstrate, that the type II resonances are very different when compared to
the type I resonances.
First, the amplitude of type II resonances is only half of the amplitude of type
I resonances. In addition to this, the resonances of type II have a different
slope, when compared to resonances of type I, which indicates that they differ
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Figure 8.4. Cooper pair splitting with second type of resonances.
(a) G1 of QD1 with respect to sidegate voltages VSG1 and VSG2. Second set of
resonances is indicated with II (black arrows). (b) Differential Conductance
G2 respectively for QD2. (c) cross sections taken at dashed white lines of (a)
and (b). (d) cross sections taken at black dashed line of (a) and (b) [175].
c© 2018 by IOP Publishing.
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in their capacitive coupling to SG1 and SG2. The broadening of both types of
resonances also differs, roughly by a factor of two: ΓI= 0.5 meV, while ΓII=
1.2 meV. Most strikingly, type II resonances fully vanish when we apply an
external magnetic field (not presented), meaning they only appear in the su-
perconducting state. Furthermore, the conductance of QD2 only acts on a
change in charge state of QD1 for resonances of type I (indicated by green
arrow in Fig. 8.4 (b)) but does not react to the resonances of type II. Hence,
it seems that the charge state is not changed as QD2 does not sense these res-
onances (highlighted by yellow arrows in Fig. 8.4 (b)). Consequently, we are
convinced that resonances of type II can not be CB resonances. The origin
of these states has to be within the superconducting phase, most likely close
to the superconducting electrode. Although the type II resonances are not
CB resonances, we can still record Cooper-pair splitting with them. A clear
positive correlation is observed between G1 and G2 in Fig. 8.4 (d) and also in
Fig. 8.4 (c). The splitting efficiency is determined to be ≈13% for type II,
which is similar to what we calculated for resonances of type I in the other
sidegate region presented in Fig.8.2.
Since the resonances of type II can be tuned by the sidegates, we believe that
this suggests the existence of sub-gap states, which are not located in QD1,
but rather in the nanowire segment, which is connected to the superconduc-
tor, as they are not fully screened by the superconductor. Consequently, we
suggest that a proximitized region is created in NW1, which is extended out
from the superconductor to some distance into the nanowire, which is then
coupled to QD1. Inside this nanowire lead segment, subgap states can be
formed, because of potential fluctuations or residual disorder in at one the
NWs. In general, we can think of two kinds of superconducting bound states,
namely Andreev bound states (ABS) [90, 117, 182] or Yu-Shiba Rusinov (YSR)
[150] states. In general, these states dont appear at zero energy, but could be
tuned electrically to zero energy, signaling a ground state transition between
the proximitized lead region and the bulk of the superconductor. This can
result in an increase in the DOS inside the superconducting energy gap of
the superconductor, which causes an enhancement of the subgap conductance
which we measure. For this situation we can think of two electrons which are
launched by Cooper-pair splitting are transmitted in a different way to the
respective drain electrodes. One electron takes the path through QD2 and
is then transferred by the usual sequential tunneling process, while the other
electron can take the path via QD1, transferred by co-tunneling. In princi-
ple, we could expect that this process suppresses Cooper-pair splitting as the
latter one corresponds to a low probability for out-tunneling into the drain
contact. However, because of the existing sub-gap resonances in the proxim-
itized nanowire lead segment, this process can be also enhanced and one can
therefore reach almost similar CPS efficiencies. Despite disorder in at least one
of the nanowires we present a significant CPS efficiency, the first fundamental
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8. Cooper-pair splitting in two parallel InAs nanowires

effect which is required for the creation of NW-based Parafermions. Future
samples with less disorder could also show larger CPS efficiencies, which is
relevant for the non-local superconducting correlation.

8.3. Conclusion

In summary, we present the fabrication of an electronic sample, which consists
of two closely aligned parallel InAs NWs, contacted by one common super-
conductor and individual normal metal contacts. Tuning individual sidegate
voltages allows us to address the QDs which are formed in each NW separately.
In the resonant tunneling regime of both QDs, we detect Cooper-pair split-
ting with efficiencies of up to 20%. In a certain sidegate regime, we observe
a second set of resonances in one of the NWs, which is only apparent in the
superconducting state of the device. We find, that the second set of resonances
are no CB resonances, hence, are not related to a change of charge state of
the QD. Since they only appear in the superconducting state, we tentatively
assign the second set of resonances to superconducting subgap states which
are formed in the nanowire lead segment, which is connected to the supercon-
ductor.
With this experiment, we demonstrate a new nanowire hybrid platform, which
is suitable to implement the next milestone in topological quantum computa-
tion, namely Parafermions. Cooper-pair splitting in our sample is most likely
enhanced by the Coulomb charging energy of the QDs, which have been formed
in the NW segments. For future experiments, we would be interested in inves-
tigating the question, whether these interactions, or alternatively intra-wire
electron-electron interactions can be sufficiently strong enough to generate
nonlocal superconducting correlations between both nanowire segments below
the superconducting electrode in order to generate Parafermions in such device
architectures.
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9 Summary and outlook

Within the scope of this thesis we studied indium arsenide (InAs) nanowire
(NW) hybrid devices using integrated QDs, mainly by means of tunnel spec-
troscopy.

We characterized QDs in InAs NWs, defined by crystal phase engineering,
namely wurtzite (WZ) and zinc-blende (ZB) crystal phase. We established
sophisticated SEM techniques (ECCI) enabling the detection of the WZ tun-
nel barriers and thereby their location and the size of the QD. We carried out
characterization measurements of these QDs and found a systematic increase
of the QD resonance broadening as a function of gate voltage. We qualitatively
explained the observed exponential increase of the resonance broadening with
a linear reduction of the tunnel barrier height with respect to the Fermi en-
ergy. We found that the resonance broadening can be tuned over a large range
(≈ 50 µeV up to ≈ 1 meV). We further presented Coulomb diamond mea-
surements, revealing large level spacings (1 meV to 3 meV) and large charging
energies (≈ 7 meV). This confirms the suitability of this system, as a well
controlled electronic spectrometer, as the QD levels are well separated from
one another and can be very sharp (chapter 4).

We used this platform as a new tunnel spectroscopy tool for the investiga-
tion of the proximity induced gap of a superconductor in a nanowire segment.
We demonstrated the possibility to use the QD as a spectrometer in two dif-
ferent transport regimes: in Coulomb blockade, where the QD effectively acts
as a single tunnel barrier and on resonance, where transport is dominated by
first order sequential tunneling. Using both methods allowed us to detect the
evolution of the induced gap in the nanowire lead segment, which we explained
by a gate tunable transition from the long to the short junction limit (chap-
ter 5).

In addition, we performed spectroscopy measurements on the NW lead seg-
ment in presence of discrete states. We detected superconducting sub-gap
states originating from Andreev type processes. Thus, we demonstrate the
possibility to employ ZB/WZ QDs as spectrometers for individual sub-gap
states in NW segments (chapter 6).
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9. Summary and outlook

Coupling a InAs NW with crystal phase defined QD to two superconducting
contacts gave access to three different transport regimes in the same device.
We presented supercurrent measurements in the open regime, Coulomb block-
ade in the weak coupling regime and hybridization of Andreev bound states
(ABS) with the QD states in the intermediate coupling regime. We qualita-
tively explained the observed asymmetric anti-crossing of the ABS and the
QD level by using a resonant tunneling model, mimicking a coupling of one
ABS in (one NW segment) to the QD (chapter 7).

Furthermore, we presented results on devices consisting of two InAs nanowires.
By coupling two parallel aligned InAs NWs to one common superconductor and
two individually connected normal metal electrodes, we demonstrated Cooper
pair splitting in this new type of platform. This provides the basis for devices
towards the detection of parafermions (chapter 8).

In this thesis, we presented the next generation of nanowire devices. To solve
current problems, we demonstrated that it is very advantageous to perform
electronic tunneling spectroscopy in NWs by means of tunnel barrier defined
(“integrated”) QDs. Integrated QDs could potentially serve as a powerful spec-
troscopic tool, not only to unambiguously detect MBSs, but also to distinguish
topological states from trivial ABSs. The results presented in this thesis lay
the groundwork for further spectroscopic studies of MBS characteristics.
Furthermore, continuing experiments based on two nanowires can lead to the
detection of new topologically protected states, such as parafermions. Espe-
cially using two parallel NWs both having an integrated QD might be of great
interest to study such states and therefore provide a potential building block
for quantum information processing.
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A Fabrication Recipes

Already in the chapter 3, fabrication techniques are discussed. The aim of this
appendix is to provide details of the fabrication recipes.

A.1. Fabrication of InAs Nanowire devices

A.1.1. Wafer characteristics

• Substrate material: Silicon

• Dopant: p-type, boron

• Resistivity: 0.003 - 0.005 Ωm

• Capping layer: 400 nm silicon oxide

A.1.2. Cleaning

1. Dicing the wafer in appropriate sizes (2.5 cm×2.5 cm)

2. Clean in Acetone, IPA for each ∼5 min in ultrasonic

3. Blow-dry with N2

4. UVO treatment for ∼5 min (Model 42-220, Jelight Company)

A.2. Electron beam lithography

A.2.1. PMMA etch mask

1. Spin-coat PMMA 950K (4000rpm for 300 nm, bake at 180 ◦C for 3 min)

2. Expose with E-beam (10 keV; Area dose=240 µC/cm2)

3. Development in 3:1 IPA/MIBK for 60 s
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A. Fabrication Recipes

A.2.2. ZEP mask for Pb contacts
1. Spin coat ZEP (300 nm, bake at 180 ◦C for 3 min)

2. Expose with E-beam (10 keV; Area dose =35 µC/cm2; Line dose = 505 pC/cm)

3. Development in Pentylacetate for 60 s, and in MIBK:IPA (ratio 9:1) for
10 s, blow-dry with N2

A.3. Reactive ion etching - O2 plasma cleaning

This plasma is used to remove PMMA residuals.

1. Parameters: O2 flow = 16 %, RF power P =30 W, process pressure
p =250 mTorr, t =1 min.

2. Etch rates:
SiO2: negligible
PMMA: ∼20 nm/min

A.4. Etching of NW native oxide

A.4.1. Argon Ion Beam milling
The Ar+ etching can be done in-situ in two different systems.
In Balzers:

1. Base pressure: 2× 10−7 mbar

2. Ar flow: 3.2 sccm

3. Process background pressure: 5× 10−5 mbar

4. Ar plasma: Recipe 2

5. Ar Beam current: 20 mA

6. Ar Beam voltage: 500 V

7. etch time: 23 s (stage perpendicular to Ar source)

In Bestec:

1. Base pressure: 5× 10−7 mbar

2. Ar flow: adjust needle valve to get constant background pressure

110

A



A.4. Etching of NW native oxide

3. Process background pressure: 5× 10−5 mbar

4. Plasma power: adjust voltage such as output current is 20 mA

5. Extraction voltage: −0.6 kV

6. Anode voltage: 1 kV

7. Etch time: 150 s

A.4.2. Sulphur passivation

1. Dilute 0.961 95 g sulphur in 10 ml of 20 % NH4Sx

2. Stir for at least 12 h at T ≈35 ◦C

3. Filter 2.5 ml of NH4Sx to remove sulphur residuals

4. Heat 25 ml (1:10) of H2O on hotplate at 40 ◦C for minimum 10 min

5. Add NH4Sx right before etching; otherwise it will degrade very fast

6. Etch for 120 s on hotplate

7. Stop etching by stirring in H2O for 30 s

8. Blow-dry with N2

9. Build into vacuum chamber within 5 min

A.4.3. HCl

1. Dilute 37 % HCl in 1:10 H2O

2. Etch for 12 s at RT

3. Stop etching by stirring in H2O for 30 s

4. Blow-dry with N2

5. Build into vacuum chamber within 5 min

A
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A. Fabrication Recipes

A.5. Etching of epitaxial aluminum shell

Etch mask:

1. O2 plasma cleaning (after NW deposition) for 1 min

2. Spin adhesion promoter (XY), bake at 185 ◦C for 2 min

3. Remove ahesion promoter (a monolayer will be left): 7 min Acetone,
rinse in IPA, blow-dry with N2

4. Spin first layer of EL6, (4000rpm) bake at 185 ◦C for 90 s

5. Spin second layer of EL6, (4000rpm) bake at 185 ◦C for 90 s

6. Expose with E-beam (30 keV; Area dose=160 µC/cm2; Line dose=550 pC/cm)

7. Development in 3:1 IPA/MIBK for 60 s

8. Blow-dry with N2

9. O2 plasma cleaning for 1 min

10. Post bake at 120 ◦C for 1 min

Etching:

1. Prepare beaker for etchant: 40 mL of MF321 with magnetic stirrer in
50 mL beaker

2. Prepare two additional beakers fully filled with 500 mL of DI water

3. Etch time: 75 s for half shell; 85 s for full shell

4. Stop etch process by stirring heavily in first DI water beaker for 20 s,
subsequently rinse sample in second DI water beaker for 30 s

5. Blow-dry with N2

6. Remove etch mask in acetone at 60 ◦C for 10 min

7. Rinse in IPA

8. Blow-dry with N2
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A.6. Contacts

A.6. Contacts

A.6.1. Ti/Au leads
This process is used for the base structure and normal metal contacts.

1. Type: E-beam evaporation

2. Pumping to base-pressure of ∼2× 10−7 Pa

3. Evaporate 5 nm of Ti (0.5Å/s to 1.6Å/s)

4. Evaporate 50 nm to 70 nm of Au (1.4Å/s to 1.6Å/s)

A.6.2. Ti/Al leads
This process is used for Al as a superconducting contact.

1. Type: E-beam evaporation

2. Pumping to base-pressure of ∼2× 10−7 Pa

3. Evaporate 5 nm of Ti (0.5Å/s to 0.6Å/s)

4. Evaporate 50 nm to 70 nm of Al (1.4Å/s to 1.6Å/s)

A.6.3. Pd/Pb/In leads
This process is used for Pb as a superconducting contact. The inside of the
vacuum chamber of the Balzers is covered with Al foil.

1. Type: E-beam evaporation

2. Pumping to base-pressure of ∼2× 10−7 Pa

3. Cool down with liquid N to ≈− 50 ◦C

4. evaporate 4.5 nm of Pd

5. Cool down further to T ≈− 90 ◦C

6. evaporate 110 nm of Pb

7. evaporate 20 nm of In

A
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B Further information on spectroscopy of the
superconducting proximity effect in
nanowires using integrated quantum dots

This part of the appendix provides additional calculations and measurements
for chapter 5 [136].

B.1. Additional numerical calculations for individual ABS
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Figure B.1. Numerical calculations of gate-evolution of individual
ABS. a Local DOS with respect to VSD and backgate VBG at L = 350 nm. The
ABSs width is set to ΓABS = 25 µeV. b Local DOS with respect to of energy
at various distances from the interface for a fixed gate voltage VBG = 0.4V
[136].
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B. Further information on spectroscopy of the superconducting proximity
effect in nanowires using integrated quantum dots

B.2. Additional numerical calculations for interface with
disorder

Fig. B.2 shows the LDOS with respect to source drain bias VSD (at VBG =1 V)
at a distance of L = 70 nm from the S - N interface. The width of the ABS is
set to ΓABS = 4 µeV. The black cross section shows the LDOS without disorder
at the interface. The red cross section shows the same cross section as before,
but with a random potential fluctuation at the interface. This was realized
by adding a random fluctuation (maximum +/- 130 µeV) to the coupling of
the superconductor (ΓS,i = 320 µeV) at each site i of the NW below. The
randomized fluctuation value follows a Gaussian distribution. The plotted
cross section was averaged 30 times. As a result, the peaks at the gap edge
are smaller in amplitude and also broadened, compared to the clean case. The
edges of the gap appear to be slightly smoother.
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Figure B.2. Local DOS with respect to VSD without (black) and with (red)
disorder. The disorder LDOS was averaged 30 times [136].

B.3. Additional measurements of S - I - S junction

Fig. B.3 shows the normalized G of a S-I-S tunnel junction (consisting of Al-
AlO2-Al). The sample was measured in a similar measurement setup as the
one discussed in the main text.
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B.3. Additional measurements of S - I - S junction
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Figure B.3. Normalised conductance G/GN as a function of VSD of an S-I-S
tunnel junction (made of Al- AlO2-Al).
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C Further information on spectroscopy of
superconducting sub-gap states

This section provides further measurements, performed on the device presented
in chapter 6.

Side gate dependence
The features observed inside the Coulomb blockade diamonds of Fig. 6.1. (c)
are independent from the probing QD, as can be seen in Fig. C.1, which
represents a conductance map at zero bias as a function of both back and
side-gate. The parallel brighter lines, indicated by the red arrows, correspond
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Figure C.1. Differential conductance at zero bias as a function of the back
and side-gate. The brighter lines, indicated by red arrows, correspond to
Coulomb peaks due to the barrier defined QD, while the green, blue and
orange lines correspond to the conductance background inside the well defined
diamonds. Red, blue, green and orange lines are not parallel, showing that
the conductance background is not related to the barrier defined dot [156]. c©
2020 by American Physical Society.
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C. Further information on spectroscopy of superconducting sub-gap states

to the well defined diamonds of the probing QD. The other lines, which are
emphasized by blue, green and orange dashed lines, correspond to the blurred
conductance background. They have slopes different from the brighter lines,
indicating that they are independent one from the other.
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D Additional measurements of S - QD - S

This section presents additional measurements of InAs NW with an integrated
QD, made of WZ tunnel barriers. The measurements were performed on a
segment of the NW, without WZ segments, meaning this segment consists of
ZB crystal phase.

D.1. Supercurrent in ZB segment of InAs nanowire

The top panel of Fig. D.1 shows the differential resistance dV/dI as a function
of current I and gate VBG. We detect a gate tunable supercurrent, similar to
[3]. The central panel presents the the extracted critical current IC (blue) and
the normal state resistance RN (black). The lowest panel shows the resulting
RN IC product. The maximal supercurrent (≈ 20 nA) is larger, compared to
the supercurrent measured in a segment with WZ barriers (≈ 5 nA). However
The RN IC product is of similar magnitude ≈ 8 µV to 16 µV.
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Figure D.1. Supercurrent in ZB segment of InAs nanowire. Top:
dV/dI as a function of current I and gate VBG. Middle: extracted critical cur-
rent IC (blue) and the normal state resistance RN (black). Bottom: resulting
RN IC product with respect to VBG.
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D. Additional measurements of S - QD - S

D.2. Resonant tunneling model with two discrete levels

Fig. D.2 shows the result of the resonant tunneling model with two single
electron levels in each lead segment LS1/2. EA,1/2 refers to the energy of the
two levels in LS1, whereas EB,1/2 is the energy of two levels in LS2.
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Figure D.2. Resonant tunneling model with two ABS in each lead
segment LS1/2. The ABS energies are: EA,1 = 160 µeV, EA,2=60 µeV, EB,1
= 160 µeV, EB,2 = 60 µeV. The couplings to the QD are set to: ΓA,1/2 =
ΓB,1/2 = 30 µeV.

D.3. Additional data measured in S - QD - S device

This part of the appendix presents measurement data from an additional de-
vice similar to the one presented in Fig. 7.1, which is not discussed in chapter 7.
It consists of an InAs NW with an integrated QD (defined by crystal phase
engineering) and evaporated aluminum contacts. The junction length of this
sample is 400 nm.

Normal state

In the normal state (applied external magnetic field B = 50 mT, perpendicular)
we detect a regular Coulomb blockade (CB) diamond pattern with additional
discrete states within the CB region (see Fig. D.3). The resonance broadening
of the QD is gate regime is Γ ≈ 200 µeV.
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D.3. Additional data measured in S - QD - S device
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Figure D.3. Coulomb blockade diamonds in the normal state. a
Differential conductance dI/dV with respect to bias voltage VSD and backgate
voltage VBG in the normal state (B = 50 mT). Discrete states with different
slope crossing Coulomb blockade regions. b Detailed measurement of region
marked with blue dashed lines in a. c Cross section at zero bias voltage VSD.

Superconducting state
Fig. D.4 a,b shows CB diamond measurements in the superconducting state.
We observe a superconducting energy gap around zero bias voltage VSD. In
addition we marked the detected discrete resonances with blue arrows. We
attribute these resonances to discrete levels in the lead segment of the NW,
between the QD and one superconducting contact. In Fig. D.4 c,d we present
detailed measurements for smaller bias voltages of the same gate region as in
Fig. D.4 a,b. We observe several sub-gap states for energies between |∆∗| and
|2∆∗|. Fig. D.4 c,f suggest the transformation of a discrete normal state (blue
dashed line) into a sub-gap state for energies of |∆∗| to |2∆∗|. Cross sections
of this region Fig. D.4 e reveal three different peaks suggesting three sub-gap
states. We detect similar characteristics for the gate region in Fig. D.4 d, where
the number of states for energies of |∆∗| to |2∆∗| is less clear (see Fig. D.4 g,h).

D

123



D. Additional measurements of S - QD - S
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E Further information on Cooper pair
splitting in two parallel InAs nanowires

This section provides further measurements, performed on the device presented
in chapter 8 [175].

E.1. Coulomb diamond measurements

In Fig. E.1 we plot Coulomb blockade diamond measurements of the two
quantum dots QD1/2 in the two individual nanowires NW1/2 respectively.
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Figure E.1. (a) Differential conductance G1 of quantum dot QD1 with re-
spect to sidegtae voltage SG1 and source drain bias voltage VSD. The white
lines highlight a conductance suppression, caused by the superconducting en-
ergy gap. the cross sections (green insets) are taken along the green dashed
lines respectively. (b) Differential conductance G2 of QD2 with respect to side-
gate voltage SG2 and bias voltage VSD. The cross section (green line inset) is
taken along the green dashed line [175]. c© 2018 by IOP Publishing.
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F Quantum dots in InAs defined by InP
tunnel barriers

This section shows preliminary results obtained on InAs nanowires with InP
tunnel barriers. Fig. F.1 presents a Coulomb diamond measurement of a QD
(size: ≈ 20 nm) defined by InP barriers (thickness: 5.5 nm). The nanowires
are thankfully provided by L. Sorba and the measurement were performed in
collaboration with F. Thomas [144].

F.1. Coulomb diamond measurements
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Figure F.1. Coulomb blockade diamond measurement of InAs/InP
nanowire quantum dot. Differential conductance dI/dV with respect to
source drain bias voltage VSD and backgate voltage VBG [144].
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G Preliminary results of superconducting
nanowire multi-junction

In this appendix we present preliminary results of InAs nanowires connected to
three superconducting electrodes made of lead (Pb). The device (see Fig. G.2)
is based on the theoretical proposal of Ref. [127, 128]. The basic idea is to
detect a signal originating from non-local crossed andreev reflection, a process
called “quartets” (illustrated in Fig. G.1). First signatures have been recently
reported in Ref. [129].

G.1. Quartet device

a b

Figure G.1. Quartet setup. a Schematic of quartet current, generated by
non-local crossed Andreev reflection. A Cooper pair originating from electrode
S1 (blue) is combined to a new Cooper pair in S, together with a Cooper pair
originating from S2 (red). b Illustration of energy digram and non-local crossed
Andreev reflection.
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G. Preliminary results of superconducting nanowire multi-junction

Figure G.2. Quartet - superconducting nanowire multi-junction.
InAs NW (grey) with three superconducting electrodes S and S1,2 made of Pb
(green).

G.2. Supercurrent in multi-junction

We detect a gate tunable supercurrent (between contact S and S1) in a sim-
ilar multi-terminal device (shorter junction length: ≈50 nm), as shown in
Fig. G.2 a. The critical current IC varies from 20 nA up to 80 nA at large
gate voltages VBG. In Fig. G.2 b we present the supercurrent which is simul-
taneously measured in both junctions. The black curve shows the current I
measured between contact S and S1, whereas the red curve shows the current
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Figure G.3. Supercurrent measurement in multi-terminal junction.
a Voltage V as a function of current I and gate voltage VBG measured between
contact S and S1. b Supercurrent simultaneously measured between contact
S and S1 (black) and S and S2(red).

130

G



G.2. Supercurrent in multi-junction

between S and S2. In Fig. G.4 we show the measured differential conductance
G measured in both junctions (left: black; right: red) simultaneously when
no magnetic field is applied (a) and for finite magnetic field B=13 mT (b) and
B=35 mT (c).
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Figure G.4. Magnetic field dependence. Differential conductance G with
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S-S1 shown in black and for right junction S-S2 shown in red.
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