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Introduction

Computation has changed our lives dramatically. This all started by the in-
vention and the first realization of the transistor back in 1947 by Bardeen,
Brattain and Shockley [1]. Continuous improvement in fabrication techniques
lead to transistors on the size of a few tens of nanometres that are currently
used in our computers and smart phones. Their incredible small size allows to
pack millions onto a small chip leading to extremely large computation power
even in hand-held devices [2]. However, the ongoing miniaturization will una-
voidably be stopped by physical limits such as the size of an atom (∼ 1Å).
Already at larger length scales quantum mechanical effects come into play and
will limit further miniaturization. In order to fulfil the demand of the society
for ever faster computers, new computation concepts have to be invoked.
The realization of quantum computers, where the information is stored in

a quantum bit (qubit), is a revolutionary step in the field of electronics and
computation. Their working principle is fundamentally different from classical
computers and therefore new computation schemes have to be implemented. A
qubit can not only be in an off or on state (0 or 1) as a classical bit, but it can
also be in any superposition of these two states at the same time. This con-
ceptual difference paired with the possibility of entanglement between several
qubits leads to advantages of a quantum computer over classical computers.
In general, a qubit can be realized by any quantum mechanical two-level

system. Many possible systems have been proposed and implemented in small
numbers so far. Discrete electron levels in trapped ions [3], or superconducting
qubits relying on charge [4], phase [5] or flux [6] have been successfully im-
plemented in small numbers. Today, everyone can freely access a quantum
computer with 16 superconducting qubits already [7]. Whereas all these im-
plementations work very well for single or a few number of qubits, the upscaling
to more qubits has proven to be challenging. Spin qubits have been proposed
as a versatile tool for quantum computation [8] with the possibility for easier
upscaling. In addition, spin qubits realized in silicon [9, 10] could be reali-
zed in CMOS compatible architecture [11], bringing classical and quantum
computers closer together.
Whereas it is not clear when quantum computers based on spin qubits will

be realized, the electron spin can already be used for information storage and
processing using novel device architectures. This field is called spintronics,
which is a growing field where the control and manipulation of electron spins
give the basis of solid-state electronic circuits [12]. It was the discovery of the
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Introduction

Giant Magneto-Resistance (GMR) effect by Albert Fert and Peter Grünberg
in the end of the 1980’s [13, 14] that lead to the first realization of spintronics
concepts. Nowadays, the GMR effect in conventional hard drives is replaced by
a similar, but yet more sensitive effect called Tunnelling Magneto-Resistance
(TMR) effect. Both effects rely on the fact that the resistance through a device
consisting of two ferromagnets and a non-magnetic material (either a normal
metal or an insulator) heavily depends on the relative alignment of the two
ferromagnets, making it therefore a perfect sensor for classical bits realized on
magnetic hard drives.

It has been recently found that two-dimensional materials offer a new plat-
form for spintronics devices, owing to their wealth of unusual physical pheno-
mena and great diversity [15]. The first of these materials was graphene [16],
which has proven ideal for spin transport [15] with spin relaxation lengths of
24 µm [17] and spin lifetimes on the order of 10 ns [18] at room temperature.
The small spin-orbit coupling in graphene, that is due to the low atomic mass,
and the absence of a nuclear spin in the most abundant isotope of carbon (12C),
leads to very long spin lifetimes theoretically predicted in graphene [15, 19, 20].
Continuous improvement of device quality and contact optimization led to the
truly outstanding state of the art spin transport properties stated above.

Since the discovery of graphene by Geim and Novoselov in 2004 [21], many
more two-dimensional materials have been predicted, exfoliated and charac-
terized with very different properties. Among them are metals such as grap-
hene, insulators such as hexagonal boron nitride (hBN) or semiconductors with
black phosphorous or the large family of the transition metal dichalcogenides
(TMDCs) that includes WSe2. Furthermore, more exotic materials such as
superconductors as NbSe2 [22, 23] is one, ferromagnets such as CrI3 [24] or
topological insulators in the monolayer limit of WTe2 [25] have been reported.
The assembly of them into so called van-der Waals (vdW) heterostructures
can result in new device functionalities and properties that are not existing
in a single material [26]. These designer materials can be be used for future
spintornics devices (e.g. vertical TMR devices) with enhanced performance,
but can also be used to explore new device concepts and material properties.

As an example the physical properties of graphene can be altered by pla-
cing it in proximity to other materials, including the formation of minibands
[27–30], magnetic ordering [31, 32], and superconductivity [33, 34]. Special
interest has been paid to the enhancement of spin-orbit coupling (SOC) in
graphene since a topological state, a quantum spin Hall phase, was theoreti-
cally shown to emerge [35]. In addition, significant electric field tunable SOC
could enable fast and efficient spin manipulation by electric fields for possible
spintronics applications, such as spin-filters [36] or spin-orbit valves [37, 38].
This is complemented by large spin-Hall angles predicted in graphene/TMDC
heterostructures [39] that could be used as a source or as a detector of spin
currents in graphene-based spintronic devices. Graphene/TMDC heterostruc-
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1. Outline of this thesis

tures are a very promising candidate to enhance the intrinsically weak SOC in
graphene [40], while preserving graphene’s exceptional charge transport pro-
perties [15, 41, 42].
In order to be able to use any material for spintronics applications or for

possible implementations for quantum computation its basic properties have
to be understood. In particular, novel materials such as graphene or other 2D
materials need to be characterized with respect to their charge and spin trans-
port properties. Therefore, the aim of this thesis was set to investigate spin
and charge relaxation in graphene in various devices using standard transport
techniques but also novel high frequency approaches.

1. Outline of this thesis

In the beginning of the thesis in chapter 1 an introduction to graphene an its
properties is given. The unique band structure is introduced and possible spin-
orbit terms are discussed, which can arise when graphene is put in proximity
to a TMDC layer. Apart from charge and spin transport in graphene, a basic
introduction on thermal transport is also given, focussing on low temperatures.
Chapter 2 gives an overview of the most important fabrication techniques
used to prepare the devices studied in this thesis. The fundamental corners-
tones of electrical transport measurements and set-up specific information are
also shown. In chapter 3, nanomagnets are characterized using magnetic
force microscopy and photoemission electron microscopy. In addition to the
characterization of the magnetic domain structure, the latter technique is also
used to study the role of a chemical vapour deposited hBN layer in protecting
the ferromagnetic nanostructures from oxidation. In the end of the chapter,
the CVD hBN itself is characterized employing various techniques. Throug-
hout this thesis CVD hBN is used as a tunnel barrier for two purposes. As
a first example superconducting tunnel spectroscopy of graphene is presented
in chapter 4. This technique, that gives access to the energy distribution
function is used to study electron thermal transport in the electron and pho-
non cooled regime. In chapter 5 the CVD hBN is used as a tunnel barrier
for electrical spin injection into graphene. The spin transport properties of
graphene devices are studied at room and low temperatures, where similar
contribution of the Dyakonov-Perel and Elliott-Yafet spin relaxation mecha-
nism were found. In addition, high resistance tunnel contact show opposite
spin injection polarizations, which are tunable by bias voltage. In the end
of the chapter a possible route to characterize the influence of magnetic mo-
ments on the spin transport is presented. An alternative method to create a
spin current in graphene is presented in chapter 6. High frequency magnetic
fields are used to excite a ferromagnetic contact into ferromagnetic resonance,
where a spin current is injected into the graphene channel. The inverse spin-
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Hall effect in platinum is used to detect the spin current travelling through
the graphene channel. Our approach of a transmission line allows simple on-
chip integration and a broadband excitation. The low spin-orbit coupling in
graphene is ambivalent as it on one side allows for very long spin relaxation
times but at the same time graphene lacks a strong electric field tunability of
spin relaxation time. In addition to spintronics applications, topological states
have been predicted in graphene due to spin-orbit coupling. In chapter 7, the
spin-orbit coupling arising from to the proximity of a WSe2 crystal is investi-
gated using quantum interference phenomena. A strong valley-Zeeman SOC
is found in these structure, that leads to a strong asymmetry in spin relaxa-
tion of in-plane and out-of-plane spins. A novel contactless characterization
method is presented in chapter 8. An encapsulated pn-junction is capaciti-
vely coupled to a superconducting resonator operating at high frequency. As
an example we used this scheme to extract the quantum capacitance and the
charge relaxation resistance of a graphene pn-junction without the need for
electrical contacts. Quantum-Hall measurements on a bilayer graphene pnp-
junction presented in chapter 9 shed light onto equilibration phenomena of
different Landau levels, revealing spin dependent edge state equilibration.

Finally, the main findings of this thesis are revisited and put into a broader
context in chapter 10, where also a brief outlook is given.

xii



1 Theoretical background

200 nm

This chapter covers the most important theoretical concepts that are used
throughout this thesis. First, the unique band structure is introduced and all
possible spin-orbit terms that can arise when graphene is put in proximity to
a TMDC layer are discussed. Furthermore, the basic concepts of charge, spin
and heat transport in graphene are introduced. Charge transport concepts
are discussed in more detail focussing on coherent effects such as universal
conductance fluctuations and weak (anti)localization. Starting from electrical
spin injection into graphene, non-local spin transport in graphene is discussed
as well and the most important spin relaxation mechanisms are introduced in
the end of this section. Apart from charge and spin transport in graphene, a
basic introduction is given about thermal transport in graphene focussing on
low temperatures. The first part of this chapter follows partially the references
[43–45], whereas the spin transport part follows partially the references [12,
46].1

1The image showing graphene on top of WSe2 was taken from Ref. [47].
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1. Theoretical background

1.1. Graphene basics

Graphene is a two-dimensional sheet of carbon atoms arranged in a honeycomb
structure as shown in Fig. 1.1 (a). There are two stable isotopes of carbon,
namely 12C with an abundance of 98.9% and zero nuclear spin and 13C with
an abundance of 1.1% and a nuclear spin of 1/2. In principle this allows to
synthesize isotopically pure 12C or 13C graphene.
The electronic configuration of a free carbon atom is 1s2 2s2 2p2 with a

total of six electrons. The core electrons in the 1s2 orbital are inert and do not
contribute to any chemical bonds. In the case of graphene, the four valence
electrons will occupy three sp2 orbitals and the pz orbital instead of the normal
2s and 2p orbitals. The pz orbital is perpendicular to the plane spanned by the
three sp2 orbitals that form a trigonal planar configuration. Whereas the sp2

orbitals form well localized σ-bonds the pz orbitals form delocalized π-bonds
that form the π-bands in graphene crystals. In the following a simple tight-
binding model will be used to describe the low energy spectrum of graphene
that results from the pz orbitals.

1.1.1. Lattice structure, Brillouin zone and band structure of
graphene

The Bravais lattice of graphene is triangular with a two atom basis (A and B
atom) with the lattice vectors

~a1 = a0

2

(
3√
3

)
and ~a2 = a0

2

(
3
−
√

3

)
, (1.1)

where a0 = 1.42Å is the inter-atomic distance, which lies between a single
C−C bond and a double C=C bond [45]. The nearest-neighbour vectors in
real space are given by

~d1 = a0

(
1
0

)
and ~d2 = a0

2

(
−1
−
√

3

)
and ~d3 = a0

2

(
−1√

3

)
.

(1.2)
All nearest neighbours of an A atom are B atoms and vice-versa, see Fig. 1.1 (a).

The first Brilluin zone is shown in Fig. 1.1 (b) with the two reciprocal lattice
vectors

~b1 = 2π
3a0

(
1√
3

)
and ~b2 = 2π

3a0

(
1
−
√

3

)
(1.3)

that are obtained by the relation ~ai ~bj = 2πδij .
In a tight-binding calculation the electrons are thought to be well localized

in atomic orbitals at the site of each atom. Furthermore, they are allowed to

2



1.1. Graphene basics
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Figure 1.1. Graphene lattice in real and reciprocal space: (a) The
real space lattice of graphene is spanned by the two lattice vectors ~a1 and ~a2
that form the unit cell containing two atoms (A, B). (b) The first Brillouin
zone in reciprocal space is spanned by the unit vectors ~b1 and ~b2 and contains
the two inequivalent valleys K and K′. Figure adapted from Ref. [48].

hop between neighbouring atoms. In a more advance calculation, also next-
nearest neighbour hopping or higher terms can be included. However, in most
cases the nearest neighbour hopping describes the physics accurate enough
and therefore we focus here only on nearest neighbour hopping. As mentioned
above, only the electrons in the pz orbitals will contribute to the low energy
spectrum and we therefore take the pz orbitals of the A and B atoms |φA〉
and |φB〉 as the basis for the tight-binding calculation and we arrive at the
following ansatz for the Bloch functions:

ψA,B(~r) = 1√
N

∑
~RA,B

ei~q
~RA,BφA,B(~r − ~RA,B), (1.4)

where N is the number of unit cells that the sum is running over, ~q is the wave
vector and ~RA,B is the location of the atom. The Hamiltonian takes the form
of a 2× 2 matrix

H =
(
HAA HAB
HBA HBB

)
, (1.5)

where HAA = HBB = ε because of sublattice symmetry and HAB = H∗BA.
Without loss of generality we can set the on-site energy ε = 0 eV. The off-
diagonal term is given by

HAB = t ·
(
ei~q

~d1 + ei~q
~d2 + ei~q

~d3
)

= t · f(~q), (1.6)
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1. Theoretical background

where t = 〈φA(~r)|H |φB(~r)〉 ∼ −2.7 eV is the nearest neighbour hopping energy
[43]. The eigenvalues are readily obtained as E± = ±|t|

√
|f(~q)|2, where the

+(-) accounts for the conduction (valence) band. An explicit expression in ~q
is found by plugging in the nearest neighbour vectors from Eq. 1.2 and one
obtains:

E±(~q) = ±t

√
1 + 4 cos

(3
2qya0

)
cos
(√

3
2 qxa0

)
+ 4 cos

(√
3

2 qya0

)2

, (1.7)

which is plotted in Fig. 1.2 (a) for the first Brillouin zone2.

(b)(a) (c)

ΚΚ’

valence band

conduction band

qx

qy

k

Figure 1.2. Band structure of graphene: (a) shows the energy spectrum
(in units of t) for t =−2.7 eV and t′ =−0.2 t, which parametrizes next-nearest
neighbour hopping. Figure adapted from Ref. [43]. (b) Low-energy spectrum
near a Dirac-point. (c) Cut for qy = 0 as indicated in (a) and (b) with the
black, semi-transparent plane. The orientation of the pseudospin (~sK,K’) is
parallel (anti-parallel) to ~k in valence (conduction) band at K. The opposite
chirality is found at K’. Figure adapted from Ref. [48].

The valence and conduction band touch each other at the six corners of
the first Brillouin zone, that are often called Dirac points. Only two of the six
Dirac points are not equivalent and are called K and K’ valley. The two valleys
are a consequence of the triangular Bravais lattice and are only indirectly
linked to the two atomic basis. In undoped graphene, the Fermi energy lies at
zero energy and therefore the Fermi surface consists of six points. Therefore,
graphene is a zero-gap semiconductor that distinguishes it from conventional
semiconductors and metals. At small energies the band structure is linear
whereas at larger energies a saddle point between the K and K’ valley is
reached. This leads to van Hove singularities in the density of states at an
energy that is comparable to the hopping term t ∼ 2.7 eV.

2The calculations leading to Fig. 1.2 include next-nearest neighbour hopping that leads
to an asymmetry in valence and conduction band.

4



1.1. Graphene basics

At low energies the dispersion relation can be expanded around the K point
with ~q = ~K + ~k, where |~k| � | ~K| is the quasi-momentum measured from the
K point. Similarly, this can be done at the K’ point. A Taylor expansion of
Eq. 1.7 around ~K leads to

E±(~k) = ±~vF|~k|, (1.8)

where ~ is the reduced Planck constant, vF = 3ta0/(2~) ∼ 1× 106 ms−1 is the
Fermi velocity and the ±-sign accounts for the conduction and valence band.
The linearised Hamiltonian that describing both valleys takes the following
form:

H0 = ~vF (κkxσ̂x − kyσ̂y), (1.9)

where κ = ± stands for the K and K’ valley and σ̂i are the Pauli matrices
acting on the sublattice space that is also called pseudospin. The Hamiltonian
is identical to the Dirac Hamiltonian for massless relativistic particles with
velocity vF and therefore charge carriers in graphene are commonly referred
to as "Dirac particles".
Since the two valleys (K and K’) are energetically degenerate but inequiva-

lent the charge carriers in graphene have an additional degree of freedom next
to the normal magnetic spin. The density of states (DoS) in graphene depends
linearly on energy since the dispersion relation is linear in ~k:

DoS(E) = gsgvE

2π(~vF )2 , (1.10)

where gs = gv = 2 are the degeneracies due to spin and valley. This energy
dependence of the DoS is in stark contrast to conventional 2-dimensional se-
miconductors that have a constant DoS due to the conventional parabolic
dispersion relation.
The rather low DoS of graphene allows to tune the Fermi energy by applying

a gate voltage (see section 1.2) but this implies that when the charge carrier
density is changed the chemical potential also changes. If dN electrons (a
total charge of dQ = edN) are added to the graphene, the chemical potential
changes by dµ = dN/DoS(E), which can be expressed as a voltage dV =
dµ/e = dQ/(e2DoS(E)). Using the definition of a capacitor C = Q/V , one
arrives at the definition of the quantum capacitance:

CQ(E) = e2DoS(E). (1.11)

Here, CQ(E) is given per unit area. The quantum capacitance has to be added
in series to the gate capacitance but is neglected in most experiments as it has
a marginally effect on the induced charge carrier density. However, in very
clean graphene systems, where the chemical potential can be tuned very close
to the Dirac point, the quantum capacitance can become dominant.
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1. Theoretical background

The relation | ~k |= kF =
√
πn allows to the express the Fermi energy as a

function of density:

E(n) = ~vF

√
4πn
gsgv

. (1.12)

1.1.2. Pseudospin and Berry-phase
As a consequence of the two atom basis of the graphene lattice, the charge
carriers in graphene are described by an additional quantum number, called
pseudospin. It describes the relative weight of the two orbital wave functions
|φA〉 and |φB〉 in the solution of the linear low energy Hamiltonian. An analogy
to a spin 1/2 can be drawn.
Eq. 1.9 can be rewritten using kx + iky = kF e

iθ with θ = arctan(ky/kx):

H = ~vFkF

(
0 ±e∓iθ

±e±iθ 0

)
, (1.13)

where the ±-signs account for the two solutions at the K and K’ valley. θ
describes the angle between ~kF , which is proportional to the momentum, and
kx. The eigenvectors of Eq. 1.13 for the conduction(|EVC〉) and valence band
(|EVV〉) are

|EVC〉 = 1√
2

(
e∓iθ/2

e±iθ/2

)
and |EVV〉 = 1√

2

(
e∓iθ/2

−e±iθ/2

)
, (1.14)

where the ±-sign accounts for the K and K’ valley. This two solutions can
be generalized by introducing the parameter s, which accounts for the valence
band (holes, s = −1) and for the conduction band (electrons, s = +1):

|s〉 = 1√
2

(
e∓iθ/2

se±iθ/2

)
. (1.15)

The absolute square of the two components of the vector in Eq. 1.15 give
the probability of finding the wave function on sublattice A or B. The spinor
rotation around the z-axis by an angle θ is given as:

R(θ) = e−iθ/2σz =
(
e−iθ/2 0

0 eiθ/2

)
. (1.16)

Eq. 1.16 directly leads to the conclusion that the wave function picks up a
phase of π if a rotation of 2π is performed, which is equivalent to a charge
carrier encircling the K or K’ point. This phase is called Berry phase.
It follows that the pseudospin is parallel to ~k in the conduction band and

anti-parallel to ~k in the valence band for the K valley. In K’ valley this relation
is inverted, which is shown in Fig. 1.2 (c). The helicity, which is the projection
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1.1. Graphene basics

of the pseudospin onto the momentum is a conserved quantity at low energy.
Therefore, bakcstattering (inverting momentum and thus ~k) is not allowed
within a valley since this would require to change the helicity of the charge
carrier. Backscattering is thus only allowed by intervalley scattering, which
requires a large ~k ∼ ~K ∼ 1/a0. Such scattering events can only happen at the
edge, at atomic defects or at very small wrinkles.

1.1.3. Bilayer graphene
In bilayer graphene two single layer graphene sheets are stacked on top of
each other. In the case of AB stacking, which is the most common one, the
A atom of the upper layer sits directly above the B atom of the lower layer,
see Fig. 1.3 (a). The most relevant hopping terms are also indicated by γi.
The interlayer hopping between A1 (A2) and B1 B(2) in the lower (upper)
layer corresponds to the nearest neighbour hopping in single layer graphene
and therefore we write γ0 = t = −2.7 eV. All other relevant hopping terms
describe the coupling between the two layers with γ1 = −0.4 eV connecting the
A1 and the B2 atom sitting directly above each other. A2 and B1 are linked
by γ2 = −0.3 eV, which is also called skew coupling. The last term connecting
the B1 to the B2 atom is characterized by γ4 = −0.04 eV [49].
The band structure of bilayer graphene can be derived in a tight binding

approximation similar to single layer as shown above. Here we will only give
the resulting dispersion relation. Considering only γ0 and γ1, the energy dis-
persion relation for the valence (-) and conduction (+) band is found as:

Eα± = ±

[
V 2 + ~2v2

F
~k2 + γ2

1
2 + (−1)α

√
4V 2~2v2

F
~k2 + γ0~2v2

F
~k2 + γ4

1
2

]
,

(1.17)
where vF = 1× 106 ms−1 is the Fermi velocity of single layer graphene and
V describes a possible difference of the electrochemical potential of the two
layers that can, for example, arise in an external perpendicular electric field
[44]. The parameter α is needed to describe the two subbands in the conduction
and valence band, which are shifted by γ1 away from zero energy in the case
of V = 0. In the case of V = 0, Eq. 1.17 can be simplified to:

Eα± = (−1)α · γ1

2 ±
γ1

2

√
1 +

(
~k · 3γ0a0

γ1

)
. (1.18)

For small ~k, Eq. 1.18 describes a parabolic dispersion relation with an effective
mass m = γ1

2v2
F

∼ 0.03me, where me is the mass of a free electron. At larger ~k,
the dispersion relation changes from parabolic to linear, which happens around
a charge carrier density of 5× 1012 cm−2.
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KK΄
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E=0 E≠0
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Figure 1.3. Band structure of bilayer graphene: (a) shows the real
space lattice of a AB stacked bilayer graphene with all relevant hopping terms
indicated by γi, image adapted from Ref. [44]. (b) shows the energy spectrum
of bilayer graphene on an energy scale of 3 eV measured from the Dirac point
that is marked by the black hexagon representing the first Brillouin zone. The
blue (yellow) surfaces show the low-energy (split)bands and the two inequiva-
lent but degenerate valleys are indicated. Image adapted from Ref. [50]. (c)
Low energy spectrum at the K valley taking into account trigonal warping.
Image adapted from Ref. [50]. (d) shows effect of a perpendicular electric field
on the band structure without taking into account trigonal warping. A finite
electric field opens a gap. Image adapted from Ref. [51].
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1.1. Graphene basics

The band structure is shown in Fig. 1.3 (b), where the two coloured surfaces
represent the two split bands. The influence of an external electric field on
the low energy spectrum is schematically shown in Fig. 1.3 (d). Taking into
account the other interlayer hopping terms γ2 and γ3, the low energy spectrum
changes from parabolic to four mini Dirac cones as shown in Fig. 1.3 (d)
[50]. This effect is commonly called trigonal warping as it deforms the band
structure into a trigonal shape. It is important to note that the energy of the
Lifshitz transition, where the topology of the Fermi surface changes from a
single circle to four disconnected circles, is around 1meV.

Similar to single layer graphene, the quasiparticle in bilayer graphene are
also chiral, meaning that the momentum is locked to the sublattic space. The
chirality has opposite sign in the two valleys. However, the Berry phase is 2π
[44, 52].
Due to the parabolic dispersion relation, the density of states of bilayer

graphene is independent of energy [44]:

DoS(E) = 4m∗
2π~2 , (1.19)

where the factor 4 accounts for spin and valley degree of freedom.

1.1.4. Spin-orbit coupling in pristine graphene
As seen in the previous section, the charge carriers in graphene move with
constant velocity leading to a zero mass and absence of a band gap. Therefore,
an analogy with massless Dirac fermions is often drawn, that makes graphene
a solid-state toy to investigate relativistic quantum mechanics (such as Klein
tunnelling). Ironically, this nice analogy is broken by a relativistic effect itself:
spin-orbit coupling, which gives the electrons in graphene a finite mass and
opens an energy gap in the band structure.
In pristine grapheen, only one, namely a spin-conserving next-nearest neig-

hbour hopping spin-orbit coupling is allowed by symmetry [53], which can be
written as the following effective Hamiltonian:

HI = κλI σ̂z ŝz. (1.20)

Here ŝz is the spin Pauli matrix, σ̂z is the pseudospin Pauli matrix and κ =
+1(−1) for the K (K’ valley). In combination with the orbital part of the
graphene Hamiltonian, see Eq. 1.9, the energy spectrum reads:

E± = ±
√

~2v2
F (k2

x + k2
y) + 2λI , (1.21)

where ± accounts for the conduction and valence band. Here, the K and K’
valleys are degenerate as we have seen above. The valence and conduction
band are split by 2|λI | and are spin degenerate as required by space inversion

9



1. Theoretical background

and time reversal symmetry. The influence of HI on the band structure can
be seen in Fig. 1.4 (a). The strength of the spin-orbit coupling comes from
the hybridization of the pz orbitals that form the Dirac cones with d and
higher carbon orbitals [54]. First principles calculations found λI to be 12 µeV
[54]. Kane and Mele have shown that graphene with the intrinsic spin-orbit
coupling is a topologial insulator [35], hosting edge states at the boundary of
the sample while the bulk of the sample is insulating.

As soon as the graphene is placed on a substrate, or an electric field per-
pendicular to the graphene plane is applied, the inversion symmetry is bro-
ken and a Rashba type SOC is allowed. This terms spin-splits the band by
10 µeVV−1 nm in intrinsic graphene [54]. In the next section, graphene on a
TMDC layer is considered, which also includes Rashba SOC.

1.1.5. Spin-orbit coupling in graphene on TMDCs
Placing graphene on top of a TMDC substrate reduces the symmetries in the
system and this allows for more spin-orbit coupling terms next to the intrin-
sic spin-orbit coupling [53]. An enhancement of the spin-orbit coupling can
be understood by the hybridization of the graphene orbitals with the TMDC
orbitals. For the case of the Dirac cones lying in the band gap of the TMDC,
virtual hopping terms can be used to incorporate an enhanced spin-orbit cou-
pling. In detail, the low-energy Hamiltonian of graphene on a single layer
TMDC is given by H = H0 +H∆ +HA,B

I +HR +HA,B
PIA [47, 53], which inclu-

des all symmetry allowed spin-orbit coupling terms. H0 is the Hamiltonian of
pristine graphene as derived above. H∆ represents an orbital gap that arises
from a staggered sublattice potential that leads to an on-site energy of the
A atom that is different from the on-site energy of the B atom. HA,B

I repre-
sents the intrinsic spin-orbit coupling, which is allowed to be different for the
two sublattices as the inversion symmetery is not present. Similarly, HA,B

PIA

represents the sublattice resolved pseudospin inversion asymmetry spin-orbit
coupling, which is permitted by broken z/-z symmetry [53]. Finally, HR re-
presents the Rashba spin-orbit coupling that is induced by a perpendicular
electric field [35, 54]. The different terms can be written as follows:

H0 = ~vF (κkxσ̂x − kyσ̂y) · ŝ0

H∆ = ∆σ̂z · ŝ0

HI = 1
2
[
λAI (σ̂z + σ̂0) + λBI (σ̂z − σ̂0)

]
· κŝz

HPIA = a0

2
[
λAPIA (σ̂z + σ̂0) + λBPIA (σ̂z − σ̂0)

]
· (kxŝy − ky ŝx)

HR = λR (κσ̂x · ŝy − σ̂y · ŝx) .

(1.22)

Here, ~ is the reduced Planck constant, vF is the Fermi velocity, κ = +1(−1)
stands for the K and (K’) valley, σ̂i(ŝi) are the sublattice (spin) Pauli matri-
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1.1. Graphene basics

ces, ki are the wave vector components measured relative to K or K’, a0 is
the graphene lattice constant, ∆ is the staggered sublattice potential and λi
represent different spin-orbit coupling strengths. The notation in eq. 1.22 is
particularly useful for tight binding calculations. However, from an analytical
point of view it is more transparent to combine sublattice dependent terms,
resulting in H = H0 +H∆ +HI +HV Z +HR +HPIA +H∆PIA with [36]:

HI = λIκσ̂z · ŝz, λI = 1
2
(
λAI + λBI

)
HV Z = λV Zκσ̂0 · ŝz, λV Z = 1

2
(
λAI − λBI

)
HPIA = a0λPIAσ̂z · (kxŝy − ky ŝx) , λPIA = 1

2
(
λAPIA + λBPIA

)
H∆PIA = a0∆PIAσ̂0 · (kxŝy − ky ŝx) , ∆PIA = 1

2
(
λAPIA − λBPIA

)
.

(1.23)

Here, HI is the usual intrinsic spin-orbit coupling in graphene that opens a
topological gap of 2|λI |. In addition, a valley Zeeman term HV Z , which locks
valley to spin, emerges from the difference of the intrinsic spin-orbit coupling in
the two sublattices. This term polarizes the spins out of plane with opposite
orientation in the K and K’ valley, which is a property inherited from the
TMDC substrate. HPIA normalizes the Fermi velocity independent of the spin,
whereas H∆PIA renormalizes the Fermi velocity depending on the spin. This
term therefore leads to a |~k|-linear spin splitting of the bands. The influence
of each term individually on the pristine graphene band structure is shown in
Fig. 1.4 for the K valley. Since HPIA and H∆PIA scale linearly with |~k| their
influence is negligible at low energies as one can easily see in Fig. 1.4 (e) and
(f) where five order of magnitude larger Hamiltonian parameters were used
compared to the other terms to have a similar effect on the band structure.

z/-z symmetry and its implications

It is the loss of horizontal mirror symmetry (e.e. mirroring the graphene plane
perpendicular to z-axis) that allows Rhasba and PIA spin-obit coupling in
graphene. The other spin-orbit coupling terms in the Hamiltonian presented
in eq. 1.23 are symmetric in z/-z mirroring. This can easily be seen that only
HR, HPIA and H∆PIA contain ŝx,y that are not invariant upon inversion of
the z-direction. For example, sx transforms into −sx if z is mirrored to −z.
This means that no spin polarizaiton in sx or sy can be present if the z/− z-
symmetry is present, as it is in pristine graphene. Therefore, only ŝz,0-terms
are allowed in a Hamiltonian preserving this symmetry [53].
This classification into symmetric and asymmetric spin-orbit coupling with

respect to horizontal mirror symmetry is useful in the discussion of spin-orbit
scattering rates extracted from weak anti-localization measurements. In such
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Figure 1.4. Spin-orbit coupling in graphene for the K valley: The
band structure of pristine graphene is shown as black dashed line. Purple solid
lines indicate spin degenerate bands wherease blue and red solid lines indicate
spin resolved bands. The spin expectation value is different though between
the valley-Zeeman SOC and Rashba SOC. A staggered sublattice potential (a)
opens a gap of 2∆ close to the Dirac point, leaving the valence and conduction
band spin degenerate. Similarly the intrinsic spin-orbit coupling (b) opens
a topological gap of 2λI at the Dirac points. In contrast to (a), (b) host
spin polarized edge currents. A valley-Zeeman term (c) spin splits the band
by 2λV Z , keeping the linear dispersion relation. A Rashba spin-orbit coupling
(d) also spin splits the band but introduces in addition a finite mass. The PIA
terms renormalise the Fermi velocities. λPIA (e) is spin independent whereas
∆PIA (f) leads to spin dependent Fermi velocities and therefore to a k-linear
splitting of the bands. Since the PIA terms depend on momentum, it is clear
that in order to have an effect at very low energy scales, very large values for
λPIA and ∆PIA are needed. In other words, for realistic SOC terms, the PIA
SOC only has an influence at very large doping and it is therefore irrelevant
around the Dirac point.
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measurements, two different spin-orbit scattering rates can be obtained, a
symmetric τsym and and an asymmetric τasy. Therefore, the asymmetric spin
relaxation rate contains information about HR, HPIA and H∆PIA , whereas
the symmetric spin relaxation rate contains information about HI and HV Z .

1.2. Charge transport in graphene

In order to discuss charge transport in graphene it is helpful to define some
length scales first. For a two-dimensional conductor the device width W and
the device length L define the size of the system. Another important length
scale is the mean free path lmfp, which is the distance the charge carriers can
travel before a momentum scattering happens. Different transport regimes can
occur depending on the ratio of lmfp/W,L. If lmfp � W,L, which is called
the diffusive regime, the charge carriers scatter many times while travelling
through the device and therefore fully randomize their momentum. On the
other hand, if lmfp ∼ W,L the ballistic regime is entered. In suspended or
hBN/TMDC-encapsulated graphene, lmfp can be on the order of several µm,
whereas it is on the order of 10 nm for conventional graphene devices on SiO2
substrate.
Charge carriers in graphene do not only carry information in the form of

charge, but they also contain viable information in their spin, valley and the
electron’s phase that are relevant for transport phenomena. All these quanti-
ties are randomized over their own characteristic length scale: the momentum
over the mean free path lmfp, the spin over the spin relaxation length λs,
the valley over the valley scattering length liv, and the phase over the phase
coherence length λφ. All length scales can also be expressed in their corre-
sponding time scales: momentum relaxation time τp, spin relaxation time τs,
valley scattering time τiv and phase coherence time τφ.

In the following the basics of diffusive charge transport is explained, followed
by an introduction to spin transport in graphene.

1.2.1. Field effect

Most of the graphene devices investigated in this thesis have at least two elec-
trodes (source and drain) and at least one gate (mostly global back gate). This
configuration allows for straightforward transport experiments. If a voltage
VSD across source and drain is applied, a current ISD will flow and the con-
ductance G = ISD/VSD can be measured as a function of several parameters.
A finite voltage difference between the graphene channel and the gate electrode
will induce a charge carrier density proportional to the gate capacitance:

C = ε0εr
A

d
, (1.24)
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1. Theoretical background

which in most cases is very well approximated by a plate capacitor with area
A and with a dielectric of thickness d with a relative dielectric constant εr. As
mentioned above, the charge carrier density in graphene is not solely defined by
the geometric gate capacitance but the quantum capacitance has to be added
in series, see section 1.1.1. However, in most cases this is a minor correction
and can therefore be neglected. The induced density will lead to a shift of the
Fermi energy in the graphene. Since graphene is a zero-gap semiconductor,
electron and hole conduction are both accessible by changing the sign of the
gate voltage. Such an ambipolar field effect is shown in Fig. 1.5 (a). By
changing the gate voltage from negative to positive values, the Fermi energy
is shifted from the hole band through the Dirac point into the valence band.
While it is possible to shift the Fermi energy to the Dirac point in an ideal
graphene device, small potential fluctuations prevent this in real devices. A
homogeneous doping across the device is not possible for low doping levels and
the device then breaks up into random electron and hole regions, also called
puddles. Therefore, people often refer to the Dirac point as charge neutrality
point (CNP) as this is a more accurate description. The residual doping n∗,
which is the lowest doping level that can homogeneously be realized in a device,
characterises the device quality in terms of how close the Fermi energy can be
tuned to the Dirac point. It can also be thought of the "width" of the CNP.
The residual doping can be extracted from a log-log plot of the conductance
versus the density, see Fig. 1.5 (b).
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Figure 1.5. Field effect in graphene:. (a) Gate dependence of the
graphene conductivity showing ambipolar field effect. The insets show sche-
matically the different doping levels. The field effect mobility is extracted
from the slope of the conductivity with gate (density) and is on the order of
100 000 cm2 V−1 s−1 for this device. (b) Extraction of the residual doping with
a log-log plot.
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In a semi-classical Drude model, the conductivity in graphene is given as

σ = ne2τp
m

= 2e2τpvF
√
nπ

h
, (1.25)

where m = |~p|/vF = ~kF /vF was used as the charge carrier mass. Depending
on the relation of τp on kF different regimes are possible. Usually, the charge
impurity scattering with τp ∝ kF [55] dominates and a linear relation of the
conductivity with density is obtained:

σ ∼ neµ, (1.26)

where µ is a density independent charge carrier mobility. This allows to extract
a field effect mobility by fitting the slope in conductivity measurements, see
also Fig. 1.5 (a). An additional estimate of the mobility can be obtained by
the magnetic field at which Shubnikov–de Haas (SdH) oscillations appear for
the first time. SdH oscillations occur once charge carriers can complete a full
cyclotron orbit, which is the case if ωcτe ≥ 1. Here, ωc = eBvF /(~kF ) is the
cyclotron frequency and τe is the elastic scattering time including short range
scattering (small angle scattering) that does not lead to momentum relaxation
(τe ≤ τp ∼ lmfp/τp). Therefore, the so-called quantum mobility is obtained as
µ ∼ 1/B, where B is the magnetic field at which SdH oscillations appear.
Using the Einstein relation, the conductivity can be related to the density

of states with the diffusion constant D as the proportionality factor:

σ = e2DoS ·D. (1.27)

This expression is in particular useful as it allows to estimate the diffusion
constant that is then used to relate spin and phase relaxation lengths to their
corresponding times scales through λs,φ =

√
Dτs,φ.

If lmfp approachesW,L, the above mentioned diffusive formulas do not hold.
In a pure ballistic graphene channel the conductance is given by the number of
modes carrying each a conductance of 4e2/h due to spin and valley degeneracy.
The number of modes is given by the width of the graphene channel and one
obtains the total conductance

G = 4e2

h

W

λF /2
= 4e2

h
W
√
n/π, (1.28)

where λF = 2π/kF was used. Ballistic transport in graphene constrictions [56]
as well as quantized conductance [57] was recently observed.

pn-junctions

So far only homogeneous doping was considered. As shown above, graphene
can be smoothly tuned from hole conducting to electron conducting. It is
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1. Theoretical background

furthermore possible to laterally dope the graphene to different charge carrier
densities by multiple electrostatic gates. Between such differently gated regions
so called pn or nn’ junctions are formed, which can either be operated in the
unipolar regime where both regions have the same charge carrier polarity (nn’
or pp’) or in the bipolar regime where the two regions have opposite charge
carrier polarity (pn or np). It is important to note that in the case of pn-
junctions (opposite polarity) a zero density region separating the two regions
will be present. However, as the spectrum of graphene is gapless, no gap is
present as it would be the case in conventional semiconductor. A remarkable
consequence of the pseudospin in graphene is the fact that charge carriers will
transmit a pn-junction with unity probability under perpendicular incident,
which is called Klein tunnelling [58, 59].

Semi-transparent pn-junctions were recently introduced as building blocks
for electron optics in graphene, where Fabry-Pérot cavities were formed [60,
61]. We also showed guiding of electrons in gate defined channels [62], where
we also observed mode filling. In addition, beamsplitter behaviour was de-
monstrated [63] as well as negative refraction [64] leading to the realization of
a Veselago lens [65].

1.2.2. Phase coherent effects

If the phase coherence length λφ ≥ L,W , then charge transport is phase
coherent. This means that the quantum mechanical phase is preserved during
multiple scattering events and interference effects can dominate transport.
This does not mean that phase coherence effects are negligible in the regime
λφ � L,W since some interference effects are even observable for macroscopic
samples. In the first case, universal conductance fluctuations are expected for
example, whereas weak (anti-)localization can be observed even the second
case. Both effects are introduced in the following.

Universal conductance fluctuations

In a diffusive conductor, the different trajectories of the charge carriers added
up phase coherently and lead to a constructive or destructive interference
at certain places. This results in a deviation from the classically expected
conductance. If λφ ∼ L,W , then the amplitude of the fluctuations around
the mean value of the conductance is on the order of e2/h [66], independent
of device size and disorder strength, which made people call the fluctuations
universal [67].

In optics the interference pattern can be changed by changing the path
length or the wavelength. In analogy to optics, the charge carrier wavelength
λF or their trajectories can be changed. The trajectories can be modified by a
magnetic field that bends the charge carrier trajectories. In addition, changing
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1.2. Charge transport in graphene

the disorder potential (e.g. by gating) the path of the charge carriers will be
modified. The wavelength λF can be changed by changing the gate voltage,
which results in a change of the Fermi energy. Therefore, the conductance is
expected to fluctuated around the mean value by changing the magnetic field
or by changing a gate voltage.
When the device dimensions are larger than the phase coherence length, it

can be viewed as independent pieces of size ∼ λ2
φ that all display fluctuations

that are uncorrelated. Therefore, the overall UCF amplitude reduces for larger
devices. On the other hand if λφ =

√
τφD is reduced, the amplitude of

the UCF reduces as well as the overall conductor can be separated in more
uncorrelated areas. The increase of temperature reduces τφ and hence λφ,
which suppresses UCF. In addition an ensemble averaging over density or
magnetic field can be performed to reduce the UCF amplitude further. In
contrast to UCF, weak localisation and weak anti-localization are not averaged
out if W,L� λφ. More about this phenomena is shown in the next section.

If the disorder potential is gradually removed, the conductor goes from a
diffusive regime to a ballistic regime. Interferences due to multiple paths can
still occur but for the limit of a ballistic sample scattering is only possible at
the edge or at electrostatic defined boundaries. Changing the density or the
magnetic field will now affect the interference conditions in a regular way and
Fabry-Pérot interferences, similar to optical cavities, can occur in the ballistic
limit.

Weak localization and weak anti-localization

In a diffusive conductor, the charge carrier trajectories can form closed loops
after several scattering events, see Fig. 1.6. The presence of time-reversal
symmetry leads to two identical paths denoted by solid lines (forward) and
dashed lines (reversed), which return to the common starting point. The
complex quantum mechanical amplitudes of the two paths can be described
by A+ and A−. Then the probability of returning to the starting point is

|A+ +A−|2 = |A+|2 + |A−|2 +A+A−∗ +A+∗A−, (1.29)

where the first two terms describe the classical contributions to backscattering
(captured in the Drude formalism presented above). The last two terms arise
due to the interference effect of both paths which is neglected in the classical in-
coherent Drude formalism. Time-reversal symmetry requires A+ = A− ≡ A.
This then leads straightforwardly to the classical backscattering probability
Pcl = 2|A|2 and to the enhanced quantum mechanical backscattering proba-
bility Pqm = 4|A|2. This effect is called weak localization (WL) [67].
The weak localization can be suppressed by an out-of-plane magnetic field.

The wave function will pick up an additional Aharonov-Bohm phase φAB ,
that is opposite for the two paths. The quantum mechanical amplitudes are
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1. Theoretical background

A+

A-

B

Figure 1.6. Closed loop interference of WL. Closed loops due to multiple
scattering events lead to an interference condition at the starting point. If time
reversal symmetry is present, the forward and the reversed path will interfere
constructive at the starting point and an enhanced backscattering probability
results. A perpendicular magnetic field ~B through the loop area (grey shaded
region) suppresses the interference condition.

therefore depending on magnetic field, A±(B) = Ae±iφAB . The interference
condition at the starting point will now be a periodic function of magnetic
field: Pqm = 2|A|2 + 2|A|2 cos (4eπBS/h), where S is the area of the closed
loop, see also Fig. 1.6. Since many closed loops with different area will contri-
bute to the overall conductance, a coherent effect is only observed around zero
magnetic field whereas at larger magnetic fields the oscillation in the interfe-
rence conditions will average out. As a result, the conductance increases with
magnetic field. This correction is commonly known as quantum correction to
the magneto conductivity.

In the case of graphene, the quantum correction to the magneto conductivity
∆σ in the absence of SOC is given by:

∆σ(B) = e2

πh

[
F

(
τ−1
B

τ−1
φ

)
− F

(
τ−1
B

τ−1
φ + 2τ−1

iv

)
−2F

(
τ−1
B

τ−1
φ + τ−1

∗

)]
,

(1.30)

where F (x) = ln(x) + Ψ(1/2 + 1/x), with Ψ(x) being the digamma function,
τ−1
B = 4eDB/~, where D is the diffusion constant, τφ is the phase coherence
time, τiv is the intervalley scattering time and τ∗ = (1/τiv + 1/τz + 1/τw)−1,
where τz is the intravalley scattering time and τw is a scattering time asso-
ciated with trigonal warping [52]. In principle, Eq. 1.30 can describe weak
localization or weak anti-localization depending on the relative value of the
involved time scales. In the limit of τφ > τiv, the quantum correction to the
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1.2. Charge transport in graphene

magnetoconductivity displays a WL behaviour, which is commonly observed
[68–71], see also section C.7. On the other hand if τiv,∗ ≥ τφ, a WAL behaviour
is obtained. This transition has been shown experimentally by Tikhonenko et
al. [69]. The influence of τφ and τiv on the quantum correction to the magneto
conductivity are shown in Fig. 1.7.
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Figure 1.7. ∆σ(B) for different phase coherent and intervalley
scattering times: WL and WAL is obtained from Eq. 1.30 by using
D = 0.118m2 s−1 and various combinations of τφ and τiv. (a) shows the
influence of τφ, which is responsible for the suppression of the WL signal with
shorter τφ. (b) shows the influence of τiv, which can change the curve shape
from a clear WL signature to a broad WAL signature.

In principle, the charge carriers in graphene should show a WAL behaviour
as they possess an additional quantum number, the pseudospin. Therefore,
the wave function picks up an additional phase of π in closed loops, see also
section 1.1.2. However, intervalley scattering (τiv) prevents the wave function
from picking up a phase of π as the chirality in the K valley is opposite to the
K’ valley. Strong intervalley scattering will therefore lead to the recovery of
WL.
In analogy to the pseudospin that is coupled to momentum by the chira-

lity, the magnetic spin can be coupled to the momentum through SOC (e.g.
Rashba SOC). Therefore, strong SOC in graphene will also lead to WAL. The
WAL signature of a spin 1/2 in strong spin-orbit materials has been shown by
Bergmann in an illustrative way [72]. In the case of strong SOC in graphene,
the quantum correction to the magneto conductivity ∆σ is given by:

∆σ(B) = − e2

2πh

[
F

(
τ−1
B

τ−1
φ

)
− F

(
τ−1
B

τ−1
φ + 2τ−1

asy

)
−2F

(
τ−1
B

τ−1
φ + τ−1

asy + τ−1
sym

)]
,

(1.31)
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where τasy is the spin-orbit scattering time due to SOC terms that are asym-
metric upon z/-z inversion (HR, HPIA) and τsym is the spin-orbit scattering
time due to SOC terms that are symmetric upon z/-z inversion (HI , HV Z)
[73]. Eq. 1.31 holds only in the limit where τiv is shorter than τφ, τasy and
τsym. Otherwise the influence of τiv and τ∗ have to be taken into account, see
section C.6 for a complete formula. Again, different limits with WL and WAL
are possible depending on the relative magnitude of the time scales.

In the limit of very weak asymmetric but strong symmetric SOC (τasy �
τφ � τsym), Eq. 1.31 describes reduced WL since the first two terms cancel
and therefore a positive magneto conductivity results. Contrary to that, in the
limit of very weak symmetric but strong asymmetric SOC (τsym � τφ � τasy)
a clear WAL peak is obtained. If both time scales are shorter than τφ, the ratio
τasy/τsym will determine the quantum correction of the magneto conductivity.
In the limit of total weak SOC (τasy, τsym � τφ) the normal WL in graphene
is obtained, see above. The influence of τasy and τsym on ∆σ(B) is shown in
Fig. 1.8.
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Figure 1.8. ∆σ(B) for different spin-orbit scattering rates: Various
shapes of ∆σ(B) are obtained from Eq. 1.31 using D = 0.118m2 s−1 and the
time scales indicated in the figure. (a) shows the influence of τasy, which is
responsible for the transition from a clear WAL peak at τasy = 5× 10−13 s
to a (mostly) WL feature at τasy = 5× 10−10 s. (b) shows the influence of
τsym, which mostly only changes the background at large magnetic field. The
central WAL peak height depends weakly on τsym for τsym � τasy

.

There is an upper limit of the field scale (the so-called transport field Btr)
at which the theory of WL/WAL breaks down. The size of the shortest closed
loops that can be formed in a diffusive sample is on the order of l2mfp, where
lmfp is the mean-free path of the charge carriers. Fields that are larger than
Φ0/l

2
mfp, where Φ0 = h/e is the flux quantum, are not meaningful in the
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1.2. Charge transport in graphene

framework of diffusive transport.
In general τφ is the longest time scale and is therefore responsible for the

sharpest feature around zero magnetic field. Even though Eq. 1.30 and 1.31
can both reproduce clear WL and WAL signatures, the WAL due to SOC is
characterized by a sharp peak around zero magnetic field, whereas the WAL
due to the pseudospin is much broader with a sharp dip around zero magnetic
field. Therefore, the quantum correction to the magneto conductivity can
reveal the presence and strength of the SOC.

1.2.3. Hall effect and quantum Hall effect

Charge carriers in graphene experience a Lorentz force when a perpendicular
magnetic field is applied [74]. This leads to a deflection of the charge car-
riers, which in turn leads to a voltage appearing between opposite edges of
the graphene (Hall voltage) given by [67]: VH = IB/(en), where I is the app-
lied current. Therefore, the Hall effect allows to determine the charge carrier
density in the graphene. Furthermore, a parabolic magnetoconductance is ex-
pected in a two-terminal measurements, whose exact shape is determined by
the τp and the charge carrier density n [67].

For very large magnetic fields the charge carriers in graphene can from closed
loops and quantum effects start to play a role. In high-mobility 2-dimensional
electron gases (2DEGs) at low temperatures the longitudinal resistance Rxx
drops to zero, whereas the Hall resistance Rxy = h/(e2ν) with ν = 1, 2,
3, ... becomes quantized [75]. In this phase, the quantum Hall phase, the
bulk of the sample is gapped, whereas dissipationless edge channels carry the
current, resulting in the quantized Hall conductance. The quantum Hall effect
appears if two main criterion are met. First the charge carriers need to be
able to perform full cyclotron orbits without being scattered and second the
temperature must be small enough such that kBT � EN , where EN is the LL
energy.
The LL energies in graphene are obtained by solving the Dirac equation in

a perpendicular magnetic field resulting in:

EN = sign(N)vF
√

2e~B|N |. (1.32)

It is evident from Eq. 1.32 that the lowest LL is at zero energy, being half filled
by electrons and half filled by holes. The square-root dependence on B results
in non-equidistant LL gaps (in contrast to conventional semiconductors) with
a very large LL gap between the first two LL, which lead to the observation of
the QHE in graphene at room temperature [76]. The Hall conductivity takes
the form

σxy = gsgve
2

h
(N + 1/2) (1.33)
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The two factors of gs = gv = 2 resembles the spin and valley degeneracy
whereas the additional 1/2 comes from the Berry phase picked up by closed
loops. Whenever the Hall conductivity is quantized to the values described in
Eq. 1.33, the longitudinal resistance Rxx will go to zero indicating dissipation
less edge channels. Due to electron-electron interactions [77], the spin and val-
ley degeneracy can be lifted and quantized conductance at all integer values of
e2/h can be observed. In the absence of interaction driven symmetry breaking,
the spin-splitting of the quantum Hall states could be used to investigate the
SOC strength [78].
In two terminal device Gxy and Rxx cannot be measured independently but

only a combination of both depending on the aspect ratio W/L. For W/L ∼ 1
well defined plateaus at the values given in Eq. 1.33 develop [79, 80].
Since the charge carrier in bilayer graphene are massive, the Landau level

spacing is nearly equidistance and discribed by [81]:

EN = ±~ω
√
N(N − 1). (1.34)

A direct consequence of this formula is that the Landau level N=0 and N=1
both lie at zero energy leading to an eightfold degeneracy, whereas the other
Landau levels are fourfold degenerate. As in single layer graphene, this Landau
level is half-filled by holes and half-filled by electrons. The Hall conductance
is quantized in steps of ±4,±8,±12... [81].

1.3. Spin transport in graphene

Ferromagnetic contacts are one of the most common ways to inject a spin pola-
rized current into a non-magnetic material (NM), including graphene. Before
discussing spin transport in graphene, a basic introduction to ferromagnetism
is given, followed by the concept of electrical spin injection.

1.3.1. Ferromagnetism and magnetic anisotropies
Metallic ferromagnetism (e.g. in Fe, Ni, Co) is well described by the Sonter
model [82, 83]. Spontaneous ferromagnetic ordering occurs if the Stoner cri-
terion U · DoS(EF ) ≥ 1 is met. In general, a large exchange interaction U
and a large density of states at the Fermi energy DoS(EF ) is required. The
3d bands of the transition metals Fe, Ni and Co fulfil these conditions [82]. A
spin-splitting of the bands by the exchange splitting ∆Eex and a spontaneous
magnetization M ∝ (n↑−n↓), proportional to the total number of spin-up n↑
and spin-down n↓ electrons, occurs even in the absence of an external magnetic
field. This is shown in Fig. 1.9 (a).
While the microscopic origin of the magnetization ~M is described by the Sto-

ner model, it fails to describe the local variations of ~M(~r) and its anisotropy in
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Figure 1.9. Ferromagnetism: (a) shows a schematic of the spin-split
bands shifted by the exchange energy ∆Eex in the Stoner model. Different
DoS N↑ (red arrow), DoS N↓ (blue arrow), and a spontaneous magnetization
M ∝ (n↑ − n↓) result. (b) Magnetization as a function of external magnetic
field µ0H of a mutli-domain ferromagnet. (c) shows the stray field genera-
ted by rectangular ferromagnets and the reduction of the stray field by for-
ming multiple domains, including closure domains at the ends. Adapted from
Ref. [84].

bulk ferromagnets. This can be captured by minimizing the ferromagnet’s to-
tal free energy G =

∫
V

dV gtot( ~M(~r), ~H), considering all relevant energy terms
and magnetic anisotropies of the system [83, 85]. Anisotropies are for exam-
ple responsible that the magnetization ~M aligns along a preferred direction,
so called easy axis, in the absence of an external magnetic field ~H. In this
case, the system’s total free energy G is minimal. On the other hand, a hard
axis is called an orientation of the magnetization that leads to a maximum in
G. The most relevant energy terms contributing to the total energy density
gtot = fex + fZ + fmc + fd are discussed briefly in the following based on Refs.
[83, 85].
The short range internal exchange energy term fex ∝ (∇ ~M)2 accounts for

the microscopic ferromagnetic ordering, that favours parallel orientation bet-
ween magnetic moments. The Zeeman energy term fZ = −µ0 ~H ~M accounts
for the interaction of the magnetization with an external field that favours
parallel orientation. The magneto crystalline anisotropy energy fmc accounts
for the alignment of the magnetic moments with respect to a crystallographic
easy axis. The microscopic origin of this interaction is the spin-orbit inte-
raction that couples spins to the anisotropic orbitals in crystalline structures
[83]. In permalloy (Py = Ni80Fe20) the magneto crystalline anisotropy of Ni
and Fe nearly cancel, which results in a material with a very small crystal
anisotropy. The dipole energy term fd = −µ0 ~Hd ~M(~r) describes the dipole-
dipole interaction of the magnetization with the demagnetization field ~Hd (in
the sample) or stray field (outside the sample) that is created by the ferromag-
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netic material itself. This term tries to minimize the stray field. The preferred
in-plane magnetization of a thin ferromagnetic film is due to this term. Furt-
hermore, it is also the driving force for domain formation [83], which can reduce
the stray field as depicted in Fig. 1.9 (b). One often also speaks about shape
anisotropy since a given shape of a ferromagnet will prefer a certain direction
of the magnetization. A typical magnetization curve as a function of external
field is shown in Fig. 1.9 (b) for a multi-domain ferromagnet. In an incre-
asing external magnetic field the domains with a magnetic moment parallel
to the external field will grow until all moment are aligned with the external
magnetic field an the saturation magnetization MS is reached. In this case,
the ferromagnet is in a single domain state. At zero external magnetic field,
a non-zero (remanent) magnetization MR remains. The coercive field µ0HC
is required to overcome this ferromagnetic ordering and to reverse the sign of
the magnetization. Ferromagnets with a small HC are called soft magnets,
whereas ferromagnets with large HC are called hard magnets [82].
In the case of very small ferromagnetic samples (≤ 100 nm to 500 nm [86])

the energy cost for a domain wall formation is larger than the gain due to the
stray field reduction and a single domain will result, see also Fig. 1.9 (c), top.
In this case, the magnetization direction will be determined by a competition
of the shape and crystal anisotropy. For thin ferromagnetic strips with the
width being much smaller than the length, an in-plane magenetization along
the longest direction is observed commonly for Co and Py.
As shown above the magnetization in a nanoscale ferromagnet can be uni-

form (e.g. single domain). Therefore, we describe the magentization dynamics
in the following for a classical macro-spin ~M . The magnetization dynamics of
a ferromagnet in an effective magentic field ~Heff is governed by the Landau-
Lifshitz-Gilbert equation [87, 88]

d ~M

dt
= γ ~Heff × ~M + α ~M × d ~M

dt
, (1.35)

where γ = gµB/~ is the gyromagnetic ratio with g the Landé g-factor and
µB = e~/(2me) the Bohr magneton and α the Gilbert damping constant. Dri-
ving the magnetization with an external high-frequency magnetic filed can lead
to a stable resonance condition when the driving power equals the damping
power. This situation is called ferromagnetic resonance (FMR). The resonance
frequency depends on the effective field ~Heff that is a sum of several influ-
ences (e.g. external field, shape and crystal anisotropy fields). The Gilbert
damping, characterizing the loss of the system, can have several origins. It was
predicted [89] and observed that the damping term substantially increases if
the ferromagnet is in contact with a non-magnetic material that can absorb a
spin current emitted from the ferromagnet [90–93]. This situation corresponds
to spin pumping that will be discussed in chapter 6.

24



1.3. Spin transport in graphene

1.3.2. Electrical spin injection in non-magnetic materials
Ferromagnetic contacts are one of the most common ways to inject a spin
polarized current into a non-magnetic material (NM). The two spin-dependent
bands are shifted in energy due to exchange interaction and hence the density
of states in a ferromagnet is different for the two spin species (here called "spin
up" and "spin down"). This leads to a magnetization that is a measure of the
difference of total spin up and spin down electrons in the system. Usually for
transport measurements, the density of states at the Fermi energy is relevant.
It is obvious to see that in the case of a half-metal (where only one spin species
is allowed at the Fermi energy) the current will be spin polarized. Therefore, a
current passed from a half-metal into a non-magnetic metal will lead to a net
spin current in the normal metal. In reality half-metals are scarce and therefore
normal ferromagnets are used. Their spin dependent density of states leads
to spin dependent conductivities, which in a diffusive system can be written
with the use of Einstein’s relation as

σ↑↓ = e2ρ↑↓(EF )D↑↓, (1.36)

where e is the electron charge, D↑↓ is the spin dependent diffusion constant
and ρ↑↓(EF ) is the spin dependent density of states at the Fermi energy (EF ).
In a non-magnetic material D↑↓ can be replaced with the Dc (this holds as
long as spin is coupled to charge, which is mostly the case). This leads to spin
polarized currents in the ferromagnetic material with a polarization

P = σ↑ − σ↓
σ↑ + σ↓

, (1.37)

where the overall conductance is given by σ = σ↑ + σ↓.
Driving now a current across a FM/NM interface will lead to a spin im-

balance in the NM as the current is spin polarized as seen above. This spin
imbalance will decay over distance with a characteristic length scale λs and it
will finally vanish at distances very far away from the interface as no net spin
polarization is allowed to exist there (equilibrium condition in a NM). The
spin imbalance is called spin accumulation, which can be expressed by the
difference of the chemical potential of the spin up and spin down electrons:
µs = (µ↑ − µ↓). In a diffusive picture, the spin relaxation length λs can be
related to the spin relaxation time τs using the spin diffusion constant Ds:
λs =

√
Dsτs.

1.3.3. Conductivity mismatch
As mentioned in the previous section, a spin accumulation will develop if a
current is driven across the FN/NM interface, which is given as:

µs,NM (0) = −ejPiRNM , (1.38)
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where e is the electric charge, µs,NM is the spin accumulation in the normal
metal at the interface (x=0), j is the current driven across the interface, Pi
is the injection efficiency and RNM = λs,NM

σNM
is the effective resistance of the

normal metal. Often this resistance is also called spin resistance as it describes
the resistance of one spin channel over the characteristic length scale λs. The
magnitude of µs,NM crucially depends on the involved materials and interface
properties as this defines the injection efficiency Pi, which is given as [94]:

Pi = RFMPFM +RCPC
RFM +RC +RNM

, (1.39)

where RFM,NM,C are the effective resistances of the FM, NM and contact
respectively and PFM,C are the spin polarizations of the FM and contact
respectively [94]. Here, PFM means the bulk polarization of the FM, whereas
PC is the polarization associated with the contact interface of the FM to the
NM. Two limiting cases can be distinguished:

Pi =

{
RFMPFM
RNM+RFM

RC � RFM , RNM → transparent contact
PC Rc � RFM , RNM → tunnel contact

, (1.40)

depending on the relative magnitude of RC to RNM and RFM .
In the case of a transparent contact, the ratio of RFM to RNM will finally

determine the spin injection efficiency. For RFM ∼ RNM , meaning the FN and
NM are equally conducting3, a large spin injection efficiency Pi ' PFM can be
reached. This is the situation usually the case fo all metallic spin valves or for
the injection of a spin polarized current from a ferromagnetic semiconductor
to a normal semiconductor. If on the other hand RNM � RFM , which would
correspond to the injection from a ferromagnetic metal to a non-magnetic
semiconductor or to a low dimensional conductor (e.g. graphene), the spin
injection efficiency is small Pi ' RF

RNM
PFM . This situation is well known as

the conductivity mismatch problem [95].
In the case of a highly resistive contact (RC � RFM , RNM , e.g. a tunnel

contact), the spin injection efficiency Pi is given by PC , which can be large. In
this case the contact acts as a spin filter. Obviously, the question is what de-
termines PC . In a general form, where no further assumptions are made about
the contact, one can write PC = Σ↑−Σ↓

Σ↑+Σ↓
, where Σ↑,↓ are the spin conductances

of the contact. The spin dependent conductances of the contact Σ↑,↓ can be
given by a spin-filtering effect of the contact, or by the spin dependent density
of states of the FM in the case of a tunnel contact for example.

In a tunnel contact, the tunnelling current is given as a convolution of the
occupied states of the FM with the empty states in the NM within the bias

3Equally conducting means here that the effective resistances are similar, which depend
on the conductivites and spin relaxation lengths.
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1.3. Spin transport in graphene

window. Since the occupied states in the FM depend on the density of states at
the Fermi energy, which itself is spin dependent, a spin dependent term enters
the contact resistance. Therefore, a large difference in density of states for
spin up and down at the Fermi energy is beneficial, which is the case for iron
and cobalt whereas there is only a small splitting for nickel [96, 97]. Therefore,
a tunnel barrier between the FM and the NM is a solution to the conductivity
mismatch problem and allows for large spin polarizations and accumulations
in the NM. Alternatively, a spin filtering at the interface of a highly resistive
contact could be another way to inject spin polarized currents efficiently into
a NM.

1.3.4. Spin diffusion equation
As seen above, a spin accumulation can be created in a NM at the interface
to a FM contact. The motion of the spins in the NM (e.g. graphene) can be
described by the spin diffusion equation in steady state [94]:

~dµs
dt

= 0 = Ds∇2 ~µs −
~µs
τs
, (1.41)

where ~µs = (µxs , µys , µzs) is the spin accumulation in three dimensions. The first
term on the right represents diffusion and the second term describes relaxation
with the spin relaxation time τs. In the case of a 1D system (e.g. infinitely
long narrow graphene strip), the solution of the differential equation is µs(x) =
µs,0e

−|x|/λs . This describes an exponential decay of the spin accumulation to
the equilibrium condition µ(x = ±∞) = 0 with the characteristic length scale
λs =

√
Dτs, where D is the diffusion constant, and with µs,0 given above.

1.3.5. Non-local spin valve
A non-local spin valve as depicted in Fig. 1.10 (a) is an ideal platform to study
the spin properties of the channel material (e.g. graphene). In this configura-
tion the current path is spatially separated from the voltage detection. This is
a big advantage as it allows to separate any magnetoresistance effect present
in local spin valves (e.g. anisotropic magneto resistance of the FM) from the
pure spin transport signal. The non-local spin valve uses the fact that a spin
accumulation below the injecting contacts leads to the diffusion of spins away
from this point. The voltage detection circuit starting at distance L from the
injector contact thus probes only the spin accumulation due to diffusion of the
spin away from the injector contact.
A typical non-local spin valve consists of four ferromagnetic contacts (actu-

ally only contact 2 and 3 need to be ferromagnetic), as shown in Fig. 1.10 (a).
If a current is passed from contact 2 to contact 1, a spin accumulation builds up
in the graphene as shown in (b). If all contacts are magnetized parallel to each
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other, as shown on the top, contact 2 injects spins, whereas contact 1 extracts
spin of the same polarization. This leads to the opposite spin accumulation
below contact 2 and contact 1. If contact 2 and contact 1 are magnetized anti-
parallel to each other, then the spin accumulation has the same sign below
both contacts and it adds up. Therefore, an anti-parallel configuration leads
to an overall larger spin accumulation than a parallel configuration (see also
the difference between the dashed grey lines (individual contribution) and the
blue solid lines (combined contribution)). This effect only plays a significant
role if contact 1 is close to the other contacts. 4

Contact 3 and 4 probe preferentially the spin resolved chemical potential,
as indicated by black circles in Fig. 1.10 (b). This effect is known as Silsbee-
Johnson spin charge coupling and was first proposed by Silsbee [98] and expe-
rimentally demonstrated by Johnson and Silsbee [99] in the first electrical spin
injection experiments. In a simplified picture, the chemical potential of a FM
will adjust with the spin up chemical potential in the graphene (depending on
the magnetization). Therefore, a finite voltage between the FM and the mean
chemical potential in graphene will develop that can be measured. This leads
to a voltage difference between contact 3 and 4 that can be measured with a
voltmeter. This non-local voltage VNL = P3

µs(x3)
e
− P4

µs(x4)
e

, where P3,4 are
the injection/detection efficiencies of the contacts5 and x3,4 are the locations
of the contacts, depends solely on the spin accumulation µs. By changing the
magnetization direction of contact 3, the opposite spin chemical potential is
sensed and the non-local voltage will change sign. Since the contact polari-
zation is not 100%, every FM contact will not purely sense one spin resolved
chemical potential but rather both weighted by the contact polarization. This
contact polarization depends on the nature of the contact as explained above
and is ideally given by the polarization associated with the contact polarization
PC .

If the contacts 1 and 4 are far away (|x2 − x1|, |x3 − x4| � λs), only the
distance |x2− x3| = L plays a role and the non-local voltage can be expressed
as:

VNL = IRsqλs
2w P3P3e

−L/λs . (1.42)

Here, the effective resistance of the NM was replaced by RNM = Rsqλs
w

for
the special case of a 2D material such as graphene. Rsq is the sheet resistance
of the graphene. The non-local resistance can be normalized by the injecting
current and one obtains the non-local resistance RNL = VNL/I. This non-local
resistance is not a dissipative resistance. It should rather be interpreted as a

4Close means that the distance |x2 − x1| is comparable to λs as the spin accumulation
falls off exponentially: e|x2−x1|/λs .

5The above defined injection efficiency Pi is commonly referred to as contact polarization.
However, one should not confuse it with the contact polarization PC defined above,
which for tunnel contacts equals Pi.
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Figure 1.10. Schematics of a non-local spin valve. (a) shows the device
schematics with four ferromagnetic contacts labelled 1 to 4 in contact to the
channel material below. The electrical circuit to inject and detect spins is
shown as well. (b) shows the spin accumulation (e.g. chemical potential for
spin up (blue) and down (red)) for the case where all electrodes are aligned
parallel (top) and for the case where they are aligned anti-parallel (bottom).
The black dashed lines show the spin accumulation of spin up for each in-
jecting contact separately. The channel material is assumed to extend in both
direction to infinity (e.g. no boundary effects are included).

29



1. Theoretical background

normalized measure of the spin accumulation in the graphene and therefore,
also negative RNL are possible. RNL can be written in a more compact way
using assuming P2 = P3 = P

RNL = ±Rsqλs2w P 2e−L/λs . (1.43)

Here the ± sign accounts for parallel and anti-parallel configuration of the in-
jector (contact 2) and detector (contact 3) electrode. Eq. 1.43 predicts sudden
jumps in the non-local resistance if the magnetizations of contact 2 and 3 are
switched from parallel to anti-parallel.

1.3.6. Hanle effect
In principle, a spin valve measurement contains all important information
about the channel material (λS). With the help of the diffusion constant, the
spin relaxation time τs =

√
Dλs could be calculated. However, this method is

greatly affected by the contact polarization P as one can see in Eq. 1.43.
A more accurate way to obtain the spin transport parameters from the

channel material is by the use of the Hanle effect [94]. A magnetic field applied
perpendicular to the spin direction (collinear with the magnetization of the
ferromagnetic contacts) will lead to a precession of the spin around this field
(Larmor precession). Since the electrons and hence the spins as well, move
diffusively in the graphene, not a full coherent rotation of the spin ensemble
but rather a decrease of net spin polarization with time is the result. The
modulation of the non-local resistance is given as:

RNL(B) = ±P
2RsqDs
w

∫ ∞
0

1√
4πDst

e−L
2/(4Dst) · cos (ωLt) · e−t/τsdt, (1.44)

where ωL = gµB
~ B is the Larmor precession frequency with g being the Landé

g-factor and µB the Bohr magneton and ~ the reduced Planck constant. The
first term in the integral 1√

4πDst
e−L

2/(4Dst) describes the probability of a spin
arriving at the detector after time t in a diffusive picture. During this time
t, the spin will precess around the magnetic field B, which results in the
second term cos (ωLt). To account for spin relaxation during this time t, the
factor e−t/τs is introduced. This integral can be solved and one arrives at the
analytical formula:

RNL(B) = ±P
2RsqDs
w

Re

 1√
Ds

e
−L
√

λ−2
s −i ωDs√

τ−1
s − iω

 . (1.45)

Eq. 1.45 describes how the non-local resistance depends on a magnetic field
perpendicular to the spin axis and distance between injector and detector
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1.3. Spin transport in graphene

electrode. The magnetization is assumed not to be influenced by the magnetic
field, which is a valid assumption for fields much smaller than the coercive
field. Ds and τs can be extracted by fitting the measured RNL with eq. 1.45,
assuming g = 2. The extracted Ds should correspond to Dc that can be
extracted independently from charge transport measurements.
In order to remove any spin unrelated background signals (e.g. Hall effect),

the Hanle curve can be measured in parallel (RP ) and anti-parallel (RAP )
configuration of the injector and detector electrode. The difference of this two
measurements Rs = (RP −RAP )/2 is only due to spin.

1.3.7. Spin relaxation mechanisms in graphene

There are three fundamental principles leading to spin relaxation. First, spins
can be relaxed by the presence of spin-orbit coupling, leading to Dyakonov-
Perel and Elliot-Yafet spin relaxation mechanism. Second, the spin polariza-
tion can be lost due to hyperfine interactions with the nuclear spins. Lastly,
spins can be scattered by localized magnetic moments that lead to the loss of
spin polarization.

Elliott-Yafet Dyakonov-Perel Resonant scattering

Figure 1.11. Spin relaxation mechanism: Schematics of the Elliott-
Yafet, Dyakonov-Perel and the resonant scattering mechanisms are shown.
Figure adapted from Ref. [15].

In the following, I will touch upon the uniform spin-orbit coupling and
show how spin relaxation rates, which are accessible in experiments, can be
linked to uniform SOC strengths. This includes the two most important spin-
relaxation mechanisms: Elliott-Yafet and Dyakonov-Perel. In addition the
relaxation due to resonant magnetic scatters is also discussed. Depending on
the individual contribution of each mechanism the spin relaxation anisotropy
can be distinctively different, which will be discussed in the end.

Elliott-Yafet mechanism

Elliott [100] and Yafet [101] found that ordinary momentum scattering can
lead to spin relaxation if SOC is present. This can be understood since the
SOC mixes the pure spin states and therefore there exists a finite (but small)
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probability at each scattering event to flip the spin. This leads to

τs = τp
α
, (1.46)

where τs is the spin lifetime, τp the momentum scattering time and α a pro-
portionality constant.

In the case of graphene, this proportionality constant relating a given SOC
to the spin relaxation time has been shown to depend on the ratio of the Fermi
energy to the SOC strength and takes the following form for intrinsic SOC (αI)
and Rashba SOC (αR) [19, 102]:

αI =
(
λI

2EF

)2

αR =
(4λR
EF

)2
.

(1.47)

Here, the SOC strengths are defined in the Hamiltonian shown in Eq. 1.23.
Since the spin relaxation time scales inversely with the ration of λ/EF , the
influence of Elliott-Yafet mechanism is greatly reduced for EF much larger
than the SOC strength. Furthermore, a long τp will lead long spin relaxa-
tion times. Using reasonable numbers for pristine graphene(λI ' 10 µeV [54],
EF ' 100meV and τp ' 10 fs) yields a spin relaxation time of the order of
1 µs.

Dyakonov-Perel mechanism

If the SOC can be viewed as an uniform spin-orbit magnetic field (though
k-dependence can still be present), spins can precess around this effective
magnetic field between scattering events. In a k-dependent spin-orbit field,
such as it is the case for Rashba type SOC, the spin precession axis will de-
pend on the k vector. After multiple scattering events different electrons will
have experience different spin-orbit fields and hence will have a different spin
orientation. This leads to spin relaxation. If the the momentum time is short
the spins have only little time to precess around the effective spin-orbit field
and only small precession angles result. Since small rotations commute the
order of which the spin experiences the different spin-orbit field does not mat-
ter and the spin relaxation time is longer. This effect is also called motional
narrowing. It can be shown that

τs =
( ~

2λR

)2
τ−1
p (1.48)

describes the spin relaxation time τs in the presence of a Rashba type SOC of
strength λR.
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1.3. Spin transport in graphene

Not only can the Rashba SOC lead to spin relaxation mediated by the
Dyakonov-Perel mechanism, but also further SOC terms can lead to Dyakonov-
Perel mediated spin relaxation. Recently, Cummings et al. have shown that
the valley-Zeeman can relax in-plane spins [36]. The effective spin-orbit mag-
netic field is independent of ~k in the case of valley-Zeeman SOC. However,
intervalley scattering can randomize the direction of the spin-orbit field seen
by the charge carriers. Therefore, the above derived spin relaxation in the
motional narrowing takes the following form

τs =
( ~

2λV Z

)2
τ−1
iv , (1.49)

where the momentum scattering time τp is replaced by the intervalley scatte-
ring time τiv.

Resonant magnetic moments

Experiments on weak localization and universal conductance fluctuations in
graphene in strong in-plane magnetic fields have found a significant contri-
bution to dephasing from magnetic moments [103]. Magnetic moments in
graphene can form due to carbon vacancies or chemisorbed hydrogen, leading
to a sp3 hybridization [104–107]. Such localized magnetic moments can lead
to spin precession of the electron spins and hence to spin relaxation. However,
the interaction time of an electron spin with a localized magnetic moments is
too short to lead to significant spin precesion and therefore cannot lead to an
efficient spin relaxation [108]. This picture completely changes if the magnetic
moments are resonant scatteres meaning that the energy level of the scatter
matches the Fermi energy and hence the energy of the electrons. This leads
to a much longer interaction time of the electron spin with the magnetic mo-
ment. If the interaction time is on the order of the precession frequency the
probability of spin flip is large. This leads to an efficient spin relaxation [108].
Similar effects have been proposed for bilayer graphene [109].

Spin relaxation anisotropy

The spin lifetime anisotropy ξ = τ⊥/τ‖, defined as the ratio between the out-
of-plane spin relaxation time τ⊥ to the in-plane spin relaxation time τ‖, can
give valuable insights into the dominating nature of spin relaxation mecha-
nism. Here, out-of-plane means perpendicular and in-plane means parallel to
the graphene plane The anisotropy is given by the preferential direction of the
spin-orbit field that lead to spin relaxation [15]. Spin-orbit fields in the grap-
hene plane (e.g. Rashba or PIA) will lead to an anisotropy ξ < 1 [19, 94, 110].
In a conventional 2D Rashba system a spin-life time anisotropy of 1/2 is ex-
pected. On the other had, out-of-plane spin-orbit fields (e.g. valley-Zeeman
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[36], ripples[19] or flexural distortions [111] will result in ξ > 1. Therefore,
ξ is a good measure to identify the symmetry of the the dominant spin-orbit
term. The presence of local magnetic moments with random orientation, due
to hydrogen adatoms for example, can dominate over the spin-orbit mediated
spin relaxation and this will result in ξ = 1. Overall, the spin-life anisotropy
is a good figure of merit to characterize the limiting factor in spin-life time.

1.4. Spin Hall and inverse spin Hall effect

The spin Hall effect (SHE) and the inverse spin Hall effect (ISHE) are two
relativistic spin-orbit phenomena that relate electrical currents to pure spin
currents and vice-versa. In the SHE, an unpolarized charge current leads to a
transverse pure spin current, see Fig. 1.12 on the left. On the contrary in the
ISHE, a pure spin currents leads to a transverse charge current, see Fig. 1.12
on the right [112].

SHE ISHE

Figure 1.12. Spin Hall and inverse spin Hall effect: In the SHE, an
unpolarized charge current leads to a transverse pure spin current. In the
ISHE, a pure spin current leads to a transverse charge current. Image adapted
from Ref. [112].

SHE and ISHE are classified according to their origin into extrinsic and
intrinsic effect. The extrinsic effects includes skew scattering and side-jump
scattering, which are both spin dependent scattering mechanisms. These ef-
fects can be described in the framework of Mott scattering [113], that is also
the basis for the description of the anomalous Hall effect (AHE) in ferromag-
netic materials [112]. On the other hand, the intrinsic effect has a clearly
distinct origin. It arises from a spin dependent transverse velocity that is due
to the spin-orbit fields. Therefore, this effect is also present in perfect crystals
without scattering [112].
First experimental detection of the SHE relied on optical read-out of the

spin polarization of semiconductors with strong SOC [114, 115]. First reports
of the ISHE were based on spin-pumping [116], electrical spin injection [117] or
optical methods [118]. Since the first qualitative reports, many more and more

34



1.5. Thermal transport in graphene

quantitative studies were performed on various material systems [112]. One
of the most studied system for SHE and ISHE is platinum since it is a very
heavy element that possesses strong SOC. This is an important ingredient in
efficient spin-to-charge conversion. The efficiency of spin-to-charge conversion
(or the reverse) is commonly described by the spin Hall angle θSH . In this
framework, the charge current density #»

jc and the spin current density #»
jS are

related through θSH in the following way:

#»
jc = θSH

2e
~

#»
js × #»σ , (1.50)

where σ is the spin polarization [112]. It is clear from this equation that the
vector product has sever implications on the SHE and ISHE. These effects
can only occur in if the spin polarization is perpendicular to both the charge
current and the spin current density. Therefore, only an out-of-plane spin
polarization can lead to SHE or ISHE within two dimensional materials. A
very recent theoretical study investigated the SHE in graphene in proximity
to a TMDC layer. Due to a sizeable valley-Zeeman SOC term, considerable
spin Hall angles were found [39].

1.4.1. Spin hall injection and inverse spin Hall detection

The combination of SHE and ISHE in a single device allows for simple gene-
ration and detection of a pure spin current. Such a device structure is shown
in Fig. 1.13 and was first proposed by Hankiewicz et al. [119].
A charge current driven through the left leg of the H structure shown in

Fig. 1.13 leads to a transverse spin current due to the SHE. This spin current
propagates in the horizontal direction and leads therefore to a charge current
in the right leg due to the ISHE. In an open-circuit configuration this charge
current flows until the potential difference is large enough to counteract this
charge current. The charge voltage on the right leg normalized to the charge
current in the left leg is called the non-local resistance is proportional to θ2

SH .

1.5. Thermal transport in graphene

For the investigation of non-equilibrium temperature profiles appearing in
graphene we shall give a short intro introduction into thermal transport.
In graphene, thermal transport can happen through the electronic system

but also through phonons. The very large optical phonon energies on the order
of 100meV render them negligible at low temperatures. On the other hand,
the weak interaction of the electrons with the acoustic phonons, given by a
small electron-phonon coupling, allows for high intrinsic carrier mobilities up
to room temperature [120, 121]. In the following a short introduction into
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Figure 1.13. H-bar device for non-local detection: A H-bar device,
proposed by Hankiewicz et al. [119], to study the SHE and the ISHE in a
single device with in-situ spin current generation and detection. A vertical
charge current in the left leg leads to a transverse spin current (horizontal)
due to the SHE. This spin current leads then to a charge current (vertical)
in the right lead due to the ISHE. In an open-circuit configuration, a charge
voltage can be measured. Image adapted from Ref. [112].

thermal transport in graphene is given in several transport limits. In addition,
electron-phonon coupling is discussed.

In most cases, including this thesis, thermal transport in graphene is stu-
died in a quasi 1-dimensional system, see Fig. 1.14 (a). Generally, the graphene
channel is connected to two normal metal contacts (N1 and N2) that can be
biased to different potentials. Such a bias U can lead to Joule heating, that
locally heats the electron system. Both contacts can be viewed as ideal re-
servoirs, where all incoming electrons are absorbed and only electrons with
an energy distribution function given by a Fermi-Dirac distribution at the
reservoir temperature are emitted. In most studies, an effective electron tem-
perature in the graphene channel is measured by noise thermometry [122–125]
or a secondary thermometer, such as the difference between the switching cur-
rent and the retrapping current in a Josephson junction [126] or simply the
temperature dependence of the graphene resistance itself [127] is used. An al-
ternative approach relies on the measurement of the temperature locally with
an additional contact, denoted by S in Fig. 1.14 (a).

Not only does charge transport depend crucialy on different lenght scales,
but also do characteristic lengths scale dominate the thermal transport. A
peculiar situation is reached if only elastic scattering among charge carries
happens. This means that the device dimensions L,W are much shorter than
the inelastic electron-electron scattering length le−e and electron-phonon scat-
tering length le−ph. In this case no Joule heating is produced inside the grap-
hene and a double-step energy distribution function as shown in Fig. 1.15 (a)
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Figure 1.14. Experimental layout to study thermal transport in
graphene: The temperature in the middle of the graphene device can be
measured with the additional contact S. A false colour scanning electron
micrograph is shown in (a), where L = 2.5 µm and W = 4 µm. b shows a
schematic cross section of the device. N1 is grounded whereas N2 is put at an
electrical potential U to apply a Joule heating power.

results. If the device is large, such that Le−e < L,W < le−ph, electron-electron
scattering leads to Joule heating dissipated only into the electron system. This
regime is also called hot electron regime and the corresponding energy distri-
bution function inside the graphene is shown in Fig. 1.15 (b). The energy
distribution function is well described by a Fermi-Dirac distribution at an ef-
fective electron temperature that depends on the position in x-direction. In
very long graphene channels, where L > le−ph the electron and lattice tempe-
rature equilibrate by phonon emission and most of the Joule power is dissipated
to the lattice. Here, the electron-phonon coupling is the bottleneck in cooling
to the substrate [128]. In this regime, the energy distribution function is also
described by a Fermi-Dirac distribution with (nearly) constant temperature
along the graphene channel, see Fig. 1.15 (c).

1.5.1. Heat diffusion equation

Thermal transport can be described by the continuity equation for heat, which
relates the difference of the change of energy density (here heat) over time and
the gradient of the heat current to the local sources and sinks:

ρcp
∂Te(x, t)

∂t
− ∂

∂x

(
κ
∂Te(x, t)
∂x

)
= P − Pph, (1.51)

where ρ is the mass density, cp is the specific heat capacity, Te(x, t) is the
electron temperature, κ is the heat conductivity, P is the Joule heating power
per unit area and Pph is the cooling power per unit are of the phonons. In
steady state, ∂T (x,t)

∂t
= 0, and using the Joule heating P = U2/R and the
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(a) (b) (c)

Figure 1.15. Non-equilibrium distribution functions: Different distri-
bution functions are found in a 1-dimensional wire placed between two reser-
voirs at different electrical potential. (a) shows the distribution function in
the absence of inelastic scattering, where the total energy of each quasiparti-
cle is conserved along the 1-dimensional channel and relaxation only occurs in
the reservoirs. Here, neither the electron temperature nor the electrochemical
potential is defined. (b) shows the distribution function in the case of strong
quasiparticle scattering where local thermal equilibrium is achieved but pho-
non scattering is negligible. (b) In the case of very strong phonon scattering,
the quasiparticles thermalize with the phonons and a constant temperature
along the 1-dimensional wire is found. Adapted from Pothier et al. [129, 130].

device dimensions W,L as defined in Fig. 1.14 one arrives at

U2

R
= −LW ∂

∂x

(
κWF (x)∂Te(x)

∂x

)
+ LW · Σep

(
Te(x)δ − T δ0

)
, (1.52)

where the Joule heating on the left side is balanced by cooling through electron
diffusion (first term on the right) and cooling through electron-phonon cou-
pling (second term on the right). Here, U is the heating bias applied across the
device resistance R and T0 is the phonon temperature. Furthermore, the elec-
tron cooling is connected to the Joule heating through the Wiedemann-Franz
law κWF (x) = L0Te(x)L/(WR), where L0 = π2k2

B
3e2 is the Lorenz number. The

electron-phonon cooling can be parametrized through the coupling constant
Σep and the exponent δ, which can depend on temperature and device pro-
perties as shown below. If the explicit form of the Wiedemann-Franz law is
plugged into Eq. 1.52, one arrives at the following relation

∂2Te(x)
∂x2 = 1

Te(x)

[
− U2

L2L0
+ RW

LL0
Σep

(
Te(x)δ − T δ0

)
−
(
∂Te(x)
∂x

)2
]
,

(1.53)
which can be used to numerically solve for Te(x).

In the absence of phonon cooling (e.g. Te(x) ∼ T0 or Σep → 0), the above
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equation reduces to

∂2Te(x)
∂x2 = 1

Te(x)

[
− U2

L2L0
−
(
∂Te(x)
∂x

)2
]
, (1.54)

which has the analytical solution

Te(x) =
√
T 2

0 + x

L

(
1− x

L

)
U2

L0
, (1.55)

where the temperature at the electrodes Te(x = 0) = Te(x = L) = T0 is
used as a boundary condition. The electron temperature given in Eq. 1.55
corresponds to the effective electron temperature that describes the energy
distribution functions shown in Fig. 1.15 (b).
On the other hand if electron cooling is negligible (e.g. very large contact

resistance or superconducting contact materials that suppress cooling through
electron diffusion) Eq. 1.52 reduces to

U2

R
= RW

LL0
Σep

(
Te(x)δ − T δ0

)
, (1.56)

which has the very simply solution

Te(x) = δ

√
U2

RLWΣep
− T δ0 , (1.57)

that is independent of x. In this case, there will be a discontinuity of the tem-
perature across the contact to the graphene. In a simple case where T0 → 0K
and assuming δ = 4 (clean limit, see below), the transition between electron
cooling and phonon cooling happens at a bias voltage UΣ = L0/

√
4RLWΣep

[131]. For typical devices with dimensions on the order of µm, device resis-
tance of kΩ and an electron-phonon coupling of around 30mWK−4m−2 [125]
the crossover voltage is on the order of mV .

1.5.2. Cooling by phonons
In the following, the coupling of the electronic system to the lattice is discussed
for low temperature, where only acoustic phonons need to be considered as
the optical phonon energy is on the order of 100meV [132]. The total heat
flux between the electrons and longitudinal acoustic phonons takes the general
form

P (Te, T0) = AΣ(T δe − T δ0 ), (1.58)
where A is the area of the graphene, Σ is the coupling constant between the
electrons and the phonons and Te and T0 are the temperature of the electrons
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Figure 1.16. Temperature profiles: Numerical solutions to Eq. 1.53 are
shown for different limits. (a) shows the hot electron regime, where the red
solid line corresponds to the analytical solution shown in Eq. 1.55. A finite
electron-phonon coupling reduces Te. Here, R = 4.1 kΩ,W = 2 µm, L = 3.4 µm
and δ = 3.6 was used. (b) shows the Te in the phonon-cooled regime, where
R = 17.2 kΩ, W = 6 µm, L = 100 µm and δ = 3.6 were used in the numerical
calculation. The black dashed line corresponds to the temperature given by
Eq. 1.57.

and phonons, respectively [133]. In the limit of Te � T0, the cooling power
takes the approximate form of P ≈ ΣT δe , that allows to extract the power
δ and electron-phonon coupling Σ easily. The form of δ and Σ depend on
temperature of the electron system with a crossover at the Bloch-Grüneisen
temperature TBG = 2s~

√
πn/kB , where s = 2× 104 ms−1 is the speed of

sound in graphene, n is the carrier density and kB is Boltzmann’s constant.
For a reasonable doping of n ∼ 1× 1012 cm−2, TBG is estimated to be around
50K. Below TBG the most energetic thermal phonons have a momentum,
which is much smaller than ~kF and therefore scattering events of electrons
with phonons can only lead to small angle scattering. On the other hand, large
angle scattering, leading to momentum relaxation can occur at temperature
above TBG. This will also modify how energy is transferred from the electron
to the phonon system and vice versa. In the following we only focus on the
regime T < TBG.

The electron-phonon coupling can strongly be modified by electronic disor-
der if the wavelength of the thermal phonons become comparable to (or longer
than) the electronic mean free path. This condition results in two regimes;
the clean limit where the mean free path is much longer than the phonon wa-
velength and the dirty limit where the mean free path is much short than the
phonon wave length.
Here, we focus only on T < TBG as the experiments in chapter 4 were carried

out at cryogenic temperatures (T ∼ 1 K). In the clean limit and assuming a
weak screening, the total cooling power due to electron-phonon interaction is
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1.5. Thermal transport in graphene

given as [133]

P (Te, T0) = AΣ1(T 4
e − T 4

0 ), Σ1 = π2D2 | EF | k4
B

15ρM~5v3
F s

3 . (1.59)

Here, D is the deformation potential that characterized the strength of the
electron-phonon coupling, ρM = 7.6× 10−7 kgm−2 is the mass density of grap-
hene and the other symbols as defined above. In contrast to that, the cooling
power due to the electron-phonon interaction in the dirty limit is [133]

P (Te, T0) = AΣ2(T 3
e − T 3

0 ), Σ2 = 2ζ(3)D2 | EF | k3
B

π2ρM~4v3
F s

2lmfp
. (1.60)

Here, ζ(n) is the Riemann zeta function with ζ(3) ≈ 1.2. In the dirty limit,
the power law of the cooling power is reduced by one and the electron-phonon
coupling is changed accordingly. The crossover between these two regimes is
characterized by Tx, at which the cooling power of the clan and dirty limit is
equal. This temperature is given by

Tx = 30~sζ(3)
π4kBlmfp

. (1.61)

Graphene samples on SiO2 substrate generally show a mean free path on the
order of 30 nm, which leads to a crossover temperature Tx ∼ 1K. Experi-
mentally, the different cooling regimes can be accessed by varying the electron
temperature and the heating power (e.g. Joule heating) applied to the elec-
tronic system. The power law can easily be extracted by a log-log plot, where
the heating power is plotted as a function of electron temperature. The slope
of this corresponds to the power δ in Eq.1.58.
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2 Experimental methods

200 nm

This chapter is denoted to the description of a few important experimental
methods. First, the concepts of the most important fabrication techniques are
introduced. The second part focusses on the electrical measurements. The key
features of the cryogenic set-ups that were used are described and a typical
measurement scheme is presented1.

1An SEM image of a cross section of a Pd/Pb/In-test evaporation with ZEP resist is
shown.
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2. Experimental methods

2.1. Sample fabrication

The sample fabrication is the start of every project within this thesis. None
of the presented measurements would have been possible without previous fa-
brication of a suitable sample. In the following sections, the most important
fabrication techniques are introduced. First, the isolation of thin 2-dimensional
materials is described. Then their assembly into vdW-heterostructures is pre-
sented followed by a short introduction to the fabrication of suspended sam-
ples. As a last part CVD materials and the related fabrication techniques are
presented. To complete a device, standard nanofabrication procedures have
been used such as electron beam lithography, UV-lithography, reactive ion et-
ching, metallization with thermal, e-gun and sputter deposition as well as wet
chemical processes. It would go beyond the scope of this thesis to cover all
these techniques in detail. All the detailed fabrication recipes can be found in
the appendix A.

2.1.1. Exfoliation
The basis for many results described in this thesis is the isolation of various
2D materials in the form of thin layers down to the single layer limit (one atom
thick). The break-through in the isolation of single layer graphene in 2004 by
Novoselov and Geim et al. [21] started the whole field of 2D materials. Soon
after the discovery of graphene the family of 2D materials was extended to
hBN, TMDCs and complex oxides [134].

Fig. 2.1 shows example exfoliations of graphene, hBN and WeSe2. In ge-
neral Nitto2 tape was used for exfoliation. Graphene was either exfoliated
from highly-oriented pyrolytic graphite (HOPG) grade ZYA3 or from natural
graphite flakes4. The hBN was exfoliated from high quality crystals grown by
K. Watanabe and T. Tanaguchi [135]. WSe2 was exfoliated from commerci-
ally available sources5. Whereas the determination of the thickness by optical
contrast (e.g. number of layers) works very well for graphene and WSe2 down
to the single layer limit, thin hBN flakes are invisible on 300 nm SiO2 atop
Si. Special tricks, such as the usage of thinner SiO2 layers or the usage of
colour filters, have to be used [136]. Contrast enhancement was also used for
graphene flakes exfoliated on top of polymer layers (e.g. PMMA or LOR).

2.1.2. vdW-heterostructures
The fabrication process of vdW-heterostructures is schematically shown in
Fig. 2.2 and is based on the technique introduced by Wang et al. [137] and

2SPV 224P, Nitto Europe NV
3Obtained from hq graphene.
4Obtained from NGS.
5Obtained from hQ graphene or Nanosurf, see section 7.6 for a comparison.
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10 µm
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(a) graphene (b) hBN (c) WSe
2

10 µm 10 µm

Figure 2.1. Exfoliation of 2D materials: (a) to (c) show different 2D
materials exfoliated onto Si wafers with 300 nm of SiO2 being responsible for
the interference contrast. Graphene is easily visible down to a single layer
(SL). Bilayer (BL) and few layer (FL) are also easily distinguishable. Due
to the large band gap of hBN, only thicker flakes (> 5 nm) are visible on
this substrate. Different WSe2 thicknesses result in different optical contrast
though less pronounced as for graphene and hBN.

Zomer et al. [138]. In general, any vdW-crystals can be stacked together but
for the sake of simplicity the procedure will be described for a hBN/Gr/WSe2
heterostructure. It starts with the preparation of a polycarbonate (PC) film
on a glass slide. Using an adhesive tape with a window a PC membrane is
transferred and fixed on top of a PDMS stamp placed on glass slide as shown in
(a). The glass slide with the PC/PDMS stamp is then mounted on a xyz-stage
of a home-built transfer microscope.
The top layer (hBN) of the vdW-heterostructures is exfoliated on clean

Si/SiO2 wafer and suitable flakes are located optically. After mounting the
wafer piece with the desired top flake in the transfer stage, a clean area on the
PC film is located and the flake is picked up, see (b). Detailed description of
this process will be given for the pickup of the graphene flake (next step).
Similarly, the next layer (graphene) is exfoliated on a clean substrate as

well, see (c). Again the flakes are located by optical means an the thickness is
estimated from the optical contrast, which works quite reliable for graphene.
The wafer piece with the graphene flake is then mounted on the xy-stage, which
includes a roll and pitch degree of freedom as well. These two parameters
can be used to control the relative alignment of the bottom stage to the top
translation stage. The two flakes are then aligned relative to each other and
the PC/PDMS stamp is lowered until it touches the bottom wafer. Then,
the PC/PDMS stamp is further lowered until the meniscus, separating the
region where the PC is in contact with the wafer and where it is just before
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PC on glass slide

Scotch tape

(a)

exfol. t-hBN

(b)

PDMS
PC

PDMS
PC

exfol. graphene

(c)

graphene

exfol. b-WSe2

(d)

t-hBN

(c1) (c2) (c3)
SiO2

graphene

t-hBN

graphene
hBN

PDMS

SiO2

PC

Figure 2.2. Dry stacking of vdW-heterostructures following the met-
hod introduced by Wang et al. [137] and Zomer et al. [138] (a) prepa-
ration of the PC/PDMS stamp. First, the top hBN is picked up (b), followed
by the pick up the graphene (c), which is released on the bottom layer (d)
by melting the PC onto the substrate. The circular insets show the detailed
stacking order. Figure adapted from Ref. [48]
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2.1. Sample fabrication

going into contact with the wafer, is just next to the graphene flake to be
picked up. This situation is highlighted in (c1). Then the stage is heated,
which leads to the expansion of the PC film, which in turn leads to a lateral
movement of the meniscus across the graphene flake bringing the top hBN into
contact with the graphene (this happens around 30 ◦C to 60 ◦C, see also (c2).
Once the meniscus passed both flakes, the temperature is increased to 80 ◦C,
while keeping the meniscus at a fixed position. This is achieved by slowly
retracting the PC/PDMS stamp. At 80 ◦C, the heating is turned off and while
the substrate cools down, the PC/PDMS will shrink and hence retract, see
(c3). In doing so, the meniscus slowly moves across the graphene flake, which
will be picked up due to the stronger interaction between the graphene and
hBN or PC compared to the interaction with the SiO2. This procedure was
also used to pick-up the top hBN layer in the first place.
In a last step (d), the half stack on the PC/PDMS is released on top of the

bottom WSe2 flake previously located on the target substrate. This is done
by aligning the half stack with the WSe2 and bringing them into contact as
described in (c1 to c2). This time the substrate is heated to 150 ◦C to detach
the PC from the PDMS.
The adhesion of the vdW-heterostructure to the target substrate is increased

by heating the complete stack, including the PC, on a hotplate at 180 ◦C for
3min. Afterwards, the PC is dissolved in chloroform. An annealing step in
forming gas (H2/N2) at 200 ◦C for 100min is performed to remove polymer
residues on the top and to allow the bubbles to move and coalesce in order to
obtain a more homogeneous sample. In general, an AFM image is acquired to
locate bubble-free regions on the vdW-heterostructure to design the device in
these regions. After this treatment, the vdW-heterostructure can be further
processed, including shaping into the final device geometry, fabrication of side
contacts and the deposition of top gates. For all these steps standard e-beam
lithography, reactive ion etching and metallization processes were used. Details
can be found in the appendix A.

2.1.3. Suspended graphene samples

Freely suspended graphene samples on a lift-off resist (LOR)6 were fabrica-
ted following a recipe by Maurand et al. [139], which itself is based on the
pioneering work by Tombros et al. [140]. The fabrication process is schema-
tically depicted in Fig. 2.3 (a) to (c). It all starts with the fabrication of a
bottom gate structures which afterwards are covered by LOR. Graphene is
then deterministically transferred employing a wet transfer method [121] on
top of the bottom gates. A double layer system of Dextrane/PMMA is used
on which graphene was exfoliated. The dissolution of the dextrane layer in

6LOR 5A, MicroChem Corp.
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water released the PMMA membrane with the graphene floating on top of the
water. This PMMA layer can then be fished out with a volcano, which is later
mounted on a transfer microscope to deterministically transfer the graphene
on top of the bottom gate structure. Employing standard e-beam lithography
palladium contacts are fabricated. If needed, the graphene can be shaped by
an oxygen plasma. In order to suspend the graphene devices, the LOR below
the graphene and the contacts is exposed in an e-beam step. This procedure
results in freely suspended graphene and contacts, which are a key ingredient
to achieve ultra-high mobility graphene devices with a large yield (at least in
a two terminal configuration).
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Figure 2.3. Fabrication of suspended graphene following the met-
hod introduced by Tombros et al. [140] (a-c) Fabrication of bottom gates
on which LOR resist is deposited. Graphene is then transferred determinis-
tically and suspended with free-standing contacts. (d) shows typical current
annealing curves and (e) shows a gate dependence after a successful current
annealing. Fabrication images are adapted from Ref. [141].

Current annealing was performed at low temperatures in vacuum or in a
low pressure He atmosphere by ramping up the DC voltage across the device.
A successful current annealing step was confirmed by a gate trace as shown in
(e), which yielded field effect mobilities of around 350 000 cm2 V−1 s−1. At the
same time, clear Fabry-Pérot oscillations were observed in these devices de-
monstrating ballistic transport over the full device length (≈ 1.2 µm). Details
on the fabrication and limitations of suspended graphene samples are shown
and discussed in Ref. [141].
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2.1. Sample fabrication

2.1.4. CVD materials

In this thesis CVD graphene and hBN were used for several different pro-
jects. The CVD graphene was grown in-house by Kishan Thodkar on copper
substrate. The CVD hBN came either from a commercial source (Graphene
Supermarket [142]) or from collaborators (the Zhang group in Beijing [143] or
the Hofmann group in Cambridge [144]). The commercial hBN and the hBN
from the Zhang group were grown on copper substrate, a weakly interacting
growth substrate [145]. In contrast to that, the hBN grown in Hoofmann’s
group came on iron as the growth substrate, which is a strongly interacting
catalyst system [145, 146].
The most generic transfer process is schematically shown in Fig. 2.4, often

referred to as a wet transfer. It all begins by depositing a supporting layer
on top of the CVD material and by removing the CVD material from the ot-
her side of the growth substrate (the CVD material grows everywhere on the
growth substrate), see also Fig. 2.4 (a). Most often PMMA is used as a sup-
porting layer. In a second step the growth substrate is etched by wet chemical
means, see Fig. 2.4 (b). To etch copper ammonium persulfate ((NH4)2S2O8),
a very strong oxidizer is often used. Additionally, copper can also be etched
by iron chloride or acidic hydrogen peroxide solutions. We mostly etched cop-
per by ammonium persulfate as this lead to the cleanest devices. Once the
growth substrate is completely dissolved, the CVD material attached to the
supporting layer is brought to deionized water. This step is repeated several
times to rinse the CVD material and to remove remaining etchant solution,
see Fig. 2.4 (c). In a final step the CVD material is transferred to the tar-
get substrate by fishing it out as shown in Fig. 2.4 (d). After the sample is
completely dry, the supporting layer can be removed. If it is PMMA it is
simply dissolved in acetone. This wet transfer technique has been widely used
in several parts of this thesis and detailed fabrication protocols can be found
in the appendices A and B.
Many alternative transfer protocols have been developed over time. Another

widely used technique is the so called bubbling-technique [147, 148] were the
growth substrate is used as an electrode in water hydrolysis. Depending on
the polarity of the applied voltage either hydrogen or oxygen is created at the
growth substrate. The gas is produced between the conducting growth sub-
strate and the CVD material. The emerging bubbles at this interface separate
the CVD material from the growth substrate. This technique was used for
hBN grown on iron substrate [144]. Further strategies rely on the weakening
of the catalyst/CVD material interaction with subsequent detaching of the
CVD material from the growth substrate by mechanical means [149].
Some of the projects required multiple layers of CVD hBN deposited onto the

sample. Especially for tunnel barriers used in spin valves (see chapter 5) and
for the superconducting tunnel spectroscopy devices presented in chapter 4
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(a) (b)

(c) (d)

growth substrate

support layer
CVD
material

etchant solution

rinsing solution

substrate

Figure 2.4. Transfer process of CVD materials: A support layer (e.g.
PMMA) is deposited on the CVD grown material and on the backside of
the growth substrate (e.g. copper) the CVD material is removed by reactive
ion etching. (b) the growth substrate is removed in an appropriate etchant
solution. After rinsing in water (c) the CVD material can be fished by the
target substrate and the support layer can be removed with solvents.

two-layer CVD hBN was used. The first layer of CVD hBN was prepared
according to the description above up to the state where it was floating on the
water bath before fishing out. Instead of the target substrate, it was fished
out by another piece of growth substrate covered with CVD material (in this
case copper with CVD hBN). After drying and an additional heating step
at 180 ◦C, the same etching procedure was performed again until a two-layer
CVD supported by PMMA was floating on the rinsing water. This could then
finally be transferred to the target substrate. In principle this technique would
also allow for three-layer CVD structures or even more layers. The advantage
over sequential transfers is the reduced usage of PMMA. Only the top most
layer of CVD material is in touch with the supporting polymer, whereas the
other layers are only in contact with the etchant solution and rinsing water
bath. This ensures a cleaner fabrication process than a sequential transfer of
each layer.

Recently, a completely new approach based on a dry delamination of the
CVD material from the growth substrate was demonstrated for single and
bilayer CVD graphene yielding exceptional device quality [150, 151]. This
technique is based on a strong vdW interaction between the CVD material
and a thick vdW crystal (e.g. hBN, MoS2, ...) that is used to pick up the
CVD material from the growth substrate. Therefore, the CVD material is
always buried below a thick vdW crystal and it cannot be used fro tunnel
barriers for example.
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Similarly to the above mentioned fabrication schemes (vdW-heterostruc-
tures and suspended samples), the same nanofabrication processes were used
to finalize the CVD devices. More details can be found in the appendices A
and B.

2.2. Electrical measurements

Sufficiently low temperatures are needed to study various phenomena in grap-
hene based devices. The lattice temperature but also the electron tempera-
ture has to be sufficiently low to observe quantum mechanical effects such as
coherent transport phenomena or superconductivity. Throughout this thesis
several cryogenic measurement set-ups have been used with base temperatures
from 20mK over 4.2K up to room temperature. Liquid 4He has a temperature
of 4.2K (at a pressure of 1 bar) and can directly be used to immerse a sample
to cool it to 4.2K. By evaporation cooling, i.e. pumping on the liquid He,
latent heat is removed due to the evaporation and temperatures around 1.4K
can be reached. In combination with a heater, various temperatures can easily
be achieved. Lower temperatures can only be achieved by using 3He instead
of 4He. Similarly, evaporation cooling leads to base temperatures on the order
of 220mK. Since 3He is very rare and therefore expensive, only closed systems
exist and therefore continuous operation is not possible. The 3He has to be
recondensed once in a while. A continuous operation and even lower tempera-
tures are possible by 3He/4He dilution refrigerators. Their working principle
rely on the fact that a mixture of 3He and 4He spontaneously separates into
a 3He-rich and 3He-poor phase at ∼870mK [152]. Essentially the dilution
of 3He from the 3He-rich to the 3He-poor phase generates the cooling power
[152]. Magnetic fields up to 9T were applied with superconducting magnets.
In some experiments a vector magnet was used to align the magnetic field to
the in-plane direction of the sample. At room temperature an electro mag-
net was used to apply fields up to 500mT in the in-plane and 800mT in the
out-of-plane direction.
It is not straightforward to connect a nanoscale device to a macroscopic me-

asurement unit. Obviously, commercial, standardized components were used
whenever possible. Along the line from the table-top measurement unit toward
the device, the last commercial and standardized piece was the chip-carrier,
as shown in Fig. 2.5 on the left. The sample chip was glued with silver paint
into this 20 terminal chip-carrier that can be plugged into the corresponding
chip-sockets in the measurement set-ups. Electrical connections from the chip-
carrier to the metallic structures on the Si/SiO2 wafers were established in a
ultrasonic wedge bond process. The on-chip metallic lines then connected to
the active device region as shown in Fig. 2.5 on the right for example. In the
two experiments were high frequency signals were involved (spin pumping, see
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chapter 6, and quantum capacitance and dissipation measurements, see chap-
ter 8) the chip carrier and chip-socket was replaced by custom circuit boards
with RF and DC connectors.

1 µm

9 mm

Figure 2.5. How to connect nanoscale samples to the real world: The
left shows a wire bonded sample in a chip-carrier. The images to the right show
scanning electron micrographs of a typical device at different magnifications.
Most of the time, the active device region is on the order of 1 µm with feature
sizes down to ∼100 nm.

The device in the chip-carrier, mounted into the corresponding chip-socket
in the measurement set-up, is then connected through twisted pairs to a break-
out box at room temperature where BNC cables were used to connect it to
measurement electronics. It is well known that the electron temperature de-
couples from the lattice temperature at low temperatures if not appropriate
thermal anchoring and electrical filtering is performed [152]. Therefore, all me-
asurement lines are well thermalized to the coldest spot in the cryostat (e.g.
the mixing chamber in case of a dilution refrigerator). Several filter stages
are employed to shield from (thermal) high frequency radiation. We typically
use a two-stage filter set-up with a first, commercial filter-stage (cut-off fre-
quency around 1MHz) directly mounted on the break-out box. A home-built
tape-worm filter with a cut-off frequency of 10MHz is implemented directly at
the cold-finger in dilution refrigerators and in the 3He-system. The sample is
shielded from thermal radiation by a Faraday cage in all set-ups. We typically
reach electron temperatures below 100mK in dilution refrigerators.
Standard low-frequency lock-in techniques7 were used to measure differential

conductance and resistance. A typical schematics of a measurement set-up is
shown in Fig. 2.6. Home-built8 low-noise and low-drift voltage amplifiers and
I/V-converters were used in the detection chain. DC voltages were sourced
either by commercially available sources (Yokogawa YK7651) or by a home-
built low-noise/high-resolution DAC. AC voltages were superimposed on top
of a DC voltage by the usage of a tansformer. Additionally, the AC signal

7Using Standford SR830 lcok-ins.
8Designed and built by the electronics workshop at the Department of Physics, University
of Basel[153].
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Figure 2.6. Schematics of a cryogenic measurement set-up: Schematic
of a typical set-up for voltage biased differential conductance measurements at
low temperature indicating the most important components. Image adapted
from [84].

could also directly be applied to the device while the DC voltage required for
biasing was applied to the offset voltage of the IV-converter. Small magnetic
fields as required for localization measurements presented in chapter 7 were
generated by replacing the standard current sources at the superconducting
magnets with source meters from Keithley (2400). All measurement electronics
were controlled by LabView routines or Igor Pro scripts that communicated
with the instruments over RS232 or GPIB interfaces.
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3 Investigation of building blocks:
Ferromagnetic contacts and CVD hBN1

In this chapter, we investigate essential building blocks for spin valve devices.
Ferromagnetic contacts are widely used to inject spin polarized currents into
non-magnetic materials such as semiconductors or 2-dimensional materials like
graphene. The shape of the nanomagnets as well as their composition can
be engineered to tailor their properties for specific applications. However,
oxidation of ferromagnetic contacts poses an intrinsic limitation on device
performance. In this chapter we characterize nanomagnets with magnetic
force microscopy, X-ray magnetic circular dichorism imaging and we study the
role of ex-situ transferred chemical vapour deposited (CVD) hexagonal boron
nitride (hBN) as an oxidation barrier for nanostructured cobalt and permalloy
electrodes. For efficient spin injection tunnel barriers are needed, for which we
have used CVD hBN. In this chapter we investigate the quality of CVD hBN
from several sources with different imaging techniques.2

1Parts of this chapter have been published in similar form in Ref. [154].
2A photo emission electron microscopy image of an iron foil on which single layer hBN
has been grown partially. The image is recorded at the L3 edge and the hBN covered
regions (e.g. the triangle in the middle) appear brighter since there the iron is less
oxidized.
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3.1. Introduction

The basic building blocks of a simple spin valve, a prototype spintronics device,
were introduced and discussed in section 1.3. In such devices ferromagnetic
contacts are used for electrical spin injection. For high performance, the mag-
netization in the ferromagnetic contacts needs to be controlled accurately: a
single domain structure of the electrodes is needed, which can be achieved
by taking advantage of the shape anisotropy, see section 1.3.1. As shown in
section 1.3, the insertion of a tunnel barrier between the ferromagnetic con-
tacts and the graphene is of utmost importance for a significant spin injection
efficiency. In modern spintronics devices oxide layers are commonly used as
tunnel barriers. In magnetic tunnel junctions, which probably are the most
widely used spintronics devices, the oxide layer is the key ingredient for achie-
ving large signals [155, 156]. However, high quality oxide tunnel barriers are
hard to grow on 2D materials (e.g. graphene) [157, 158]. Spin injection into
graphene with exfoliated hBN [159–162] as well as with chemical vapour depo-
sited (CVD) hBN [163–165] has proven to be very efficient and versatile, see
also chapter 5.

Moreover, oxidation of ferromagnetic material is a challenging problem in
spintronics. In commercial devices, the ferromagnetic layers are always pro-
tected from oxidation by a layer of a noble metal (e.g. Ru). Recently it has
been shown that a single layer of graphene is enough to protect a Ni electrode
from oxidation [166]. However, an insulating coating would have the advan-
tage that it could act as a tunnel barrier for spin injection and as an oxidation
barrier at the same time. Recent experiments indicate that hBN could serve as
an atomically thin oxidation barrier for nanostructured metallic contacts since
it was already successfully shown for larger areas (macroscopic) and multiple
hBN layers [167, 168].

In this chapter, we try to tackle the above mentioned challenges. To do so,
we use different techniques and characterization methods as outlined here. A
brief characterization of ferromagnetic contacts by magnetic force microscopy
(MFM) and X-ray magnetic circular dichroism is given. These two characteri-
zation tools give insight into the domain structure of nanoscale ferromagnetic
contacts. Then, the ability of hBN to act as an oxidation barrier for fer-
romagnetic nanostructures is investigated. As a characterisation tool, X-ray
photoemission electron microscopy (XPEEM) was chosen. XPEEM allows to
investigate the chemical state (especially the oxidation) as well as the magnetic
properties of the ferromagnetic material. In contrast to spatially integrated
X-ray photoelectron spectroscopy or X-ray absorption spectra (XAS) met-
hods, XPEEM offers the advantage of high lateral resolution of about 50 nm
to 70 nm [169]. Previously, XPEEM was successfully used to determine the
oxide thickness of ferromagnetic materials [170, 171]. Since the quality of the
involved hBN plays a crucial role, different sources of CVD hBN are compa-
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red and their quality is investigated by several imaging techniques in the last
section. Electrical characterization of hBN tunnel barriers are presented in
chapter 5 and 4.

3.2. Characterization of ferromagnetic contacts

A schematic sketch of the samples investigated in this study is shown in
Fig. 3.1 (a). Nanostructured ferromagnetic strips were fabricated by standard
e-beam lithography on a Si substrate. After metallisation, half of the strips
were covered with a bilayer (BL) of hBN, which was obtained from Graphene
Supermarket. In (b) we show a scanning electron micrograph (SEM) of per-
malloy (Py = Ni80Fe20) strips covered with hBN. Having both hBN covered
and uncovered regions of ferromagnetic strips on the same sample allowed for
direct comparison. Further details on the fabrication procedure can be found
in appendix B.
XAS were recorded at the SIM beamline at the Swiss Light Source. Line-

arly polarized photons with polarization axis perpendicular to the strip axis
in grazing incidence were used for symmetric XAS in order to exclude any
magnetic contrast. Circularly polarized photons were used for magnetic con-
trast imaging, probing the magnetization along the strip axis (easy axis of the
nanomagnets) by taking advantage of the x-ray magnetic circular dichroism
(XMCD) effect. The spectra were recorded by measuring the local intensity
of photoemitted secondary electrons using XPEEM.
PEEM images were recorded as a function of photon energy. XAS can then

be extracted at any point in these images. An example of a PEEM image is
shown in Fig. 3.1 (c), where the Fe containing Py strips appear much brighter
than the surrounding background. This image was recorded at the L3 edge of
iron (E ≈ 709 eV). Here, the XAS of the ferromagnetic strips were extracted
by averaging over a region on the strips (see black rectangle in Fig. 3.1 (c).
The spectrum is then normalised by dividing the signal from the ferromagnet
by the background signal (white rectangle in Fig. 3.1 (c) for every energy in
order to compare the XAS from different samples. Furthermore, the spectra
is then rescaled such that it is zero at the pre-edge (∼ 705 eV, no absorption)
and one at the post-edge (∼ 727 eV, finite non resonant absorption), see also
Fig. 3.1 (d). This normalization procedure makes the XAS from different
samples directly comparable.
For each sample two independent regions were investigated (several hundred

µm apart from each other). Four different regions on three different strips were
used to extract the XAS signal (as in Fig. 3.1 c)) and the average of these four
spectra was then used to extract the oxide thickness.
In Fig. 3.1 (d) XAS at the Fe edge are shown for σ+ and σ− polarized

light in red and blue respectively. There are two main peaks corresponding
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Figure 3.1. Sample design and XMCD spectra. (a) shows a schematic
cross section of the samples with the silicon substrate in gray, the ferromag-
netic structures in green and the hBN as black solid lines. In (b) a scanning
electron micrograph of Py strips covered with hBN is shown. (c) PEEM image
of Py strips without hBN at the L3 resonance of Fe. For further data analysis,
spectra (black rectangle) and background spectra (white rectangle) were ex-
tracted. In (d), we show an XAS measured with circular polarized light (blue
and red curve, left axis) and the corresponding XMCD signal (black, right
axis). The L3 edge shows a double peak with a magnetic contrast only on the
left peak which is due to the metallic iron. The right peak at the L3 edge shows
only weak magnetic contrast since it is mostly due an antiferromagnetic iron
oxide. As expected, the magnetic contrast is inverted at the L2 edge compared
to the L3.
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to the spin-orbit splitting of the 2p core level, the L3 edge (E ∼ 709 eV) and
L2 edge (E ∼ 722 eV). The two circularly polarized photons probe different
transition probabilities into the spin-split 3d band and give rise to a magnetic
contrast, which is given by the difference of the two XAS and is called XMCD:
(σ+ − σ−). The XMCD signal (black line) is positive at the L3 edge and
negative at the L2 edge as expected since the average spin of the probing
electron is inverted at the L2 edge compared to the L3 edge [172]. Two sub
peaks at the L3 edge are observed in the σ+ as well as in the σ− XAS signal.
A large magnetic contrast is observed for the left peak, whereas the right peak
only shows very weak magnetic contrast. Metallic iron gives rise to a strong
magnetic contrast due to its ferromagnetic nature and therefore we ascribe
the left peak to the Fe peak (E ∼ 709 eV). Iron can form many different
oxides, FeO, Fe3O4, α-Fe2O3 and γ-Fe2O3 for example. FeO and α-Fe2O3
are antiferromagnetic and will not show any magnetic contrast. Fe3O4 as
well as γ-Fe2O3 are ferrimagnetic and can contribute to a magnetic contrast,
depending on the coupling to the ferromagnet below. Since γ-Fe2O3 has a
spectral signature similar to Fe3O4 [173] it is difficult to distinguish from the
latter. Therefore, we do not discriminate between the two here. Furthermore,
the XMCD signal in Fig. 3.1 (d) shows a different line shape than expected for
Fe3O4 and γ-Fe2O3 [174, 175]. We conclude that the left peak can be ascribed
to metallic Fe and the right peak (E ∼ 711 eV) can be ascribed to the iron
oxides and therefore we will call the right peak the iron oxide peak.

3.2.1. Magnetization mapping of Py and Co contacts
As mentioned above, the XMCD signal is a measure of the magnetization of the
ferromagnetic material. Fig. 3.2 shows XMCD images of Py and Co strips,
where the magnetization was probed along the axis of the strips (vertical).
These images are ratio images (σ+/σ−) and are therefore slightly different
from the XMCD signal defined above. The usage of ratio images, however,
has advantages as it is normalized and contains only magnetic contrast (e.g.
inhomogeneous detector response cancels out).
The homogeneous response in the XMCD images clearly shows the single

domain nature of the Py strips, see (a) to (c). As expected, the contrast at the
Fe L2 edge is inverted compared to the Fe L3 edge as the average spin of the
probing electron is inverted. The iron and the nickel are magnetized parallel
to each other as can be seen in (c) where an XMCD image at the Ni L3 edge
is shown.
Some variation at the end of wide strips indicate the formation of closure

domains. This is especially pronounced in the case of Co (d), which is known to
form closure domains more easily. In addition, the magnetization of narrow Co
strips breaks up into several domains, visible as segments of opposite contrast.
This can be understood since Co is a magnetically harder material than Py
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and is therefore less dominated by shape anisotropy. It is important to note
that the strips were not magnetized prior to the measurement and a single
domain would be expected after magnetizing the strips in an external field
larger than their coercive field. The smeared outline of the wide Co strips in
(d) can be explained by a slight misalignment of the electron optics in the
PEEM.

Fe L3 Fe L2 Ni L3 Co L3

(a) (b) (c) (d)

5 µm

Figure 3.2. XMCD images of Co and Py contacts. (a) to (c) show
XMCD images of Py contacts at the Fe L3, Fe L2 and Ni L3 edge respectively.
(d) shows the XMCD image of Co contacts taken at the Co L3 edge. The
magnetization was probed along the strip axis and the scale bar in (a) applies
to all other sub plots as well.

3.2.2. Magnetic force microscopy
Magnetic force microscopy (MFM) can be used to image the stray field ori-
ginating from ferromagnetic nanostrucutres (e.g. contacts for electrical spin
injection). Knowledge about the magnetic stray field of ferromagnetic na-
nostructures can be important in their design as it can influence the properties
of the sample. In principle, the direction of the magnetization can be infer-
red as well from the stray field. Fig. 3.3 shows the out of plane component
of the magnetic stray field originating from different contact geometries and
materials. The largest stray fields are observed at the end of the Co and Py
contacts, see (a) and (c). If two strips face each other the magnetic stray field
is strongest in the gap. The bulk of the ferromagnetic nanostructures show
negligible stray fields indicating single domain magnetization. The remaining
stray field shows that the magnetization does not fully lie in the plane, along
the strip axis, but also has a tiny out of plane component that spatially varies.
Variations are observed along the strip, but also across the width of the strip
for both contact materials, see (b) and (c).

Magnetic stray fields originating from the ferromagnetic contacts itself can
lead to spin dephasing if they are not collinear to the spin axis of the injected
electrons (e.g. magnetization). Out of plane magnetic stray fields can also
lead to orbital effects in the graphene. Therefore, ferromagnetic contacts are

60



3.3. Role of CVD hBN in protecting ferromagnetic nanostructures from
oxidation

2

1

0

y 
(µ

m
)

210
x (µm)

(a)
Co

1

0

y 
(µ

m
)

10
x (µm)

(b)
Co

2

1

0

y 
(µ

m
)

321
x (µm)

(c)
Py

4

3

2

1

y 
(µ

m
)

4321
x (µm)

(d)
Py

Figure 3.3. MFM of Co and Py contacts. (a) to (d) show MFM images
of Co and Py contacts. The out of plane component of the stray field is colour
coded in arbitrary units. The background is set to zero. MFM was performed
in the Hug lab at EMPA by Johannes Schwenk.

commonly deposited over the full width of the graphene flake in order to avoid
the large stray fields originating at the ends of the contacts. This restricts the
possible contact configuration.

3.3. Role of CVD hBN in protecting ferromagnetic
nanostructures from oxidation

In order to investigate CVD hBN as an oxidation barrier for ferromagnetic
nano structures, the XAS of Py strips at the Fe and Ni edge were recorded after
7 days in ambient conditions (7d), after 84 days in ambient conditions (84d)
and after an additional 66min on a hotplate at 200 ◦C in ambient conditions
(84d*). For this study, devices as introduces in Fig. 3.1 were used.
A direct comparison of the XAS of a covered (w/ hBN) and an uncovered

(w/o hBN) Py strip at the Fe edge is shown in Fig. 3.4 (a). The smaller iron
peak at the L3 edge for the uncovered region indicates that there is a thicker
oxide layer on top of the uncovered region (black curve) compared to the hBN
covered (red). A similar, but smaller effect is also observed at the L2 edge of
the iron. At the Ni edge, there is no noticeable difference between the two
different regions and no sign of oxidation, see Fig. 3.4 (b). Altogether, it is
clear that there is a significant difference in iron oxidation in Py strips between
hBN covered and uncovered regions.
The evolution of the XAS at the Fe edge with time is shown in Fig. 3.4 (c) for

an uncovered region and in (d) for a hBN covered region. It is clear that in both
cases the oxide peak grows with longer oxygen exposure time. Furthermore,
the L2 resonance of Fe starts to split into two peaks as well, indicating further
oxidation. However, it is also clear that the oxide peak of the hBN covered
region grows slower, especially for the XAS at 84d.
To quantify the amount of oxidation for the different samples we modelled

the XAS signal and fitted the measured spectra. To do so, we assumed that
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Figure 3.4. XAS spectra of Py strips. (a) and (b) show XAS of Py
strips at the Fe and the Ni edge, respectively. A direct comparison of Py
strips covered with hBN (red) and uncovered regions (black) are shown after
storing the samples for 7 days at ambient conditions. In the case of iron (a),
a pronounced difference in the spectra at the L3 edge is observed. At the
Ni-edge (b) no pronounced difference is observed. Temporal evolution of the
Fe-edge is shown in (c) for an hBN covered region and in (d) for an uncovered
region.
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the metallic ferromagnet is covered with a layer of oxide on top. In the case
of Py, we treated the iron and the nickel individually. This is justified by the
relatively small Fe content of the Py that favours individual oxidation of the
elements as supported by our data. In short, oxidised Fe is found to co-exist
with metallic Ni in agreement with the higher oxygen affinity of Fe compared
to Ni [176].
In the case of iron, a layer of Fe2O3 with a thickness tFe2O3 atop a layer

of Fe3O4 with a thickness of tFe3O4 atop a Fe layer of infinite thickness was
assumed. FeO was neglected since it is only stable under conditions of limited
oxygen availability [170, 171]. Since Fe2O3 is the higher oxidised state of iron,
we assume that the best model structure is given in Fig. 3.5 (c) where Fe2O3
is the topmost layer. Details about the fitting procedure can be found in
the appendix B. We were unable to reasonably fit the measured data with
a single oxide layer only. In Fig. 3.5 (a) we show a fit to a measured XAS,
showing excellent agreement. By fitting the XAS for all different conditions
we are able to extract the individual oxide thicknesses, which are shown in
Fig. 3.5 (b). The error bars correspond to the standard deviations obtained
from least square fits. The statistical error (variance between different regions)
is smaller than the error obtained from the fitting and therefore the statistical
contribution was neglected.
Our results show that the oxide is always significantly thinner for the hBN

covered regions compared to uncovered regions, see Fig. 3.5 (b). It is also
obvious that both oxide layers increase in thickness with longer oxygen ex-
posure time. This is the case for hBN covered and uncovered regions, but
more significant for the uncovered regions. Whereas tFe3O4 is similar for hBN
covered and uncovered regions, the Fe2O3 layer is much thicker for the unco-
vered regions at 7 d. As the Py strips are further exposed to air (84 d), mainly
tFe2O3 increases with moderate changes in tFe3O4 . The oxidation is promoted
by putting the sample on a hotplate at 200 ◦C as indicated by the increase in
the oxide layer thickness and by a modification in the relative weight of the
two oxides.
Similar to the Fe edge, the Ni L3 edge was used to extract the thickness

of the NiO. Higher oxidation states of nickel were neglected since they only
form at higher temperatures [167]. In Fig. 3.6 (a) we show a fit to a measured
XAS after 84 d in ambient conditions, showing also excellent agreement. The
individual components are also shown in blue. The metallic Ni is dominating,
indicating a thin NiO layer. By fitting the XAS for all different conditions,
we were able to extract the individual oxide thicknesses, which are shown in
Fig. 3.6 (b).
Initially, one finds no difference between hBN covered and uncovered regions

in the oxidation of Ni, see Fig. 3.6 (b) at 7 d. Upon further oxygen exposure,
the thickness of the NiO stays the same within the error bars for hBN covered
regions. In contrast to that, Ni oxidises further in the case of uncovered Py
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Figure 3.5. Fe oxide thickness of Py strips. The XAS at the Fe-edge
for an hBN covered region was fitted as a superposition of Fe, Fe3O4 and
Fe2O3 spectra to extract the corresponding oxide thicknesses tFe3O4 and tFe2O3 .
The individual components are shown in blue. In (b) the extracted oxide
thicknesses are shown as a function of oxygen exposure time. In (c) the model
structure that was used to fit the XAS is depicted.

64



3.3. Role of CVD hBN in protecting ferromagnetic nanostructures from
oxidation

6

4

2

0

ox
id

e 
th

ic
kn

es
s 

(Å
)

7d 84d 84d*

4

2

0

X
A

S
 s

ig
na

l (
a.

 u
.)

855854853852

photon energy (eV)

a)

b) c)
NiO

Ni

tNiO

 tNiO w/ hBN
 tNiO w/o hBN

 w/ hBN 84 d
 fit
 NiO
 Ni

Figure 3.6. Ni oxide thickness of Py strips. The XAS at the Ni-edge
for an hBN covered region was fitted as a superposition of Ni and NiO spectra
to extract the oxide thickness tNiO. The individual components are shown in
blue. In (b) the extracted oxide thicknesses are shown as a function of oxygen
exposure time. (c) Model structure used to fit the XAS spectra of the Ni-edge.
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strips and tNiO increases by 50% to 6.1(5)Å.
We have performed a similar analysis for hBN covered and uncovered cobalt

strips, where we extracted the thickness of the CoO (tCoO). Higher oxidation
states of cobalt were neglected as in the Ni case. In Fig. 3.7 (a) we show
a fit to a measured XAS after 84 d in ambient conditions, showing excellent
agreement. By fitting the XAS for all different conditions we are able to extract
the individual oxide thicknesses, which are shown in Fig. 3.7 (b).
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Figure 3.7. Co oxide thickness in Co strips. The XAS at the Co edge
for an hBN covered region was fitted as a superposition of Co and CoO spectra
to extract the oxide thickness tCoO. The individual components are shown in
blue. In (b) the extracted oxide thicknesses are shown as a function of oxygen
exposure time. Spectra were normalised with the I0 counts from a mirror and
not with a reference area. (c) Model structure used to fit the XAS spectra of
the Co-edge.

Although it is not obvious on first sight that Co strips covered with hBN
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oxidise more slowly, the absolute increase of 5.1(10)Å is significantly smaller
than the increase of 8.4(9)Å for the uncovered region. It is important to note
that markers on the samples allowed us to look at the same location in different
measurements (e.g. 7d and 84d).
Table 3.1 and 3.2 show an overview of the extracted oxide thicknesses for the

different elements and samples. The difference (∆) is calculated by subtracting
the oxide thickness with hBN from the oxide thickness without hBN.

Table 3.1. Overview of the extracted iron oxide thicknesses for regions
without hBN (w/o hBN), with hBN (w/hBN) and the absolute difference
between these regions (∆).

tFe2O3 (Å) tFe3O4 (Å)
w/o
hBN

w/
hBN

∆ w/o
hBN

w/
hBN

∆

7d 8.5(8) 5.6(6) −3.0(13) 11.1(8) 9.5(6) −1.6(14)
84d 14.7(8) 10.5(6) −4.2(14) 14.7(10) 10.8(6) −3.9(16)
84d* 19.8(9) 14.2(7) −5.6(15) 23.8(17) 19.2(9) −4.6(27)

Table 3.2. Overview of the extracted nickel and cobalt oxide thicknesses
for regions without hBN (w/o hBN), with hBN (w/hBN) and the absolute
difference between these regions (∆).

tNiO (Å) tCoO (Å)
w/o
hBN

w/
hBN

∆ w/o
hBN

w/
hBN

∆

7d 4.2(3) 4.0(3) −0.2(6) 12.8(6) 14.5(8) 1.7(15)
84d 4.7(3) 3.3(2) −1.4(5) 21.2(7) 19.6(6) −1.6(13)
84d* 6.1(5) 3.8(3) −2.4(8)

3.3.1. Discussion and interpretation of the oxidation of
ferromagnetic contacts

Summarizing the data presented above, we can clearly say that there is a diffe-
rence in oxidation of Fe and Ni for hBN covered and uncovered strips, namely
that the hBN covered strips are less oxidised. This is most obvious when
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comparing the increase in oxide thickness from 7d to 84 d oxygen exposure
time.

Ni in close proximity to Fe clearly oxidises slowly and only a very thin oxide
layer forms at the top. This can easily be explained by the fact that Fe oxidises
first as it has a higher oxygen affinity than the Ni [176]. Ni will then only start
to oxidise if all iron in close proximity is fully oxidised.
The thin oxide layer already present at 7 d for all samples is partially due to

the fabrication process used here. After evaporation in vacuum, the strips are
brought to ambient conditions for around 30min for lift-off. This is already
enough for the ferromagnetic materials to oxidise to a certain depth.

Treating the Py as pure Fe for the fitting of the Fe L3 edge probably un-
derestimates the thicknesses of the oxides since only 20% of the atoms in the
Py are iron atoms. This might lead to extracted values that are smaller than
in reality, but the change over time is still captured well. At the absorption
edge of Ni, no Fe related features in absorption are expected, nor vice versa,
since the energies of the photons are very different. Furthermore, the electron
escape depth is similar for Fe (λFe = 15Å) and Ni (λNi = 22Å).

In the case of the Co strips, the protection of the hBN against oxidation is
not obvious. The behaviour observed is attributed to the low quality of the
hBN layers.
During the heat treatment at 200 ◦C in ambient conditions, the relative

weight of the two iron oxides is most probably changed due to different acti-
vation energy in their formation. The ratio of tFe2O3/tFe3O4 decreased with
the heat treatment indicating a shift towards Fe3O4. In addition, an increased
temperature also leads to a faster oxygen diffusion within the Py strip. This
might be the reason why there is more Fe3O4 after the hotplate treatment.
We have also seen an increase in the oxide thickness for the Fe and Co in the

hBN covered regions, although it is less pronounced. A defective layer of hBN
with some holes or cracks would surely allow for some oxygen diffusion through
the layer. In addition, grain boundaries could also allow oxygen diffusion
through the layer. These two issues are related to the quality of the hBN
and could be minimized by a higher quality hBN (e.g. more homogeneous
layer and larger crystals). The mechanical transfer of the hBN on top of the
ferromagnetic strips could also lead to cracks along the edges of the strips.
This is possible since the height of the strips (30 nm) greatly exceeds the hBN
thickness and therefore the hBN could rupture along this step edge. Heating
the sample to elevated temperature could even promote this rupturing since
the different materials involved have different thermal expansion coefficients.
Moreover, oxygen diffusion along the hBN / SiO2 interface is possible, even
though long distances have to be overcome. A defective hBN layer would
facilitate the diffusion along the interface since the distances can be orders of
magnitude smaller.
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3.4. Characterization of CVD hBN

Since the CVD hBN is a crucial part of the study presented above and it also
plays a crucial role as a tunnel barrier in the following chapters, we characteri-
sed the hBN with several techniques, including PEEM, SEM and atomic force
microscopy (AFM). PEEM images of hBN transferred on top of ferromagnetic
strips are shown in Fig. 3.8 recorded at the boron K-edge (a) and at the nitro-
gen K-edge (b). Both images are edge / pre edge images where the image at
the edge is divided by an image at the pre edge. This corrects for unwanted
contributions from the detectors stage and it also corrects for surface effects
such that the observed contrast is a pure material contrast. Furthermore, the
intensity has been normalized. In both images, spatial intensity variations
are clearly visible indicating an inhomogeneous hBN layer, largely varying in
thickness. Similar structures are also observed in the SEM image (see Fig.
3.8 (c)). This SEM image was taken on the as-received hBN on copper foil
and therefore we conclude that this inhomogeneities are not introduced by the
transfer, but are rather a sign of a low quality hBN layer. AFM characterisa-
tion (not shown) reveal height variations of around 2 nm which are far from
the thickness of a single layer (≈ 3Å). From the observations, we conclude
that the hBN layers have not only multilayer patches but may also have holes
and cracks. The quality of the CVD hBN from Graphene supermarket was
found to vary from batch to batch considerably, see Fig. 3.8 (c) and (d). in
Fig.3.8 (d). The SEM image in (d) shows a completely different hBN film
of much higher quality than shown in (c). The multilayer patcher are nearly
absent and single layer regions were found to be much larger.
Due to the poor quality of some batches of the CVD hBN from the Graphene

Supermarket, different sources of hBN were investigated. A first alternative is
hBN grwon on copper foil in the Zhang lab [143], Beijing. As a second alter-
native we investigated hBN grown on iron in Hofmann’s lab [144], Cambridge.
In Zhang’s lab, the hBN is grown in a copper enclosure that drastically

reduces the nucleation sites and therefore leads to larger single crystals of hBN.
Unfortunately, the growth speed is different for different crystal direction of
the copper substrate [143]. This leads to the large variation in hBN thickness
and coverage over large scales as observed in Fig. 3.9 (a). There the grain
boundaries in the copper are highlighted with red arrows. On a small scale,
see (b), regions with a continuous single layer hBN can be found. The grain
size of the hBN can reach several microns. Few BN particles are visible that
originate from the growth in a copper enclosure [143]. The size of the high
quality single layer film is finally given by the size of Cu(111) grains.
hBN grown on copper interacts only very weakly with the underlying gro-

wth substrate and can therefore easily be transferred by several wet transfer
techniques (e.g. etching of the growth substrate, bubbling method, interfacial
oxidation of the copper and removal by a thermal release tape and many more,
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Figure 3.8. Characterization of hBN from Graphene supermarket.
(a) shows a PEEM image of CVD hBN obtained from Graphene Supermarked
at the boron K-edge and (b) similarly shows a PEEM image recorded at the
nitrogen K-edge. The better image quality in (b) compared to (a) is due
to a better adjusted electron optics in the PEEM. The spatial variation in
the PEEM images correlates well with the structural features observed in the
SEM image (c), which was recorded with an acceleration voltage of 2 kV. (d)
shows an SEM image of a different batch of hBN obtained from Graphene
supermarket. The scale bar in (a) applies to all sub plots.

(a) (b) (c) (d)

50 mm 50 mm2 mm 2 mm

Figure 3.9. SEM images of hBN on growth substrate: (a) and (b)
show CVD hBN grown on copper as received from the Zhang group, Bejing.
On a large scale, inhomogeneities are observed (a), whereas on a small scale
homogeneous layers are found (b). Grain boundaries between different copper
crystal with different crystal orientation are indicated by red arrows. The
single layer hBN grains are several micro meter large (grain boundaries are
indicated with black arrows) and only few BN particles are observed (white
dots). (c) and (d) show CVD hBN grown on iron as received from the Hofmann
group, Cambridge. The material is grown homogeneously over large scales as
well over small scales. The grains are as well several micro meter large and
only very few BN particles are present.
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see also section 2.1). This is a big advantage and it might lead to the inno-
vation of novel transfer methods that preserve the high quality of the CVD
grown material. A dry transfer method that keeps the interface between the
CVD hBN and the graphene clean would be highly desirable. Recently, the a
novel dry pick-up method for CVD graphene grown on copper was introduced,
which lead to very high quality graphene devices [150].
CVD hBN grown on an iron foil by the Hofmann group grows very homo-

geneous over a large scale [144]. The hBN grain size is on the order of several
micro meter and very few BN particles are present. The continuous high
quality single layer hBN film is highly desirable for many applications. hBN
grown on iron foil strongly interacts with the underlying growth substrate and
is therefore hard to transfer to a different substrate. In general the bubbling
technique is used [144].

3.5. Discussion, conclusion and outlook

The magnetic structure of ferromagnetic nanostructures is important in the
design of spintronics devices as well as in mesoscopic quantum systems. Es-
pecially stray fields might have negative influences on the performance of spin
valves (source of spin dephasing) but can on the other hand can lead to novel
physics. The presence of a periodically modulated magnetic field, generated by
an array of nano magnets for example, is predicted to result in a large Rashba
spin-orbit coupling in graphene armchair nanoribbons [177]. The contact de-
signs investigated here showed single domain behaviour with very small stray
fields along the strip axis and hence are perfectly suited for such experiments.
It was found that oxidation is a serious problem in nanostructured Co and

Py electrodes exposed to ambient conditions. CVD hBN has been shown to
slow down the oxidation, however full protection is not achieved. In summary,
the quality and the ex-situ transfer of hBN on top of the ferromagnetic ma-
terial limits the effective protection of the hBN. This could possibly be solved
by an in-situ transfer of high quality hBN onto pre-patterned and pre-cleaned
ferromagnetic electrodes (e.g. transfer in an UHV system with sputter cleaned
ferromagnets). The perfect solution would be an in-situ growth of CVD hBN
onto pre-patterned electrodes. This has become possible by the demonstra-
tion of large single crystal CVD growth of hBN on a Fe catalyst [144] and first
implementations of this techniques in magnetic tunnel junctions have shown
promising results [178]. This approach could be combined with the technology
of inverted spin valves that have been shown the exhibit very long spin relax-
ation times [179, 180] and a further increase in device performance could be
expected.
In general it is very challenging to grow CVD hBN uniformly over a large

scale on a weakly interacting substrate. We have found that the quality of
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3. Investigation of building blocks: Ferromagnetic contacts and CVD hBN

CVD hBN grown on copper (a weakly interacting substrate) can vary from one
growth batch to the next considerably. In addition, spatial inhomogeneities
have been found. These two findings make it very hard for a reproducible
device fabrication. The growth of CVD hBN on a more controlled substrate
such as iron would solve these problems. However, it comes with the drawback
of a much stronger interaction between the growth substrate and the CVD hBN
and hence it is difficult to transfer to a different substrate.
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4 Non-equilibrium properties of graphene
probed by superconducting tunnel
spectroscopy

In this chapter, superconducting tunnel spectroscopy is introduced as a po-
werful tool to study non-equilibrium phenomena in graphene. After a brief
description of the sample and the fabrication process, the extraction of non-
equilibrium energy distribution functions is explained. In a first part, this
technique is then used to extract the electron temperature as a function of
bath temperature. In a second part, Joule heating is applied to the sam-
ple and the dominant cooling through electron out diffusion is investigated.
We observe that the cooling is mostly dominated by the Wiedemann-Franz
law with some minor deviations, which will be discussed. In a third part,
the electron-phonon coupling is extracted from a large-area graphene sample.
Possible influences on the electron temperature are discussed in the end.
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4. Non-equilibrium properties of graphene probed by superconducting tunnel
spectroscopy

4.1. Sample overview and fabrication

A false colour micrograph of a typical device is shown in Fig. 4.1 (a) with
a cross section in (b). It consists of a graphene channel of length L and
width W , which is connected to two normal contacts N1 and N2 that act
as ideal reservoirs: all incoming quasiparticles are absorbed and the emitted
quasiparticles obey a Fermi-Dirac distribution at the reservoir temperature. In
the middle of the graphene channel, a superconducting electrode S is tunnel
coupled to the graphene. The CVD hBN tunnel barrier is covering the full
sample.
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Figure 4.1. Device and working principle of superconducting tunnel
spectroscopy: (a) shows a false colour scanning electron micrograph of a
typical sample. The superconducting Pd/Pb/In electrode is labelled with S
and the normal Cr/Au contacts are labelled with N1 and N2, respectively.
(b) shows a cross section of a typical device with the measurement setup
indicated. (c) and (d) show the working principle of superconducting tunnel
spectroscopy with the energy diagrams in (c) and the resulting current and
differential conductance in (d). Current can only flow if the bias |VSD| across
the tunnel junction is larger than ∆/e, case (1), otherwise it is suppressed due
to the gapped DoS, case (2).

Here, we used CVD graphene that was in-house grown by Kishan Thodkar.
After the transfer from the growth substrate to a Si/SiO2 wafer it was struc-
tured by e-beam litography and reactive ion etching into the desired shape.
The CVD hBN layer was transferred after a thermal annealing in forming
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4.2. Working principle of superconducting tunnel spectroscopy

gas. Commercial hBN obtained from Graphene Supermarket [142] was used
for device A and D, whereas hBN from the Hofmann group [144] was used
for device B and C. In the case of device A and D a two layer CVD hBN
was used. Single layer hBN was used for device B and C. An overview of
all devices can be found in Tab. 4.1. In a next step, the normal contacts
were fabricated. Quasi 1-dimensional Cr/Au side contacts were achieved by
a short plasma etching before the metal deposition. The CHF3 based plasma
removed the hBN, as well as partially the graphene. It turned out that these
quasi 1-dimensional side contacts are less reproducible than the 1-dimensional
contacts to "bulk" hBN/Gr/hBN vdW-heterostructures. A significant increase
in the number of working contacts was achieved by redeveloping the PMMA
mask after the CHF3 plasma. We attribute this to the fact that the overlap
of the metal with the graphene channel is increased. In a last step, the super-
conducting electrode was deposited. Here, we used an optimized three layer
structure consisting of 5 nm Pd as wetting layer, 110 nm of Pb and 20 nm of In
as a capping layer [181]. Pb was chosen because of its large superconducting
gap that allows thermometry up to several kelvins.

Table 4.1. Overview of all devices: L and W are specified in Fig. 4.1,
AT denotes the area of the tunnel contact and RTAT specifies the tunnel
resistance area product of the tunnel contact.

L (µm) W (µm) RTAT (Ω µm2) AT (µm2) hBN source
A 3.4 2 90× 103 0.7 2-layer, comm.1

B 1.3 4 470× 103 1.4 1-layer, collab.2

C 100 6 ≤40× 103 2.1 1-layer, collab.
D 2.5 1 1.8× 106 0.35 2-layer, comm.

4.2. Working principle of superconducting tunnel spectroscopy

Superconducting tunnel spectroscopy is a powerful tool to access the energy
distribution function as introduced by a pioneering work by Pothier et al.
[129, 130] on copper wires. Later, this technique was also used to study
electron relaxation rates in carbon nanotubes [182]. The current through a
superconductor (S)/insulator (I)/graphene (gr) junction is given by

I(V ) = 1
eRT

∫ +∞

−∞
dEns(E − eV ) · ngr(E) · [fgr(E)− fS(E − eV )] , (4.1)

1hBN was obtained from Graphene Supermarket [142].
2hBN was obtained from the Hofmann group, Cambridge [144].
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4. Non-equilibrium properties of graphene probed by superconducting tunnel
spectroscopy

where RT is the tunnel junction resistance, ns(E) is the superconducting den-
sity of states with an energy gap of ∆, ngr(E) is the density of states of
graphene and fs(E), fgr(E) are the energy distribution functions in the su-
perconductor and in the graphene, respectively [183]. An energy diagrm of
the tunneling process is shown in Fig. 4.1 (c) next to the tunnel current, see
Fig. 4.1 (d). The density of states of the graphene ngr(E) can be assumed as
a constant for small biases on the meV–scale. If kBT � ∆, then the energy
distribution function in the superconductor is well described by the Heavyside
function Θ(E − eV ) instead of a Fermi-Dirac distribution F (E − eV ). The
differential conductance is then readily obtained as [129, 183]

dI

dV
(V ) = 1

RT

∫ +∞

−∞
dE

dns
dE

(E − eV ) (1−Θ(E − eV )− fgr(E)) . (4.2)

The differential conductance of a S/I/Gr-junction is schematically shown in
Fig. 4.1 (d). The energy distribution function fn(E) can be obtained by a
deconvolution of the measured dI/dV (V ) using Eq. 4.2. It is obvious from
Eq. 4.2 that if the distribution function in the normal metal is also a Heavyside
function (i.e. a very cold Fermi gas), then the dI/dV is directly proportional
to the DoS of the superconductor. We would like to note here, that the exact
form of the distribution function in the superconductor does not alter the
dI/dV (V ), see also section D.1.
Fig. 4.2 (a) shows the differential conductance measured from the super-

conductor to the graphene with N1 and N2 grounded as a function of the
spectroscopy bias VSD and back gate voltage VBG. A clear superconducting
gap is observed. Since there are some resonances tuned by both VBG and
VSD, an averaging over 5V in VBG is performed that is shown on the right.
These resonances most probably originate from universal conductance fluctu-
ations (UCFs). As stated above, this measurement resembles the DoS of the
superconductor. A zoom in of the same measurement is shown in Fig. 4.2 (c).
It is obvious that this DoS cannot be described by a standard BCS DoS as
expected for a superconductor. The deviation is attributed to the averaging
that is needed to get rid of the fluctations present in (a). This averaging then
leads a much broader peak at the gap edge than predicted by a BCS or a
Dynes [184] density of states. We, therefore, use the lowest temperature and
zero heating bias U measurement as the DoS of the superconductor, which is
a fair assumption as explained above.
All measurements shown in here were carried out in a dilution fridge at very

low temperatures of ∼ 50mK. The electrical measurement scheme is described
in more detail in section 2.2. Very low AC excitation voltages on the order of
kBT/e have been used in order to maximize the energy resolution.
The presence of a finite heating bias U across the graphene channel (applied

between N1 and N2, see Fig. 4.1 (b)) drives the electronic system out-of-
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4.2. Working principle of superconducting tunnel spectroscopy

4

0

-4

V
S

D
 (

m
V

)

-50 -48 -46
VBG (V)

(a) 0.200.100
dI/dV (e

2
/h)

U = 0 mV

T = 30 mK

15

10

5

0dI
/d

V
 (

x1
0-2

e2 /h
)

420-2
VSD (mV)

(b)

 U = 0.1 mV
 U = 0.7 mV

 U = 1.7 mV
 U = 2.0 mV

2.0

1.5

1.0

0.5

0.0

no
rm

al
iz

ed
 d

I/d
V

420-2
VSD (mV)

(c)
 "DoS"
 1.4 mV
 num. fit

0.8

0.4

0.0

F
 (

E
)

3210-1
E (meV)

(d)

 0.1 mV
 0.7 mV
 1.4 mV
 2.0 mV
 fit

T (K) µ (meV)
0.3 5.2e-2
1.9 3.6e-1
3.5 0.7
4.9 1.0

150
dI/dV (x10

-2
 e

2
/h)

Figure 4.2. Extraction of the distribution function: (a) shows the dif-
ferential conductance measured through the superconducting electrode to the
graphene as a function of gate voltage VBG and bias across the hBN tunnel
barrier VSD. A pronounced superconducting gap of the Pd/Pb/In electrode
is clearly observed. In addition some resonances tuned by VBG and VSD are
visible outside of the gap, which are attributed to universal conductance fluc-
tuations. In order to remove those resonances, an averaging over 5V in VBG
is performed and the average is shown on the right. (b) shows the differen-
tial conductance for different values of U applied across the graphene flake to
drive it out-of-equilibrium. A clear broadening of the gap due to heating is
observed, while the position of the gap shifts by roughly U/2. (c) By using
the lowest T and U = 0V measurement as the density of states (DoS) of
the superconductor, the differential conductance at U 6= 0V can be used to
numerically deconvolve the distribution function. (d) shows the numerically
extracted distribution functions from the three traces shown in (b). They all
resemble a Fermi-Dirac distribution and therefore the electron temperature
and the chemical potential can be extracted.
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4. Non-equilibrium properties of graphene probed by superconducting tunnel
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equilibrium. Depending on the scattering length scales and device length,
different regimes can be accessed (see section 1.5). Fig. 4.2 (b) shows the
tunnelling differential conductance at several values of heating bias U . Two
main changes can be observed: First, the superconducting gap smears out and
second, the position of the superconducting gap shifts in VSD. The smearing
can be explained by a higher electron temperature and the shift in bias is just
due to the linear votlage drop of U along the graphene channel that shifts the
chemical potential below the superconductor by eU/2.

Fig. 4.2 (c) shows the DoS of the superconductor and the tunnelling diffe-
rential conductance at U = 1.4mV. In a numerical deconvolution, the energy
distribution function of the graphene at finite heating bias U can be extracted.
To do so, a reasonable guess of the energy distribution function is assumed
and according to Eq. 4.2 the resulting tunnelling differential conductance is
calculated. The calculated differential conductance is then compared to the
measurement and based on the differences, the guess of the energy distribution
function is adjusted. This procedure is repeated until it matches the measu-
red dI/dV , see Fig. 4.2 (c). Details about this numerical deconvolution can
be found in appendix D.
The corresponding energy distribution functions to the differential conduc-

tance measurements in Fig. 4.2 (b) are shown in Fig. 4.2 (d). In the case of
device B the energy distribution functions resemble a Fermi-Dirac distribution
parametrized by the electron temperature Te and chemical potential µ. These
two parameters were extracted by fitting a Fermi-Dirac distribution function
to the numerically extracted energy distribution function.
In the following, all electron temperatures shown were extracted according

to the technique described here.

4.3. Temperature dependence

In order to test the ability of the method presented above to extract the elec-
tron temperature, the tunnelling differential conductances was measured at
different bath temperatures, which is shown in Fig. 4.3 (a). An increased bath
temperature results in a smearing of the feature in the differential conductance
resulting from the superconducting gap. The electron temperature extracted
from fitting a Fermi-Dirac distribution to the numerically extracted distribu-
tion function is shown in Fig. 4.3 (b) against the bath temperature measured
on the cold finger of the dilution fridge.
A clear linear relation between the bath temperature and the electron tem-

perature is obtained. The electron temperature starts to saturate at low bath
temperature and does not decrease further. The negligible change in the tunnel
conductance between 23mK and 98mK indicates a lower bound of ∼ 100mK
for the electron temperature. It is well known that the electron temperature
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Figure 4.3. Temperature dependence of device A: (a) shows the dif-
ferential conductance measured through the superconducting electrode to the
graphene for different dilution fridge temperatures with U = 0V. The electron
temperature extracted from fitting a Fermi-Dirac distribution to the numeri-
cally extracted distribution function is shown as a function of the coldfinger
temperature of the dilution fridge. The blue dashed line is linear guide to the
eye, whereas the black solid line corresponds to Te = TCF . The error bars
correspond to an uncertainty of 5% in fridge temperature.

decouples from the bath temperature if the electrical leads in the fridge are not
well thermalized and filtered against high frequency electromagnetic radiation.
Even though our set-ups are equipped with RF filters at room temperature
and low temperature, a deviation of the electron temperature can still occur.
In addition to the above mentioned deviation at low bath temperature, we

face another limitation at low electron temperature. The differential conduc-
tance measurement at the base temperature that is used as the DoS of the
superconductor contains a finite broadening due to the non-zero electron tem-
perature of this measurement. Therefore, the extracted temperatures close
to the base temperature will be underestimated. This effect is negligible at
larger temperatures (≥ 1K) and will therefore not affect the measurements
presented in the following part.
Even though there is a linear relation between Te and TCF , the electron

temperature Te is always a bit above TCF . This could have the following
origin. The sample and the thermometer at the cold finger are not exactly at
the same position. Furthermore, the thermal coupling of the sample to the
cold finger is usually not as good as the one of the thermometer. These two
set-up related issues would both lead to Te ≥ TCF .

Despite all this complications, the extraction of a Fermi-Dirac distribution
with a temperature close to the bath temperature is achieved. Therefore, this
method is used in the following sections to study non-equilibrium phenomena
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4. Non-equilibrium properties of graphene probed by superconducting tunnel
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in graphene and to extract the electron temperature as a function of the hea-
ting bias U that gives insight into the dominating cooling mechanism at play.

4.4. Hot electron regime

In the hot electron regime, the electron-electron scattering length le−e is much
shorter than the device length L and therefore many inelastic scattering events
take place while an electron travels from N1 to N2. This leads to an effective
electron temperature that follows the temperature profile along the device as
described in Eq. 1.55 and shown in Fig. 4.4. The dominating cooling me-
chanism in this regime is due to hot electron out-diffusion. It follows that the
temperature in the middle of the sample is linearly dependent on bias with the
Lorenz number L0 as the proportionality factor. This holds for U2/L0 � T0,
where T0 is the temperature of the reservoirs.
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Figure 4.4. Temperature profile in the hot electron regime: Te(x)
is obtained by numerical solving the heat transfer equation 1.53. The de-
vice dimensions of device A are used with different electron-phonon coupling
strengths as indicated. A power law of 3.6 is used as was observed in device
C, see section 4.5. The phonon and reservoir temperature is assumed to be
100mK.

Fig. 4.5 (a) shows the tunnelling differential conductance for several values
of heating bias U . An increased U leads to a smearing of the sharp supercon-
ducting gap and the middle of the gap is shifted by U/2 since the tunnel probe
is located in the middle of the sample. The extracted electron temperature
is shown in Fig. 4.5 (b) as function of heating bias U for several values of
back gate voltage VBG. It can be seen that Te depends linearly on U . The
inset in (b) shows the gate dependence of the graphene conductance measured
from N1 to N2. While the graphene resistance is tuned by roughly a factor
of two (by changing the charge carrier density by ∼ 7× 1012 cm−2), the re-
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4.4. Hot electron regime

sulting electron temperature is independent of the graphene resistance. If a
large contact resistance would be present, a substantial part of the heating
bias would drop on this resistor and a bias smaller than U would drive the
graphene out-of-equilibrium. The ratio of the voltage dropping on the grap-
hene and on the contact resistance would depend on the gate voltage as the
graphene resistance is tunable. Therefore, different temperatures for the same
U would be expected for different gate voltages. However, the measurements
show that neither the electrical contact nor the charge carrier density plays a
significant role.

A linear dependence of Te on U is expected in the hot electron regime,
where the cooling is given by the Wiedemann-Franz law that relates electrical
conductivity to thermal conductivity. As shown in section 1.5 the electron
temperature profile can be calculated analytically by Eq. 1.55 and the expected
Te at the location of the superconducting probe electrode is shown as solid
black line in Fig. 4.5 (b). All extracted values for Te fall below the expected
value. Possible deviations are discussed later in section 4.7. Increasing L0 by
24% leads to a lower Te as shown by the solid blue line in Fig. 4.5 (b). A
similar effect is observed by including the phonon cooling, see the two solid
purple lines. The heat diffusion equation is numerically solved taking into
account the electron-phonon coupling extracted in section 4.5. The two lines
originate from the largest and smallest device resistance as this influences the
total cooling power through the phonons.

Similar results have been obtained for device B, which are shown in Fig. 4.6.
The extracted electron temperatures of device B are also independent of the
gate voltage. Here, the graphene resistance changes by a factor of three while
changing the charge carrier density by ∼ 7× 1012 cm−2. This again confirms
the negligible role of electrical contact resistance. Here, the dependence of the
temperature on heating bias U can be divided into two qualitatively different
regimes. For U ≤ 1mV, a linear dependence similar to device A is observed.
Again, the extracted values for Te are smaller than calculated by Eq. 1.55 (solid
black line). An increase of 48% in L0 results in lower values of Te, close to the
experimentally observed ones as shown by the solid blue line. For U > 1mV,
the extracted electron temperature is much lower than expected (even for
the larger L0). This "kink" is well explained by the onset of electron-phonon
cooling which reduces the electron temperature below the expected value. This
is visualized by the two solid purple lines that represent the expected electron
temperature including phonon cooling. The two lines originate from the largest
and smallest device resistance as this influences the total cooling power through
the phonons. Further possible explanations are discussed in section 4.7.
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Figure 4.5. Device A in the hot electron regime: (a) shows the dif-
ferential conductance measured through the superconducting electrode to the
graphene for different values of heating bias U at a gate voltage of −7.5V. (b)
shows the extracted electron temperature from fitting a Fermi-Dirac distribu-
tion to the numerically extracted distribution function for several values of
VBG. The electron temperature increases linear with applied bias as expected
by a dominating cooling mechanism due to electron out diffusion. The solid
black lines represents the expected temperature based on the Wiedemann-
Franz law, whereas the solid blue line represents the Wiedemann-Franz law
for an increased Lorenz number. The solid purple line shows a numerical es-
timate of Te (using Eq. 1.53) including the influence of the phonon cooling by
using Σep extracted in section 4.5. The two lines originate from the largest
and smallest device resistance. The inset shows the two-terminal conductance
through the graphene from N1 to N2 as a function of gate voltage VBG.
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Figure 4.6. Device B in the hot electron regime: The extracted elec-
tron temperature from fitting a Fermi-Dirac distribution to the numerically
extracted distribution function for two different gate voltages is shown. Ty-
pical differential tunnel conductance traces are shown in Fig. 4.2 (b) and (c).
The electron temperature increases nearly linear with applied bias as expected
by a dominating cooling mechanism due to electron out diffusion. The solid
black lines represents the expected temperature based on the Wiedemann-
Franz law, whereas the solid blue line represents the Wiedemann-Franz law
for an increased Lorenz number. The solid purple line shows a numerical es-
timate of Te (using Eq. 1.53) including the influence of the phonon cooling by
using the Σep extracted in section 4.5. The two lines originate from the largest
and smallest device resistance. The inset shows the two-terminal conductance
through the graphene from N1 to N2 as a function of gate voltage VBG.
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4.5. Phonon cooling

The bigger the graphene area the larger is the cooling power through the
elctron-phonon coupling. Sample D, which is 100 µm long is suitable to study
the cooling through electron phonon coupling as the cooling by electron out-
diffusion is greatly reduced and a flat temperature profile results, see Fig. 4.7.
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Figure 4.7. Temperature profile in the phonon cooled regime: Te(x)
is obtained by numerical solving the heat transfer equation 1.53. The de-
vice dimensions of device C are used with different electron-phonon coupling
strengths as indicated. A power law of 3.6 is used as was observed in device
C. In the absence of electron cooling through out-diffusion, the temperature
profile shown in purple dashed line would be reached with a maximum tempe-
rature given by Eq. 1.57. The phonon and reservoir temperature is assumed
to be 100mK.

The differential tunnel conductance through the superconducting electrode
to the graphene are shown in Fig. 4.8 (a) for different values heating bias U . All
measurements were performed at a high doping of −5× 1012 cm−2. The Joule
heating power is shown as a function of the extracted Te in Fig. 4.8 (b). The
cooling power through the acoustic phonons is described as P = AΣep(T δe −
T δ0 ), with the total area A, the electron-phonon coupling Σep, the electron tem-
perature Te and the phonon temperature T0, see section 1.5 for more details.
In the dirty limit a power law of 3 is expected, whereas at higher temperatures
in the clean limit a power law of 4 is expected. Above 1K an exponent of 3.6
is extracted with an electron phonon coupling strength of 98mWK−3.6m−2.
This lies somewhat between the clean limit (T 4) and dirty limit (T 3). A crude
estimation of the crossover from the dirty to the clean limit by Eq. 1.61 yields
a crossover temperature of around 1K using a mean free path of ∼ 30 nm
extracted from the gate dependence of the graphene resistance. It is evident
from Fig. 4.8 (b) that at lower temperatures the exponent is smaller. This is
expected as the dirty limit is more relevant at lower temperatures, which was

84



4.6. Hint of double step

shown in previous measurements on single layer graphene [126].
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Figure 4.8. Device C in the phonon cooled regime: (a) shows the
normalized differential conductance measured through the superconducting
electrode to the graphene for different values of heating bias U . The inset
shows the two-terminal conductance through the graphene from N1 to N2 as
a function of density. (b) shows a log-log plot of the calculated Joule heating
power versus the extracted electron temperature from fitting a Fermi-Dirac
distribution to the numerically extracted distribution function. A linear fit
reveals the exponent of the phonon cooling and the electron-phonon coupling
strength.

4.6. Hint of double step

The tunnelling differential conductance of Device D is shown in Fig. 4.9 (a).
This device developed a shoulder in the conductance peaks at the super-
conducting gap edges at moderate biasing U ∼ 0.5mV. This shoulder is a
first indication of a double step energy distribution function as described in
section 1.15 for non-interacting quasiparticles. The corresponding numerically
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extracted distribution functions are shown in Fig. 4.9 (b), while the calcula-
ted differential conductance based on these distribution functions reproduce
the measured differential conductance very well (thin solid black lines), see
Fig. 4.9 (a). Hints of a plateau are visible at 0.5 in the energy distribution
functions. However, at larger biases, the energy distribution functions start to
smear out due to self heating of the electrons.
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Figure 4.9. Hint of a double step function in Device D: (a) shows the
differential conductance measured through the superconducting electrode to
the graphene for different values of U . Clear shoulders develop for 0.5mV and
0.7mV. The numerically extracted distribution functions are shown in (b). A
hint of a double step with a plateau around 0.5 is visible.

There are a three limitations present in this data set. First, the differen-
tial conductance was only measured within a bias window of ±3mV, that
complicates the numerical extraction. Ideally, the differential conductance is
measured over a bias range that is much larger than the superconducting gap.
Far away from the superconducting gap the differential conductance approa-
ches a constant value that is the normal state conductance. If the differential
conductance approaches a constant, it can be numerically extended to any
bias value that is optimal for the numerical deconvolution. However, this is
not the case here and therefore the deconvolution was performed on a limi-
ted bias range. In addition, the measured differential conductance contains
some wiggles due to UCF, that were not fully average out (not enough aver-
aging over back gate voltage). The presence of this relatively sharp features
that even changes with applied bias are a further complication for an accurate
extraction of the energy distribution function. A last complication is the ad-
ditional resonance feature observed within the gap at ∼ 0.5meV. The exact
origin of this is unknown but it might originate from the proximitized Pd layer
that was used as a sticking layer. This is further feature that introduces some
complications in the numerical deconvolution and even worse, it might change
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with bias as well. It was observed that it disappears with increasing tempera-
ture and that it is fully absent at 1K (not shown). Nevertheless, a hint of an
additional plateau at 0.5 is observed that is characteristic of non-interacting
quasiparticles.

4.7. Discussion

First, the hot-electron regime, then the phonon cooled regime and in a last
section the hint of a double step function are discussed. After that some
general points are brought up.

4.7.1. Deviation from hot electron regime
This part of the discussion is dedicated to the deviation of the electron tem-
perature from the expected value in the hot electron regime. We consistently
observed an electron temperature that is significantly lower than expected by
theory, see section 1.5.
First of all, a finite contact resistance between the graphene and the normal

metal reservoirs could lead a thermal contact resistance as well. The presence
of a thermal contact resistance would lead to a larger electron temperatures
in the graphene as the cooling would be less efficient. Similar arguments hold
for reservoirs that are at an elevated temperature. Both effects would lead to
higher electron temperatures and are therefore ruled out.
In the hot electron regime, Te(x) is described by a pseudoparabolic profile.

Obviously a superconducting electrode with finite width will not only probe
the highest temperature in the middle, but will also probe lower temperatures
off-centre. In order to estimate this, the width of the superconducting electrode
(≤ 400 nm) has to be compared to the device length (3.4 µm for device A and
1.3 µm for device B). Even though the width of the superconducting electrode
is a considerable fraction of the device length for device B, its influence is
estimated to be smaller than 1.6%, see appendix D. We therefore, take this as
the lower bound of the uncertainty of Te. In summary, this effect is too small
to explain the deviation from the expected electron temperature.
In principle cooling through the superconducting electrode could also occur.

However, this effect is ruled out because of two reasons. First, the contact
resistance is on the order of 100 kΩ, which is roughly 100 times larger than
the total device resistance. Therefore, only correction on the order of 1% can
be expected. Second, the reduced density of states in the superconductor at
the Fermi energy efficiently suppresses cooling through electron out diffusion
[124, 126].
Obviously, cooling through phonons lowers the electron temperature. In or-

der to account for that the heat diffusion equation 1.53 was solved numerically
using the electron-phonon coupling extracted in section 4.5. The influence
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for U ≤ 1mV is marginal and cannot account for the observed deviation. In
contrast the correction is significant for U > 1mV for device B and can be as
large as 0.8K for a device resistance of 5.2 kΩ at U = 2mV. However, the total
cooling power through the phonons depends on the device resistance, which
is another argument to rule out the phonon cooling as the main origin of the
reduced Te in the first place.

As a last explanation for the reduced Te at low bias voltages, we propose
an increased Lorenz number, which increases the cooling through electron out
diffusion. Even though the Lorenz number L0 = π2k2

B
3e2 is supposed to be a

universal constant, different values have been reported for different materials
[185] so far. In order to explain our results, the Lorenz number needs to be
increased by 24% to 48%. Previous reports on single layer graphene have
also reported an increased Lorenz number between 1.26L0 and 1.34L0 [124].
It is theoretically predicted that electron-electron interactions might modify
the Lorenz number in graphene [185–187]. It was shown theoretically that in
the limit EF � kBT the system becomes quantum critical and interactions
between massless electrons and massless holes increase the Lorenz number
[186, 187]. However, our samples are clearly not in this regime as kBT � EF
for all temperatures and densities achieved in these experiments. For impurity
limited samples, as ours, a modification of the Lorenz number is also expected,
but only if screening is weak [186], which means that the electron-electron
interactions are not fully screened.

4.7.2. Electron-phonon coupling strength

As described in section 1.5.2, the deformation potential D is describing the
strength of the electron-phonon coupling. Since our measurements lay somew-
hat between the dirty and clean limit a straightforward estimation of D is
not possible. Therefore, D is estimated by using the experimentally extracted
electron-phonon coupling of 98× 10−3 W/m2K−4 once in the clean limit, see
Eq. 1.59, and once in the dirty limit, see Eq. 1.59, with EF = 260meV and
lmfp ∼ 30 nm. In doing so, we extract ∼ 18 eV and ∼ 16 eV for the clean and
dirty limit respectively. These values are within the widely spread literature
values ranging from 2 eV to 70 eV [122–125, 131] and agree well with the most
reported values around 15 eV. These values are in agreement with theoretical
predictions ranging from 5 eV to 13 eV [188–190].

The Joule power was calculated by U2/R using the zero-bias differential
resistance. The differential resistance might change at larger bias and therefore
introduce an uncertainty into the Joule power. This effect is expected to be
small though.
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4.7.3. Discussion of the presence of a double-step distribution
function

A clear double-step energy distribuiton function is only observed if the inelastic
scattering length is much longer than the device length L. Since we only
observe a hint of a double step-function and the fact that we observe the
hot electron regime even in the shortest device, the inelastic scattering length
scale must be shorter than ∼ 1 µm. UCF correlation measurements or weak-
localization measurements could shed some light onto these length scales as
the phase coherence length is generally limited by inelastic scattering.

4.7.4. General remarks
The usage of CVD graphene and CVD hBN on SiO2-substrate is a liming
factor in device quality. Exfoliated graphene supported on hBN or fully hBN
encapsulated graphene would desirable not only for the much longer inelastic
scattering length but also the gate dependent properties could be explored.
Weak (anti-)localization and UCF measurements have shown phase coherence
lengths on the order of the device size (µm-scale), see chapter 7.

The averaging procedure used here could be obsolete in cleaner devices.
This would lead to much sharper peaks in the DoS at the superconducting
gap edge. Sharper peaks are highly appreciated since they would allow for a
much higher energy resolution in the extracted energy distribution function.
A systematic error in the extraction of the electron temperature is ruled out

since the extracted Te at elevated bath temperatures is larger than the bath
temperature. If any systematic deviation is present, it would lead to Te that
is too large and not too low.

4.8. Conclusion and outlook

Superconducting tunnel spectroscopy was successfully used to locally extract
the energy distribution function in graphene driven out-of-equilibrium. In
the cases where the extracted energy distribution function resembled a simple
Fermi-Dirac distribution the local electron temperature could be extracted.
The dependence of the electron temperature on heating bias or Joule heating
power respectively, revealed a hot electron regime and a phonon cooled regime.
The former regime is dominated by electron out diffuison that is well described
by the Wiedemann-Franz law. The latter regime is dominated by phonon
cooling, where the electron-phonon coupling in the graphene is the bottleneck
that allows us to extract this coupling strength. In the case of the hot electron
regime, an increased Lorenz number was found.
Our measurements prove that superconducting tunnel spectroscopy is a po-

werful tool to locally access non-equilibrium properties of graphene. This

89



4. Non-equilibrium properties of graphene probed by superconducting tunnel
spectroscopy

technique is not only limited to graphene but is also readily applicable to ot-
her 2-dimensional materials. In principle the density of states could be inferred
from such measurements if the channel material is kept at equilibrium with a
well known distribution function. Therefore, this could prove useful to study
band modifications (e.g. graphene minibands or proximity spin-orbit coupling
in graphene/TMDC systems) by locally measuring the density of states.

90



5 Spin transport in graphene spin valves1 2

In this chapter we present how a layer-by-layer-stacked two-layer CVD hBN
barrier is used as a tunnel barrier for spin injection. Hanle measurements
were used to extract spin transport properties of the graphene channel. In
general, we found typical low quality graphene spin valves with τs ' 400 ps
and λs ' 2 µm for single as well as multi layer graphene devices. We have
found that in these devices exfoliated thick hBN does not increase the device
quality. Similarly to SiO2 based devices, spin relaxation rates for the Elliott-
Yafet and Dykonov-Perel spin relaxation mechanism were found to be of similar
strength. In addition we investigated the negative spin polarization of high
resistive contacts, which showed a DC bias tunability. In a second part, a
measurement scheme is introduced and preliminary results are shown that
might allow the detection of localized magnetic moments that are believed to
result in very short spin lifetimes in graphene based spin valves.

1Parts of this chapter are results from a collaborative work with Mallikarjuna Gurram,
Sidharta Omar and Bart van Wees from the University of Groningen. Some of the
figures were prepared by Mallikarjuna Gurram.

2Parts of this chapter have been published in a similar form in Ref. [165].
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5.1. Spin transport in two-layer CVD hBN/graphene/hBN
heterostructures

The potential of CVD hBN as a tunnel barrier for electrical spin injection into
graphene has been recently explored [163, 164, 191, 192]. Electrical injection
of spin current using a monolayer CVD hBN tunnel barrier is inefficient [163,
164, 192] due to its low contact resistance-area product RcA leading to the
spin conductivity mismatch problem [95, 193], see also subsection 1.3.3. This
can be overcome by increasing the number of layers which would increase the
RcA value leading to a more efficient injection of spin current. Theoretical
studies show that the spin injection efficiency is expected to be larger for
a bilayer hBN barrier than for a single layer hBN barrier [194]. However,
practically, a controlled and direct growth of bilayer or multilayer(> 1 layer)
CVD hBN is difficult [148]. Here we prepared a two-layer CVD hBN tunnel
barrier via layer-by-layer-stacking of two individual monolayers of CVD hBN.
Note that this two-layer CVD hBN is different from a bilayer CVD hBN in
that the former is layer-by-layer-stacked using two individual monolayers while
the latter is as-grown (i.e. Bernal stacked).

Here we present results of three devices labelled Dev1, Dev2 and Dev3. All
devices have a similar geometry as depicted in Fig. 5.1 (a). The CVD hBN for
Dev1 and Dev2 was obtained from Graphene Supermarket [142], whereas the
CVD hBN for Dev3 is grown by the Zhang lab in Beijing [143]. Moreover, Dev1
and Dev2 are single layer graphene whereas Dev3 is a trilayer graphene. First,
a half-stack consisting of graphene on exfoliated hBN is prepared by a dry
transfer method similar to the vdW stacking described in section 2.1. After the
removal of the transfer polymer in chloroform, the half-stacks were annealed
in forming gas to remove any remaining polymer residues. The two layer CVD
hBN tunnel barrier was prepared and deposited as described in section 2.1.
After removing the supporting PMMA layer in acetone, the devices were again
annealed in forming gas to remove further residues. Ferromagnetic cobalt
electrodes were patterned by e-beam lithography and subsequent evaporation
of Co/Al, see also section 2.1.
All transport measurements were performed at room temperature in vacuum

with standard low frequency lock-in techniques. Since the contact resistance
plays a crucial role in spin injection, we characterized the contact resistance
in a three-terminal configuration. The three-terminal current-voltage (I-V)
characteristics are shown in Fig.5.1(b). The differential contact resistance-
area products RCA, measured at zero bias, were found to be in the range
of 1 kΩ µm2 to 11 kΩ µm2, see also Tab. 5.2 for an overview. The RCA of
single layer hBN is reported to fall below 4 kΩ µm2 and above 4 kΩ µm2 for
bilayer hBN [160, 162–164, 195]. Based on these findings, we divide all our
contacts into two regimes low resistance LR contacts (RCA < 4 kΩ µm2) and
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Figure 5.1. Device layout and basic characterization. (a) Schematic
drawing of the devices prepared with two-layer-CVD-hBN tunnel barriers. C1-
C4 denote the contacts used for the measurements and further contacts are not
shown. (b) Representative three-terminal I -V curves for three devices, labelled
Dev1, Dev2, and Dev3. High-resistance (HR) and low-resistance (LR) contacts
are denoted in the legend with symbols and solid lines, respectively. Within
Dev2, all contacts show similar LR behaviour to that shown here. (c), (d),
and (e) show the square resistance Rsq of the graphene channel as a function
of backgate voltage Vbg. c© 2018 American Physical Society
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high resistance HR contacts(RCA > 4 kΩ µm2). For Dev1 and Dev3 we find
both LR and HR contacts, whereas for DV2 all contacts were found to be
LR contacts. We find linear I-V behaviour for all LR and non-linear I-V
behaviour for the HR contacts, see Fig. 5.1 (b). The large spread in RCA
values can be explained by the inhomogeneous growth of CVD hBN on the
growth substrate (see also section 3.2), cracks or defects induced during the
transfer process and the presence of contaminations at all interfaces (Gr/hBN,
hBN/hBN, hBN/Co).

The square resistance measured in a four terminal configuration is shown in
Fig. 5.1 (c). Field effect mobilities were extracted from the back gate depen-
dence and surprisingly low mobilities were found, 3400 cm2 V−1 s−1 for Dev1,
120 cm2 V−1 s−1 for Dev2 and 255 cm2 V−1 s−1 for Dev3. It was previously
shown that the density calculated by a simple capacitance model from the
back gate resembles the bulk density measured by the Hall effect for grap-
hene samples up to five layers [196]. The low device quality is attributed to
the fabrication procedure as the graphene comes into contact with solvents
for several times and an inhomogeneous CVD hBN layer that is in very close
proximity.

Standard four terminal non-local spin-valve measurements were employed
to characterize the spin transport, see also Fig. 5.2 (a) and section 1.3. In
Tab. 5.1 the RCA values of the (inner) injector and (inner) detector electrode
pair (C2 and C3 in Fig.5.2 (a)) are given for each device.

Table 5.1. RCA of the devices: RCA of the injector and detector electrodes
of the devices.

Dev1 Dev2 Dev3
RCA of Inj1 (kΩ µm2) 1.7 1.2 4.7
RCA of Det1 (kΩ µm2) 10.8 1.0 1.4
RCA of Inj2 (kΩ µm2) - - 8.6
RCA of Det2 (kΩ µm2) - - 2.3

An external magnetic field applied in the y direction was used to switch the
magnetization of the Co contacts individually. Whenever a contact switches a
sharp change in the non-local differential resistance RNL(BY ) is observed, see
Fig. 5.2 (b)-d(d). Dev1 with a LR injector and HR detector showed a regular
spin-valve signal with a higher RNL for the parallel (P) configuration than for
the anti-parallel (AP) configuration of the involved contacts. In other words,
∆RNL = (RPNL−RAPNL)/2 > 0, Fig. 5.2 (b). Similarly, Dev2 with a LR injector
and a LR detector showed as well a regular spin-valve signal (∆RNL > 0).
Interestingly, Dev3 consisting of a HR injector and a LR detector showed an
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inverted spin-valve signal with ∆RNL < 0, see Fig. 5.2 (d). Combinations of a
HR injector with a HR detector or the combination of a LR injector with a LR
detector on this device resulted in regular spin-valve signal with ∆RNL > 0.
Hanle measurements were performed to determine the spin transport pa-

rameters with a Hanle field applied perpendicular to the graphene plane in
z direction. The Hanle signals measured in parallel and anti-parallel confi-
guration are shown in Fig. 5.2 (e)–(g). The relative injector and detector
alignment configuration is indicated with red and black crosses in Fig. 5.2 (b)–
(d). In order to eliminate any spurious background the pure Hanle spin signal
∆RNL(Bz) = (RPNL(Bz) − RAPNL(Bz))/2 > 0 was calculated, which was then
used to extract the spin transport parameters using the formula described in
section 1.3.6. In doing so, we extracted spin relaxation times τs of around
280 ps for Dev1, 80 ps for Dev2 and 100 ps for Dev2.
The LR contacts can have a severe influence on the extraction of the spin

transport parameters [193, 199–201]. In order to quantify the influence we
calculate the values of RC/Rs and L/λs. The effective spin resistance of the
graphene channel Rs = Rsqλs/w, where λs =

√
Dsτs is the spin relaxation

length, compared to the contact resistance quantifies the influence of the con-
tact on the spin transport parameters [193]. For Dev1, Dev2 and Dev3 the
following values were found (0.81–12.97, 0.61–1.114), (0.123-3.11, 0.15-2.65)
and (13.64–77.81, 0.84–1.19). The low RC/Rs values of Dev1 and Dev2 in-
dicate a strong influence of the LR contacts on the extracted spin transport
parameters. Therefore, the extracted values for τs form Hanle measurements
are lower estimates and can be corrected according to Ref. [193]. Dev3 on the
other hand is not influenced by the contacts and therefore the extracted values
from Hanle measurements are believed to represent the true channel proper-
ties. The corrected τs, and Ds are shown in Fig. 5.3 as a function of carrier
density. Ds and Dc reasonably well agree within a factor two confirming the
reliability of our analysis [16, 202]

5.1.1. Discussion and interpretation of the spin transport properties
The devices presented here were prepared in a similar way as by Fu et. al.
[163] and by Kamalakar et al. [164], except of the additional thick exfoliated
hBN that was used as a substrate instead of SiO2. Even though the hBN
substrate should increase the device quality, very low mobilities were found.
This very low quality might be attributed to several factors. First of all a
very inhomogeneous hBN layer sits directly on top of the graphene channel.
In addition, the graphene was directly in contact with the transfer polymer
and its solvents as well as it was in direct contact with the rinsing solution of
the copper etchant. All these steps can introduce contaminations at several
stages that could lead to an inferior device quality.
Even after correcting the spin relaxation times for contact mediated spin
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Figure 5.2. Measurement scheme, spin vale and Hanle measure-
ments: (a) Schematic of the four-terminal non-local measurement geometry
for the spin valve and the Hanle measurements. (b), (c), and (d) show non-
local spin valve signals Rnl(By) measured at the carrier densities 0, 1×1012,
and 4×1012 cm−2 for Dev1, Dev2, and Dev3, respectively. Horizontal dashed
lines represent the background level of the spin valve signal. Vertical dashed
line in (d) represents the magnetization switching field of the (inner)injector
contact. Because the outer-detector contact in Dev3 is also sensitive to the
spin accumulation three switches are observed in (d). Parallel (P) and anti-
parallel (AP) magnetization configurations are denoted by crosses. The Hanle
signals Rnl(Bz) of the corresponding spin valve in (b), (c), and (d), are shown
in parallel and anti-parallel configuration in (e), (f), and (g), respectively. c©
2018 American Physical Society
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Figure 5.3. Hanle fit parameters: Data extracted from the Hanle spin
precession measurements for Dev1, Dev2, and Dev3 at different electron carrier
densities. (a) Non-local Hanle spin precession signal ∆Rnl = (RP
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nl )/2

at Bz = 0. Note that ∆Rnl for Dev3 remains negative for all densities. (b)
Carrier diffusion constants determined from charge transportDc and from spin
transport Ds are shown as lines and symbols, respectively. Ds for Dev2 is not
given due to unreliable values obtained from the Hanle fitting. We assumed
Ds = Dc [197] for Dev2 and used Dc values to fit the Hanle data ∆Rnl(Bz)
to obtain τs. Dc for Dev3 is calculated from the effective density of states of
three-layer graphene [198]. (c) Spin relaxation times τs. c© 2018 American
Physical Society
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relaxation (low Rc/Rs values) [193], values below 400 ps were found for all
three devices as shown in Fig. 5.3 (c). Such low spin relaxation times need
an explanation. Several factors influence the device performance, such as the
low quality of the graphene due to a wet transfer process of the CVD hBN, a
non-uniform CVD hBN tunnel barrier covering the full spin channel, improper
interfaces between cobalt and the CVD hBN as well as to the graphene and the
proximity of polymer residues origination from the transfer as well as from the
lithography process. An inhomogeneous hBN layer and lithgoraphy residues
might lead to uneven interfacial growth of the ferromagnetic cobalt electrodes
on top [161] which can result in enhanced spin dephasing due to randomly
oriented magnetic fringe fields near the contacts [203].

In order to investigate the possible spin relaxation phenomenon causing
the low spin relaxation times, we analysed the data in Fig. 5.3 by following an
approach introduced by Zomer et al. [204]. Considering the Elliott-Yafet (EY)
mechanism and the Dyakonov-Perel (DP) mechanism as the two dominating
sources of spin relaxation, one can analyse the dependence of τs on τp using
the equation

E2
F τp
τs

= ∆2
EY +

(
4∆2

DP

~2

)
E2
F τ

2
p , (5.1)

where EF is the Fermi energy of the graphene, ∆EY and ∆DP are the spin-
orbit coupling strengths for the EY and DP mechanisms respectively.
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Figure 5.4. Determination of spin-relaxation mechanism: The li-
near fits (solid lines) of the data using Eq. (5.1) give the spin-orbit coupling
strengths of the EY and DP spin relaxation mechanisms. The inset shows the
data and fits at small values of τp. A reliable value of ∆EY for Dev2 is not
obtained due to non-monotonic relation between τs and n [204], see Fig. 5.3(c).
c© 2018 American Physical Society

Fits to the data of the three devices are shown in Fig. 5.4 using Eq. 5.1. Due
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Table 5.2. Overview of the devices: All important information of the
three devices are presented.

Dev1 Dev2 Dev3
RCA (kΩ µm2) 1.7–10.8 0.5–1.2 1.4–8.6
RC/Rs (1) 0.81-13 0.12–3.1 0.84–1.2
τ−1
s,EY (ns−1) 0.2–2.7 - 0.6–1.8
τ−1
s,DP (ns−1) 2.0–2.5 10.3–13.8 8.4–9.4

to the small range in τp for Dev2 the fitting is not so reliable and we can only
extract ∆DP . From the extracted spin-orbit strength, one can obtain the spin
relaxation mechanism due to its specific relaxation mechanism as following:
τ−1
s,EY = ∆2

EY

E2
F
τp

and τ−1
s,DP = 4∆2

DP τp

~2 . The values of τ−1
s,EY and τ−1

s,DP are both
found to be on the order of 1 ns−1 for all devices and a clear dominance of
either mechanism is not found. For an overview of the time scales, please see
Tab. 5.2.
The spin valve measurements in Fig. 5.2 unambiguously show that the in-

jector polarization of the HR contacts of Dev3 have opposite sign with respect
to the LR contacts at zero DC bias. This is not the case for Dev1, where LR
and HR contacts have the same sign of the polarization.
The absolute sign of the spin polarization cannot be determined by non-

local spin valve measurements. Here we define that the polarization of the
LR contacts is positive. Therefore, for a two layer CVD hBN tunnel bar-
rier we find both positive and negative spin polarizations for HR contacts
(RCA > 4 kΩ µm2) with respect to LR contacts (RCA < 4 kΩ µm2). There
is no clear correlation between the RCA value and the sign of the polari-
zation as previously reported by Kamalakar et al. [192], where all contacts
with RCA ≤ 25 kΩ µm2 showed a positive polarization and all contacts with
RCA ≥ 170 kΩ µm2 showed negative polarization. The main difference bet-
ween the two studies is that the authors in Ref. [192] used a spatially inho-
mogeneous CVD hBN layer with regions containing single layer and regions
with trilayer CVD hBN, whereas here a two-layer CVD hBN tunnel barrier
is used. This artifical stacking of two layers does not result in a perfectly
Bernal-stacked bilayer hBN but rather in randomly oriented stacking of the
two single layers. Therefore, possible spin filtering mechanism that lead to the
inversion of the spin polarization might be different.
Gurram et al. [162] reported in a recent study that the spin polarization

at zero DC bias can also have a opposite sign for tunnel barriers fabricated
from exfoliated bilayer hBN. There the RCA was in the range of 4.6 kΩ µm2

to 77.1 kΩ µm2, comparable to the values here. Therefore, the origin of the
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5. Spin transport in graphene spin valves

different sign of the spin polarization cannot directly be related to hBN cry-
stallographic orientation or number of layers.

In order to be able to study the DC bias dependence of the spin injection
into graphene a tunnel barrier at the contact is needed. Only then does the
applied voltage drop at the interface between the ferromagnetic contact and
the graphene. The applied voltage drops across the graphene channel in the
case of transparent contacts and it this leads to carrier drift in the graphene.
Recently Gurram et al. [162] showed an enormous tuning of the spin injection
polarization by the application of a finite DC bias across a bilayer hBN tunnel
barrier. These results are motivating to look into the bias dependence of the
devices presented here.
The DC bias dependence of the ∆RNL is shown in Fig. 5.5 for Dev2 and

Dev3. The DC bias is applied as a constant current in addition to the AC
current applied between the two injector contacts as shown in Fig. 5.2 (a).
∆RNL was measured at zero magnetic field.

Dev2 with LR contacts allowed only for a very small DC bias applied since
otherwise large current levels would have destroyed the sample. The small
changes in ∆RNL were measured for a p-doping of the graphene channel.
Within the bias range of ±0.07V, the magnitude of ∆RNL increases (decre-
ases) with positive (negative) bias. This behaviour could be explained with
local carrier drift in the graphene due to the low ohmic contacts, which results
in a finite voltage drop in the graphene [205].

In the case of Dev3 two sets of injector pairs were investigated, each consis-
ting of a HR injector and a LR detector. At zero DC bias both sets showed
an inverted spin valve signal indicating a negative injector polarization, see
Fig. 5.2 (d) and (g). An injector current of ±40 µA results in an equivalent
bias of ±0.3V and ±0.2V for set1 and set2 respectively. ∆RNL changes in
a non-monotonic behaviour with applied bias and does not depend on gate
voltage. The absolute value of ∆RNL is largest for negative DC bias. Drift
effects can be neglected since the contact resistance is large enough such that
the applied voltage drops mostly across the tunnel barrier.

Even though the inverted spin valve signal is a direct evidence of a negative
polarization, the dependence of ∆RNL on bias cannot directly by linked to a
change in polarization a priori. Its magnitude is given as

∆RNL = pinpdet

(
Rsqλse

−L/λs

2w

)
, (5.2)

where pin, pdet are the differential spin injection and detection polarizations
of the involved contacts. In order to extract pin reliably, Hanle measurements
were performed at different bias levels to extract λs to accommodate for pos-
sible changes in the spin relaxation length. pdet and pin are assumed to be
equal at zero DC bias and furthermore pdet is not expected to change with DC
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Figure 5.5. DC bias dependence of non-local spin signal:. (a) Non-
local spin signal ∆Rnl as a function of the injection bias Vin for Dev2 with LR
injector and detector contacts, and for Dev3 with two different sets of HR-
LR injector-detector contacts pairs. Inversion of the spin signal for Dev3 is
due to the inverse polarization of the HR injector contact with respect to the
LR detector [see Figs. 5.2(d) and (g) for set1]. RcA values of the respective
injector contacts, at zero bias, are given in the legend. The left axis of (b) and
(c) shows bias dependent ∆Rnl for set1 and set2 contacts of Dev3, respectively,
at different carrier densities ranging from electrons (n > 0) to holes (n < 0).
Legend in (c) shows the carrier density in cm−2. The right axis of (b) and
(c) shows differential spin injection polarization pin at an electron density
of 3.4×1012 cm−2 for set1 and 4×1012 cm−2 for set2, respectively. c© 2018
American Physical Society
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bias. The extracted pin as a function of DC bias is shown in Fig. 5.5 (b) and
(c) and it closely follows ∆RNL. pin can be tuned within −15% to −5%.

Previously, a sign inversion of the spin valve signal was found for thicker (2-3
layers) CVD hBN [192] over a large range of bias 0.5V to 2V. There, the spin
signal decreased at larger injection bias and was not measured below 0.5V.
We used a lock-in technique to accurately measure the spin signal at very low
injection bias, which is hard in a pure DC measurement [192]. In comparison
to the very recent results from Gurram et al. [162] on bilayer exfoliated hBN
tunnel barriers, the tunability in two-layer CVD hBN tunnel barrier is much
weaker and no sign inversion is found.
In summary, two-layer CVD hBN tunnel barriers were successfully employed

for spin injection into single and trilayer graphene. Surprisingly low carrier
mobilities and spin life times were found in these devices. Both most likely
originate from the low quality of the devices mainly given by the presence of
the CVD hBN on top and the many fabrication residues. Neither is the spin
relaxation dominated by the Elliott-Yafet mechanism nor does the Dyakonov-
Perel mechanism play the dominant role.
Some of the HR cobalt contacts showed a negative spin polarization with re-
spect to the LR contacts. However, a consistent dependence of the RCA value
was not found. The injection polarization stays negative within a bias range
of ±0.3V and changes between −5% to −15% in a non-monotonic behavi-
our. The origin of a possible spin filtering effect is still not understood. One
possible explanation for the bias dependence could be that the local density
of states at the interface of the ferromagnetic cobalt to the CVD hBN tunnel
barrier changes in a peculiar way with energy. A larger bias window allows
then transport not only at the Fermi energy but also states below and above
could then contribute to transport. Therefore, a different spin polarization is
not fully unexpected. The findings presented here are in stark contrast to the
enormous tunability of spin injection in cobalt/bilayer hBN/graphene systems
as previously reported [162].
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5.2. Proposal of a measurement scheme to detect the
influence of magnetic moments on spin transport

Experiments on weak localization and universal conductance fluctuations in
strong in-plane magnetic fields have found a significant contribution to dep-
hasing from magnetic moments [103]. Temperature dependent measurements
revealed a g factor around 2 suggesting that the magnetic moments can success-
fully be pinned by moderate in-plane magnetic fields. Magnetic moments in
graphene can form due to carbon vacancies or chemisorbed hydrogen, lea-
ding to a sp3 hybridization [104–107]. Localized magnetic moments acting
as resonant scatterers were proposed as an efficient source of spin relaxation
[108, 109], see also subsection 1.3.7. The fact that no spin relaxation aniso-
tropy in graphene on SiO2 was found, points to the direction that magnetic
moments indeed are a dominating source of spin relaxation [206].

The direct influence of magnetic moments unintentionally present in pris-
tine graphene on spin transport in graphene has not been shown yet. In the
following we propose a measurement scheme to detect the influence of mag-
netic moments on spin transport. This concept is based on the fact that a
static configuration of the magnetic moments aligned collinear to the injecting
magnetic contacts will not lead to any dephasing of the electron spin during a
resonant scattering event. In general, the direction of the magnetic moments
of the resonant scattering sites are random and fluctuate in time. However,
in a large magnetic field a Zeeman splitting occurs for the magnetic moments.
If temperature is low enough, all magnetic moments will occupy the lowest
energy level. This will lead to a static configuration of the magnetic moments
aligned with the external magnetic field. Therefore, the combined influence of
magnetic field (Ez = gµBB) and temperature (kBT ) will lead to a clear picture
of the contribution of magnetic moments to the spin relaxation. Since large
magnetic fields (and obviously low temperatures) are required (B ≥ kBT

gµB
), the

only possible injector and detector configuration will be a parallel alignment
of the two electrodes’ magnetization. It is obvious that the large magnetic
field needs to be applied in-plane as otherwise significant orbital contributi-
ons would be expected (Hall effect and Quantum Hall effect). Therefore to
address the magnetic moment related spin relaxation the measurement of the
non-local resistance as a function of in-plane magnetic field and temperature
is needed.

First, the room temperature characteristics of a multilayer graphene spin-
valve are discussed. In a second step the low temperature spin transport is
presented and the influence of a strong in-plane magnetic field is investigated.
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5. Spin transport in graphene spin valves

5.2.1. Room temperature characterization of a two-layer CVD
hBN/multilayer graphene spin valve

Fig. 5.6 shows the device consisting of a few layer graphene spin transport
channel with a two-layer CVD hBN tunnel barrier 3. Cobalt electrodes with
varying width were used as injectors and detectors of spin polarized current.
The sheet resistance Rsq ' 200 Ω was found to depend only weakly on gate
voltage most probably due to the few layer nature of the graphene. The
RCA was found to be around 3 kΩ µm2 to 4 kΩ µm2, determined from three
terminal measurements. Clear spin valve signals are observed for different
contact pairs as shown in Fig.5.6 (a). The overall signal decreases with length
exponentially with a spin relaxation length λs = 1.7 µm. The spin relaxation
length is slightly shorter than the contact spacing, which is 2 µm (measured
from the middle of the contacts). Over a length of 2 µm a clear Hanle signal
was found, as shown in Fig. 5.6 (c). The data shown here is the difference
of the Hanle signal in parallel and in anti-parallel configuration as similarly
done above. The extracted spin lifetime τs = 220 ps and diffusion constant
D = 0.014m2 s−1 yields a spin relaxation length of λs =1.8 µm, which is in
good agreement with the length dependence of RNL. Since the spin channel is
a few layer graphene flake, the density of states is unknown and therefore the
charge diffusion constant Dc is also unknown. We therefore cannot compare
the spin diffusion constant Ds to the charge diffusion constant Dc.

(a) (b)
I V

L20 μm

Figure 5.6. Device image and sketch. (a) shows an optical image of the
device and in (b) a schematic drawing is shown, indicating the length of the
spin transport channel with L.

3Part of the fabrication was performed by Simon Karsten.
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Figure 5.7. Non-local spin valve at RT. (a) shows the non-local spin-valve
measurement for different contact pairs (different lengths between injection
detection contact pairs). The RPNL was set to zero for all measurements to
compare them on a single graph. The spin signal ∆RNL is shown on a loga-
rithmic scale in (b) as a function of length together with a linear fit to extract
λs. (c) shows a Hanle measurement, which is the difference of the parallel and
anti-parallel configuration.

5.2.2. Low temperature spin transport - signatures of magnetic
moments?

As introduced in subsection 1.3.5, the non-local resistance in a spin valve
is given by the difference in chemical potential of the spin up component
below each detector normalized to the injecting current. Obviously the contact
polarization determines how efficient the injection and detection is. However,
for the following consideration the absolute value of the polarization does not
matter and it is expected to be independent of in-plane magnetic field. In a
non-local geometry, the chemical potential is given by the exponential decay
with the spin relaxation length λs as well as by the effective resistance of
the graphene (where λs goes in linearly). If the pinning of the magnetic
moments results in a significantly longer spin relaxation time τs, the spin
relaxation length λs =

√
τsD is also increased. A longer λs will then lead

to a larger spin accumulation µs in the graphene channel. Fig. 5.8 shows
the spin accumulation µ↑s for different values of λs for the device geometry
shown in Fig.5.6. A moderate increase in λs leads to a substantial increase
in µ↑s below the detector contact C3 and nearly no change below the second
detector contact C4. Therefore, an increase in RNL with in-plane magnetic
field is expected if magnetic moments are pinned and are a substantial source of
spin relaxation. In this very simple argumentation the contacts were assumed
to probe exclusively the spin-up chemical potential µ↑s . However, the efficiency
of each contact to detect µ↑s is given by the contact polarization, which is
generally not unity. Therefore, the expected change in RNL will be smaller,
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but the effect will be present.
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Figure 5.8. Spin up chemical potential for different λs: The spin up
chemical potential a parallel contact geometry is shown for different values of
λs as a function of distance. The vertical black lines indicate the position of
the four contacts involved in a non-local spin valve.

Measurements at low temperatures

In the following, all transport experiments were carried out in DC. Fig. 5.9 (a)
shows spin valve measurements at 4K and 50mK, demonstrating spin trans-
port at these temperatures. In (b) the non-local resistance is shown for higher
By values for 4K and 50mK. In principle RNL should not depend on By at
fields larger than the coercive fields of the involved injector and detector if
the influence of magnetic moments is neglected for the moment. However, the
measurements in Fig. 5.9 (b) show some dependence of RNL on By, which can
be due Hall effects of a small out-of-plane component of By for example. Hall
effects can appear in non-local geometries if the contact is not homogeneously
coupled to the graphene channel over the full width of the graphene channel.
Pin-holes are an extreme form of such an inhomogeneous contact and have
been shown to give rise to field dependent background in spin valve and Hanle
measurements [207]. In order to eliminate these influences and to get rid of the
large background, the RNL(4K) was subtracted from all other RNL measure-
ments in order to visualize the influence of the in-plane field and temperature
on the spin component alone, see Fig. 5.10. The peak in RNL at zero By might
be explained by weak localization that arises due to a finite out-of-plane com-
ponent. Small misalignments of the sample plane with respect to By were
found in other studies (see section 7.5) in the same measurement system.
The normalized RNL curves are shown in Fig. 5.10. Overall, the normalized

RNL varies on the order of 1 Ω with maxima slightly above 2T. For positive
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Figure 5.9. Spin valve measurements at low temperature: (a) shows
spin valve measurements at low temperature and (b) shows the non-local resis-
tance up to very large in plane fields By. The sweep direction of the magnetic
field is indicated by black arrows.

By, the maximum in RNL shifts to smaller magnetic fields for lower tempe-
ratures. In addition the maximum increases in absolute value. This trend is
highlighted by the black arrow. For negative By a maximum is also observed
for all temperatures but no clear trend is visible.
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Figure 5.10. Normalized non-local resistance: The normalized non-local
resistance is shown for different temperture as a function of in plane magnetic
field By.

An increase in RNL with increasing |By| is indeed expected for the pinning
of magnetic moments as this would lead to a longer τs and hence to longer
λs leading to a larger difference in µs between contact 3 and 4, as shown
schematically in Fig. 5.8. Furthermore, the increase in RNL should happen
at lower |By| for lower temperatures as the magnetic moments are easier to
freeze out at lower temperature.
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Since contact 3 and 4 are ferromagnetic (non-local voltage detection), they
will be aligned parallel at large |By| and therefore both will sense the spin-up
chemical potential. For very long λs, they will sense both the same chemical
potential and hence the RNL will reduce for even larger |By|. To sum up, all
the observations for By > 0 seem to support the hypothesis of the pinning of
magnetic moments.

The fact that the RNL for By < 0 shows a slightly different behaviour than
for By > 0 cannot confirm the influence of magnetic moments on spin trans-
port. The observed behaviour of RNL with By and temperature is therefore
most probably due to some other influences. Phase coherent processes could
play a role at such low temperatures [208]. Signatures of that are observed as
possible WL contribution at very small By that can arise from a small out-of-
plane component which is a result of a misalginment of the By with respect to
the sample plane. To sum up, no conclusive picture can be given that would
explain the observed line shape in Fig. 5.10.

5.3. Discussion on magnetic moments

Even though hints on the influence of magnetic moments on spin transport at
low temperature have been seen, their clear presence could not be proven. In
the following I would like to mention some limitations of this experiment and
possible improvements.
First of all the condition for the pinning of the magnetic moments is impor-

tant. As elaborated above, the Zeeman energy should be larger than tempera-
ture (Ez > kBT ) in order to freeze out the magnetic moments. Even though
the lattice temperature is the relevant temperature for the freeze out condition
of the magnetic moments4, the electronic temperature plays a crucial role as
well. If the electronic temperature is much larger than Ez, then a substantial
number of electrons carry enough energy to excite the magnetic moment to
higher energy states during a scattering event. This will lead to unpolarized
magnetic moments that then can lead to spin relaxation again. In conclusion,
the electronic temperature has to be small as well. However, this is very chal-
lenging to achieve. In typical spin-valve measurements currents of 1 µA are
driven across a tunnel barrier on the order of 1 kΩ or higher. Therefore, a bias
window of 1mV is easily opened that leads to the injection of hot electrons into
the system. The injection of only a few hot electrons can lead to an electronic
temperature well above the lattice temperature. Through multiple scattering
events the hot electrons thermalize with the rest of the electronic systems le-
ading to an increased electronic temperature. Furthermore, the presence of
tunnel coupled contacts prevent efficient cooling via electron diffusion. We

4At least according to a personal communication from Jaroslav Fabian.
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therefore think that this is one of the main limitations in the device presented
above.
Another crucial part in this experiment is the influence of the contacts on

spin relaxation. The fact that the spin relaxation length was found to be
around 1.7 µm with a contact spacing of 2 µm (center to center of contact)
is a bit problematic. It could very well be that the contacts are the main
limiting factors leading to this spin relaxation length and that removing the
influence of magnetic moments would not increase the spin relaxation length
substantially. As introduced above, the influence of the contact resistance can
be estimated by the RC/RS . The spin resistance RS is roughly 70 Ω, mainly
given by the low sheet resistance and the wide sample. On the other hand,
contact resistances of ∼ 3 kΩ lead to RC/RS ∼ 20, which would render the
influence of the contact negligible.
One more technical issue is the alignment of the magnetic field with respect

to the sample plane and to ferromagnetic contacts. A slight misalignment with
respect to the sample plane can lead to orbital effects as observed in a WL
signatures at very low fields. In addition, Hall components are also expected,
which were shown to lead to substantial non-local signals if the contacts are
not homogeneous over the full width of the sample [207].
The device could substantially be improved by replacing contact 1 and con-

tact 4 by two normal contacts, that would not be sensitive to spin. A spin
insensitive voltage probe would make the interpretation of the measured RNL
easier as it should then change monotonically and no downturn would be ex-
pected.

5.4. Conclusion and outlook

Two-layer CVD hBN tunnel barriers can be used for spin injection into grap-
hene. Clear spin valve signals and Hanle precession curves were obtained in
such samples at RT and low temperatures. However, the uncontrolled ob-
servation of different spin polarization of HR contacts is not understood and
complicates things for further studies. The dirty fabrication procedure leads
to inferior device performance in charge and spin transport. Therefore, an
alternative route to the fabrication of clean spin valve devices is needed. The
dry transfer method for CVD grown materials introduced for graphene [150]
is an important step towards the integration of CVD materials into clean de-
vices. However, there is still a lack of high quality, uniform large are grown
CVD hBN on weakly interacting growth substrate that would allows for such
transfer processes. Still considerable effort is needed to push the field of grap-
hene spintronics towards the reliable fabrication of large scale devices. Possible
strategies could include in-situ growth of hBN on pre-patterned ferromagnetic
electrodes that then could be combined by the inverted fabrication procedure
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used in Refs. [179, 180]. It was shown that iron is a well understood catalyst
system for the growth of single layer hBN [144]. The proposed fabrication
method has already been implemented in magnetic tunnel junctions [178].

In the perspective of fundamental science graphene spin valve devices still
lack behind theoretical predictions and the short spin relaxation times are not
yet fully understood. Localized magnetic moments could very well explain
the short spin lifetimes observed and the weak spin relaxation anisotropy in
pristine graphene [206] supports this hypothesis. In addition the WL and
UCF measurements revealed a significant contribution of magnetic moments
to the dephasing of electrons in graphene [103]. However, there is still a lack of
experiments probing the presence of magnetic moments in pristine graphene
with pure spin currents. Therefore, the proposed experiment might shed new
light onto the short spin relaxation times in graphene.
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6 Spin pumping into graphene1 2
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Graphene is an ideal material for spin transport as very long spin relaxation
times and lengths can be achieved. However, electrical spin injection is chal-
lenging due to the conductivity mismatch that is explained in chapter 1 and
5. One way to circumvent this problem is the implementation of a tunnel
barrier between the ferromagnetic material and graphene as shown in chapter
5. Spin pumping driven by ferromagnetic resonance (FMR) is another way
to circumvent the conductivity mismatch as it produces a pure spin current
in the absence of a charge current. In order to achieve this, transparent in-
terfaces between the ferromagnetic and the non-magnetic material are needed
[89, 210–213]. We will explore this alternative possibility of spin injection into
graphene in this chapter.

1This chapter is a collaborative work with David Indolese, who also partly prepared the
figures.

2Parts of this chapter have been published in a similar form in Ref. [209].
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6.1. Introduction into dynamical spin injection into graphene

When a ferromagnet with a precessing magnetization is brought into contact
with a non-magnetic material, a pure spin current is emitted to the normal
metal across the interface. This effect is called spin pumping, and was first
described by Tserkovnyak et al. [89, 210]. A schematic view of this process is
shown in Fig. 6.1. A magnetic RF-field is used to resonantly excite the magne-
tization (green arrow) such that it precesses around the effective magnetic field
(blue arrow). This technique is called ferromagnetic resonance (FMR) [214]
and can be used for continuous spin pumping. The damping of the FMR can
partially be viewed as the transfer of angular momentum across the FM/NM
interface in the form of a pure spin current (grey arrows in Fig. 6.1 crossing the
FM NM interface). This spin current consists of a time-dependent component
with a spin polarization rotating in the yz-plane (purple arrow) and of a static
component with the spin polarization in the x-direction (yellow arrow). Spin
pumping can therefore be understood as the reverse effect of a spin current
absorbed by a ferromagnet that exerts a torque on the magnetization [211].

Figure 6.1. Working principle of spin-pumping at FMR: In the case
of FMR, the magnetization (green arrow) precesses around the effective field
(blue arrow). This leads to the generation of a spin current (grey arrows)
at the FM/NM interface due to the magnetization dynamics of the FM. The
time dependent spin polarization is shown as a purple arrow and rotates almost
entirely in the yz-plane, whereas the time averaged component points along
the x-direction (yellow arrow). Image adapted from Ref. [215].

The spin current across the FM/NM interface, which flows in the absence
of a charge current, is mediated by the so-called spin mixing conductance that
accounts for spin-dependent scattering at the FM/NM interface. In contrast
to DC electrical spin injection, spin pumping works at gigahertz frequencies,
which leads to the injection of a DC and an AC component of the spin current
into the normal metal. Resonant phenomena of the AC component are ex-
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pected to occur such as the amplification of the spin signal in AC spin valves
[216]. A recent study revealed that the AC component of the spin pumping
can be 100 times larger than the time averaged one [215], paving the way for
further studies on dynamical spin injection. However, the detection of RF spin
currents is very challenging and therefore we will restrict ourselves to the de-
tection of DC spin currents. Furthermore, spin dynamics in graphene at high
frequency are expected to play a crucial role in the realization of spin-torque
devices for nano oscillators [217].
An enhanced damping of the FMR, proposed by Tserkovnyak et al. [89],

has been observed in metallic structures [90, 91] as well as in graphene based
devices [92]. Even though first hints on spin pumping into graphene have been
observed, the detection of a spin current in the graphene was still missing until
recently. Tang et al. [93] demonstrate spin pumping and the detection of a spin
current by the inverse spin Hall effect in palladium in macroscopic graphene
samples [93]. However, this study was limited to macroscopic samples and high
RF power levels (on the order of 100mW). Furthermore, the experiment was
carried out in a microwave cavity that did not allow to change the excitation
frequency.
In contrast to the above limited experiments, we show here for the first

time spin pumping in micron scale graphene samples at room temperature
and we detect the spin currents using the inverse spin Hall effect of a platinum
electrode. The usage of on-chip coplanar transmission lines to locally excite
micron scale Py pads come with the advantage that this method works over
a broad frequency range. Since the samples are brought very close to the
transmission line, much smaller power levels can be used compared to the
conventionally used microwave cavities.
This chapter is organized as follows: First an overview of the device and its

working principle is given. Next, the FMR condition is characterized, which
is followed by the measurements and interpretations of an inverse spin Hall
voltage at the platinum electrode.

6.2. Working principle of spin pumping

A schematic drawing of the samples is shown in Fig. 6.2. On the left a spin
current is dynamically injected into the graphene spin transport channel, whe-
reas on the right (at a distance L) the spin current is detected with a platinum
electrode employing the inverse spin-Hall effect. An external magnetic field
H defines the equilibrium magnetization direction. A magnetic RF field hrf
excites the magnetization of the Py pad that leads to FMR and finally to spin
pumping into graphene with a DC component along the external magnetic
field. A uniform magnetization (i.e. a macrospin) is ensured by the negligibly
small crystal anisotropy of Py (Ni80Fe20) and the shape that favours in-plane
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6. Spin pumping into graphene

magnetization [218, 219]. A more detailed description about the anisotropies
defining the equilibrium magnetization and the dynamics of a magnetization
can be found in section 1.3. The AC component, that follows the RF field, is
neglected here since our detection scheme is not capable of detecting signals at
gigahertz frequencies. Once the spin polarized electrons are in the graphene
they diffuse around and will eventually reach the Pt electrode. Due to a large
spin Hall angle, a spin current js with a spin orientation σ is converted into a
charge current jc that leads to a finite voltage U in the open circuit configu-
ration, see also section 1.4 for further information on the spin-Hall effect.

H js

jc
σ

M(t)hrf x y

z

U

Figure 6.2. Working principle of spin-pumping at FMR: A RF mag-
netic field hrf is used to drive the magnetization M of the Py pad (orange) at
the FMR around the external magnetic field H. This leads to spin pumping
into graphene with a DC component schematically depicted as arrows in the
graphene plane (grey). The spins can freely diffuse in the graphene and once
they are absorbed in the Pt electrode a transverse voltage (U) develops due
to the inverse spin Hall effect.

6.2.1. Device fabrication and implementation
The above described working principle is implemented in our devices as shown
schematically in Fig. 6.3. The samples consist of the following main parts: (1)
a coplanar transmission line that is used to generate the magnetic RF field,
(2) a Py/Gr-junction that is used for spin injection into graphene and (3) a
laterally separated Pt/Gr junction to detect the spin current.

All samples presented here were fabricated on intrinsic, high resistive silicon
wafers to reduce RF losses. The wafer was covered by a 170 nm thick SiO2
layer. In a first step CVD graphene, grown in house by Kishan Thodkar,
was transferred by a conventional wet transfer method using PMMA as a
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6.2. Working principle of spin pumping

transmission line

Si/SiO2

PyPtgraphene MgO

(a) (b)

(c) (d)

x

z

y

M

Ux

z y

L

Figure 6.3. Device schematics: (a) - (c) show false-colour scanning elec-
tron micrographs of a typical device in various stages of the fabrication. In (a)
a finished device is shown, where the launcher for the RF transmission line is
clearly visible on top right and the DC lines are visible on the bottom. The
zoom-in of the region highlighted by the black dashed line is shown in (b).
The active device region, where the Py/graphene and Pt/graphene junctions
are located below the transmission line (in yellow). (c) shows a zoom-in of the
region highlighted by the black dashed rectangle in (b) before the deposition
of the transmission line. The meander structure of the Pt electrode as well as
the Py pads and the graphene are visible. The voltage measurement set-up
across the Pt electrode is schematically shown. The scale bar is 10 µm. (d)
shows a cross section of the device.
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6. Spin pumping into graphene

supporting layer and ammonium persulfate as the copper etchant. This is
described in more detail in section 2.1. In a second step, the graphene sheet
was patterned into an array of rectangles with width of 8 µm and length of
12 µm by e-beam lithography and reactive ion etching. As a next step the
platinum electrodes were deposited either by sputter deposition or by thermal
evaporation. The thickness of the Pt electrodes was kept at a maximum of
≈ 10 nm to avoid shunting effects. These effects occur since the spin-to-charge
conversion in the Pt electrode happens mostly within a thickness of the spin
relaxation length, which is on the order of a few nanometres [112]. Several
devices were connected in series employing a meander structure of the Pt
electrode, see Fig. 6.3 (c). In doing so, the voltage due to the ISHE of each
device is added up, which results in a larger signal. In total, seven devices
were connected in series. For a clean fabrication of Py structures, a fabrication
procedure based on ZEP resist was used [220]. Py pads of 8 µm× 8 µm were
patterned on top of the graphene, see also Fig. 6.3 (c) for a false-colour electron
micrograph of a sample at this fabrication stage.

A layer of MgO was used to insulate the device from the RF transmission
line on the top. This fabrication scheme was chosen in order to bring the Py
pads as close as possible to the RF transmission line to maximize the magnetic
RF-field. A false-colour electron micrograph of this fabrication stage is shown
in Fig. 6.3 (b). The RF transmission line consists of 5 nm Ti, 100 nm of Cu to
reduce the resistance and a top layer of 45 nm of Au that prevents the copper
from oxidation. The RF structure was designed to match 50 Ω at the input to
maximize the transmitted power. A current anti-node above the active region
of the device was ensured by shortening the end of the coplanar transmission
line to the ground plane. The planar capacitance structure in the ground
plane of the transmission line shown in Fig. 6.3 (a) was used to electrically
insulate the signal line from the ground plane. The capacitance was chosen
large enough that it provides a short at RF frequencies. This would allow to
use the transmission line as a top gate electrode in future experiments.
Here, a total of three devices are discussed. Two of which contain a grap-

hene spin transport channel (sample A and B) whereas a device C serves as
a reference device without graphene. All three devices are otherwise equal
(except that the Pt in device A and C is sputter deposited whereas it was
thermally evaporated for device B).

6.2.2. Measurement technique
A vector network analyzer (ZNB8 R&S) was used to generate the RF magnetic
field. At the same time it was also used to detect the ferromagnetic resonance
condition by measuring the reflection coefficient S11, which corresponds to
the ratio of the reflected and emitted power. At the FMR condition, power
is resonantly absorbed by the precessing magnetization, which can easily be
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6.3. Ferromagnetic resonance condition

detected in a measurement of S11. The inverse spin-Hall signal was measured
with a lock-in employing magnetic field modulation of the external magnetic
field. This technique offers the advantage of a better signal to noise ratio and
is less susceptible to thermal voltages and drifts during the measurements.

6.3. Ferromagnetic resonance condition

The ferromagnetic resonance condition of a thin ferromagnetic film with the
external magnetic field applied in-plane is given by the Kittel formula [214]:

fres = γµ0

2π
√
Hext (Hext +Ms), (6.1)

where γ = g µB~ is the gyromagnetic ratio with g being the g-factor, the Bohr
magneton µB and the reduced Planck constant ~, the vacuum permeability µ0,
the external magnetic field Hext and the saturation magnetization Ms. The
precession frequency is governed by the material properties γ and Ms. Eq. 6.1
assumes an uniform magnetization of the Py as a macrospin, which is justified
by the negligible crystal anisotropy and the shape anisotropy favouring in-
plane magnetization.
Fig. 6.4 (a) shows S11 as a function of external magnetic field and fre-

quency. In order to eliminate the standing wave background due to reflections
at each connector and modes, a frequency dependent background was sub-
tracted (100mT trace). The remaining vertical lines originate from a weak
magnetic dependence of the standing wave background. At the FMR con-
dition RF power is absorbed by the precessing magnetization, which is easily
detectable in the reflected signal S11. Two equivalent branches for positive and
negative magnetic fields were observed, while the resonance condition is well
described by the Kittel formula. Fitting the resonance condition with Eq. 6.1
allowed us to extract the saturation magnetization Ms = 0.96T, while fixing
g = 2 to literature values [212]. The extracted Ms agrees well with literature
values [212, 221].
The line width of the FMR is given by the damping term α in Eq. 1.35. Cuts

at f = 4.8GHz are shown in Fig 6.4 (b) for sample A with graphene and for a
sample C without graphene. The full width at half maximum (FWHM, ∆H)
was extracted by fitting a Lorentzian to the data. A significant larger FWHM
was observed for the sample with graphene indicating an additional damping
term. This additional damping term can be interpreted as spin pumping into
graphene [89]. The linewidth of the FMR, ∆H, can be related to the Gilbert
damping

∆H = 4πα√
3γ
fres, (6.2)

where α is the Gilbert damping constant in Eq. 1.35 [92]. Here, inhomoge-
neous sample-dependent broadening of the linewidth was neglected since it
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Figure 6.4. Ferromagnetic resonance condition: (a) shows S11 as a
function of magnetic field and frequency. The two branches of the FMR con-
dition are clearly observed. The dashed red line is a fit to Eq. 6.1. (b) shows
S11 as a function of magnetic field at f = 4.8GHz for a device without grap-
hene (orange) and for a device with graphene (red). Lorentzian fits are used
to deduce the full width at half maximum as indicated in the legend. c© 2018
American Physical Society
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was shown to be negligible [92]. The difference in linewidth of a sample with
graphene and one without graphene can be used to estimate the real part of
the effective spin-mixing conductance [222, 223]

g↑↓ = 4πMsdFM
gµB

(
αPy/Gr − αPy

)
, (6.3)

where dFM is the thickness of the ferromagnetic Py layer. The imaginary part
of the spin mixing conductance can be neglected since it is much smaller than
the real part for metallic ferromagnets [222]. The spin-mixing conductance
is a measure of the efficiency of the spin injection and was here estimated to
be 2× 1020 m−2 using Ms = 0.96T as extracted above, dFM = 30nm and a
literature value of g = 2 [212]. The value of the effective spin-mixing conduc-
tance extracted here is substantially larger (roughly one order of magnitude)
than previously reported in similar Py/graphene systems [92, 93]. The spin
mixing conductance is an important figure of merit if one wants to investigate
the spin transport properties of the graphene channel as discussed below.

6.4. Inverse spin Hall voltage

In the section above clear indication of spin pumping into graphene is shown
based on the broadening of the FMR in samples where graphene is present.
In order to investigate spin transport in graphene, a spin current js can be
detected with a Pt electrode placed at a distance L (600 nm for device A
and 700 nm for device B) from the Py pad, see also Fig. 6.2. The charge
current jc due to the inverse spin-Hall effect can be detected as a voltage in
an open-circuit configuration. This voltage changes sign if the direction of
the spin polarization σ is reversed (jc ∼ σ × js, see also section 1.4), while σ
is simply controlled by the external field H. The voltage due to the inverse
spin-Hall effect follows the line shape of the FMR and is therefore described
by a Lorentzian.
Here, the voltage U at the Pt electrode was measured with a lock-in techni-

que employing magnetic field modulation (µ0dH ∼2.75mT) at a frequency of
377Hz. This technique has the advantage that it is more sensitive and not
affected by thermal voltages that can drift over the long time scales of the me-
asurements. Therefore, we recorded dU/µ0dH as a function of frequency and
magnetic field as shown in Fig. 6.5 (a). The signal follows the FMR condition,
which is indicated by red dots. The slight discrepancy at larger frequencies
can be explained by sample to sample variation as the FMR condition was
extracted from a different sample. Fig. 6.5 (b) shows dU/µ0dH as a function
of magnetic field and reveals the expected lineshape of a derivative of a Lorent-
zian. Similar results were obtained for sample B, shown in Fig. 6.5 (c). The
voltage at the Pt electrode shows for all frequencies the expected symmetry
in magnetic field as one can easily see in Fig. 6.5 (a).
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Figure 6.5. Inverse spin Hall voltage at Pt electrode: (a) shows the
voltage measured at the platinum electrode as a function of magnetic field and
frequency for sample A. The superimposed red dots mark the position of the
FMR condition extracted from a measurement of S11 of a different sample.
(b) shows the cut indicated in (a) and a cut from sample B. The signal clearly
shows the mirror symmetry with respect to zero magnetic field. In the case
of sample B, the data points around zero magnetic field were removed due to
technical limitations.
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As motivated above, a magnetic field modulation based measurement techni-
que has its advantages when it comes to sensitivity and influences by spurious
effects. However, it can itself lead to a background signal, which we would
like to discuss in this paragraph. The small modulation of the magnetic field
induces a voltage in the wires connecting the sample to the voltage amplifiers.
This voltage depends on the magnetic field due to a field dependent modula-
tion amplitude given by the magnet set-up. This is a result of a non-linear
current to field conversion of the magnet set-up used here. In order to remove
this background, the voltage at the Pt electrode was once measured with the
microwave source turned on and once with the microwave source turned off.
The difference of these two measurements is shown in Fig. 6.5 and used in the
following analysis.

6.4.1. Influence of spurious effects
It is well known that several spurious effects can appear in spin pumping
experiments [223]. Since the voltage at the Pt electrode is measured at low
frequency, these effects can either arise due to thermal gradients in the sample
or due to RF rectification effects (down mixing).
The effect of thermal voltages can most likely be excluded since the voltage is

measured in a field modulation technique that is only sensitive to voltages that
depend on the external magnetic field. Therefore, only charge currents within
the Py pad could give rise to a magnetic field dependent voltage. However,
thermal gradients in the Py pads, creating a charge current within the Py
pads, are highly unlikely since a homogeneous RF absorption is expected. We
therefore rule out any contributions from thermal effects.
The measurement set-up presented above are only sensitive to voltages that

develop in x direction. As far as we know, only the AHE can contribute to a
rectification effects that lead to a potential gradient along this direction. The
AHE was included into the analysis and its contribution could be quantified
due to a different lineshape. The contribution was found to be small and only
weakly dependent on RF power.

6.4.2. Power dependence of the voltage at the Pt electrode
The voltage due to the inverse spin Hall effect at the Pt electrode should scale
linearly with applied RF power (js ∼ h2

RF ). In order to extract the dependence
on RF power, the measured dU/µ0dH was fitted with a model containing the
signal originating from the inverse spin Hall effect and from the anomalous
Hall effect [116]:

U(H) = UISHE
γ2

(H −HFMR)2 + γ2
+ UAHE

−2γ (H −HFMR)
(H −HFMR)2 + γ2

. (6.4)
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Here, UISHE and UAHE represent the amplitudes of the contribution of the
ISHE and the AHE to the signal. HFMR is the field at which the FMR condi-
tions is met and γ describes the width of the resonance, as earlier described.
Contributions due to the AHE can be expected since RF eddy currents are
induced by the RF magnetic field in the Py pads. These currents flow in the
y-z plane in the permalloy and in combination with a varying magnetization
in the x-z plane an anomalous Hall voltage (a Hall voltage proportional to
the magnetization) can be expected to appear. This voltage will consist of a
component at twice the frequency and of a down mixed DC component along
the x direction.
Power dependence was performed on sample B and a fit at 8.9mW is shown

in the inset in Fig. 6.6. The contribution due to the ISHE is much larger
than the contribution due to the AHE for any microwave power investigated.
Both contributions scale linearly with power as indicated by the solid lines
that are guide to the eyes. The linear scaling with power is expected for both
contributions.
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Figure 6.6. Power dependence of the voltage at the Pt electrode:
The contribution of the ISHE and the AHE to the voltage at the Pt electrode
are shown as a function of microwave power individually. The inset shows an
actual measurement with a fit to Eq. 6.4. Both contributions scale linearly
with power as indicated by the red and blue lines that are guides to the eye.

6.5. Discussion and interpretation

Here we show for the first time that FMR can be observed in mesoscale
Py/graphene heterostructures with on-chip and broadband microwave exci-
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tation in a simple reflection measurement. This measurement scheme allows
an easy integration of more complex sample structures and measurements at
low temperatures.
The observed broadening of the FMR linewidth upon the insertion of a grap-

hene sheet indicates an additional damping channel that can be explained by
spin-pumping into graphene. This is further supported by the observation of
a voltage at the Pt electrode that is consistent with the expected symmetry
of the ISHE. This voltage follows the FMR condition over a broad frequency
range and preserves its symmetry in the whole frequency range investigated.
Power dependence of this voltage reveals a linear scaling of the ISHE contri-
bution as expected.
Spin transport properties could in principle be inferred from the amplitude

of the inverse spin-Hall voltage at the Pt electrode as previously reported by
Tang et al. [93]. To do so, the spin mixing conductance g↑↓, the rf magnetic
field hRF (that can be estimated from the precession cone angle) and the spin-
Hall angle of Pt are needed. Even though we have determined an experimental
value of g↑↓ as shown above, we lack the information about the cone angle. In
addition, the magnitude of the reported values of the spin-Hall angle of Pt in
literature are wide spread [112]. We, therefore, give not any estimate of the
spin transport properties of the graphene channel. Further work is needed to
nail down the relevant parameters.
The evaporation of a ferromagnetic material (e.g. Py) on top of graphene

can substantially change the band structure of the underlying graphene layer
and an exchange coupling induced in the graphene [194, 224] as well as charge
transfer [225] can be expected. It is not known how these effects changes the
spin pumping into graphene and how spin relaxation is modified below the
Py. It is very likely that the spin relaxation is greatly enhanced below the
Py and that only a small fraction of the area close to the edge of the Py
pad contributes significantly to the spin accumulation in the graphene that is
detected laterally by the Pt electrode.

6.6. Conclusion and outlook

The presented detection of a lateral spin current induced by spin pumping
through the graphene is a first milestone. Even though remarkable and chal-
lenging on its own, it is very hard to extract any spin transport parameters
of the graphene such as spin relaxation time τs and spin relaxation length
λs. Due to the shape anisotropy keeping the magnetization in-plane an out-
of-plane Hanle field could be applied to measure the Hanle effect. In future
experiments, ferromagnetic strips instead of squares could be used. This would
facilitate Hanle measurements since no external field is required for FMR. Pio-
neering work by Costache et al. [212] showed the successful detection of FMR
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of a single Py nanomagnet. This would allow to readily characterize the spin
transport parameters of graphene.

In this work we relied on a platinum electrode to detect the spin current
in the graphene. In the future, one could investigate the spin-to-charge con-
version in graphene itself. First results were reported by Mendes et al [226]
recently. vdW-heterostructures of graphene and TMDC show a greatly enhan-
ced SOC, see chapter 7. Theses systems are also expected to host very large
spin-Hall angles [39] that would allow for a much more efficient spin-to-charge
conversion.
Future research could focus on the gate tunability of the spin pumping effect

as theoretical studies predict large modulations of the spin pumping efficiency
by gate control of the density [227, 228]. This approach is especially interesting
in combination with ferromagnetic insulators as a spin current source [226,
229]. The large planar capacitance introduced in the coplanar transmission
line allows us to use the transmission line as a top gate electrode to tune the
density of the graphene channel. Due to low device yield, the gate dependence
of the spin pumping could not be investigated.
In order to gain further insights into the spin dynamics in graphene the AC

component of the spin pumping could be investigated in the future. This is
especially interesting and important since graphene is a promising candidate
for future building blocks in spintronic applications (e.g. spin torque nano
oscillators) since it can withstand large current densities [230] and large spin
accumulations [162] can be achieved.
The compact measurement scheme presented here can easily be generalized

to more exotic material systems such as topological insulators that host spin-
momentum-locked edge channels[35]. These edge channels could itself be used
to detect the spin-pumping into these systems as they offer a clear spin to
charge conversion.
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7 Spin-orbit coupling in graphene/WSe2
heterostructures 1

Large spin-orbital proximity effects have been predicted in graphene interfaced
with a transition metal dichalcogenide layer. Whereas clear evidence for an
enhanced spin-orbit coupling has been found at large carrier densities, the type
of spin-orbit coupling and its relaxation mechanism close to the charge neu-
trality point remained unknown. In this chapter, we show for the first time an
increased spin-orbit coupling close to the charge neutrality point in graphene,
where topological states are expected to appear. Single layer graphene encap-
sulated between the transition metal dichalcogenide WSe2 and hBN is found
to exhibit exceptional quality with mobilities as high as 100 000 cm2 V−1 s−1.
At the same time clear weak anti-localization indicates strong spin-orbit cou-
pling and a large spin relaxation anisotropy due to the presence of a domina-
ting symmetric spin-orbit coupling is found. Doping dependent measurements
show that the spin relaxation of the in-plane spins is largely dominated by a
valley-Zeeman spin-orbit coupling and that the intrinsic spin-orbit coupling
plays a minor role in spin relaxation. In addition, non-local measurements
were conducted to investigate the possible presence of a large spin-Hall angle.

1Parts of this chapter have been published in a similar form in Ref. [231].
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7.1. Introduction

It was proposed that graphene in contact to a single layer of a TMDC can
inherit a substantial SOC from the underlying substrate [42, 47]. The experi-
mental detection of clear weak antilocalization (WAL) [149, 232–236] as well
as the observation of a beating of Shubnikov de-Haas (SdH) oscillations [149]
leave no doubt that the SOC is greatly enhanced in graphene/TMDC hete-
rostructures. First principles calculations of graphene on WSe2 [47] predicted
large spin-orbit coupling strength and the formation of inverted bands hosting
special edge states. At low energy, the band structure can be described in a
simple tight-binding model of graphene containing the orbital terms and all
the symmetry allowed SOC terms H = H0 +H∆ +HI +HV Z +HR [47, 53].
A complete overview of all terms in the Hamiltonian is given in section 1.1.5.

7.2. Fabrication and characterization of hBN/Gr/WSe2
heterostructures

The vdW-heterostructures presented here were fabricated as described in detail
in section 2. In short, WSe2/Gr/hBN vdW-heterostructures were assembled
using a dry pick-up method [138] and Cr/Au 1D-edge contacts were fabricated
[137]. Obviously a clean interface between high quality WSe2 and graphene is
of utmost importance. A short discussion on the influence of the WSe2 quality
is given in the appendix C. After shaping the vdW-heterostructure into a Hall-
bar geometry by a reactive ion etching plasma employing SF6 as the main
reactive gas, Ti/Au top gates were fabricated with an MgO dielectric layer
to prevent it from contacting the exposed graphene at the edge of the vdW-
heterostructure. A heavily-doped silicon substrate with 300 nm SiO2 was used
as a global back gate. An optical image of a typical device and a cross section
is shown in Fig. 7.1 (a). In total, three different samples with a total of four
devices were fabricated. Device A, B and C are presented here and device D is
discussed in the appendix C. Standard low frequency lock-in techniques were
used to measure two- and four-terminal conductance and resistance. Weak
antilocalization was measured at temperatures of 50mK to 1.8K whereas a
classical background was measured at sufficiently large temperatures of 30K
to 50K.
The two-terminal resistance measured from contact 1 to 2 as a function of

applied top and bottom gate is shown in Fig. 7.1 (b). A pronounced resistance
maximum, tunable by both gates, indicates the CNP of the bulk of the device
whereas a fainter line only changing with VBG indicates the CNP from the
device areas close to the contacts, which are not covered by the top gate. From
the four-terminal conductivity, shown in Fig. 7.1 (c), the field effect mobility
µ ' 130 000 cm2 V−1 s−1 and the residual doping n∗ = 7× 1010 cm−2 were
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Figure 7.1. Device layout and basic characterization: (a) shows an
optical image of device A before the fabrication of the top gate, whose outline
is indicated by the white dashed rectangle. On the right, a schematic cross
section is shown and the directions of the magnetic fields are indicated. The
scale bar is 1 µm. The data shown in (b) to (e) are from device B. The two
terminal resistance measured from lead 1 to 2 is shown as a function of top
and back gate voltage. A pronounced resistance maximum tunable by both
gates indicates the charge neutrality point (CNP) of the bulk device, whereas
a fainter line only changing with VBG indicates the CNP from the device area
close to the contacts that are not covered by the top gate. Cuts in VTG at
different VBG of the conductivity measured in a four-terminal configuration
are shown in (c), which are also used to extract field effect mobility (linear fit
indicated by black dashed line) and residual doping as indicated. The fan plot
of longitudinal resistance Rxx versus VBG and Bz at VTG = −1.42V is shown
in (d) and a cut at Bz = 7T in (e). Clear plateaus are observed at filling
factors ν = ±2,±3,±4, . . . and higher, indicating full lifting of the fourfold
degeneracy of graphene for magnetic fields > 6T. c© 2018 American Physical
Society
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extracted. The mobility was extracted from a linear fit of the conductivity
as a function of density at negative VBG. At positive VBG the mobility is
higher as one can easily see from Fig. 7.1 (c). At VBG ≥ 25V, the lever
arm of the back gate is greatly reduced since the WSe2 layers gets populated
with charge carriers, i.g. the Fermi level is shifted into some trap states in the
WSe2. Although the WSe2 is poorly conducting (low mobility) it can screen
potential fluctuations due to disorder and this can lead to a larger mobility in
the graphene layer, as similarly observed in graphene on MoS2 [237].
Fig. 7.1 (d) shows the longitudinal resistance as a function of magnetic

field and gate voltage with lines originating from the integer quantum Hall
effect. At low fields, the normal single layer spectrum is obtained with pla-
teaus at filling factors ν = ±2,±6,±10,±14, . . . , whereas at larger magne-
tic fields full degeneracy lifting is observed with plateaus at filling factors
ν = ±2,±3,±4,±5,±6, . . . . The presence of symmetry broken states, that
are due to electron-electron interactions [77], is indicative of a high device
quality. In the absence of interaction driven symmetry breaking, the spin-
splitting of the quantum Hall states could be used to investigate the SOC
strength [78].

The high quality of the devices presented here poses sever limitations on
the investigation of the SOC strength using WAL theory. Ballistic transport
features (transverse magnetic focusing) are observed at densities larger than
8× 1011 cm−2. Therefore, a true diffusive regime is only obtained close to the
CNP, where the charge carriers are quasi-diffusive [44].

7.3. SOC characterization through weak antilocalization
measurements

The two-terminal magneto conductivity ∆σ = σ (B)−σ (B = 0) versus Bz and
n at T = 0.25K and zero perpendicular electric field is shown in Fig. 7.2 (a). A
clear feature at Bz = 0mT is visible, as well as large modulations in Bz and n
due to universal conductance fluctuations (UCFs). UCFs are not averaged out
since the device size is on the order of the dephasing length lφ. Therefore, an
ensemble average of the magneto conductivity over several densities is perfor-
med to reduce the amplitude of the UCFs [232], and curves as in Fig. 7.2 (b)
result. A clear WAL peak is observed at 0.25K whereas at 30K the quan-
tum correction is fully suppressed due to a very short phase coherence time
and only a classical background in magneto conductivity remains. This high
temperature background is then subtracted from the low temperature measu-
rements to extract the real quantum correction to the magneto conductivity
[149].

In addition to WL/WAL measurements the phase coherence time can be
extracted independently from the autocorrelation function of UCF in magnetic
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Figure 7.2. Magneto conductivity of device A: (a) Magneto conducti-
vity versus Bz and n is shown at T = 0.25K. A clear feature is observed around
B = 0mT and large modulations due do UCF are observed in Bz and n. (b)
shows the magneto conductivity averaged over all traces at different n. The
WAL peak completely disappears at T = 30K, leaving the classical magneto
conductivity as a background. The 30K trace is offset vertically for clarity.
The quantum correction to the magneto conductivity is then obtained by sub-
tracting the high temperature background from the magneto conductivity, see
(b) on the right for different temperatures. With increasing temperature the
phase coherence time shortens and therefore the WAL peak broadens and re-
duces in height. (c) shows the autocorrelation of the magneto conductivity in
red and its derivative in blue (without scale). The minimum of the derivative
indicates the inflection point (Bip) of the autocorrelation, which is a measure
of τφ. c© 2018 American Physical Society
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field [238]. UCF as a function of Bz was measured in a range where the WAL
did not contribute to the magneto conductivity (e.g. 20mT to 70mT) and
an average over several densities was performed. The inflection point in the
autocorrelation (Bip), determined by the minimum in its derivative, is a robust
measure of τφ = 3~

2eDBip
[239], see Fig. 7.2 (c).

7.3.1. Fitting

To extract the spin-orbit scattering times we use the theoretical formula de-
rived by diagrammatic perturbation theory [73]. In the case of graphene, the
quantum correction to the magneto conductivity ∆σ in the presence of strong
SOC is given by:

∆σ(B) = − e2

2πh

[
F

(
τ−1
B

τ−1
φ

)
− F

(
τ−1
B

τ−1
φ + 2τ−1

asy

)
−2F

(
τ−1
B

τ−1
φ + τ−1

asy + τ−1
sym

)]
,

(7.1)

where F (x) = ln(x) + Ψ(1/2 + 1/x), with Ψ(x) being the digamma function,
τ−1
B = 4eDB/~, where D is the diffusion constant, τφ is the phase coherence
time, τasy is the spin-orbit scattering time due to SOC terms that are asym-
metric upon z/-z inversion (HR) and τsym is the spin-orbit scattering time due
to SOC terms that are symmetric upon z/-z inversion (HI , HV Z) [73]. The
total spin-orbit scattering time is given by the sum of the asymmetric and
symmetric rate τ−1

SO = τ−1
asy + τ−1

sym. In general, Eq. 7.1 is only valid if the
intervalley scattering rate τ−1

iv is much larger than the dephasing rate τ−1
φ and

the rates due to spin-orbit scattering τ−1
asy, τ−1

sym. Further discussion on this
formula can be found in section 1.2.2.

In the most general case there are three different regimes in the presence
of strong SOC in graphene: τasy � τsym, τasy ∼ τsym and τasy � τsym.
Therefore, we fitted the magneto conductivity with initial fit parameters in
these three limits. An example is shown in Fig. 7.3, where the three different
fits are shown as well as the extracted parameters. Obviously, the case τasy �
τsym (fit1) and τasy ∼ τsym (fit2) are indistinguishable and fit the data worse
than the case τasy � τsym (fit3). In addition, τφ extracted from the UCF
matches best for fit3. Therefore, we can clearly state that the symmetric SOC
is stronger than the asymmetric SOC. The flat background as well as the
narrow width of the WAL peak can only be reproduced with the third case.
Additionally, measurements at 1.8K over a larger magnetic field range confirm
this finding as shown in the appendix C.

A very similar behaviour was found in device C at the CNP. In device B
(shown in the appendix C), whose mobility is larger than the one from device
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Figure 7.3. Fitting of quantum correction to the magneto conducti-
vity of device A The quantum correction to the magneto conductivity is
fit using Eq. 7.1. The results for three different limits are shown and their
parameters are indicated (in units of ps). τφ is estimated to be 8 ps from the
autocorrelation of UCF in magnetic field, see Fig. 7.2 (c). c© 2018 American
Physical Society

131



7. Spin-orbit coupling in graphene/WSe2 heterostructures

A, we cannot clearly distinguish the three limits as the transport field is too low
(≈ 12mT) and the flat background at larger field cannot be used to disentangle
the different parameters from each other. However, this does not contradict
τasy � τsym and the overall strength of the SOC (τSO ' 0.2 ps) is in good
agreement with device A shown here.

Obviously, the extracted time scales should be taken with care as many
things can introduce uncertainties in the extracted time scales. First of all,
we are looking at ensemble-averaged quantities and it is clear that this might
influence the precision of the extraction of the time scales. In addition, the
subtraction of a high temperature background can lead to higher uncertainty
of the quantum correction. Lastly, the high mobility of the clean devices places
severe limitations on the usable range of magnetic field. All these influences
lead us to a conservative estimation of a 50% uncertainty for the extracted
time scales. Nevertheless, the order of magnitude of the extracted time scales
and trends are still robust.

The presence of a top and a back gate allows us to tune the carrier den-
sity and the transverse electric field independently. The spin-orbit scattering
rates were found to be electric field independent at the CNP in the range of
−0.05Vnm−1 to 0.08Vnm−1 within the precision of parameter extraction.
Details are given in the appendix C. Within the investigated electric field
range τasy was found to be in the range of 5 ps to 10 ps, always close to τφ.
τsym on the other hand was found to be around 0.1 ps to 0.3 ps while τp was
around 0.2 ps to 0.3 ps, see appendix C for more details. The lack of electric
field tunability of τasy and τsym in the investigated electric field range is not
so surprising. The Rashba coupling in this system is expected to change con-
siderably for electric fields on the order of 1Vnm−1, which are much larger
than the applied fields here. However, such large electric fields are hard to
achieve. In addition, τsym, which results from λI and λV Z is not expected
to change much with electric field as long as the Fermi energy is not shifted
into the conduction or valence band of the WSe2 [42]. These findings contra-
dict another study [234], which claims an electric field tunability of both SOC
terms. However, there it is not discussed how accurately those parameters
were extracted.

7.3.2. Density dependence
The momentum relaxation time τp can be tuned by changing the carrier density
in graphene. Fig. 7.4 shows the dependence of τ−1

asy and τ−1
sym on τp in a third

device C. The lower mobility in device C allowed for WAL measurements at
higher charge carrier densities not accessible in devices A and B. At the CNP,
τ−1
asy and τ−1

sym are found to be consistent across all three devices A, B and
C. Here, τ−1

sym increases with increasing τp whereas τ−1
asy is roughly constant

with increasing τp. The dependence of the spin-orbit scattering times on the
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momentum scattering time can give useful insights into the dominating spin
relaxation mechanisms, as will be discussed later. It is important to note that
the extracted τasy is always very close to τφ. Therefore, τasy could be longer
than the extracted value since τφ acts as a cut-off.
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Figure 7.4. Density dependence of device C: The dependence of the
spin-orbit scattering rates τ−1

sym and τ−1
asy as a function of τp are shown for device

C. The error bars on the spin-orbit scattering rates are given by a conservative
estimate of 50%. The two terminal conductivity is shown in the inset and the
extracted mobilities for the n and p side are indicated. The density of each
data point is indicated in blue above the top graph. The magneto conductivity
was averaged over a density range of 3.3× 1012 cm−2 centered around the value
given at the top. c© 2018 American Physical Society

7.3.3. In-plane magnetic field dependence

An in-plane magnetic field (B‖) is expected to lift the influence of SOC on the
quantum correction to the magneto conductivity at sufficiently large fields.
This means that a crossover from WAL to WL for z/-z asymmetric and a
crossover from reduced WL to full WL correction for z/-z symmetric spin-
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orbit coupling is expected at a field where the Zeeman energy is much larger
than the SOC strength [73]. The experimental determination of this crossover
field allows for an estimate of the SOC strength.

The B‖ dependence of the quantum correction to the magneto conductivity
of device A at the CNP and at zero perpendicular electric field was investi-
gated, as shown in Fig. 7.5. The WAL peak decreases and broadens with
increasing B‖ until it completely vanishes at B‖ '3T. Neither a reappearance
of the WAL peak, nor a transition to WL, is observed at higher B‖ fields (up
to 9T). A qualitatively similar behaviour was observed for device D. Fits with
equation 7.1 allow the extraction of τφ and τSO, which are shown in Fig. 7.5
(b) for B‖ fields lower than 3T. A clear decrease of τφ is observed while τSO
remains constant.

The reduction in τφ with increasing B‖ was previously attributed to en-
hanced dephasing due to a random vector potential created by a corrugated
graphene layer in an in-plane magnetic field [70]. Similar results were obtai-
ned for a hBN/Gr/hBN heterostructure, which is shown in the appendix C.
The clear reduction in τφ with constant τSO and the absence of any appea-
rance of WL at larger B‖ also strongly suggests that a similar mechanism is
at play here. Therefore, the vanishing WAL peak is due to the loss of phase
coherence and not due to the fact that the Zeeman energy (Ez) is exceeding
the SOC strength. Using the range where WAL is still present, we can define
a lower bound of the crossover field when τφ drops below 80% of its initial
value, which corresponds to 2T here. This leads to a lower bound of the SOC
strength λSOC ≥ Ez ∼ 0.2meV given a g factor of 2.

7.4. Interpretation and discussion of WAL measurements

The effect of SOC was investigated in high quality vdW-heterostructures of
WSe2/Gr/hBN at the CNP, as there the effects of SOC are expected to be most
important. The two-terminal conductance measurements are not influenced by
contact resistances nor pn-interfaces close to the CNP due to the dominance
of the intrinsic graphene resistance at the CNP. At larger doping, the two-
terminal conductance would need to be considered with care.
Phase coherence times around 4 ps to 7 ps were consistently found from fits

to Eq. 7.1 and from the autocorrelation of UCF. It is commonly known that
the phase coherence time is shorter at the CNP than at larger doping [68, 70].
Moreover, large diffusion coefficients lead to long phase coherence lengths being
on the order of the device size (lφ =

√
Dτφ ≈ 1 µm), which in turn leads to

large UCF amplitudes making the analysis harder.
In general Eq. 7.1 is only applicable for short τiv. Since τiv is unknown in

these devices, only an estimate can be given here. WL measurements of grap-
hene on hBN found τiv on the order of picoseconds [71], see also appendix C.
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Figure 7.5. In-plane magnetic field dependence of device A: The
quantum correction to the magneto conductivity at the CNP and at zero
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strengths B‖ in (a). Here, n was averaged in the range of −1× 1011 cm−2

to 1× 1011 cm−2. The WAL peak gradually decreases in height and broadens
as B‖ is increased. The traces at B‖ = 5, 7, 9T are offset by 0.03 e2/h for
clarity. In (b) the extracted phase coherence time τφ and the total spin-orbit
scattering time τSO are plotted versus B‖. τφ clearly reduces, whereas τSO
remains roughly constant over the full B‖ range investigated. The error bars
on τSO and τφ are given by a conservative estimate of 50%. c© 2018 American
Physical Society
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Intervalley scattering is only possible at sharp scattering centres as it requires
a large momentum change. It is a reasonable assumption that the defect den-
sity in WSe2, which is around 1× 1012 cm−2 [240], is larger than in the high
quality hBN [135]. This leads to shorter τiv times in graphene placed on top
of WSe2 and makes Eq. 7.1 applicable despite the short spin-orbit scattering
times found here. In the case of weaker SOC, Eq. 7.1 cannot be used. Instead,
a more complex analysis including τiv and τ∗ is needed. This was used for
device D, and is presented in the appendix C.

The following part of the discussion is dedicated to the interpretation of
the extracted spin-orbit scattering time scales τasy and τsym. First, their
magnitude and their relative strength are discussed. Next, the individual
spin-orbit components giving rise to τsym and τasy are considered and their
strengths are estimated. Finally, an overview and a possible band structure
are given.

7.4.1. Spin-orbit scattering times and their anisotropy
Spin-orbit scattering rates were successfully extracted at the CNP and τasy was
found to be around 4 ps to 7 ps whereas τsym was found to be much shorter,
around 0.1 ps to 0.3 ps. In these systems, if τiv is sufficiently short, τasy/2
is predicted to represent the out-of-plane spin relaxation time τ⊥ and τSO
then represents the in-plane spin relaxation time τ‖ [73]. For the time scales
stated above, a lower bound of the spin relaxation anisotropy τ⊥/τ‖ ∼ 20
is found (see appendix C for detailed calculation). This large anisotropy in
spin relaxation is unique for systems with a strong valley-Zeeman SOC [36].
Similar anisotropies have been found recently in spin valves in similar systems
[241, 242]. While the measured spin relaxation anisotropy is similar, the time
scales extracted from Hanle and spin valve measurements differ by roughly one
order of magnitude from the time scales extracted here. This large discrepancy
might be attributed to the different measurement techniques that could probe
different time scales. However, further theoretical and experimental work is
needed to clarify this issue.
In order to link spin-orbit scattering time scales to SOC strengths, spin re-

laxation mechanisms have to be considered. The simple definition of ~/τSO
as the SOC strength is only valid in the limit where the precession frequency
is much larger than the momentum relaxation rate (e.g. full spin precession
occurs between scattering events). In the following we concentrate on the pa-
rameters from device A that were extracted close to the CNP. The dependence
on τp in device A can most likely be assumed to be very similar to that obser-
ved in device C. Within the investigated density range of −2.5× 1011 cm−2 to
2.5× 1011 cm−2, including residual doping, an average Fermi energy of 45meV
was estimated. This is based on the density of states of pristine graphene,
which should be an adequate assumption for a Fermi energy larger than any
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SOC strengths.

7.4.2. z → −z symmetric SOC (τsym)
The symmetric spin-orbit scattering time τsym contains contributions from
the intrinsic SOC and from the valley-Zeeman SOC. Up to now, only the
intrinsic SOC has been considered in the analysis of WAL measurements, and
the impact of valley-Zeeman SOC has been ignored. However, as we now
explain, it is highly unlikely that intrinsic SOC is responsible for the small
values of τsym.
In a first step, we only consider the intrinsic SOC as a source of spin relax-

ation. The intrinsic SOC is expected to relax spin via the Elliott-Yafet (EY)
mechanism [102], which is given as

τsym,I =
(2EF
λI

)2
τp, (7.2)

where τsym,I is the spin relaxation time stemming from intrinsic SOC only, EF
is the Fermi energy, λI is the intrinsic SOC strength and τp is the momentum
relaxation time [102]. Since the intrinsic SOC does not lead to spin-split
bands and hence no spin-orbit fields exist that could lead to spin precession,
a relaxation via the Dyakonov-Perel mechanism can be excluded. Therefore,
we can estimate λI = 2EF /

√
τsym,Iτ

−1
p ∼ 110meV using τsym,I ∼ 0.2 ps, a

mean Fermi energy of 45meV and a momentum relaxation time of 0.3 ps. The
extracted value for λI would correspond to the opening of a topological gap of
220meV. In the presence of a small residual doping (here 30meV), such a large
topological gap should easily be detectable in transport. However, none of our
transport measurements confirm this. In addition, the increase of τ−1

sym with
τp, as shown in Fig. 7.4, does not support the EY mechanism. We therefore
rule out the intrinsic SOC as the dominant spin relaxation origin.
On the other hand, Cummings et al. have shown that the in-plane spins

are also relaxed by the valley-Zeeman term via a Dyakonov-Perel mechanism
where τiv takes the role of the momentum relaxation time [36]:

τ−1
sym,V Z =

(2λV Z
~

)2
τiv. (7.3)

While this equation applies in the motional narrowing regime of spin relaxa-
tion, our measurement appears to be near the transition where that regime no
longer applies. Taking this into consideration (see Supplemental Material), we
estimate λV Z to be in the range of 0.23meV to 2.3meV for a τsym,V Z of 0.2 ps
and a τiv of 0.1 ps to 1 ps. This agrees well with first principles calculations
[47]. The large range in λV Z comes from the fact that τiv is not exactly known.
Obviously, τsym could still contain parts that are related to the intrinsic SOC

(τ−1
sym = τ−1

sym,I + τ−1
sym,V Z). As an upper bound of λI , we can give a scale of
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15meV, which corresponds to half the energy scale due to the residual doping
in the system. This would lead to τsym,I ∼ 10 ps. Such a slow relaxation
rate (τ−1

sym,I) is completely masked by the much larger relaxation rate τ−1
sym,V Z

coming from the valley-Zeeman term. Therefore, the presence of the valley-
Zeeman term makes it very hard to give a reasonable estimate of the intrinsic
SOC strength and we conclude that τsym = τsym,V Z .

7.4.3. z → −z asymmetric SOC (τasy)
The asymmetric spin-orbit scattering time τasy contains contributions from the
Rashba-SOC and from the PIA SOC. Since the PIA SOC scales linearly with
the momentum, it can be neglected at the CNP. Here, τasy represents only the
spin-orbit scattering time coming from Rashba SOC. It is known that Rashba
SOC can relax the spins via the Elliott-Yafet mechanism [102]. In addition,
the Rashba SOC leads to a spin splitting of the bands and therefore to a spin-
orbit field. This opens a second relaxation channel via the Dyakonov-Perel
mechanism [243]. In principle the dependence on the momentum scattering
time τp allows one to distinguish between these two mechanisms. Here, τ−1

asy

does not monotonically depend on τp as one can see in Fig. 7.4 and therefore
we cannot unambiguously decide between the two mechanisms.

Assuming that only the EY mechanism is responsible for spin relaxation,
then λR = EF /

√
4τasyτ−1

p ∼ 5.0meV can be estimated, using τasy of 6 ps, a
mean Fermi energy of 45meV and a momentum relaxation time of 0.3 ps. On
the other hand, pure DP-mediated spin relaxation leads to λR = ~/

√2τasyτp ∼
0.35meV. The Rashba SOC strength estimated by the EY relaxation mecha-
nism is large compared to first principles calculations [47], which agree much
better with the SOC strength estimated by the DP mechanism. This is also
in agreement with previous findings [233, 235].

7.4.4. Band structure analysis
Since there is a finite valley-Zeeman SOC, which is a result of different intrinsic
SOC on the A sublattice and B sublattice, a staggered sublattice potential can
also be expected. The presence of a staggered potential, meaning that the on-
site energy of the A atom is different from the B atom on average, leads to the
opening of a trivial gap of ∆ at the CNP. Since there is no evidence of an orbital
gap, we take the first principles calculations as an estimate of ∆ = 0.54meV.
Knowing all relevant parameters in model tight-binding Hamiltonian (intro-

duced in section 1.1.5), a band structure can be calculated, which is shown in
Fig. 7.6. The bands are spin split mainly due to the presence of strong valley-
Zeeman SOC but also due to the weaker Rashba SOC. At very low energies, an
inverted band is formed due to the interplay of the valley-Zeeman and Rashba
SOC, see Fig. 7.6 (b). This system was predicted to host helical edge states
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for zigzag graphene nanoribbons, demonstrating the quantum spin Hall effect
[47]. In the case of stronger intrinsic SOC, which we cannot estimate accu-
rately, a band structure as in Fig. 7.6 (c) is expected with a topological gap
appearing at low energies. We would like to note here, that this system might
host a quantum spin Hall phase. However, its detection is still masked by de-
vice quality as the minimal Fermi energy is much larger than the topological
gap, see also Fig. 7.6 (a), where the residual doping is indicated by the grey
shaded region.
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Figure 7.6. Possible low energy band structures: (a) and (b) show
the band structures using the Hamiltonian described in section 1.1.5 with the
parameters listed in (a). The unknown parameters ∆ and λI were taken
from Ref. [47]. In (a), the band structure is shown in the density range
of −2.5× 1011 cm−2 to 2.5× 1011 cm−2 (CNP), which corresponds the the
one investigated above. The energy range dominated by charge puddles is
indicated by the grey shaded region. (b) shows a zoom in at low energy. In
(c), λI of 5meV is assumed to show the changes due to the unknown λI at
low energy.

Our findings are in good agreement with the calculations by Gmitra et al.
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[47]. However, we have to remark that whereas the calculations were perfor-
med for single-layer TMDCs, we have used multilayer WSe2 as a substrate.
Single-layer TMDCs are direct band-gap semiconductors with the band gap
located at the K-point whereas multilayer TMDCs have an indirect band gap.
Since the SOC results from the mixing of the graphene orbitals with the WSe2
orbitals, the strength of the induced SOC depends on the relative band align-
ment between the graphene and WSe2 band, which will be different for single-
or multilayer TMDCs. This difference was recently shown by Wakamura et al.
[236]. Therefore using single-layer WSe2 to induce SOC might even enhance
the coupling found by our study. Furthermore, the parameters taken from
Ref. [47] for the orbital gap and for the intrinsic SOC have to be taken with
care.

140



7.5. Non-local resistances in hBN/graphene/WSe2 heterostructures

7.5. Non-local resistances in hBN/graphene/WSe2
heterostructures

The presence of strong SOC as presented above also implies that a conside-
rable spin-Hall angle might exist in Gr/TMDC systems [39]. The generation
of a pure spin current by the spin-Hall effect and its detection via the inverse
spin-Hall effect can lead to non-local resistances that cannot simply be explai-
ned by current spread in the sample [244]. A brief introduction into SHE and
ISHE and their connection to non-local resistances in a H-bar sample can be
found in subsection 1.4.1. Previous studies have found very large non-local
resistances that were explained by the presence of enhanced SOC in hydro-
genated graphene [245], chemical vapour deposited graphene with remaining
copper residues [246] and in graphene placed on top of a WS2 crystal [232, 247].
However, there are, also studies that cannot confirm the spin-Hall effect and
inverse spin-Hall effect as the origin of the large observed non-local signals in
hydrogenated graphene [248] for example. Therefore, a careful analysis of the
non-local signals are required to conclude about the possible enhancement of
SOC.
The measurement scheme is shown in Fig. 7.7. A current is passed as in-

dicated and the local resistance (R1) is then given as R1 = V1/I. The two
non-local voltages (V2 and V3) can be converted into non-local resistances the
same way (R2,3 = V2,3/I). The non-local resistance due to current spread can
be estimated by:

Rohmic = ρ

π
e−π

l
w , (7.4)

where ρ is the sheet resistance, w the width and l the length between the
current path and the non-local voltage detection [244]. It is obvious from
Eq. 7.4 that the ratio l/w should be large to suppress the ohmic contribution
substantially. The metallic contacts to the graphene that are used to detect the
non-local voltage can influence the measurement as they act as equipotential
lines over their width. Therefore, the effective length for the device is shorter
than L and as a lower bound L∗ can be given, see Fig. 7.7 for clarity. Obviously
the effect of the contacts depends on the ratio of d/s. The corresponding
resistivity ρ can be measured in a four-terminal configuration in such Hall-
bars. Therefore, it is possible to estimate the expected ohmic contribution to
the non-local signal.
The same devices that were used for the investigation of the SOC via WAL

measurements as presented above were also used to investigate the possibility
of the creation and detection of spin currents via a combination of spin-Hall
and inverse spin-Hall effect. Fig. 7.8 shows the non-local signals R2 and R3 as
well as the corresponding ρ of this regions for device B. R2 and R3 peak when
the graphene is tuned to charge neutrality. The largest non-local signals are
observer around VBG = 30V, where the back gate is screened. To compare the
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w L* LI V3 V2V1
sd

Figure 7.7. Non-local measurement scheme: The out-line of the Hall
bar is shown in black and 1D side contacts to the graphene are indicated in
red. The width (w), length (L) as well as the segment in between the contacts
(L∗) and s and d are indicated. The voltage drop V1 is proportional to the
local resistance R1. The non local resistance R2 and R3 are proportional to
the non-local voltages V2 and V3.

measured non-local signal to the expected ohmic contributions, two cuts are
shown in Fig. 7.8 (e) to (h). To give a bound for the ohmic contribution, Rohmic
was once calculated with l = L = 1.5 µm and once with l=L*=1 µm. The width
w is 0.9 µm. It is clear that the aspect ratio of the device is not perfectly
suited for this kind of measurements as a substantial ohmic contribution is
expected. However, the ohmic contribution is much smaller for most cases.
This is especially pronounced for the increased non-local resistance around
VBG ∼ 30V. The screening of the back gate is discussed later.
It is obvious from Fig. 7.8 that current spread alone cannot account for the

large non-local resistance observed. In the following the dependence on top and
back gate, temperature and magnetic field is investigated. All measurements
here were performed in current bias (100 nA) at low frequencies (37.77Hz). If
not otherwise stated, the temperature was ≈1.7K.

7.5.1. Density and electric field dependence of the non-local signal

A gate-gate map of R1 and R2 of device A is shown in Fig. 7.9. The local
resistance R1 shows two charge neutrality points (CNPs) that are only tuned
by the back gate, which can be associated with the regions close to the contacts
as there is no top-gate. The CNP changing with both gates comes from the
bulk of the sample. It is only this CNP that gives rise to a substantial non-
local signal as observed in R2, see (b). R2 grows with increasing electric field
(or in other words with more asymmetric gating). Two cuts at VBG = −28V
and 18V are shown in (c). The line shape of R2 is asymmetric in VTG as a
much sharper transition is observed on the unipolar side. At large positive
VBG, when the WSe2 starts to conduct, the non-local signal R2 increases
substantially. The fact that a kink in the position of the CNP is observed for
large positive VBG is a sign that the capacitive coupling of the back gate is
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Figure 7.8. Ohmic contribution to non-local signal of device B: (a)
to (d) show the non-local signal R2 and R3 and the corresponding resistivity
ρ. Cuts at VBG = 10V (black) and 30V (red) are shown in (e) to (h). The
ohmic contribution for l=L and l=L∗ are shown in blue solid and dashed lines
respectively. All measurements were performed at a temperature of 60K.

reduced. We interpret this as a (partial) screening of the back gate voltage
by the WSe2 that starts to conduct. A possible origin of this screening is
discussed later in section 7.5.4.

7.5.2. Temperature dependence of non-local signal

Fig. 7.10 shows the local (a) and non-local (b,c) resistances of device B as a
function of VTG and VBG for different temperatures. The non-local resistance
peaks at the CNP of the bulk. Similarly to the data presented above, it
also increases with more asymmetric gating, though less pronounced. The
maximum of the non-local resistance R2 and R3 is found when the WSe2 is
conducting (where the back gate lever arm is reduced). This is especially
pronounced in R3. As temperature is increased, the magnitude of the the
non-local resistance does not change much. Only the positions where the
WSe2 is conducting changes and starts to vanish at higher temperatures, which
is observed for R1, R2 and R3 simultaneously. At 150K (not shown) the
CNP follows a straight line in the gate-gate map indicating that back gate
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Figure 7.9. Gate-gate map of R1 and R2 of device A: (a) shows the
local resistance (R1) as a function of VTG and VBG. The current path and the
non-local voltage detection for R2 are indicated in the inset. (b) shows the
non-local resistance R2 and two cuts, indicated by white arrows are shown in
(c). The magnitude of R2 at the charge neutrality point increases with more
asymmetric gating. The cuts in (c) show that the line-shape of R2 in VTG is
asymmetric with a sharper transition on the unipolar side. The doping state is
indicated by letters in (b) where the first letter denotes the doping state of the
top-gated region (bulk) whereas the second letter denotes the doping state of
the region close to the contacts without a top gate. R2 increases significantly
once VBG is (partly) screened.

is not screened for any gate voltage combinations. The weak temperature
dependence of the non-local signal is not supporting the combination of SHE
and ISHE as its origin as it is expected that this effect should vanish with
higher temperatures.2 However, a doping related effect will survive to larger
temperatures.

7.5.3. Magnetic field dependence and Hanle measurements

An in-plane magnetic field will lead to a Hanle effect of the out-of plane spin
component that is responsible for the non-local resistances due to the spin-Hall
and inverse spin-Hall effect. In order to test if the large non-local resistances
observed above originate from a combination of spin-Hall and inverse spin-
Hall effect, the influence of a magnetic field on the non-local resistance was
investigated. Given the out-of plane spin relaxation time extracted from WAL
measurements above (τasy ≈ 5 ps), the magnetic field scale at which the spin
related signals will decay due to dephasing can be estimated from ωτs = 1[244,

2Personal communication from Jose H. Garcia
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Figure 7.10. Temperature dependence of non-local resistance of
device B: (a) The local resistance (R1) as a function of VTG and VBG is
shown for different temperatures. The Hall-bar on the top graph indicates
the measurement scheme. A constant current is passed on the left where the
local resistance (R1) is measured. The two non-local resistance R2 and R3 are
measured to the right. (b) shows the non-local resistance R2, that is closer
to the current path. In (c) the non-local resistance R3 is shown. The region
in which the back gate voltage is (partially) screened shifts and reduces with
increasing temperature until it is fully absent at 150K

249], where ω is the Larmor precession frequency and τs the spin relaxation
time. This can be solved for the magnetic field B = 2me/(geτS) ≈ 7T, where
me is the electron mass, g = 2 the g-factor and e the electron charge.
Since the sample plane is never fully aligned with the external magnetic field

axes, there is always a finite out-of plane component if only one magnetic field
axis is swept. For large in-plane fields (on the order of T) this can lead to a
substantial out-of plane component on the order of 100mT.
In Fig. 7.11 (a) R2 of device B is shown as a function of density and Bx,

which is mainly in-plane. (b) shows the dependence of R2 on Bz in the range
that is expected due to the finite misalignment of 2.8◦. The misalignment was
found from the shift of the WAL peak with increasing in-plane field, which
is a sensitive measure of zero out-of plane magnetic field. (a) and (b) show
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very similar dependencies and the subtraction of (b) from (a) results in the
contribution of a pure in-plane magnetic field B‖. R2 as a function of B‖ is
shown in (c), which does not show any clear dependence on B‖. Similarly one
finds the same results for R1 and R3 (not shown here). Therefore, all observed
changes in R1, R2 and R3 due to Bx can be explained by a small misalignment
of the sample plane with the magnetic field axis.
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Figure 7.11. Magnetic field dependence of device B: The influence of
a magnetic field on the non-local resistance R2 is shown. (a) shows R2 as a
function of density and magnetic field in x-direction, whereas (b) shows the
dependence of R2 on a magnetic field in z-direction. Here, the x-direction lies
in the plane of the graphene and the z-axis is perpendicular to it. Since the
sample plane is never fully aligned with the external magnetic field axes, a finite
out-of-plane component will be present for any applied field in x-direction. (c)
shows the corrected R2, that is only due to a pure in-plane magnetic field
(B‖). In this case the sample plane was misaligned by 2.8◦ with respect to the
x-axis of the magnet.

Furthermore, the magnetic field dependence of R1 and R2 of device A were
investigated as well. There, a misalignment of 0.7◦ was found between the
sample plane and the main in-plane field axis. R2 as a function of VTG and
magnetic field is shown in Fig. 7.12 for device A. Similarly, no clear dependence
on B‖ was found in this device. The large remaining fluctuations in R2 are
mainly due to the lack of reproducibility and small sample changes in between
the measurements.

The above presented findings clearly show that any in-plane magnetic field
study has to be taken with care. It is of utmost importance that the field is
applied in the plane of the graphene sheet as already a small misalignment of
a few degrees can be a problem as it leads to substantial orbital effects.
Similar results were obtained from device D. The non-local signal was larger

than expected by simple current spread. The measured non-local resistances
were ∼ 200 Ω, which are one or two orders of magnitude larger than the con-
tribution expected by current spread ∼ 10 Ω (using l = L) and ∼ 1 Ω (using
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Figure 7.12. Magnetic field dependence of device A: The influence of
a magnetic field on the non-local resistance R2 is shown. (a) shows R2 as a
function of top gate voltage at VBG = −20V and magnetic field in x-direction,
whereas (b) shows the dependence of R2 on a magnetic field in z-direction.
The coordinate system is the same as in Fig. 7.11 (c) shows the corrected R2,
that is only due to a pure in-plane magnetic field (B‖). In this case the sample
plane was misaligned by −0.7◦ with respect to the x-axis of the magnet.

l = L∗). In addition, no dependence on the the in-plane magnetic field was
observed ruling out any spin-based contribution (out-of-plane spin that would
give rise to spin Hall and inverse spin Hall effect).
The absence of any clear dependence of R1, R2 and R3 on B‖ shows that

the large non-local signal is not due to the interplay of spin-Hall and inverse
spin-Hall effect. This is not so surprising since only very small resistance chan-
ges would be expected. For example the local resistivity is expected to change
on the order of 1× 10−5, depending on spin relaxation time and sample geo-
metry [249]. From the residual resistance fluctuations due to the subtraction
procedure and lack of perfect reproducibility, an upper bound of roughly 10 Ω
can be given for the spin related origin of the non-local resistance. Abanin et
al. [244] derived an expression for the magnitude of the non-local resistance
due to spin-Hall and inverse spin-Hall effect:

Rnl = 1
2θ

2
SHρ

w

λs
e−L/λs , (7.5)

where θSH is the spin-Hall angle, ρ the resistivity, w the sample width, λs the
spin relaxation length and L the distance between current injection and non-
local voltage probes. A rough estinmate on the order of magnitude of the non-
local signal due to spin-Hall and inverse spin-Hall effect results in Rnl ≈ 1 Ω
by assuming parameters that are rather optimistic, such as θSH = 4% [39],
ρ = 10 kΩ, λs =

√
Dτs = 1 µm (using D = 0.1m2 s−1 and τs = τasy = 10ps),

and by using the known sample dimensions of w = 1.2 µm and L = 2 µm.
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This contribution is very small and if present, it is totally masked by the large
background signal.

The origin of the large non-local signal is still unknown. The fact that R2
and R3 strongly depend on gate configuration and show an asymmetric line
shape in VTG point to the direction that the doping profile in the sample might
play an important role. If the density at the edge is pinned or if the residual
doping at the edge is larger than in the bulk, large non-local resistances can be
expected if the bulk is tuned to the charge neutrality point, where its resistivity
is high. A larger residual doping at the edge can readily be understood since
disorder is expected to be much larger at the edge. Furthermore, a larger den-
sity or even a pinned density could be imagined by chemical functionalization
of the edge. This can easily happen during device fabrication as the sample
is shaped with reactive ion etching. It was shown that localized states at the
edge can form in such samples [56]. In addition, the top gate that overlaps the
sample edge could induce larger densities at the edge as there the lever arm is
a bit larger than in the bulk, as it also gates from the side and not only from
the top.
Close to the CNP, where the largest non-local resistance is observed, the

sample is diffusive with a mean free paths below 100 nm. However, the mean
free path rapidly increases with doping and ballistic features (transverse mag-
netic focussing) were observed at larger densities. Nonetheless, the large non-
local signals cannot be explained by ballistic effects.

The charge carriers in graphene possess not only a spin degree of freedom,
but also a valley degree of freedom. It was shown experimentally that by
breaking the sublattice symmetry of the graphene lattice by aligning it with a
hBN lattice, large non-local resistances could arise [250]. However, there is still
a debate whether this non-local signals are due to topological valley currents
or not [251]. In principle, the WSe2 substrate could break the sublattice
symmetry of the graphene as first principles calculations show the appearance
of an orbital gap [47]. However, it is unclear how one would distinguish this
effect from trivial doping related edge currents and therefore further work is
needed to fully understand this behaviour.

7.5.4. Screening of back gate
As shown already above, the back gate in these heterostructure is found to be
screened at large positive voltages. The extent of the screening depends on the
temperature (screening over larger back gate range for lower temperature). In
addition, the non-local resistance shows a clear maximum once the back gate
is screened. The origin of this increase is not fully understood. This effect is
used to quantify over which gate voltages the back gate is screened. Here we
define that for R3>15 Ω the back gate is screened. From this definition the
minimal (VBG,min) and maximal (VBG,max) value of VBG can be found. This
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is shown in Fig. 7.13 together with the difference of gate voltage (∆VBG =
∆VBG,max − ∆VBG,min) that can be converted into a density. One possible
explanation for the screening of the back gate is that the Fermi energy is
shifted away from the valance band with increasing electric field (positive
electric field is pointing from the WSe2 to the graphene). At some point a
trap level is hit and the additional charge induced by the back gate is put
into the trap states since the graphene is at the CNP. The number of available
trap states is reduced with increasing temperature. This explains the shorter
plateau-like feature that is observed at higher temperature.
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Figure 7.13. Screening of back gate for device B: (a) shows R3 at 60K
with a contour line of 15 Ω in red. The extracted maximum of R3 (at the
CNP) is shown in (b), where the cut-off of 15 Ω is also indicated. VBG,min and
VBG,max are extracted as indicated and plotted together with their difference
in (c).

7.6. Alternative WSe2 source and influence of WSe2 quality

The interface between the graphene and the WSe2 substrate is crucial for the
observed enhancement of SOC in graphene. Obviously also the quality of the
WSe2 crystal matters as defects and grain boundaries could affect the prox-
imity effect on graphene. Crystals from different sources can have different
quality as shown in Ref. [240] where the authors investigated topography and
defects in WSe2 with a scanning tunnelling microscope. We therefore inves-
tigated devices with WSe2 obtained from Nanosurf to compare it to devices
with WSe2 obtained from hq graphene. In general, devices with WSe2 from
Nanosurf showed more gate instabilities than the devices with WSe2 from hq
graphene. In addition, the resistance at the CNP was found to strongly depend
on the temperature with a doubling of the resistance at 450mK compared to
25K, which was not observed in hBN/Gr/hBN devices nor in hBN/Gr/WSe2
devices with WSe2 from hq graphene, see Fig.7.14. Furthermore, the up and

149



7. Spin-orbit coupling in graphene/WSe2 heterostructures

down sweep do not overlap and a shift of the CNP reveals a hysteretic gate
behaviour. At the CNP large resistance fluctuations are observed that are not
reproducible.
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Figure 7.14. Alternative source of WSe2, temperature dependence,
gate instability: Solid lines correspond to a temperature of 450mK, whe-
reas dashed lines correspond to a temperature of 25K. (a) shows the two
terminal resistance of a WSe2/Gr/hBN device as a function of top gate
voltage. (b) shows the two terminal resistance and (c) shows the resistivity of
a WSe2/Gr/WSe2 device as a function of back gate. Black traces correspond
to up sweeps (from negative to positive voltage) and red correspond to down
sweeps.

In Fig. 7.15, further characteristics of the device from Fig. 7.14 (a) are
shown. A gate gate map of the two-terminal resistance is shown in (a). A
varying lever arm of the gates indicates less reproducible device behaviour. A
mobility of ≈ 17 000 cm2 V−1 s−1 was found. Similar mobilities and changes
of the resistance at the CNP were found in the other devices fabricated with
this material.
The lower device stability (hysteresis and gate instabilities) can be related

to a lower WSe2 quality that leads to more charge traps than in high quality
WSe2 or hBN crystals. On the other hand, larger resistances at the CNP that
are strongly temperature dependent could be explained by strong localization
due to disorder [252]. However, a more thorough investigation would be needed
to conclude about a possible strong localization.
In order to check for the presence of enhanced SOC, magneto conductivity

was measured close to the CNP, see Fig. 7.15 (b) and (c). As previously
discussed, an ensemble averaging was performed to average out the influence
of UCF. The resulting magneto conductivity shows a clear dip around zero
magnetic field and shows no feature of weak antilocalization. The absence of
any clear sign of weak antilocalization shows that there is no z/-z asymmetric
SOC present in the system. Most likely, there is also no z/-z symmetric SOC
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present as this would lead to a reduced weak localization signal. However, it
is hard to conclude anything about the SOC in these device as the positive
magneto conductance cannot unambiguously be attributed the presence of
normal WL or to the presence of z/-z-symmetric SOC.
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Figure 7.15. Devices with WSe2 from an alternative source: (a) shows
the two terminal resistance as a function of top gate and back gate voltage.
(b) shows the magneto conductivity close to the CNP. The back gate voltage
was varied within 14V to 16V to average out the influence of UCF. (c) shows
the average over all gate traces in (b) and a clear weak localization feature is
observed. The temperature of all measurements was 300mK

7.6.1. Fully WSe2 encapsulated graphene
Graphene encapsulated by WSe2 on the bottom and on the top is interesting
mainly due to two reasons. First, the symmetry in z-direction of the structure
is different from hBN/Gr/WSe2. This could have important consequences on
the strength of the different SOC terms. Rashba SOC is expected to be fully
absent or at least greatly suppressed [53]. Similar arguments hold for the PIA
SOC [53]. On the other hand, one naively could imagine that the other SOC
terms would be doubled as the electrons in the graphene experience strong
SOC on both sides of the graphene.
To investigate the influence of the symmetry of the structure in z-direction

on the SOC, fully WSe2 devices were fabricated from WSe2 obtained from Na-
nosurf. The resistivity of such a device is shown in Fig.7.16 (a). A field effect
mobility of ∼ 15 000 cm2 V−1 s−1 and a residual doping of ∼ 8× 1010 cm−2 was
extracted. Due to the lower quality of the WSe2 only a very broad CNP is
observed. In addition, this device showed rather inhomogeneous charge trans-
port. Nevertheless, the magneto conductivity was measured to investigate
possible SOC. To reduce the influence of the UCF, the magneto conducti-
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vity was measured at different gate voltages close to the CNP as shown in
Fig. 7.16 (b). Here, the lower quality of the WSe2 is also visible since several
gate jumps occur during the measurement. The average of this map is shown
in Fig. 7.16 (c) that shows a clear dip at Bz = 0mT but no further sign of
typical weak localization nor antilocalization.
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Figure 7.16. Fully WSe2 encapsulated graphene: The resistivity, obtai-
ned in a four terminal configuration, of a fully WSee encapsulated device is
shown in (a) as a function of top and back gate voltage. (b) shows the mag-
neto conductivity close to the CNP. The back gate voltage was varied within
14 volt to 15 volt to average out the influence of UCF. Several gate jumps are
visible in this measurement. (c) shows the average over all back gate traces in
(b). The conductivity shows a minimum at Bz = 0mT but does not look like
a typical weak localization feature.

In the absence of z/-z asymmetry (fully WSe2 encapsulated graphene), a
reduced weak localization is expected in the magneto conductivity that ac-
counts for the presence of z/-z symmetric SOC terms [73]. The fact that the
magneto conductivity shown in Fig. 7.16 (c) does not resemble a typical weak
localization shape, a clear statement about the presence or absence of any
SOC is very hard. Similar results were also found in three further devices that
consisted of fully WSe2 encapsulated graphene.

Since the low field magneto conductivity is not a robust measure to detect
SOC in symmetric structures, the investigation of Shubnikov-de-Has (SdH)
oscillations could prove useful. It is well known that the spin splitting of
single band leads to a beating in the SdH oscillations, which was recently
observed in bilayer graphene in contact to WSe2 [149].
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7.7. Conclusion

7.7. Conclusion

In conclusion we measured weak antilocalization in high quality WSe2/Gr/hBN
vdW-heterostructures at the charge neutrality point. The presence of a clear
WAL peak reveals a strong SOC. Whereas previous studies have also found a
clear WAL signal, we present for the first time a complete interpretation of all
involved SOC terms considering their relaxation mechanisms. This includes
the finding of a very large spin relaxation anisotropy that is governed by the
presence of a valley-Zeeman SOC that couples spin to valley. The relaxation
mechanism at play here is very special since it relies on intervalley scattering
and can only occur in materials where a valley degree of freedom is present
and coupled to spin. This is in good agreement with recent spin-valve me-
asurements that found also very large spin relaxation anisotropies in similar
systems [241, 242].
In addition, we investigated the influence of an in-plane magnetic field on the

WAL signature. Due to the loss of phase coherence, a lower bound of all SOC
strengths of 0.2meV can be given, which is in agreement with the numbers
presented above. This approach does not depend on the accurate fitting of
WAL peaks nor on the interpretation of the extracted spin-orbit scattering
rates and is therefore a very robust method.
Large non-local resistance signals were found in WSe2/Gr/hBN vdW he-

terostructure. Possible contributions of the SHE and ISHE to the non-local
resistances were investigated and we found a negligible contribution. This is
mainly based on the fact that no dependence on the in-plane magnetic field
was found that could confirm the presence of a spin related phenomenon.
It turned out that the quality of the WSe2 and its interface to the graphene

is of utmost importance in enhancing the SOC in graphene. Different sources
of WSe2 lead to different device qualities in terms of charge transport on one
side and in terms of induced SOC on the other hand. Only WSe2 from hq
graphene was found to induce a sizeable SOC in graphene.
The coupling of spin and valley opens new possibilities in exploring spin

and valley degrees of freedom in graphene. In the case of bilayer graphene
in proximity to WSe2 an enormous gate tunability of the SOC strength is
predicted since full layer polarization can be achieved by an external electric
field [37, 38]. This is just one of many possible routes for future investigations.
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8 Quantum capacitance and dissipation in
graphene pn-junctions12

In this chapter a new contactless characterization technique of graphene pn-
junctions is presented. A superconducting resonant circuit is capacitively cou-
pled to a high quality hBN encapsulated graphene sheet. This allows the
simultaneous extraction of the quantum capacitance and the charge relaxa-
tion resistance. In contrast to standard transport experiments on graphene
devices presented in the previous chapters, this technique offers an alternative
way to study intrinsic properties.

1This chapter is a collaborative work with Vishal Ranjan, who also prepared most of the
figures.

2This chapter has been published in a similar form in Ref. [253].
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8. Quantum capacitance and dissipation in graphene pn-junctions

8.1. Introduction

Since the discovery of graphene in 2004, many interesting physical properties
of Dirac particles on-chip have been unravelled [26, 43, 44]. The most common
technique to characterize graphene remained low frequency lock-in transport
measurements, where electrical contacts are an essential part of the device. It
is well known that contacts can influence and degrade the device quality by the
formation of unwanted pn-junctions at the contacts due to doping [254] and
enhanced scattering [255]. Furthermore, resist residues from lithography can
degrade metal-graphene interfaces [256] or even the overall device quality. An
important example are graphene spin valves, which are discussed in chapter 5.
The device quality in graphene spin valves is often limited by the contacts,
which cause spin relaxation and decrease of spin lifetime [193, 201, 257, 258].
Therefore, a contactless characterization such as microwave absorption [259]
and microwave-impedance microscopy [260] can open up new ways to probe
inherent properties of the studied system. Up to now, other contactless sche-
mes such as terahertz spectroscopy [158, 261] and dielectric force microscopy
[262] have been employed to study the charge carrier dynamics in graphene.
In contrast to the former, microwave response used in this work here precludes
any interband or intraband transitions allowing the study of charge carriers at
the Fermi level. Most important, our approach allows for a complete on-chip
implementation of devices and readout circuit that allows to extract quantum
capacitance and charge relaxation resistance in a single measurement even in
the absence of any electrical contacts.

In this chapter we present a novel method of characterizing graphene pn-
junctions without the need of electrical contacts. High mobility graphene
encapsulated between hBN is capacitively coupled to a microwave resonator
working at gigahertz frequencies. Here we used a stub tuner as a microwave
resonator [263]. Local gating allowed us to probe the internal charge dynamics
from which the quantum capacitance (briefly discussed in section 1.1.1 and the
charge relaxation resistance can be inferred.

8.2. Device layout

The layout of a typical device investigated here is shown in Fig. 8.1. The
stub tuner made out of superconducting niobium is based on two transmission
lines TL1 and TL2 of lengths l and d, each close to λ/4 [263]. The working
principle of the stub tuner can be understood in a simple analogy to optics.
The incoming microwave signal is split at the T-junction that acts as a beam
splitter. The microwave signal then travels down both arms and reflects at
the open and at the device end. Depending on the device load, different
interference conditions are present at the T-junction that provide the resonance
condition.
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8.2. Device layout
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Figure 8.1. Sample layout: (a) An optical picture of the stub tuner
with arm-lengths l and d. The central conductor and the gap widths of the
transmission lines are 15 µm and 6 µm respectively. Light areas show the Nb
film and darker areas are exposed SiO2 substrate after the Nb is etched away.
(b) An SEM image near the l end showing a narrow slit between the signal
line and the ground plane. (c) An SEM image of a hBN/Gr/hBN stack for
device B placed over the slit. Areas A1 and A2 correspond to the two parts of
the graphene lying on the signal line and the ground plane, respectively. (d)
A cross section schematic of the device near the slit. (e) An equivalent circuit
with lumped capacitance and resistance elements. c© 2018 American Physical
Society

The circuit is patterned in a 100 nm thick Nb film employing standard e-
beam lithography and a dry etching process employing Ar/Cl2. In order to
minimize microwave loss, the sample is fabricated on an intrinsic, high resistive
silicon wafer with a 170 nm thick SiO2 layer. The signal line of the TL1 features
a narrow slit (450 nm) insulating it from the ground plane to the right, see also
Fig. 8.1 (b) and (c). We placed a hBN/Gr/hBN heterostructure across this
slit using a dry pick-up method described in more detail in section 2.1. The
stack was positioned such that parts of it were lying on top of the signal line
(area A1) and parts on the ground plane (area A2). E-beam lithography and
reactive ion etching were then used to structure the stack into a well defined
rectangular geometry. Details on the fabrication of the niobium resonator can
be found in appendix A.
The lack of electrical contacts allowed us to change the shape of the device
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8. Quantum capacitance and dissipation in graphene pn-junctions

while using the same RF circuit. We first fabricated a device with dimensions
W ×L of 6.5 µm × 13 µm (device A), with W and L indicated in Fig. 8.1 (c).
After measuring device A, the stack was reshaped into the following dimensions
of 6.5 µm × 9.6 µm (device B). Both devices consisted of an area A1 lying on
top of the signal line (gate) of 6.5 µm × 3.4 µm. The graphene section lying
above the ground plane (area A2) was 6.5 µm × 9.6 µm for device A and 6.5 µm
× 3.8 µm for device B. Hence, device A was asymmetric whereas device B was
quasi symmetric around the slit. This two devices, using the same resonant
circuit, allowed for consistency checks and helped in understanding the gating
of these devices. A third symmetric device C of dimension 5 µm × 12 µm
fabricated on a separate resonator circuit and a different vdW-heterostructure
was also investigated.

8.2.1. Measurement principle
The graphene properties were extracted by measuring the complex reflection
coefficient from the stub tuner, which depends on the RF admittance of the
load [264]. A vector network analyser is used to measure the reflected part
of the probe RF signal fed into the launcher port of the circuit. In order to
change the Fermi energy of the graphene a gate voltage VG is applied to the
signal line with the help of a bias tee as shown in Fig. 8.1 (a). The gate
voltage changes locally the density and hence the quantum capacitance and
also the resistance of the graphene. Careful analysis of the RF response of the
circuit at different gate voltages allowed us to extract differential capacitance,
related to geometric and quantum capacitance, and dissipation, related to
losses and charge relaxation resistance in the graphene. All measurements were
performed at a temperature of 20mK and with an input power of −110 dBm.
Even though the Nb resonator could also be operated at higher temperatures
(still below Tc), 20mK was chosen to maximize the quality factor and hence the
sensitivity of the RF resonator to changes in C and R of the load impedance.
Since the graphene is not connected to any electrode the total charge on

the graphene is conserved and therefore gating works a bit different than in
conventional devices. A gate voltage on the signal line induces charge carriers
on the graphene part lying on top of it (area A1). The only source of charge
carriers is the graphene area lying on top of the ground plane (area A2).
Therefore, gating will always influence both areas simultaneously. In the case
of a pristine graphene sheet (Fermi energy at the CNP without gating), any
gate voltage applied to the signal line will lead to the formation of a pn-junction
at the slit. However, if a finite offset doping is present, which is generally the
case for any graphene device, an offset voltage has to be applied to the gate
to drive the graphene charge neutral. The CNP is reached at two different
gate voltages, once for each part of the graphene. At voltages larger than
this offset voltages (in absolute values) a pn-junction will be present in the
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8.3. Reflectance results

graphene. The charge carrier density is homogeneous within each part of the
flake and only changes rapidly close to the slit. Due to different areas A1 and
A2, the applied gate voltage results in different charge carrier densities but
equal and opposite total charge on the two parts.
In the transmission line geometry, the RF electric field emerges from the sig-

nal line and terminates on the ground plane. While the electric field lines are
quasi-perpendicular to the graphene sheet far away from the slit, they become
parallel and relatively stronger in magnitude close to the slit. The field distri-
bution hence probes the properties of the bulk graphene (homogeneous charge
distribution) and the properties of the pn-junction at the slit (inhomogeneous
charge distribution). For simplicity, we model the graphene as lumped one
dimensional elements of capacitance and resistance as shown in Fig. 8.1 (e).
The graphene impedance is then simply given as ZG ∼ R+ 1/(jωC) with the
total series capacitance C and resistance R as

1
C

= 1
CG1

+ 1
CQ1

+ 1
CG2

+ 1
CQ2

, (8.1)

R =R1 +R12 +R2, (8.2)

where ω = 2πf is the angular frequency and j is the imaginary unit. Thus
CQ = CQ1CQ2/(CQ1 + CQ2) and CG = CG1CG2/(CG1 + CG2) are the total
quantum and geometric capacitances of the graphene device. We have assu-
med that the junction capacitance C12 is relatively small so that the junction
resistance R12 � 1/(ωC12). Moreover, we ignore the parallel slit capacitance
Cslit which is relatively small and gate independent. Together with the load
ZG, the reflectance response Γ of the stub tuner can now be described by
[(Zin − Z0)/(Zin + Z0)]2 where the input impedance Zin is given as [265]

Zin = Z0

(
tanh(γd) + Z0 + ZG tanh(γl)

ZG + Z0 tanh(γl)

)−1

, (8.3)

with Z0 ∼ 50 Ω the characteristic impedance of the transmission line, γ =
α + jβ the propagation constant, α the attenuation constant, β = √εeffω/c
the phase constant, εeff the effective dielectric constant and c the speed of
light.

8.3. Reflectance results

The reflectance response of device B is shown in Fig. 8.2 as a function of
frequency and gate voltage. Large frequency shifts at two gate voltages are
observed close to VG = 0V. These two points can be associated with dri-
ving either area A1 or area A2 charge neutral. At larger gate voltages a pn-
junction forms at the slit separating a homogeneously doped n-doped region
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8. Quantum capacitance and dissipation in graphene pn-junctions

from a homogeneously p-doped region. This behaviour was observed for all
three samples investigated and is characteristic for a finite offset doping of the
graphene flake. Fig. 8.2 (b) shows two line cuts, where changes in resonance
depth, resonance width and resonance frequency are apparent. In a simple
picture a pure capacitive load should only shift the resonance frequency while
a pure resistive load should only change dissipation and hence the width and
depth of the resonance.
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Figure 8.2. Reflectance response of device B: (a) A color map of
the measured reflectance power near the resonance frequency versus different
gate voltages. Arrows denote the charge neutrality points. (b) Main panel:
Cuts of the reflectance curves at two different gate voltages with fits to the
Eq. 8.3. Inset: The reflectance response of the same circuit but without any
graphene stack. The input RF power is −110 dBm which corresponds to an AC
excitation amplitude of 0.7 µV. Note that the range of frequency is different
in the inset.

In order to extract quantitative values of ZG from fitting Eq. 8.3 to the data
presented in Fig. 8.2 one first needs to extract the stub tuner parameters l, d,
α and εeff . This can be done by analysing the reflectance response of the same
circuit without the hBN/Gr/hBN stack. Therefore, the hBN/Gr/hBN stack
was removed by reactive ion etching and the open circuit response, shown as
inset in Fig. 8.2 (b), was fitted using Eq. 8.3 with ZG = ∞. We extracted
l ≈ 10.57mm and d ≈ 10.39mm, α ≈ 0.0025m−1 and an effective dielectric
constant εeff ≈ 6.1. The extracted lengths are within 1% of the designed ge-
ometric lengths and the loss constant corresponds to an internal quality factor
of 25 000, which is commonly achieved with superconducting niobium. The
capacitive load of our sample is clearly seen from the resonance frequency of
the open stub tuner (2.889GHz) that is larger than the values in Fig. 8.2 (a).
Fixing the extracted stub tuner parameters we can now extract the complex
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8.3. Reflectance results

graphene impedance ZG containing C and R. As shown in Fig. 8.2 (b), the fit-
ting yields R = 118 Ω, C = 18.2 fF for VG = −2V and R = 328 Ω, C = 17.2 fF
for VG = 1V. C and R as a function of gate voltage are obtained by fitting
the stub tuner response for all gate voltages and the deduced C and R are
shown in Fig. 8.3 and 8.4.

8.3.1. Quantum capacitance

We observe for all devices a double dip feature in the extracted capacitance
close to VG = 0V, indicating an offset doping. In addition, the capacitance
saturates at higher gate voltages as shown in Fig. 8.3. While the two dips have
similar widths for device B and device C, these are quite different for device A.
This can be understood by considering the asymmetry of device A that results
in different charge densities on each part. According to Eq. 8.1, the total
capacitance is given by the gate capacitances and the quantum capacitances.
The geometric gate capacitance CGi with i = 1, 2 is simply given as CGi =
ε0εhBNAi/d, where ε0, is the vacuum permittivity, εhBN the dielectric constant
of hBN, Ai the are of the graphene flake and dhBN the thickness of the bottom
hBN flake estimated by AFM measurements. The quantum capacitance, on
the other hand, can be derived from the density of state (DoS) as CQ/Ai =
e2DoSi. The dependence of CQ in graphene with gate voltage VG is explicitly
given as [266–269]

CQi(Vi) = Ai
4πe2

hvF
√
π

√
ni(Vi), (8.4)

with i = 1, 2 and vF the Fermi velocity and h the Planck’s constant. Here,
we neglect the influence of CQ on the gating. The gate induced charge carrier
density is ni(Vi) =

(
Vi − V 0

i

)
CGi/ (eAi), where V 0

i accounts for a finite offset
doping and Vi = VG

Ai
A1+A2

accounts for the different carrier densities on the
two graphene parts due to their different areas. Now, it is straightforward to
see from Eq. 8.1 and 8.4 that C is dominated by CG at large gate voltages
leading to the saturation of the capacitance at CG. Since the devices have
different sizes and hence different CG, the saturation value is different for each
device.
In contrast, close to the CNP (CQ ≤ CG), the quantum capacitance starts

to dominate. In an ideal system, C should go completely to zero as the
DoS vanishes at the CNP. However, residual doping n∗i resulting form charge
puddles [270] prevents this from happening. To account for a finite residual
doping we replace ni(Vi) with a total charge carrier density including this fac-
tor
√
n2
i (Vi) + n∗2i . We now proceed with fitting the total capacitance using

Eq. 8.1, where εhBN , n∗i and vF are fitting parameters. This is shown by
solid red lines in Fig. 8.3. The excellent fit captures not only the width but
also the depths of both dips near the CNP of the graphene, justifying the

161



8. Quantum capacitance and dissipation in graphene pn-junctions
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Figure 8.3. Quantum capacitance of graphene: The total extracted
capacitance from fitting the reflectance response to Eq. 8.3 for three devices.
Solid black lines are fits to Eq. 8.4 showing excellent agreement with the density
of states of single layer graphene. Error bars are smaller than the symbol size.

simple lumped element circuit introduced in Fig. 8.1 (e). The extracted fit
parameters are listed in Tab. 8.1. The dielectric constant of hBN was found
to be around 4 as previously reported [121]. Residual doping levels of around
1× 1010 cm−2 were found that are consistent with transport measurements
reported in hBN/Gr/hBN samples [137, 150, 270]. A very low residual doping
in device C goes along with an increased Fermi velocity. In this device the
Fermi energy can be tuned to much lower energy than in device A or B as also
observed by the much deeper dip in capacitance. Such a renormalization of vF
due to electron-electron interactions close to the CNP has been observed both
in capacitance [269] and transport measurements [271–273] in homogeneously
doped graphene.

Table 8.1. Overview over capacitance fit parameters: Extracted fit
parameters εhBN , n∗i and vF for all three devices investigated.

εhBN n∗1 × 1010 cm−2 n∗2 × 1010 cm−2 v∗F × 106 ms−1

device A 4 5 1 1.05
device B 4 7 6 0.95
device C 4.25 0.4 0.35 1.54

8.3.2. Charge relaxation resistance

The extracted real part of ZG is shown in Fig. 8.4 for device A and B. The
resistance of C shows qualitatively the same behaviour and can be found in
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8.3. Reflectance results

the appendix E. We consistently observe a double peak feature in R, which
goes along with the double dip feature observed in C that indicates the CNP
of either part of the graphene. Even though device A is twice as long as device
B, their resistances saturate both at the same value for large gate voltages.
Since there are no contacts involved that could lead to resistance saturation,
we attribute the observed resistance saturation to the pn-junction formed at
the slit between two homogeneously doped graphene parts. Closer to the CNP,
the respective bulk parts of the graphene also contribute significantly to the
total resistance. These findings are in agreement with the density dependence
of the conductivity in the bulk and in pn-junctions in graphene. While the
conductivity of a ballistic pn-junction [274] scales with n1/4, it scales with n
or n1/2 for the bulk graphene depending on the relevant scattering mechanism
[275].
Transport in the bulk of the graphene can be characterized by the diffusion

constant D. Using the Einstein relation, D can be related to the simultane-
ously measured R and CQ

D = L2/ (RCQ) . (8.5)

Since there is almost always a pn-junction present in our samples, the ex-
traction of D is not as simple as in a homogeneously doped sample. Therefore,
we can only give an estimate of D by considering R and CQ that arise mostly
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Figure 8.4. Dissipation in graphene: (a) The extracted charge relaxa-
tion resistance for devices A and B fabricated on the same hBN/graphene/hBN
stack. The same loss constant is used in fitting the reflectance map. (b) The
extracted R for device C with a different stack and a different circuit. (c) In-
verse quantum capacitance obtained by subtracting the geometric capacitance
from the total extracted capacitance is shown as a function of the simulta-
neously extracted charge relaxation resistance. c© 2018 American Physical
Society
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8. Quantum capacitance and dissipation in graphene pn-junctions

from one graphene area only (either A1 or A2). As previously discussed, R
saturates at large gate voltages at the pn-resistance and close to the CNP both
areas contribute significantly. Here, we investigate only data points that are
strictly on the left (negative VG) or on the right (positive VG) of the CNP, as
shown in Fig. 8.4 (b). D is extracted at a moderate doping as indicated by
the dashed line. Since the contribution from the pn-resistance R12 to the total
resistance cannot be separated, D will be underestimated since the total R is
an upper bound for the bulk graphene resistance. For the graphene area A1
(lying on the signal line) we extract D = 0.19m2 s−1 for device A and D =
0.21m2 s−1 for device B. In contrast, D of the graphene area A2 (lying on top
of the ground plane) is 1.2m2 s−1 for device A and 0.31m2 s−1 for device B.
The large change in D for area A2 from device A to B is consistent with the
substantially increased residual doping for device B. This can be attributed
to the additional etching step performed to shape the graphene area A2. The
mean free path of the charge carriers were estimated as lmfp = 2D/vF to be
around 1.4 µm and 0.5 µm. Similar analysis of device C results in a diffusion
constant of 0.44m2 s−1 and mean free path of 0.92 µm.

8.4. Discussion

An obvious uncertainty in the extraction of R and C from the reflected mi-
crowave signal lies in the determination of the open stub tuner parameters,
especially the loss constant α. Here, were rely on the fact that the loss con-
stant α does not change substantially between different cool downs and is also
not affected by processing steps such as reactive ion etching. Details of the
influence of a varying α on the extraction of R and C can be found in the
appendix E. An in-situ determination of α would be possible if the graphene
resistance would be known precisely. One way to achieve this is to measure
the quantum Hall effect where the conductance of the graphene device is well
known. However, superconducting niobium resonators cannot withstand such
large magnetic fields and therefore copper resonators [276] would need to be
used. Copper resonators would also allow measurements at higher temperatu-
res, however, the quality factor and hence the sensitivity would be reduced.
The variation in εhBN could result from an uncertainty in the thickness

estimation of the bottom hBN by atomic force microscopy. However, this
will not influence any interpretation of the data as it only enters the gate
capacitance.

8.5. Conclusion and outlook

In summary, a hBN/Gr/hBN stack was capacitively coupled to a high quality
microwave resonator and clear changes in resonance frequency and linewidth
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8.5. Conclusion and outlook

were observed as a response to local gating of the graphene flake. We are
able to reliably extract the complex impedance of the graphene device from
the frequency response. The extracted capacitance is well reproduced with
a simple model taking into account geometrical gate capacitance and quan-
tum capacitance of the graphene. In addition, the charge relaxation resistance
can be extracted and the diffusion constant was inferred from both measure-
ments. These results highlight a fast, contactless characterization of graphene
pn-junctions and offer an alternative characterization method in addition to
standard transport measurements.
The ability of the circuit to measure quantum capacitance and resistance at

the same time could be useful to study band modifications of graphene due
to proximity spin-orbit effects, see chapter 7, or due to Moiré superlattices
[277]. In addition, the contactless nature of this technique could be useful
to study more exotic two dimensional materials, on which ohmic contacts are
challenging to form.
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9 Diamonds in suspended bilayer graphene

In this chapter high quality suspended bilayer graphene devices with local
bottom gates are investigated. The local bottom gates can be used to locally
tune the charge carrier density and the filling factor in the quantum Hall re-
gime. Within the quantum Hall regime, peculiar conductance enhancements
along strictly unipolar gating are observed. In addition, edge state equilibra-
tion is investigated and spin selective, partial edge state equilibration is found.
At the charge neutrality point and in moderate magnetic field a gapped state
is observed originating from electron-electron interaction. The measurements
presented here are not fully understood, and we give first ideas, some of which
explain parts of the measured features, however fail to describe all the features
together.
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9. Diamonds in suspended bilayer graphene

9.1. Device structure and basic characterization

A scanning electron micrograph of a typical 2-terminal suspended bilayer grap-
hene device is shown in Fig. 9.1 (a). Here, three devices, device A, B and C
are presented. If not otherwise noted, all measurements are from device A.
All devices were fabricated as explained in section 2.1. Device A, which is
the main focus, is 2.6 µm long and roughly 2 µm wide and therefore has an
aspect ratio close to 1. There are three local bottom gates as one can see in
Fig. 9.1 (a). The two bottom gates located partially below the contacts are
connected together and form basically one gate, which we will refer to as the
outer gate in the following. The local bottom gate in the middle of the device
will be referred to as the middle gate.
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Figure 9.1. Device and basic characterization: (a) Scanning micrograph
of a typical suspended 2-terminal graphene device with bottom gates Vin and
Vout as indicated. (b) The two-terminal conductance as a function of Vin and
Vout is shown at a temperature of 800mK. The four distinct doping regimes
are indicated on the map where the first and last letter corresponds to the
doping in the outer region, whereas the middle marks the doping in the inner
region. (c) unipolar cut with homogeneous doping through the full sample as
indicated by the red dashed line in (b).

The two voltages Vout applied to the outer gates and Vin applied to the
inner gate will locally tune the charge carrier density in the graphene sheet
above. Therefore, two distinct doping regimes can be accessed. If both gates
have the same polarity, a unipolar doping results (e.g. nn’n, where n is the
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9.1. Device structure and basic characterization

density in the outer region tuned by Vout and n’ is the density in the inner
region tuned by Vin). These two cases correspond to the lower left and upper
right corner of the conductance map in Fig. 9.1 (b). If Vin and Vout have
opposite polarity, a bipolar doping profile along the device is formed (e.g. a
pnp, where p denotes the hole concentration in the outer region and n denotes
the electron concentration in the inner region). Obviously, a npn situation
can be realized as well. These two situations correspond to the upper left and
lower right corner of the conductance map in Fig. 9.1 (b), where the doping
profile is indicated with letters. In the bipolar regimes, the conductance is
reduced due to the presence of pn-junctions. The fact that all four regions are
well developed confirms that the graphene flake is homogeneously clean, also
close to the contacts.
Fig. 9.1 (c) shows the conductance as a function of unipolar doping (Vin =

Vout). A very sharp charge neutrality point is observed around zero gate
voltage. A kink on the electron doped side around Vin = Vout = 1.25V
corresponding to ∼ 1.25× 1010 cm−2, which itself corresponds to an Fermi
energy of 0.5meV, is observed. The fact that the conductance extends to
larger values on the nn’n side is due to n-doping of the contacts that lead to
the formation of an additional pn-junction if the device is tuned to the pp’p
regime. A series resistance, that includes contact resistance and line resistances
of the setup, is estimated to be around ∼ 900 Ω from the saturation value on
the nn’n-side. A very rough estimate of the field effect mobility results in a
lower bound of 100 000 cm2 V−1 s−1 and a residual doping n∗ ∼ 8× 108 cm−2

yielding a minimal Fermi energy of 30 µeV, both confirming the exceptionally
high quality of this device.

9.1.1. Quantum Hall effect

A fan-plot of the conductance as a function of unipolar gating (Vin = Vout)
and perpendicular magnetic field is shown in Fig. 9.2. Line cuts at constant
magnetic field are shown in (b). The absence of clear plateaus could in principle
be explained by a non-quadratic device shape that would lead to the mixing
of ρxx and ρxy in two-terminal measurements [79, 80]. The filling factors
align well with the minimum of the conductance, which would correspond to
a wide sample [80]. However, the device presented here has an aspect ratio
corresponding to a moderately long sample (close to quadratic) and, therefore
we think that the absence of plateaus cannot be explained by the non-quadratic
nature of the sample.

9.1.2. Gate-gate maps at finite magnetic field

Fig. 9.3 shows the two-terminal conductance as a function of both gate voltage
Vin and Vout for different magnetic fields. A pronounced conductance enhan-

169



9. Diamonds in suspended bilayer graphene

-30

-20

-10

0

10

20

30
V

ou
t =

 V
in
 (V

)

3.02.01.00.0
B (T)

(a)

50
40
30
20
10
0

G
 (e

2/h)

481216

32
28
24
20
16
12

8
4
0

G
 (e

2 /h
)

3020100
Vout = Vin (V)

(b)

 0.2 T
 0.3 T
 0.4 T
 0.5 T

Figure 9.2. Quantum-Hall effect: (a) Conductance as a function of mag-
netic field and homogeneous doping (fan plot). The dashed lines mark constant
filling factors (in steps of 4), and corresponding filling factor values are indica-
ted on top of the figure. (b) Conductance as a function of unipolar gating for
different magnetic fields. A series resistance of 800 Ω was subtracted. Only at
high filling factors does the conductance display plateaus.

cement along strictly unipolar gating (Vin = Vout) is found. Within these
diamond shaped features the conductance is ∼ 4 e2/h to ∼ 8 e2/h larger than
expected. Next to these diamond shaped features, well developed plateaus
with conductance values at multiples of 4 e2/h are found. As a guide to the
eye, the bulk filling factors of the outer and the inner region are laid over the
measurement. Along these nearly horizontal (vertical) lines the charge carrier
density and hence the filling factor is constant in the inner (outer) region while
the charge carrier density of the outer (inner) region is tuned.

The diamond shaped conductance enhancement appear along strictly unipo-
lar gating Vin = Vout. The extension of those regions is constrained in filling
factor to a 4 by 4 region, see Fig. 9.3 where the filling factors re laid over
the measurement. At high magnetic field the Landau levels split up due to
the lifting of spin and/or valley degeneracy. This can be seen as an internal
structure within the diamonds and splitting of the flat plateaus outside the
diagonal. See for example Fig. 9.3 (d) where the internal structure of the
diamond lines up with filling factor 3. Another example is the two different
values of conductance in the area spanned by 0 ≤ νout ≤ 4 and 4 ≤ νin ≤ 8 in
Fig. 9.3 (b).

The lowest Landau level in bilayer graphene is eightfold degenerate, whereas
all the other Landau levels are fourfold degenerate [278]. This leads to plateaus
in the Hall conductivity at ±4,±8,±12, ... ·e2/h, centred at the corresponding
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Figure 9.3. Gate-gate map at finite magnetic field: Gate-gate maps
of the conductance at various magnetic fields at a temperature of 25mK. A
constant series resistance of 800 Ω has been subtracted from all measurements.
The solid lines indicate constant filling factors for the inner and outer regions
separately. The magnetic field at which the measurements have been perfor-
med are indicated on the top left of each panel.
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9. Diamonds in suspended bilayer graphene

filling factor. Therefore, the lowest two plateaus (±4) should extend over a
larger range in gate voltage compared to all the other plateaus. This also
implies that the lowest diamond along strictly unipolar gating should extend
over a larger region in gate voltage compared to the other diamonds. However,
this is in contradiction with the data that shows equidistant diamonds.

Even though most of the features in the gate-gate maps line up with constant
filling factors, there are also a few exceptions. The most prominent are the
deviations at large values of Vout, where the constant conductance lines are
not parallel with the constant filling factors in the inner gate range. This is
the case in the area right to the diagonal in the case of n-doping.

These peculiar conductance features persist up to 4.6K as shown in Fig. 9.4.
At larger temperatures some sharp features wash out and the conductance
slightly increases for all gate voltages.
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Figure 9.4. Temperature dependence: Gate-gate maps of the conduc-
tance at 600mT for different temperatures. "Diamond" shaped conductance
enhancements are present for all temperatures presented as well as the well
developed plateaus in the case of νout > νin.
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9.2. Possible explanations

The following discussion on the possible origin of the diamond shaped con-
ductance enhancement along the strictly unipolar gating is limited to the elec-
tron side. However, as shown in Fig. 9.3 and 9.4, the same features are also
observed on the hole side.

9.2. Possible explanations

In the following a few possible scenarios are presented that could explain some
parts of the observed conductance features.

9.2.1. Edge state equilibration

In graphene devices with regions containing different filling factors next to
each other, see Fig. 9.5 (a) for a schematic drawing of the three different
cases, scattering between different edge states can occur. The edge states can
have different chemical potential and the cross-scattering between them can
modify the conductance through the device. This effect is called edge state
equilibration. In the following different aspects of edge state equilibration are
discussed.

Three region model

In the following, the graphene device is treated as three regions with different
filling factors. The outer two regions are tuned by the outer gate Vout to filling
factor νout and the inner region is tuned by the inner gate Vin to filling factor
νin. Both regions can therefore be tuned independently to different charge
carrier densities, also of opposite polarity. A schematic view of this is shown
in Fig.9.5 (a) that shows the three distinct cases.
If full equilibration among all edge states in the bipolar regime of a pnp or

npn junction is assumed, then the conductance through the device is given as

G = e2

h
· |νin||νout|2|νin|+ |νout|

, (9.1)

where νin,out denote the filling factors of the inner and outer region of the
device [279]. This situation is schematically shown in Fig. 9.5 (a) at the
bottom. Full equilibration means that the currents arriving at the pn-junction
distribute equally between all channels. Here, we focus on the equilibration
in the unipolar regime, since the conductance in the bipolar regime for our
device is zero as a gap opens with finite magnetic field at the charge neutrality
point (see section 9.3).
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Figure 9.5. Edge state equilibration: (a) Schematic drawing of the equi-
libration process in the unipolar and bipolar region. Adapted from Ref. [48].
(b) Expected conductance in the unipolar region for full equilibration. (c)
Expected conductance in the unipolar region for partial equilibration, where
equilibration only happens among edge states with the same spin polarization
(see below for details).

In the unipolar regime, there are two distinct situations possible and the
conductance through the device is given as follows:

G = e2

h
· |νin||νout|2|νin| − |νout|

if|νout| ≤ |νin| (9.2)

or
G = e2

h
· |νin| if|νout| > |νin|. (9.3)

These two situations are shown in Fig. 9.5 (a) on the top. Now, we can
calculate the conductance as a function of in νin and νout, which is shown in
Fig. 9.5 (b). For the sake of simplicity, we restrict ourselves to the nn’n region.
Exactly the same results would be expected for the pp’p case.

The expected conductance as shown in Fig. 9.5 (b) shows two qualitatively
different dependencies on νin and νout. If νin < νout, then νin edge states are
fully transmitted through the sample with νout − νin edge states being fully
reflected at the nn’ interface. This results in conductance plateaus at values
of νine2/h for all νout ≥ νin. On the other hand, the conductance decreases
in well defined steps if νin ≥ νout and conductance values corresponding to
fractional multiples of the conductance quantum appear.

Apart from the strictly unipolar doping (νin = νout), this model qualitati-
vely agrees with the measurements. Constant conductance values are found for
νout ≥ νin, whereas a series of decreasing conductance plateaus are observed in
the regime where νin ≥ νout. However, careful comparison of the experimental
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9.2. Possible explanations

finding with the expected equilibration plateaus reveal significant discrepan-
cies as one can easily see by comparing the expected conductance shown in
Fig. 9.5 (b) with the measured conductance shown in Fig. 9.6. Above the
diagonal, additional equilibration plateaus are observed in the measurement
that are not expected in this simple model, whereas below the diagonal the
conductance does not match the expectations at several places. An example is
the first plateau with conductance of 4e2/h, which is expected to extend close
to filling factor 6, however in the measurement it only extends to filling factor
4.
The equilibration of the edge states relies on scattering from one edge state

into another one. Depending on the nature of this scattering event, either
valley and or spin can be preserved. The conservation of one of this degree
of freedom can restrict the number of possible equilibration processes. If for
example spin is conserved during the scattering, a spin-up edge state can-
not scatter into a spin-down edge state and therefore half of the scattering
processes are forbidden.
Since for the unipolar region equlibration happens at the physical boundary

of the sample, valley scattering can readily occur since atomically sharp de-
fects are present. Based on this argument and due to existing experimental
evidence of spin selective equilibration in single layer graphene [280, 281], we
will consider spin selective equilibration in the next section as an extension of
the three region model.

Three region model with spin selective equilibration

Recently, Amet et al. [280] reported the selective equilibration of spin-polarized
edges states in single layer graphene. This leads to only partial equilibration,
that can be described as the sum of the spin-up and spin-down edge states
equilibrating only among themselves in the regime |νout| ≤ |νin|, which then
defines the conductance as

Gpartial = e2

h

[
|νin,↑||νout,↑|

2|νin,↑| − |νout,↑|
+ |νin,↓||νout,↓|

2|νin,↓| − |νout,↓|

]
. (9.4)

Now, the conductance through the device depends on the exact spin state
of the Landau levels that are involved in the equilibration process.
As an example, we will now calculate the conductance for the case νout =

4 and νin = 6. The lowest Landau level in bilayer graphene is eightfold
degenerate and centred around zero energy and half filled by electrons and
half filled by holes. First, we will assume that the lowest Landau level splits
into two spin-polarized Landau levels leading to a fully spin polarized outer
region. Moreover, the second Landau level in the inner region is assumed to
be not spin-polarized at half-filling. Therefore, we can write νout,↑ = 4 and
νout,↓ = 0 for the outer region and νin,↑ = 4 + 1 and νin,↓ = 1 for the inner
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9. Diamonds in suspended bilayer graphene

region. The conductance is then calculated using Eq. 9.4 and one obtains
Gpartial = 10/3 ∼ 3.33 e2/h. The same conductance value is obtained if one
assumes an unpolarized lowest Landau level in the outer region (νout,↑ = 2 and
νout,↓ = 2), but a spin polarized half-filled second Landau level in the inner
region (νin,↑ = 2 + 2 and νin,↓ = 2).
There are two more possible configurations. The first configuration involves

a spin polarization of the first and second Landau level with νout,↑ = 4 and
νout,↓ = 0 in the outer region and νin,↑ = 4+2 and νin,↓ = 0 in the inner region.
The second configuration involves no spin polarization at all with νout,↑ = 2
and νout,↓ = 2 in the outer region and νin,↑ = 2 + 1 and νin,↓ = 2 + 1 in the
inner region. These two configurations lead to a conductance of 3 e2/h.

The conductance that results from the equilibration of the filling factors
νout = 4 and νin = 8 can have two different values, depending again on the
spin polarization of the lowest Landau level. If the lowest Landau level is spin
polarized, then a conductance of 3 e2/h results, whereas 2.67 e2/h is obtained
for an unpolarized lowest Landau level. The second Landau level cannot be
spin polarized if its completely filled.

Similarly, one can calculate the conductance for partial equilibration for the
filling factors νout = 8 and νin = 10. There the conductance values of the
different possible configurations are all close to 7 e2/h. At higher filling fac-
tors, the different equilibration processes all result in very similar conductance
values that make it hard to distinguish the different cases. The expected
conductance for a valley polarized lowest Landau level (spin unpolarizd) in
combination with a spin polarized half-filled second Landau level is shown in
Fig. 9.5.

The comparison with the measurement, shown in Fig. 9.6, favours a spin-
polarized half filled second Landau level with an unpolarized lowest Landau
level. In order to obtain a conductance of ∼ 3.4 e2/h for the filling factors
νout = 4 and νin = 6, a half-filled spin polarized second Landau level is neces-
sary. As mentioned above, this is consistent with the observed conductance
of ∼ 2.67 e2/h for the filling factors νout = 4 and νin = 8. In the case of spin
polarized lowest Landau level one would expect a conductance of 3 e2/h for
νout = 4 and νin = 8. Furthermore, the observed conductance for νout = 8
and νin = 10 is consistent with partial equilibration. Spin polarized Landau
levels, especially of half-filled Landau levels, have been reported before [282].
According to this study, the lowest Landau level remains spin polarized at zero
electric field [282], which contradicts our finding. However, a different study
found a spin unpolarized but valley polarized state [283]. The equilibration
measurements point rather to a non-spin polarized lowest Landau level in our
sample.

In summary, the conductance in the region where |νout| ≤ |νin| is well ex-
plained by spin selective partial equilibration of edge states, where the lowest
Landau level is not spin polarized. The half filled second Landau level, ho-
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Figure 9.6. Experimental observation of partial equilibration: Con-
ductance in the unipolar region measured as a function of Vin and Vout at a
magnetic field of 1T. The coloured lines indicated the filling factor and the
black numbers indicate the conductance.

wever, is spin polarized. In addition, the constant conductance plateaus for
|νout| ≥ |νin| can be understood that only |νin| edge states are fully trans-
mitted through the sample. However, the position of these plateaus are not
fully correct as one can see for example in Fig. 9.3 (b) where the plateaus are
not parallel with lines of constant inner filling factor. In addition, this model
totally fails to explain the decrease of the conductance when going from a
situation |νout| = |νin| to |νout| ≥ |νin|. In this model, the conductance should
no change at all as one can easily see in Fig. 9.5. This very dominant feature
appearing for strictly unipolar doping remains to be explained. Some ideas
that could result in higher conductance values for νin = νout are sketched in
the following part of this chapter. First an equilibration based idea is pre-
sented before possible scenarios involving more sophisticated mechanisms are
presented.

Five region model

Due to the bottom gate structure, the charge carrier density profile along the
device for unipolar doping is expected to vary smoothly as one can see in
Fig. 9.7 (b). The oscillation amplitude of around 15% could in principle lead
to five regions with different filling factor and each hosting a different number
of edge states.
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9. Diamonds in suspended bilayer graphene

This scenario could in principle explain the decrease of the conductance
when Vout is increased. Starting from a situation depicted in Fig. 9.7 (a) on the
top, where νc = νout = νin, an increase in νout would lead to a situation shown
in Fig. 9.7 (a) in the middle. The fact that νout > νc leads to equilibration
as presented above and hence to a reduction of the conductance compared
to the initial case where νc = νout = νin. However, increasing νout further
while keeping νc constant, the conductance would reduce further, which is in
contradiction to the measurements. Even though five different regions might
exist in our sample, it is very unlikely that such a case would lead only once to a
reduction in conductance when νout is increased as observed in the experiment.

Obviously the case νin > νout, as shown in Fig. 9.7 (a) at the bottom, would
result in an equilibration process described above.
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Figure 9.7. Five region model: (a) shows a possible configuration where
close to the contact a different filling factor νc compared to νout is obtained.
(b) electrostatic calculations show that the density is changing by around 15%
along the device due to bottom gate pattern. The electrostatic calculations,
not including the screening of the contacts, were performed by Ming-Hao Liu.

Even though the five-region model could partially explain the decrease of
the conductance for νout > νin, it still remains a mystery why the conductance
is larger than νine

2/h in the first place. In the following, two scenarios are
discussed that could lead to larger conductance values.

9.2.2. Conductance along domain walls in bilayer graphene
Domain walls in bilayer graphene separating AB and BA stacked regions from
each other are expected to host topological protected 1-dimensional channels,
which have been observed recently in transport experiments [284]. In addition,
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these channels can be created artificially by local gating [285]. It was observed
that these channels persist in magnetic field [285] and even get more robust.
As shown in Fig. 9.8 (a) a domain wall running along the device connecting

the two electrodes will lead to an additional conducting channel carrying 4 e2/h
in the ideal case. If intervalley scattering is present this value could be redu-
ced to a value below 4 e2/h. In principle, such domain walls could explain the
larger conductance that is observed along unipolar gating. The domain wall is
disconnected from the quantum-Hall edge states as long as νout = νin. When
νout 6= νin, the edge states will cross the domain wall in the regions of hig-
her filling factor. This is schematically shown for νout > νin and highlighted
by a green dashed circle. If the crossing of the edge state with the domain
wall would lead to a complete backscattering of the states running along the
domain wall, the overall conductance of the device would drop to νine2/h. It
is important to note, that for example by increasing νout further, the con-
ductance through the device would stay constant at νine2/h if the complete
backscattering of the state at the domain wall would persist to higher doping.
On the other hand, when νin is increased such that νin ≥ νout, normal

equilibration as explained above is expected if the crossing of additional edge
states and the domain wall would lead to the complete backscattering of the
states at the domain wall. These findings are in principle consistent with the
measurements. However, we can only speculate about the interaction of the
edge states with the domain wall channels, which are crucial in this model.
Previous theoretical work showed that quantum Hall edge states could scatter
partially back or could be fully transmitted depending on their energy [286].

vinvout vout

(a)
vinvout vout

(b)

Figure 9.8. Influence of domain walls through the device: (a) a
domain wall running along the device connecting the two electrodes would
lead to an additional conducting channel carrying 4 e2/h in the ideal case. In
the case νout > νin a quantum-Hall edge channel is crossing the domain wall,
see lower part where these points are highlighted by a green dashed circle.
(b) domain walls running perpendicular to the device will short the opposite
edges, independent whether they are locate in the inner or outer region.
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In principle, domain walls could also run across the device connecting one
side to the other as shown in Fig. 9.8 (b). If the domain wall is located in the
inner region of the device, an overall decrease of the conductance would be
expected for any gate voltage configuration. On the other hand, if the domain
wall would be located in one of the outer regions, it is not straightforward to
pinpoint the value of the conductance as this would crucially depend on the
interaction of the states at the domain wall with the edge states. If the domain
wall states do not couple to the edge states that are fully transmitted through
the sample, the conductance would simply be given by νine2/h. However, it
is more likely, that also some current from these edge states is shorted to the
other side and therefore a reduced conductance would result.

9.2.3. Additional conductance channels along the edge
There are several reports in literature about enhanced doping or additional
conducting channels along the edge of graphene flakes [260, 287, 288]. This is
especially pronounced in bilayer graphene, where the bulk can be gapped by
an electric field. Non-local measurements on single layer graphene Hall-bars in
chapter 7.5 also point to the direction of an enhanced doping along the edge.

A non-monotonic doping profile at the edge, as schematically shown in
Fig. 9.9 (b), could lead to more edge states in the quantum Hall effect. In
the bulk of the sample, the filling factor would be ν, whereas it would be lar-
ger at the edge, for example ν + 1 as shown in the figure. This larger filling
factor directly leads to more edge states as depicted in light blue in Fig. 9.9 (a).
In principle there exist as many additional edge channels going from left to
right as there are going from right to left. In the absence of any scattering be-
tween the counter-propagating edge channels (considering only the light blue
ones), two edge channels with a total additional conductance of 8e2/h would
result. Since these counter-propagating edge states are sitting very close to
each other (spatially), scattering from the right moving to the left moving
could in principle occur and the additional conductance could take any value
between zero and 8 e2/h [260]. To sum up, a non-monotonic density profile at
the edge can in principle lead to an enhanced conductance compared to the
conductance expected from the bulk filling factor.

Since the filling factor in the outer and in the inner region can be tuned
separately, the question arises what will happen to the additional edge states
when νin 6= νout. In the case of νout > νin, a schematic picture is shown in
Fig. 9.9 (a) at the bottom. If in this case the additional edge channels would
be reflected back, the conductance would drop to the expected value defined
by νin. If the additional edge states are also fully reflected for larger νout
conductance and plateaus at νine2/h would be expected. A similar situation
arises when νin > νout. Again, the question would come up what the additional
edge states would do. If they would be reflected as well, normal equilibration
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Figure 9.9. Influence of edge doping: (a) an enhanced doping at the
graphene edge could lead to additional edge states in the quantum-Hall re-
gime that would lead to an enhanced conductance. In the case νout > νin
a quantum-Hall edge channel is crossing these additional edge channels, see
lower part where these points are highlighted by a green dashed circle.

as explained above would define the conductance through the device. In order
to clarify the role of additional edge states on the conductance, especially for
the case when νin 6= νout, the interaction of the additional edge states with the
normal edges states is important. Here, a better understanding of the two-
dimensional doping profile could be beneficial and electrostatic simulations
could shed some light on that. In addition, scanning probe measurements
could reveal the current distribution within the device that could clarify the
origin of the enhanced conductance features.
In summary, additional edge states due to a non-monotonic charge density

profile at the edge as depicted in Fig. 9.9 (b) could explain the enhanced
conductance in the firs place. The reduction of the conductance when going
away from perfect unipolar doping could be explained if the additional edge
states due to gating would lead to back reflection of the additional edge states
due to the charge density profile. However, at this point we can only speculate
what happens when these edge states meet.

9.3. Evidence of a spontaneous gap formation and Lifshitz
transition

The conductance as a function of both gates at small perpendicular magnetic
fields are shown in Fig. 9.10 (a) and (b). In addition, the conductance as a
function of strictly unipolar gating (Vin = Vout) for small magnetic fields is
shown in Fig. 9.10 (c). A conductance ridge at filling factor 4 that changes into
a conductance dip around 0.25mT, see Fig. 9.10 (c) is observed. This crossover
goes along with a change of the diamond shaped conductance enhancement
along strictly unipolar gating as shown in (a) and (b) in the same figure.
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9. Diamonds in suspended bilayer graphene

At 200mT, the first diamond is constrained by the filling factors 0 to 8 for
both the outer and inner region, whereas it breaks up into two diamonds at
300mT, the first being constrained by filling factor 0 to 4 and the second
being constrained by the filling factor 4 to 8. This strongly suggests that at
low magnetic field the spectrum is eightfold degenerate, whereas it is fourfold
degenerate at higher magnetic fields.
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Figure 9.10. Low field maps: (a) and (b) show the conductance through
the device as a function of both gate voltages at 200mT and 300mT with
filling factors in steps of 4 where the black solid lines correspond to ν = 0.
Whereas the lowest feature on the electron side is outlined by νin = 8 and
νout = 8 in (a) it is outlined by νin = 4 and νout = 4 in (b). In the fan plot
this is also visible as a conductance ridge that evolves into a dip at a magnetic
field of around 250mT.

Spectroscopy measurements around the CNP indicate the formation of a
spontaneous gap, see Fig. 9.11 (a) and (b). However, the conductnace at zero
magnetic field remains finite at a value slightly below 4 e2/h within the gap on
the order of ∼ 2.5meV. This larger gap rapidly decreases for increased density,
whereas a second smaller dip in conductance is observed around zero VSD bias
that persist up to larger charge carrier densities. This second smaller gap could
arise from Coulomb charging of the whole flake leading to a slight conductance
suppression due to weak Coulomb blockade [289, 290]. For magnetic fields
larger than ∼ 250mT, a complete gap is observed, that rapidly increase in
magnetic field with a slope of ∼ 25meVT−1, see Fig. 9.11 (c) and (d), which
is five times larger than in Ref. [291] and roughly 20 times larger than in
Ref. [289, 292]. Below 250mT and at low bias a rich structure in conductance
is observed, see Fig. 9.11 (e).
Previous studies also reported insulating states in bilayer graphene [289,

291–293]. Velasco et al. [291] found a gapped phase at the CNP in very clean
suspended bilayer graphene. The gap closes with a perpendicular electric field
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Figure 9.11. Bias spectroscopy: (a) shows the conductance as a function
of source-drain bias VSD and gate voltages with a cut at the CNP shown in
(b). The conductance as a function of VSD and B in the CNP is shown in (c)
and zoom-in is shown in (e). Cuts at different magnetic fields are shown in
(d).

of either polarity and a strength of 15mVnm−1. This state smoothly evolves
into the ν = 0 quantum Hall state in magnetic field. They concluded that
the gapped state cannot be a spontaneously ordered phase with a net charge
imbalance between the layers and therefore the charge layer polarized state has
been ruled out. The authors concluded that the ground state of gapped bilayer
graphene is either a quantum anomalous Hall phase, a quatnum spin Hall phase
or a layered antiferromagnet. For details see Ref. [291] and further references
therin. Large in-plane magnetic field measurements by Freitag et al. [294]
found a spin-symmetric ground state of the gapped bilayer graphene ruling out
the quantum anomalous Hall phase. Therefore, only the layer antiferromagnet
and the quantum spin Hall phase is left as a possible ground state of bilayer
graphene [294].
We would like to note that even though our device does not have a top gate,

which would allow independent control of charge carrier density and electric
field, the electric field at the CNP is negligibly small and cannot lead to a
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9. Diamonds in suspended bilayer graphene

substantial layer asymmetry that would result in a gap [289, 295]. In addition,
the observed gap disappears around Vin = Vout ∼ 1V, which corresponds to
an order of magnitude smaller electric field than was needed to close the gap
in Ref. [291], ruling out that absence of a full gap is related to the negligible
small electric field as claimed in Ref. [291]. Freitag et al. also found samples
called B1, which could only be gapped in magnetic field. The reason for the
absence of the full gap, and the connection to the gapped lowest Landau level
is still not clear.

The presence of local bottom gates allows us to tune either the inner or the
outer region to high charge carrier density, while keeping the other region at
the CNP. A transport gap in magnetic field is found in both configurations
confirming the homogeneous cleanliness of our device (not shown here).

A Lifshitz transition is expected to occur in bilayer graphene at very low
energy. This means that the Fermi surface changes its topology and in the
case of bilayer graphene it breaks up from a single circle into four disconnected
circles [81]. This effect is due to trigonal warping and arises from the interlayer
skew coupling (non-dimer A1 and B1 sites). A Lifshitz transition can be
expected at an energy of ∼ 1meV, which we can well resolve with a residual
doping of 8× 108 cm−2 corresponding to 30 µeV. At energies below ∼ 1meV
the parabolic band structure changes into four linear "mini" Dirac cones [50].
Therefore, the degeneracy of the lowest Landau level increases from 8 to 16 (4
Dirac cones x2 spin x2 valley) [50]. Above the transition energy, the degeneracy
is reduced to 8. In addition, the Lifshitz transition should disappear at small
magnetic fields when the magnetic length lB =

√
~/eB is comparable to the

distance in momentum space between the four points where the valance and
conduction bands touch, which was estimated to be around 100mT [50].

The kink in the conductance on the electron doped side appearing around
1.25× 1010 cm−2, corresponding to a Fermi energy of ∼ 0.5meV, (Fig. 9.1 (c))
as well as the larger diamond at 200mT with boundaries at filling factors 8
(see Fig. 9.10 (a)) could be interpreted as a sign of the Lifshitz transition. The
larger diamond is directly connected to the increased conductance value for
filling factor 4 at low fields in the quantum Hall fan-plot. Increasing the mag-
netic field or density leads to the transformation to the regular band structure
of bilayer graphene. The fact that the enhanced conductance in the fan plot
(see Fig. 9.10 (c)) persist up to 250mT instead of the estimated 100mT could
be related to strain, which is known to affect the Lifshitz transition. Strain
could easily arise from current annealing and/or different thermal expansion
coefficients of the involved materials. We note, that the device at the CNP
becomes fully gapped at similar magnetic fields, however, at this point we are
not certain if this is related to the change in the diamond shapes at higher
energies.
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9.4. Further bilayer devices

9.4. Further bilayer devices

In the following, two additional bilayer graphene devices are shown. Both were
fabricated on the same flake. In both cases the gate-gate map at zero magne-
tic field and at 1T is shown in Fig. 9.12 and Fig. 9.13, respectively. Whereas
device B looks very similar to the device presented above with the diamond
shaped conductance enhancement around strictly unipolar gating and the ope-
ning of a gap at finite perpendicular magnetic field at the CNP, device C is
qualitatively different. The conductance enhancements along strictly unipolar
doping in magnetic field are absent. In addition, the conductance remains
finite in perpendicular magnetic field at the CNP, whereas device B is gapped
at the CNP in magnetic field. Both device B and C show a residual doping on
the order of ∼ 3× 109 cm−2 and mobilities of around 100× 103 cm2 V−1 s−1

for device B and 50× 103 cm2 V−1 s−1 for device C.
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Figure 9.12. Device B: (a) shows the conductance as a function Vin and
Vout at zero magnetic field, whereas (b) shows it at 1T. The numbers in (b)
indicate the conductance value of the plateau. These two measurements were
performed at 500mK. A series resistance of 650 Ω has been subtracted.

The quantum Hall fan-plot of device B is very similar to the one of the
device presented above with a conductance ridge at small magnetic field that
transforms into a conductance dip at larger magnetic field for filling factor 4.
This feature is also completely absent in device B (not shown here).
We would like to note here, that previous studies also reported two qualita-

tively different bilayer samples, some of which were gapped and some of which
were not gapped [286, 289, 293].
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Figure 9.13. Device C: (a) shows the conductance as a function Vin and
Vout at zero magnetic field, whereas (b) shows it at 1T. The numbers in (b)
indicate the conductance value of the plateau. These two measurements were
performed at 500mK. A series resistance of 650 Ω has been subtracted.

9.5. Discussion, conclusion and outlook

In summary, exceptionally high quality suspended bilayer graphene devices
were investigated. Regions of enhanced conductance along strictly unipolar
gating in perpendicular magnetic fields are found, which take the form of
"diamonds". In addition, edge state equilibration is observed for νout < νin
and conductance plateaus are found for νout > νin. In addition, a gapped
state is found at the CNP at moderate magnetic field, which arises due to
electron-electron interaction. Similar results have been previously reported in
literature, however it is still an open question what phase governs the ground
state in bilayer graphene. Since it is not fully known what determines the
low energy spectrum, it is not clear if the observed gap and the enhanced
conductance features in the form of diamonds are related. Most likely, these
two findings are unrelated as the diamond shaped features persist up to large
densities and magnetic fields.
Apart from the conductance enhancement along strictly unipolar gating,

trivial edge state physics describes the experimental finding. The edge state
equilibration for νout < νin is governed by spin selective partial edge state
equilibration, relaying on a spin-polarized half-filled second Landau level.
Several ideas were presented to explain the special conductance enhance-

ments in the form of "diamonds" along strictly unipolar gating. Trivial con-
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cepts such as a non-quadratic device size and five different doping regions in
series fail to fully explain the experimental findings. Similarly, more compli-
cated models involving domain walls or non-monotonic doping profiles at the
graphene edge also fail to fully account for the experimental findings. The fact
that the device is gapped at the CNP in moderate magnetic field makes it in-
compatible with most of the models presented that could lead to the enhance
conductance values. Especially the non-monotonic doping profile at the edge
is always present and it is therefore hard to imagine that the device can be
gapped. Similarly, it was shown that the additional conductance channels at
a domain wall persist in magnetic field, which again is in contradiction with
the observed gapped state.
The lowest diamond constrained by the filling factors 0 and 8 at 200mT

that splits up into two diamonds at 300mT, strongly hints that an eightfold
degeneracy is lifted with magnetic field. This is in principle consistent with
the Lifshitz transition. However, this is only observed on the electron side and
not on the hole side. The reconstruction of the bilayer graphene spectrum due
to trigonal warping is expected to be electron-hole symmetric. Since the origin
of the diamond shaped conductance feature is unclear, we can only speculate
about a possible link to the Lifshitz transition.
Similar transport features were found in device B as well, whereas a qua-

litatively different behaviour was found in device C. It is important to note
that device C is not as clean as device A and, which is readily observed in the
gate-gate map at zero magnetic field that shows many random fluctuations
due to disorder, see Fig. 9.13 (a).
Further work is needed to fully clarify and to bring all experimental findings

into accordance with each other. Dual gated bilayer graphene devices could
prove useful as there electric field and charge carrier density could be tuned
independently. In addition, capacitance measurements could be used to inves-
tigate the density of states for different doping configurations. If the diamond
shaped conductance enhancements are due to bulk conduction or due to ad-
ditional current flowing along domain walls, a scanning technique could prove
useful to map the current distribution in this case. In addition, this could also
be very interesting at the CNP, where a reduced conductance is observed.
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In this thesis, spin and charge relaxation has been characterized in various
graphene devices with different qualities by means of transport experiments
as well as high frequency approaches.
A brief introduction to graphene and the experimental methods were given

in chapter , 1 and 2.
Ferromagnetic nanostructures were characterized by magnetic force micro-

scopy and X-ray circular dichroism measurements in chapter 3. Well defined
single domain structure were found in permalloy and cobalt contacts. In ad-
dition, X-ray absorption spectra were used to investigate the role of an ex-situ
transferred chemical vapour deposited (CVD) hexagonal boron nitride (hBN)
layer in protecting ferromagnetic nanostructures from oxidation. For the first
time, we showed that this leads to a slower oxidation process of CVD hBN
covered permalloy structures compared to uncovered reference structures.
Superconducting tunnel spectroscopy employing CVD hBN as a tunnel bar-

rier was used as a tool to study non-equilibrium properties of graphene in
chapter 4. With this technique we were able to extract the energy distribution
function of the quasiparticles, which could then be used as a local thermometer
to measure the electron temperature. This allowed us to study heat transport
in nanoscale and microscale graphene devices. Cooling through electron dif-
fusion (Wiedemann-Franz law) as well as phonon cooling were identified as
the dominating cooling mechanisms in different samples. Deviations from the
Fermi liquid value of the Lorenz number were found and the electron phonon
coupling strength was extracted.
CVD hBN tunnel barriers were used in chapter 5 for efficient electrical

spin injection into graphene. Large injection efficiencies and reversed contact
polarizations were found in high resistive contacts made from two-layer CVD
hBN barriers. This is a big step towards large scale fabrication of spintronics
devices based on CVD materials.
An alternative way of spin injection into graphene was explored in chapter 6.

Magnetization dynamics, sustained by a continuous RF drive, is the key in-
gredient in dynamical spin injection, also called spin pumping. We showed for
the first time that dynamical spin injection into graphene can be realized by
a compact fabrication scheme that includes a broadband on-chip transmission
line for the RF excitation.
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Freely suspended graphene devices have proven to be among the cleanest
graphene devices reported so far. High quality suspended bilayer graphene
was investigated in the quantum Hall regime in chapter 9. Unconventional
conductance features in locally gated devices were found alongside with a
gapped ground state in small magnetic fields. The spin and valley degree of
freedom of the charge carriers in graphene can result in rich transport features
and the spin selective equilibration of edge states in the quantum Hall regime
demonstrates the robustness of the spin degree of freedom compared to the
valley degree of freedom.
The combination of graphene and other two-dimensional materials into vdW

heterostructures has proven very useful in preserving graphene’s exceptional
charge carrier transport properties. In chapter 8, such a vdW heterostructure
was capacitively coupled to a superconducting resonator operating at micro-
wave frequencies. Admittance measurements allowed us to extract not only
the real part of the impedance but also the complex part, which contains the
quantum capacitance. This pioneering approach demonstrates that the impor-
tant transport parameters of low dimensional systems can be extracted even
in the absence of electrical contacts.
By replacing one hBN layer with a WSe2 layer in these vdW heterostructu-

res, strong spin-orbit coupling (SOC) was induced in graphene as presented in
chapter 7. We showed for the first time that substantial SOC is present at low
charge carrier concentrations where topological states are expected to emerge.
Weak antilocalization measurements were used to quantify the strength of the
SOC and revealed a dominating valley-Zeeman SOC term. This directly re-
sults in the large spin relaxation anisotropy found in these systems, which
could be used as a spin filter in future spintronics applications.

In summary, spin and charge relaxation processes have been investigated in
graphene based devices in this thesis. Spin transport measurements and the
characterization of the spin-orbit coupling strengths by weak antilocalization
measurements reveal the versatile nature of graphene for spintronics applicati-
ons. In general, these techniques could be applied to other materials, including
novel heterostructures as candidates for the future spintronics devices.

10.1. Outlook

It turned out that vdW heterostructures opened up a new field of low dimensio-
nal physics. The sheer number of different materials available nowadays offers
the possibility of an uncountable number of combinations all with different
properties.
Future graphene spin valves could combine the already established inverted

fabrication technique, where a graphene/hBN heterostructure is transferred on
top of predefined ferromagnetic electrodes [18, 179], with hBN tunnel barriers,
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which have proven to be excellent for spin injection [160–162]. A perfect
interface between the ferromagnetic material and the hBN tunnel barrier could
be achieved by the direct growth of hBN on predefined ferromagnetic contacts
[144, 178], which would also solve the oxidation problem of ferromagnetic
materials [145, 146, 154]. The combination of these structures with locally
patterned TMDC crystals could allow for very precise and gate tunable control
of the spin transport properties in these spintronics devices.
Similar structures could be envisaged for superconducting tunnel spectros-

copy, which could give direct access to the energy distribution function in
various transport regimes. Using normal contacts instead of superconducting
electrodes, the local density of states could be directly probed by performing
tunnel spectroscopy measurements.
Standard transport measurements probe the average conductance of the

sample and give no insight into the current distribution within a mesosco-
pic sample. However, the understanding of many transport phenomena could
benefit from the knowledge of the current distribution within a device. Super-
conducting interference effects in magnetic field (e.g. Frauenhofer patterns) or
scanning probe techniques could shed light onto the underlying mechanism of
the large non-local resistance signals at the charge neutrality point in graphene
for example. Similarly, the understanding of the unconventional conductance
features in the quantum Hall regime of suspended bilayer graphene could profit
from the knowledge of the current distribution within the device. Local tunnel
probes at the edge in combination with RF capacitance measuremetns of the
bulk could lead to complete understanding of complex mesoscopic devices.
The combination of graphene with other two-dimensional materials will defi-

nitely result in more exciting physical properties. One possibility is to combine
bilayer graphene with WSe2 that was theoretically predicted to have a tre-
mendous gate tunability of the spin-orbit coupling [37, 38]. Superconducting
electrodes are relatively easy to couple to graphene compared to traditional
two-dimensional electron gases. This opens the possibility to combine grap-
hene with engineered spin-orbit coupling with superconductivity resulting in
a system that is expected to host novel states.
Apart from graphene based heterostructure, more exotic combinations of

vdW heterostructures are possible nowadays, such as the coupling of ferro-
magnetic layers and superconducting layers to topological insulators.
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A Fabrication Recipes

Already in the chapter 2, fabrication techniques are discussed. The aim of this
appendix is to provide details of the fabrication recipes.

A.1. Fabrication of vdW-heterostructures

A.1.1. Cleaning the wafer for exfoliation
1. Dicing the wafer in appropriate sizes

2. Clean in Acetone, IPA for each ∼ 5min in ultrasonic

3. Blow-dry with N2

4. UVO or oxygen plama can be used to increase the yield of the exfoliation.

A.1.2. Markers on Si++/SiO2 chip (∼300 nm oxide)
1. Spin-coat full wafer (3 inch) with ∼ 1 µm AZ 1512 optical resist

2. Bake at 100 ◦C for 60 s

3. Expose with marker-grid to UV (wavelength of 365 nm)

4. Develop with MIF 726 for 17 s, stop in DI-water for 30 s

5. Metallization with 5 nm Ti + 40 nm to 60 nm Au

6. Lift-off in warm acetone

A.1.3. Assembly of vdW-heterostructures
In the following the detailed procedure of vdW-heterostructures fabrication
following Ref. [138] is presented.

1. PC film preparation by drop casing a solution of PC in chloroform
(9wt%) on a glass slide. A second glass slide is then used to disperse
the solution uniformly over both glass slides by pressing/sliding them
against each other. Be fast as the chloroform evaporates rapidly.
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A. Fabrication Recipes

2. Transfer of the dried PC layer to a PDMS stamp mounted on a glass
slide with the help of window in a Scotch tape.

3. Exfoliate top mos layer on Si/SiO2 substrate

4. Pick up top layer with PC at ≈ 80 ◦C

5. Pick up of next layer with PC/top layer, repeat for each layer to be
picked up.

6. Release "half-stack" on bottom layer on Si/SiO2 substrate by heating to
150 ◦C to release the PC layer from the PDMS.

7. Remove PC from the complete stack with chloroform (∼ 1 h)

8. Thermal annealing in N2/H2 atmosphere (temperature depends on the
involved materials)

A.2. E-beam lithography and development

A.2.1. PMMA resist for contacts and etching (negative mask)

1. Spin-coat PMMA (thickness may vary, bake at 180 ◦C for 3min)

2. Expose with E-beam (V 20 keV; Dose=450 µC /cm2)

3. Cold-development in IPA:H2O (ratio 7:3) at ∼ 5 ◦C for 60 s, blow-dry

A.2.2. PMMA/HSQ resist for etching (positive mask)

1. Spin-coat PMMA (200 nm, bake at 180 ◦C for 3min)

2. Spin-coat HSQ (100 nm, bake at 90 ◦C for 5min)

3. Expose with E-beam (V =20 keV; Dose=100 µC /cm2, use smallest cur-
rent possible)

4. Develop HSQ in TMAH (25wt%):H2O (ratio 1:1) for 30 s, stop in H2O
for 30 s, blow-dry
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A.3. Reactive ion etching

A.3. Reactive ion etching

A.3.1. CHF3:O2 plasma
1. Parameters: CHF3:O2 (40 sccm/4 sccm), P =60W, p =60mTorr, t =60 s

to 90 s. This plasma is used to shape vdw heterostructure and to define
side contacts.

2. Etching rates:
hBN: ∼ 20 nm/min
SiO2: ∼ 14 nm/min
PMMA: < 10 nm/min

A.3.2. SF6:Ar:O2 plasma
1. Parameters: SF6:Ar:O2 (20 sccm/5 sccm/5 sccm), P = 50W, p = 25mTorr,
t = 20 s. This plasma is used to shape vdw heterostructure and it can
also be used to define side contacts.

2. Etching rates:
hBN: > 300 nm/min
WSe2: > 170 nm/min
SiO2: ∼ 30 nm/min
PMMA: 80 nm/min

It is important to do a short oxygen plasma after each SF6 plasma as it cross-
links the PMMA layer (otherwise cross linked PMMA might be left on the
sample after lift-off. The only exception is if the SF6 based plasma is used
to contact the graphene as there the cross linked PMMA is removed with the
metal during lift-off.

A.3.3. O2 plasma
1. Parameters: O2 (20 sccm), P =60W, p =40mTorr, t =4min. This

plasma is used to remove PMMA when HSQ is used as a negative mask.
It is also used to define the shape of a vdw heterostructure or grap-
hene/graphite samples.

2. Etching rates:
hBN: ∼ 20 nm/min
SiO2: negligible
PMMA: ∼ 100 nm/min
graphene: several layers per minute
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A.4. Cr/Au leads

1. Type: E-beam evaporation

2. Pumping to base-pressure of < 2× 10−7 Pa

3. Evaporate away ∼ 30 nm of Cr before opening the shutter since the Cr-
target was stored in ambient condition (where it oxidises)

4. Open shutter

5. Evaporate 10 nm of Cr (0.7Å/ s to 1.2Å/ s)

6. Evaporate 50 nm to 70 nm of Au (0.7Å/ s to 1.2Å/ s)

A.4.1. Metal top gates on Hall bar devices
1. Starting with the full stack being on the Si++/SiO2 chip with markers

2. Define PMMMA mask for contacts (section A.2.1)

3. Expose side-contacts with CHF3:O2 (section A.3.1)

4. Metallize (E-beam evaporation) with Cr/Au (10 nm/70 nm), lift-off in
warm acetone

5. Shaping of the device with a 200 nm thick PMMA mask (section A.2.1)
and a SF6:Ar:O2 plasma (section A.3.2).

6. Remove PMMA mask in warm acetone.

7. Define PMMMA mask for top-gates (section A.2.1)

8. Evaporate a thin MgO layer (12 nm to 14 nm) (E-beam evaporation) to
passivate the exposed graphene-edges.

9. Subsequently metallize (E-beam evaporation) with Ti/Au (5 nm/70 nm)
using the same PMMA layer, lift-off in warm acetone

A.4.2. ZEP resist for ferromagnetic contacts
1. Spin coat ZEP (300 nm, bake at 180 ◦C for 3min)

2. Expose with E-beam (10 keV; Dose=35 µC /cm2)

3. Development in Pentylacetate for 60 s, and in MIBK:IPA (ratio 9:1) for
10 s, blow-dry
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A.5. Fabrication of freely suspended graphene samples using the LOR
technique

A.5. Fabrication of freely suspended graphene samples using
the LOR technique

A.5.1. Bottom gate structures
1. Spin coat 500 nm PMMA 950 K, bake at 180 ◦C for 3min)

2. Exposure parameters: Acceleration voltage of 20 kV, working distance of
17mm, Aperture of 10 µm for small structures (250 µm write field) and
120 µm for large structures (2000 µm write field). The following doses
are used: 200 µC cm−2 for the normal structures, 150 µC cm−2 for the
bottom gates with a pitch of 600 nm.

3. Development in xylene for 2min, rinse in hexane

4. Short oxygen plasma to remove resist residues

5. Evaporation of 5 nm Ti and 40 nm Au

6. Lift-off in xylene at 80 ◦C, rinse with hexane

The bottom gates need to be protected by a dielectric in order to avoid gate
leaks.

1. Spin coat 500 nm PMMA 950 K, bake at 180 ◦C for 3min)

2. Expose inner gate structure (bonding pads need to remain covered by
PMMA), use the same parameters as above.

3. Development in xylene for 2min, rinse in hexane

4. Evaporation of 100 nm MgO

5. Lift-off in xylene at 80 ◦C, rinse with hexane

A.5.2. LOR coating and opening of bonding pads
After coating the bottom gates with LOR, the bonding pads need to be opened
and "stair" structures allows to pull the metal leads from the bonding pads up
onto the LOR

1. Spin coat 600 nm LOR 5A (2200 rpm, 45”), bake at 200 ◦C for 15min)

2. Exposure of bonding pads with a dose of 600 µC cm−2 with a stepwise
decrease (steps of 40 µC cm−2 along the direction of the wires to be
deposited.

3. Development in ethyl-lactate for 2min, thorough washing in xylene at
80 ◦C using a syringe, rinse in hexane

215



A. Fabrication Recipes

A.5.3. Lithography on LOR
PMMA based electron beam lithography can be performed on top of the LOR
by using xylene as a developer and lift-off solvent and hexane as a rinsing
solvent. E-gun evaporation (e.g. Ti/Au) proved to be difficult as it exposes
the LOR below the contacts. This resulted in contacts floating away while
developing the LOR in the last step to suspend the graphene. Therefore,
thermal evaporation of palladium was used.

A.5.4. Suspension of graphene
• Exposure of LOR below graphene with 1100 µC cm−2. This also leads
to the suspension of the contacts.

• Development in ethyl-lactate for 2min, rinse in hexane, blow dry with
N2

A.5.5. ZEP based lithography on LOR for Py contacts
Not only PMMA can be used on top of LOR, but also ZEP proved to work as
a resist on LOR. ZEP dissolved in anisole was used for spin-coating and xylene
was used as the developer. Due to the reduces backscattering on LOR, the
dose needs to be increased compared to the lithography on Si/SiO2 substrate.
Here, an acceleration voltage of 10 kV, a dose of 70 µC cm−2 to 100 µC cm−2

and a development in xylene at room temperature for 2min were used. Lift-off
was performed in xylene at 80 ◦C for 30min.

A.6. Fabrication of niobium resonators

1. Sputter deposition of 100 nm to 150 nm niobium onto clean substrate
(intrinsic silicon, 170 nm of SiO2) at a rate of 1Å s−1 using Ar gas at a
flow of 40 sccm at a background pressure of 4mTorr and a RF power of
160W in a AJA magnetron sputtering system.

2. Define etch mask with standard e-beam lithography using PMMA (see
above)

3. Niobium etching in Sentech ICP machine with Ar/Cl2 at a flow of
25/40 sccm at a background pressure of 1Pa, DC power of 100W and a
RF power of 125W resulting in an etch rate of ∼ 4 nm s−1

4. Resist stripping in warm acetone
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B Details on the fabrication and XAS
analysis of ferromagnetic contacts

The aim of this appendix is to provide details on the fabrication of the samples
presented in chapter 3. In addition, details on the analysis of the XAS data
presented.

B.1. Fabrication details

First, ferromagnetic strips were fabricated on highly p doped silicon substrate
(only native oxide). Standard e-beam lithography with a positive resist (ZEP)
was used to pattern the ferromagnetic strips. Py and Co were evaporated
from an e-gun target in a UHV system at a pressure of ≤ 5× 10−10 mbar. A
total film thickness of 30 nm was deposited at a deposition rate of 0.3Å/s.
Lift-off was performed in N-Methyl-2-Pyrrolidon (NMP) at 70 ◦C followed by
an acetone and a 2-Propanol (IPA) rinse. Directly after lift-off, a bilayer (BL)
hexagonal boron nitride (hBN) was transferred on top of the samples such that
half of it was covered by hBN. Chemical vapour deposited (CVD) hBN grown
on copper foil was purchased from Graphene Supermarket. A thick PMMA
layer was spin-coated onto the as received copper foil with hBN. The copper
substrate was then etched in a 0.35mmol/L ammoniumpersulfate solution,
leaving an hBN layer with the supporting PMMA layer floating on water. This
layer was then transferred onto another piece of hBN covered copper substrate
to obtain a BL hBN. Now, a PDMS stamp was added to the PMMA support
layer to increase the stability and to make it easier to handle. Again, the Cu
substrate was etched in an ammoniumpersulfate solution. After thoroughly
washing with water and IPA and drying, the BL hBN was transferred in a dry
process onto the ferromagnetic films/strips. Before removing the supporting
PMMA and PDMS with a hot acetone bath for 30min, the sample was cured
at 180 ◦C for 3min to relax the PMMA and to enhance the adhesion of the
transferred hBN.
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B. Details on the fabrication and XAS analysis of ferromagnetic contacts

B.2. Fitting procedure of XAS data

The oxide thickness of the ferromagnetic strips was extracted using a procedure
introduced by Regan et al. [170], which models the total electron yield (TEY)
of an oxide / metal sandwich. In the following, the derivation is given for a
stack consisting of Fe with an Fe2O3 layer atop a Fe3O4 layer atop the metallic
iron, but it is analogous for Ni and Co with their oxides. The total electron
yield dNFe2O3 from a layer of Fe2O3 of thickness dz at depth z is given by

dNFe2O3 = I0 · e−zµFe2O3 (E) · µFe2O3 (E) ·GFe2O3 (E) · e−z/λFe2O3 · dz (B.1)

assuming normal incidence of the photons. Here I0 is the photon flux, µFe2O3 (E)
is the absorption coefficient representing the probability of a photon being ab-
sorbed, GFe2O3 (E) is the number of electrons created per absorbed photon
and λFe2O3 is the electron escape depth. The first exponential factor gives the
probability of a photon reaching depth z and the second exponential factor
gives the probability of a photo electron created at depth z to escape to the
surface. Integration of equation B.1 from 0 (surface) to depth tFe2O3 gives the
total electron yield of a Fe2O3 layer with thickness tFe2O3 as follows:

NFe2O3 = I0 ·GFe2O3

1 + 1
λFe2O3 ·µFe2O3

· e−tFe2O3 (µFe2O3 +1/λFe2O3 ). (B.2)

Here the energy dependence is not explicitly indicated.
Similarly, one can derive the total electron yield of the Fe3O4 layer below,

ranging from z1 = tFe2O3 to z2 = tFe3O4 , as follows:

NFe3O4 = I0 ·GFe3O4

1 + 1
λFe3O4 ·µFe3O4

· e−tFe2O3 (µFe2O3 +1/λFe2O3 )·[
1− e−(tFe3O4−tFe2O3 )·(µFe3O4 +1/λFe3O4 )

]
.

(B.3)

Here the fist exponential accounts for the absorption and electron escape losses
of the Fe2O3 layer.

The total electron yield of the metallic iron (infinite thickness) below these
two oxide layers is then given by:

NFe = I0 ·GFe

1 + 1
λFe·µFe

· e−tFe2O3 (µFe2O3 +1/λFe2O3 )·

e−(tFe3O4−tFe2O3 )·(µFe3O4 +1/λFe3O4 ).
(B.4)

The two exponential account for the absorption and electron escape losses due
to the two oxide layers.

The total electron yield of a Fe2O3 / Fe3O4 / Fe sandwich as shown in
Fig. 3 c) in the main text is then given by the sum of equation B.2, B.3 and
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B.2. Fitting procedure of XAS data

B.4. For the fitting, it was assumed that GFe2O3 (E) = GFe3O4 (E) = GFe(E) =
const (neglecting the difference of the electron yield for different materials and
their energy dependence). This results in an overall scaling factor accounting
for the photon flux and electron yield. Hence, only tFe2O3 and tFe3O4 deter-
mine the relative weight of the different chemical species involved and the fit is
simply speaking a linear combination of the reference spectra of µFe2O3 , µFe3O4

and µFe, which were all taken from Ref. [170]. For the electron escape depths
we used values from the literature: λFe2O3 = 35Å [296], λFe3O4 = 50Å [297],
λFe = 15Å [298], λCo = 22Å [296, 298], λNi = 22Å [296, 298]. To our know-
ledge, the electron escape depths for CoO and for NiO has not been determined
and therefore we used a value of 30Å, as suggested by Regan et al. [170].
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C Further data and discussions of
WSe2/Gr-heterostructures

The aim of this appendix is to provide further data of the WAL measurements.
First, WAL measurements of device A a higher temperature and over a larger
magnetic field range are presented, which are followed by the WAL measure-
ments of device B. Then the detailed analysis of the electric field dependence is
presented. Furthermore, the spin relaxation anisotropy and the relaxation due
to the valley-Zeeman SOC are discussed in more detail. In addition data from
a further device is shown, where the influence of τiv and τ∗ cannot be neglected
in the analysis of the magneto conductivity (device D). Furthermore, the in-
fluence of an in-plane magnetic field on the WL correction in hBN/Gr/hBN
devices is shown, which supports the interpretation of an enhanced dephasing
due to the presence of a random vector potential.

C.1. Fitting of magneto conductivity over larger magnetic
field range

Fig. C.1 (a) shows the quantum correction to the magneto conductivity of de-
vice A over a larger magnetic field scale (±50mT), which roughly corresponds
to the transport field estimated for this device (70mT). In order to clarify
the relative strength of the two spin-orbit scattering times (τasy, τsym) we fit
the data with equation 2 from the main text and the best fit is again found
for τasy � τsym with very similar results as shown in Fig. 3 in the main text.
We consistently find τasy/τsym & 10. The reduced τφ can be explained by the
larger temperature on one hand and the fit constraint τasy ≤ τφ. Without this
fit constraint, larger τφ were found with τasy > τφ, which we ruled out.

The evolution of the magneto conductivity with temperature is shown in
Fig. C.1 (b). Clearly, the sharp WAL peak around zero magnetic field disap-
pears at higher temperature, whereas the conductivity is not much affected at
higher magnetic fields. The curvature around zero magnetic field for 30K and
50K is well reproduced by the classical Drude model in magnetic field. The
50K trace is less negative than the 30K trace at large magnetic fields, whereas
there is nearly no difference between those two traces around zero magnetic
field. This would lead to a much flatter background of the quantum correction
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C. Further data and discussions of WSe2/Gr-heterostructures

to the magneto conductivity at larger fields if the 50K trace would be used as
a classical background instead of the 30K trace. A flatter background would
lead to an even larger anisotropy between τasy and τsym.
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Figure C.1. Fitting over large magnetic field range: (a) shows the
magneto conductivity of device A at the CNP at zero perpendicular electric
field at a temperature of 1.8K. The magneto conductivity is fitted with equa-
tion 2 from the main text over the full magnetic field range ±50mT, with the
fit parameters indicated on the graph. (b) shows the evolution of the magneto
conductivity with temperature. c© 2018 American Physical Society

C.2. Fitting of magneto conductivity data from device B

As mentioned in the main text, a second device B was investigated as well. A
gate-gate map of the resistivity of device B is shown in Fig. C.2 (a). A field ef-
fect mobility of ∼ 25 000 cm2 V−1 s−1 and a residual doping of ∼ 7× 1010 cm−2

were found. The quantum correction to the magneto conductivity was measu-
red at the charge neutrality point for different electric fields. The same analysis
was performed as mentioned in the main text. The extracted quantum cor-
rection to the magneto conductivity was also fit using Eq. 1.23 from the main
text considering the three different cases as elaborated in the main text. Since
the quality of device B is higher than that of device A, the diffusion constant
is larger and hence the mean free path lmfp is longer. This leads to a much
smaller transport field as this scales with l−2

mfp. Therefore, the fitting range
here was limited to 12mT, which poses serious limits on the quality of the
fit. It is very difficult to independently extract the different spin-orbit scatte-
ring times as obviously seen in Fig. C.2, where basically all three fits overlap.
Only at larger fields would the three fits be distinguishable. However, the
time scales extracted here do not contradict the results presented in the main
text. The strength of the total SOC, captured in τSO, is roughly the same for
all three fits. As can be seen in Fig. C.2, the total spin-orbit scattering time
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C.3. Electric field dependence of the spin-orbit scattering rates

τSO is more robust with respect to different fitting limits. Therefore, we only
consider τSO for device B in the next section.
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Figure C.2. Data from device B: (a) shows the resistivity as a function
of VTG and VBG. Constant density contours are indicated with red solid lines
and constant electric field contours is solid black lines. (b) shows the quantum
correction to the magneto conductivity of device B at zero electric field within
a density range of −5× 1011 cm−2 to 5× 1011 cm−2. The same procedure as
described in the main text was used. The results for three different limits are
shown and their parameters are indicated. The fitting was restricted to the
range of the transport field Btr = 12mT. c© 2018 American Physical Society

C.3. Electric field dependence of the spin-orbit scattering
rates

The presence of a top and a back gate in our devices allows us to tune the
carrier density and the transverse electric field independently in devices A
and B. The back and top gate lever arms (αBG, αTG) were found from Hall
measurements and the charge carrier density in the graphene was calculated
using a simple capacitance model,

n = αBG
(
VBG − V 0

BG

)
+ αTG

(
VTG − V 0

TG

)
, (C.1)

where V 0
BG and V 0

BG account for some offset doping of the graphene. Similarly,
the applied electric field (field direction out of plane) was obtained:

E = 1
dBG

(
VBG − V 0

BG

)
− 1
dTG

(
VTG − V 0

TG

)
, (C.2)
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C. Further data and discussions of WSe2/Gr-heterostructures

where dBG and dTG denote the thickness of the back and top gate dielectric.
The thicknesses of the bottom WSe2 flake and the top hBN flake were deter-
mined by atomic force microscopy. To account for the residual doping, the
density was corrected in the following way: ncorr =

√
n2 + n2

∗. It was the cor-
rected density ncorr that was used for the calculation of the diffusion constant
via the Einstein relation and for the estimation of the Fermi energy.

In the case of device A, the SOC strength was found to be electric field
independent at the CNP in the range of −5× 107 V/m to 8× 107 V/m as
shown in Fig C.3. The electric field range was limited by the fact that at
large positive gate voltages the Fermi energy was shifted into a trap state in
the WSe2 whereas at large negative gate voltages gate instabilities occurred.
Within the investigated electric field range τasy was found to be in the range
of 5 ps to 10 ps, always close to τφ. τsym on the other hand was found to be
around 0.1 ps to 0.3 ps while τp was around 0.2 ps to 0.3 ps for device A. The
total spin-orbit scattering time τSO is mostly given by τsym. Device B, where
only τφ and τSO could be extracted reliably, shows similar results as device
A. Therefore, we conclude that the in the electric field range −5× 107 V/m
to 8× 107 V/m no tuning of the SOC strength with electric field is observed.
From first principles calculations, the Rashba SOC is expected to change by
10% if the electric field is tuned by 1× 109 Vm−1 and also the intrinsic and
valley-Zeeman SOC parameters are expected to change slightly [47]. However,
within the resolution of the extraction of the spin-orbit scattering time scales,
we cannot establish a clear trend.

These findings are in contrast to previous studies that found an electric field
tunability of τasy and τSO on a similar electric field scale in graphene/WSe2
devices [234]. However, it is important to note that the changes are small and
since no error bars are given, it is hard to tell if the three data points show a
clear trend. Another study found a linear tunability of τasy of roughly 10% on
a similar electric field scale in graphene/WS2 devices [233]. There, τsym was
neglected with the argument that it cannot lead to spin relaxation. However,
it was shown that τsym can lead to spin relaxation [36] and therefore it cannot
be neglected in the analysis. In our case, it is the dominating spin relaxation
mechanism.

C.4. Spin relaxation anisotropy

Cummings et al. have found a giant spin relaxation anisotropy in systems
with strong valley-Zeeman SOC that is commonly found in graphene/TMDC
heterostructures [36]. They derived the following equation:

τ⊥
τ‖

=
(
λV Z
λR

)2 τiv
τp

+ 1/2, (C.3)
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C.4. Spin relaxation anisotropy
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Figure C.3. Electric field dependence of device A and B: The ex-
tracted spin-orbit scattering time scales τasy, τsym, τSO and τφ were extracted
for different perpendicular electric field around the charge neutrality point. In
addition, the momentum scattering time τp extracted from the diffusion con-
stant is also shown. In the case of device B, only the total spin-orbit scattering
time τSO is given, as a reliable extraction of τasy and τsym was not possible in
this device (see discussion above). c© 2018 American Physical Society

where τ⊥ is the out-of-plane spin relaxation time, τ‖ the in-plane spin relax-
ation time, λV Z is the SOC strength of the valley-Zeeman SOC, λR is the
SOC strength of the Rashba SOC and τiv and τp represent the intervalley and
momentum scattering time, respectively. If a strong intervalley scattering is
assumed, which is a prerequisite for the application of the WAL theory [73],
τ⊥ can be given by τasy/2 and τ‖ can be given by τSO. This can be seen
by examining the relaxation rates given in the lefthand side of Table II of
Ref. [73]. There the in-plane relaxation rates are given by Γ0

x = Γ0
y = τ−1

SO,
while the out-of-plane relaxation rate is Γ0

z = 2τ−1
asy. The factor of two arises

because asymmetric SOC, such as Rashba, relax out-of-plane spins twice as
fast as in-plane spins. We therefore extract a lower bound of the spin relax-
ation anisotropy τ⊥/τ‖ ≈ τasy/2τSO ≈ 20, which is much larger than what
is expected for usual 2D Rashba systems. Furthermore, assuming a ratio of
τiv/τp ≈ 1, which corresponds to very strong intervalley scattering, a ratio of
λV Z/λR ≈ 6 is expected.

225



C. Further data and discussions of WSe2/Gr-heterostructures

C.5. Estimate of valley-Zeeman SOC strength

For a valley-Zeeman SOC strength λV Z , the spin splitting is 2λV Z and the
precession frequency is ω = 2λV Z/~. In the D’yakonov-Perel’ (DP) regime
of spin relaxation, when ωτiv < 1, the in-plane spin relaxation rate is τ−1

s‖ =
(2λV Z/~)2τiv. However, if ωτiv > 1, then the spin can fully precess before
scattering randomizes the spin-orbit field, and the spin lifetime scales with the
intervalley time, τs‖ = 2τiv. A plot of these two regimes is shown in Fig. C.4,
where we have taken our derived limits of λV Z = 0.23 and 2.3meV (see below)
as well as the DFT-derived value of 1.19meV.

Figure C.4. Estimate of valley-Zeeman SOC strength: Dependence
of in-plane spin relaxation time τs‖ on intervalley scattering time τiv. Red
and blue lines show the dependence in the DP regime of spin relaxation, for
the largest and smallest estimated values of λV Z . The black dashed line show
the value derived from DFT [47]. The green line shows the dependence in the
coherent spin precession regime. c© 2018 American Physical Society

Considering this behavior, the condition τs‖ ≥ 2τiv should always be satis-
fied. Meanwhile, our measurements revealed τsym = 0.2 ps and τiv ≈ 0.1 − 1
ps, which violates this condition for all except the smallest value of τiv. One
way to account for this is to consider the impact of spin-orbit disorder on
the in-plane spin lifetime. Assuming that the τs‖ from uniform valley-Zeeman
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SOC is given by 2τiv, and the rest comes from spin-orbit disorder, we can
estimate an upper bound of λV Z = ~/

√
4(2τiv)τiv = 0.23meV to 2.3meV.

Another possibility is that since our measurements are right around the
transition point ωτiv = 1, we could be extracting the in-plane spin precession
frequency; τ−1

sym = ω. Doing so would give λV Z = ~/2τsym = 1.6meV, which
fits in the range derived above. Overall, since the experiments appear to be
close to this transition point, all methods of deriving the strength of λV Z
tend to give similar values, from a few tenths up to a few meV depending
on the estimate of τiv. We would like to note that it is not fully understood
how the spin precession frequency enters into the WAL correction and how
the corresponding SOC strength would then be extracted. Therefore, further
theoretical work is needed.

C.6. Data from device D

The third sample with device D is a WSe2/Gr/hBN stack with a very thin
WSe2 (3 nm) as substrate. The gate-gate map of the two terminal resistance is
shown in Fig. C.5 (a). Due to the very thin bottom WSe2 the mobility in this
device is around 50 000 cm2 V−1 s−1 and a residual doping of 2.5× 1011 cm−2

is found. A typical magneto conductivity trace of this device is shown in
Fig. C.5. Mostly, positive magneto conductivity is observed with only a very
small feature that shows negative magneto conductivity at 30mK, which was
absent at 1.8K. The magneto conductivity of device D could not be fitted with
the standard WAL formula presented in the main text. However, similar curve
shapes could be reproduced by including the influence of τiv, the intervalley
scattering time, and τ∗ = (1/τiv +1/τz)−1, that includes intravalley scattering
τz. A complete formula can be derived from equation 9 of Ref. [73]. If all
relaxation gaps are included and if disorder SOC is neglected one arrives at
the following form:

∆σ(B) = − e2

2πh

[
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φ
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(C.4)
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Similar to the main text, we suppose that τsym = (1/τsym,I + 1/τsym,V Z)−1

captures both the intrinsic and valle-Zeeman SOC and that τasy captures the
Rashba SOC. However, the addition of two more parameters makes it very
hard to unambiguously extract all parameters exactly. Therefore, we do not
extract any spin-orbit time scales from this device. The influence of τiv and
τ∗ are much weaker for the data presented in the main text.
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Figure C.5. Data from device D: (a) shows a gate-gate map of the two-
terminal resistance of device D. Constant density (red solid line, in units of
cm−2) and electric field (black solid lines, in units of Vm−1) lines are superim-
posed on top of that. (b) shows the quantum quantum correction of the mag-
neto conductivity at zero electric field in the density range of −5× 1011 cm−2

to 5× 1011 cm−2. It shows a WL dip with a tiny feature of WAL around zero
Bz at a temperature of 30mK. A possible fit (red) and its parameters, inclu-
ding the influence of τiv and τ∗, are indicated. The low magnetic field range
can be reasonably well described by the standard WAL formula without τiv
and τ∗. As a comparison, the magneto conductivity is also shown at 4K. This
trace is vertically offset by −0.06 e2/h for clarity. c© 2018 American Physical
Society

The long phase coherence time τφ ∼ 25 ps is attributed to the lower tem-
perature (T= 30mK) at which the measurement was performed. At higher
temperature (1.8K), the phase coherence is significantly shorter ∼ 4 ps (bro-
ader dip and reduced overall correction) and the influence of the SOC on the
magneto conductivity (WAL) is not observed any longer.

Both τasy and τsym seem to be very close to τφ in sample D. In particular,
τsym is much longer than in the devices presented in the main text. We
conclude that even though there is some indication of SOC in sample D, its
overall strength must be smaller than in the devices presented in the main
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C.7. WL in hBN/Gr/hBN heterostructures

text. Certainly the SOC relevant for τsym must be smaller as this time scale is
two orders of magnitude longer than in device A and B. This large difference
cannot be explained by the shorter τp that is roughly a factor of 5 shorter in
device D than in device A and B.

C.7. WL in hBN/Gr/hBN heterostructures

Weak localization (WL) was measured in single layer graphene encapsulated
in hBN to get a handle on the intervalley scattering time τiv and to understand
the influence of an in-plane magnetic field. Fig. C.6 (a) shows the gate depen-
dence of the hBN/Gr/hBN device shown in the inset. Field effect mobilities
of around 35 000 cm2 were obtained with a residual doping level of around
2× 1010 cm−2. A similar procedure as described earlier was employed to ex-
tract the proper magneto conductivity (ensemble averaging and subtraction
of a high temperature background). In order to extract the scattering times
more reliably, the magneto conductivity was measured at different tempera-
tures and a global fit was employed, where only τφ was allowed to vary for
different temperatures. Intervalley scattering times τiv of around 1 ps were
obtained with τ∗ being much shorter.
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Figure C.6. hBN/Gr/hBN device: (a) shows the conductivity as a
function of density of a hBN/Gr/hBN device. The extracted field effect mo-
bilities are indicated. The inset shows an optical image of the device and the
dimensions are given in µm. (b) shows the magneto conductivity at the CNP
for different temperatures as indicated. A global fit, where only τφ was allo-
wed to vary for different temperatures is also shown. The error bars in (b)
correspond to an uncertainty of 20%.

A magnetic in-plane field can lead to an enhanced dephasing rate in grap-
hene if ripples are present [70]. This can be explained by the presence of a
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random vector potential. We observed a very similar effect here since the
phase coherence time τφ drastically reduces in large in-plane magnetic fields,
see Fig. C.7. From the dependence of the dephasing rate in B2

‖ , we can extract
a ripple volume of around 125 nm3 [70]. In order to disentangle the height and
width, one would need to investigate the dependence of relative alignment of
the current path to the in-plane magnetic field. We attribute the large ex-
tracted ripple volume to the presence of bubbles and to the slowly varying
thickness of the hBN (even though it is atomically flat on the top it can have
some thickness variations due to contaminations below).
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Figure C.7. In-plane magnetic field measurements: (a) shows the
magneto conductivity at large hole concentration for different magnetic in-
plane fields. A global fit, where only τφ was allowed to vary for the different
magnetic fields is also shown. (b) shows the extracted dephasing rate as a
function of B2

‖ . The extracted ripple volume is also indicated following Ref. [70]
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D Further information on the
superconducting tunnel spectroscopy

D.1. Details on the numerical extraction of the energy
distribution function

This section describes the numerical procedure that was used to extract the
energy distribution function from the measured differential conductance in
more detail. As shown in them main text in Eq. 4.1, the tunnelling current
through a superconductor - insulator - graphene (S/I/Gr) can be written as
follows:

I(V ) ∝
∫ +∞

−∞
dEns(E − eV )ngr(E) [fgr(E)− fs(E − eV )] . (D.1)

The two density of states (ns, ngr) and the two energy distribution functions
(fs , fgr) determine the current. For small bias values eV on the meV-scale,
the energy dependence of the graphene density of states can be neglected and
assumed to be constant. Therefore, Eq. D.1 can be rewritten

I(V ) ∝
∫ +∞

−∞
dEns(E−eV )·fgr(E)−

∫ +∞

−∞
dEns(E−eV )·fs(E−eV ), (D.2)

where the first integral describes the convolution of the energy distribution
function of the graphene fgr(E) with the superconducting density of states
ns(E − eV ) and the second integral describes an offset current. The offset
current is independent of the bias V and therefore the differential conductance
can be written in the following final form:

dI(V )
dV

∝
∫ +∞

−∞
dEdns(E − eV )

dE
· fgr(E). (D.3)

According to Eq. D.3, if dns(E−eV )
dE

is known, then one can use the measured
dI(V )
dV

to extract the energy distribution function in graphene fgr(E) by a de-
convolution. There are several ways to perform such a deconvolution: 1) direct
deconvolution using built-in algorithms in Matlab, Python or anything similar,
2) Fourier transformation and a simple division, or 3) gradient method, tha is
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a kind of a fitting procedure where the distribution function is calculated in
many iterations such that the calculated differential conductance fits the mea-
sured data. The first and the second method have the drawback of numerical
limitations (basically the differential conductance would need to be measured
over the whole energy range (-∞ to +∞) with very high accuracy. Since this
is not possible, we chose to use the third method: the gradient method, as
previously used in similar experiments on copper wires [130].

The idea behind the gradient method is to start with a reasonable guess
of the distribution function and then to calculate the differential conductance
based on the guessed distribution function and the known density of states of
the superconductor. The calculated differential conductance is then compared
to the measured data and the χ2 is calculated as defined here:

χ2 =
∑
V

(
dI
dV

∣∣∣exp − dI
dV

∣∣∣calc)2

. (D.4)

Now a new distribution function is calculated point by point by adding a
small change which is related to the difference of the guessed and measured
differential conductance in the following way:

fi+1(Ek) = fi(Ek) + λ · dχ2
i

dfi(E)

∣∣∣∣
E=Ek

. (D.5)

Here, λ is a small number (�1) and dχ2
i

dfi(E) is the gradient of χ2
i with respect to

the distribution function evaluated at energy Ek (occupation factor at energy
Ek) at iteration step i. This assures that the distribution function is chan-
ged such that the difference between the measured and guessed differential
conductance is minimized in the fastest way. Explicitly written, equation D.5
reads:

fi+1(Ek) = fi(Ek)+λ
∑
V

[
dns(E − eV )

dE

(
dI(V )

dV

∣∣∣∣exp − dI(V )
dV

]calc
i

)]
E=Ek

.

(D.6)
The distribution function is updated at every energy Ek with a small change
which is a sum over the whole voltage range of the derivative of the density of
states multiplied with the deviation of the guessed distribution function from
the measured distribution function. In this way, the "non-local" effect of of the
convolution in equation D.3 is reproduced.

This gradient method was implemented in a Python script which uses the
differential conductance measured without any bias at the lowest tempera-
ture as the density of states of the superconductor. This is justified since the
differential conductance of a tunnel junction is basically the superconducting

232



D.2. Influence of the finite width of the superconducting electrode

density of states if temperature is going to zero. In doing so, there is no analy-
tical formula for the superconducting density of states and therefore, a spline
of order 3 was fitted to the low temperature limit of the differential conduc-
tance. This allowed an easier implementation of the fitting method since the
derivative of the superconducting density of states was easy to calculate and
was still well behaving (e.g. continuous and smooth (still once differentiable)).

D.2. Influence of the finite width of the superconducting
electrode

Since the superconducting electrode has a finite width it does not only probe
the electron temperature in the middle of the graphene device. The with of
the superconducting electrode was not more than 400 nm, which is a non-
negligible part of the full device length (1.3 µm and 3.4 µm). To estimate this
influence on the extracted temperature, the expected temperature profile is
plotted in Fig. D.1 as a function of normalized device length. Here we take
the temperature profile without any electron-phonon cooling as phonon cooling
would lead to a flatter temperature profile and hence to a smaller influence of
the finite contact width. The relative width of the superconducting electrode
of device A and B presented in chapter 4 is indicated by blue and green boxes.
The average of the electron temperature within this box deviates by not more
than 1.6% from the value expected in the middle of the device (for the shorter
device). The absolute difference is given as ∆ in the legend for each device and
bias individually. We therefore rule out the finite width of the superconductor
as the dominating origin of the lower electron temperature measured in device
A and B compared to the expected value by electron cooling through out
diffusion.
We would like to note that the above estimate is in principle not fully correct

as we are not measuring an average temperature but rather an average over
several Fermi-Dirac distributions. However, the order of magnitude of the
correction is assumed to be captured by this crude estimate.
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Figure D.1. Influence of finite width of superconducting electrode:
Temperature profile in the hot electron regime. The x-axis is normalized by
the length L of the graphene channel. The blue and green box indicate the
relative extension of the superconductor electrode of device A and B presented
in chapter 4. The average temperature within this box is given for 1mV and
2mV and the absolute deviation is indicated as ∆.
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E Further information on Quantum
capacitance and dissipation in graphene
pn-junctions

This appendix shows data from a further device that was only partially discus-
sed in chapter 8. Furthermore, the influence of the bare stub tuner properties
on the extraction of the graphene impedance are discussed.

E.1. Reflectance measurements of device C

In chapter 8, we presented mainly results on two devices (A and B) fabricated
with the same hBN/Gr/hBN stack and the same stub tuner circuit. Here we
present qualitatively similar results for a third device C. A separate graphene
stack of width 5 µm and length 12 µm is symmetrically transferred across the
slit with a width of 250 nm of a different niobium resonator circuit.
Reflectance measurements were performed in the same way at each gate

voltage. To fit the resonance response, we again fix the parameters such as
the lengths, effective dielectric constant and the loss of the circuit which are
independently extracted from the response of the same circuit without the
stack. The extracted capacitance C is shown in Fig. 8.3 in chapter 8 and
the charge relaxation resistance R are shown in Fig. E.1, next to the raw
reflectance data. The characteristic double charge neutrality point feature can
be seen again, similar to those in device A and B. We fit the total capacitance
using Eq. 8.1 of the main text and extract εBN ≈ 4.25, vF ≈ 1.54 × 106 m/s,
nimp,1 = 4×109 and nimp,2 ≈ 3.5×109 cm−2, where we have used the thickness
∼ 26.5 nm of the lower hBN estimated from the AFM measurements.
In order to estimate the diffusion constant, we also plot the inverse quantum

capacitance as a function of simultaneously extracted charge relaxation resis-
tance, see Fig. E.2. We find a almost symmetric response for the two areas
of graphene, which is consistent with their similar impurity densities and size.
At the dashed line, we estimate the diffusion constant D = 0.44m2 s−1 and
the mean free path lm = 0.92 µm.
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E.2. Details on the parameter extraction for different circuit
losses

In our measurements of graphene devices, there is no way to extract the circuit
loss constant α simultaneously since device parameters are not known a priori.
Therefore we extract α (for devices A/B ∼ 0.0025 m−1 and for devices C ∼
0.0015 m−1) from the reflectance response of the same circuits after graphene
removal (using reactive ion etching). An uncertainty in extracted parameters
might arise if the circuit losses do not stay the same from one cool down to
another after graphene removal.
To simulate the deviations, we extract R and C at different loss constants

from fits of the reflectance response shown in Fig. E.3 (a). The results are
plotted in Fig. E.3 (a,b). We see that by increasing the loss constant, the
resistance of the device goes down and vice versa. The maximum error in
the resistance happens at the largest gate voltage. In case of devices A/B we
find deviations smaller than 10% and for device C, smaller than 4% when α
is changed by 100%. We do not see any changes in extracted capacitance, as
shown in Fig. E.3 (b) for device B.
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Figure E.3. Response to different loss constants in the parameter
extraction: (a) Extracted R for different values of the loss constant from the
fits of the reflectance spectra shown in the main text, Fig. 2(a). The loss con-
stant α = 0.0025 m−1 is obtained by fitting the resonance curve of the same
circuit after graphene is removed. (b) Corresponding extracted C. Due to neg-
ligible changes, different curves simply lie on top of each other. (c) Equivalent
circuit of the device load with the circuit loss denoted by phenomenological
parallel resistance RLoss and graphene total resistance R and total capacitance
C. (d) An equivalent circuit of panel (c) with an effective series resistance Reff
and capacitance Ceff . c© 2018 American Physical Society

Small deviations in device parameters to the changes in the circuit loss con-
stant can be understood by a simple model shown in Fig. E.3 (c). Here, the
gate independent loss constant α is described by a phenomenological parallel
resistance RLoss such that α is proportional to 1/RLoss. Exact constant of pro-
portionality depends on the stub tuner parameters and is difficult to describe
analytically. The effective impedance Zeff seen by the circuit can be described
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by Fig. E.3 (d) which is calculated as

Zeff = RLoss + ω2C2(R+RLoss)RRLoss
1 + ω2C2(R+RLoss)2 − j ωCR2

Loss

1 + ω2C2(R+RLoss)2 . (E.1)

The above equation can be separated into effective Reff and Ceff such that

Reff =RLoss + ω2C2(R+RLoss)RRLoss
1 + ω2C2(R+RLoss)2 , (E.2)

Ceff =C 1 + ω2C2(R+RLoss)2

ω2C2R2
Loss

. (E.3)

When circuit losses are very small such that RLoss � R, 1/(ωC), the results
are simplified to

Reff ≈R+
( 1
ωC

)2 1
RLoss

, (E.4)

Ceff ≈C. (E.5)

It is evident from the above equation that effective Reff seen by the circuit at
two different loss constants are merely offset to each other if C has a weak
gate dependence. This can be seen in Fig. E.3 (a) for |VG| > 2 V.
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