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1 Introduction

Quantum transport

Two dimensional electron gases (2DEGs) have been an exceptional platform
and a constant source of new discoveries in quantum physics [2] during the
last decades. While for a long time 2DEGs fabricated by molecular beam epi-
taxy have been the working-horse of quantum transport measurements, with
the discovery of graphene in 2004 [3] a new, truly two-dimensional material
entered the field. Graphene is the name of a monolayer of sp2 hybridized car-
bon atoms being packed into a two-dimensional (2D) honeycomb lattice. It
is the basic building block for many other materials, such as 0D Buckminster
fullerenes [4], 1D nanotubes [5] or 3D graphite. In theory graphene was studied
already in the 1940s [6]. However, strictly 2D crystals such as graphene were
presumed to be thermodynamically unstable [7, 8]. Experimental “indication”
was given by the rapidly decreasing melting temperatures of thin films with
decreasing thickness, where they become unstable at a thickness of typically
a few tens of atomic layers. Therefore, until 2004 atomic monolayers where
only known to exist as an integral part of 3D structure [9–11]. Soon after the
discovery of graphene in 2004, in 2005 the two groups of A. Geim [12] and
P. Kim [13] published just a few days apart from each other the observation
of massless Dirac fermions in graphene. Within the few years since the ex-
perimental discovery of graphene it has risen from relative obscurity to the
status of an exciting and promising model for 2D solids. The great interest
in graphene can be attributed to its exceptional band structure which is de-
scribed at low energies by the massless Dirac Hamiltonian, where the valence-
and conduction-band touch each other at a single point (Dirac point). Being
a zero-gap semi-conductor separates graphene from conventional metals and
semi-conductors, making it unique of its kind.
Probably the most well known consequence of the Dirac spectrum is the obser-
vation of the half-integer quantum Hall effect [12, 13]. However, besides this
there is a full list of features characteristic to graphene, ranging from Klein-
tunneling through the gapless p-n junctions [14, 15], weak anti-localization in
disordered graphene [16–18] to the additional valley degree of freedom which is
a consequence of the two-atomic unit-cell [19, 20]. In fact, the latter is true for
many layered 2D materials whose properties span a large spectrum including
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1. Introduction

insulators [21], semi-conductors [22], superconductors [23, 24] and even ferro-
magnets [25] which were recently discovered. The ability to combine graphene
with various 2D materials in so called Van der Waals heterostructures [19]
allows to taylor its properties almost at will.
The nearly defect-free grapene lattice holds the potential for ballistic transport
over long distances. Futhermore, the refraction index across an n-n’ (unipo-
lar) junction or p-n (bipolar) junction can be tuned seamlessly from positive to
negative which is unique for graphene. Combining the ballistic transport with
the tunability of the refraction index across an interface makes clean graphene
an excellent platform for the investigation of various electron optical experi-
ments. Prominent examples of the latter, which have an optical counterpart,
are electron guiding [26, 27] or lensing [28]. In contrast to photons, a mag-
netic field can be used additonaly to tune the motion of the charge carriers.
Therefore, examples of ballistic transport effects without an optical counter-
part are for example bend-resistances [29, 30], magnetic focusing [31–34] or
snake states [35–38].
While the classical billiard model is sufficient for the explanation of the pre-
viously listed electron optical effects, there is as well a long list of effects for
which quantum mechanical concepts have to be taken into account. Examples
are Fabry-Pérot interferences [39–44] where the phase-relation between inter-
fering waves is essential, or valley-valves [45] which depend on the valley-index
of the wave-function.

Outline of this Thesis

This Thesis focuses on quantum transport phenomena in two-terminal graphene
p-n junction, as this combines two bench-mark signatures in graphene, namely
the observation of massless Dirac-fermions and the ability to establish gapless
p-n junction. The Thesis starts with chapter 2 where important concepts
related to the unique electronic band structure of graphene are introduced.
This includes the ability to establish gapless p-n junctions, approaches how
to characterize clean graphene, including a definition and examples of ballistic
and phase-coherent transport phenomena, the possibility to form superlattices
with other layered materials such as hexagonal boron-nitride (hBN) or the pos-
sibility to address additional degrees of freedom such as the valley-isospin. In
chapter 3 a short comparison between suspension and encapsulation (in hBN)
of graphene is given, since these two techniques are the most common ones
to fabricate ultra-clean graphene. However, the fabricational details in chap-
ter 4 are restricted to the encapsulation technique since the most experiments
presented in this Thesis are based on the latter. Furthermore, details on how
to fabricate local top- and bottom-gates, which are needed to establish p-n
junctions, are given. The currently most common method to establish electri-
cal contact with hBN/graphene/hBN heterostructures is via so called “side-
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contacts” [1]. In chapter 5 an alternative approach is introduced to estab-
lish inner point contacts, being compatible with the encapsulation-technique.
The latter might be of special interest if an isolated electrical contact has to
be established in the middle of a hBN/graphene/hBN heterostructure. With
chapter 6 the experimental part of the Thesis involving quantum transport in
p-n junctions starts. In this chapter Fabry-Pérot resonances in a p-n-p device
in the absence and presence of a Moiré superlattice are discussed. Fabry-Pérot
resonances can be used to gain information about the exact position of the p-n
junction as a function of charge carrier doping and on the yet not fully known
band-reconstruction due to the Moiré superlattice. In chapter 7 we report
on three types of magnetoconductance oscillations which can occur along a
graphene p-n junction. While several previous studies have tried to explain
the observation of individual magnetoconductance oscillations [37, 38, 46, 47],
none of them describes all at the same time. On the contrary, we present exper-
imental results where three different kinds of oscillations are observed within
the same device/measurement. The latter allows for a more direct comparison
between the different types of mangetoconductance oscillations and we can rule
out differences in various device architectures. Finally, we can describe the un-
derlying physics of the different types of magnetoconductance oscillations with
a consistent model. Upon further increasing the magnetic field to very high
values, the transport is governed by the lowest Landau level. In combination
with a p-n junction, which is located perpendicular to the transport direction,
conductance oscillations resulting from valley-isospin physics are expected [45].
In chapter 8 experimental results are presented which show signatures of this
effect for the first time. By tuning the position of the p-n junction this allows
to locally probe the relative edge configuration, giving rise to conductance os-
cillations in the order of e2/h. In the last chapter, chapter 9, preliminary
experimental results and theoretical calculations on the electrical counterpart
of the Michelson Morley interferometer are presented.
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2 Theoretical background

In this chapter the most important theoretical concepts of graphene, with
regards to the experiments presented late on, are provided. First, the crystal-
lattice of graphene and the resulting band structure are discussed, followed by
some implications of this very unique band structure. This includes the pseu-
dospin, the valley degree of freedom, the half-integer quantum Hall effect or
the (gap-less) p-n junctions in graphene which allow negative refraction. Fur-
thermore several methods to characterize the graphene quality are introduced,
including a short introduction into ballistic and phase coherent transport. An
additional section is dedicated to the formation of a Moiré superlattice and
its implication for the graphene band structure. The first part of this chapter
follows partially the References [48–50] where extensive details can be found.
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2. Theoretical background

2.1. Pristine Graphene

2.1.1. Band structure

A
B

x

y

(b)(a) ky

kx

Κ

Κ’

ΜΓ

Figure 2.1. Graphene lattice in real and reciprocal space. a, The unit-
cell (shaded in red) is spanned by the two unit vectors ~a1 and ~a2 including
one atom of the A and B sublattice each. b, First Brillouin zone in reciprocal
space with the reciprocal lattice vectors (~b1 and ~b2). The 6 corners of the
Brillouin zone are assigned to two inequivalent valleys K and K′.

Graphene consists of sp2-hybridized carbon-atoms which are arranged in a
honeycomb lattice as shown in Fig. 2.1a. While for each carbon-atom three
of the four sp2-hybridized electrons are used to form a covalent σ-bond to its
neighbours, the last electron is placed in the π-orbital. The overlap between
neighbouring π-bonds ensure that the electrons placed in this orbital are no
longer localized, but form a de-localized π-electron system. The primitive
unit-cell of the honeycomb lattice, which is spanned by the two lattice vectors

~a1 = a0

2

(
3√
3

)
and ~a2 = a0

2

(
3
−
√

3

)
, (2.1)

includes two atoms, which are commonly labelled as the A and B sublattice.
The lattice vectors are given in units of a0, which is the inter-carbon distance
of ∼1.42Å [6]. Furthermore, the Bravais lattice of graphene is C6 rotation
symmetric. The first Brillouin zone of the honeycomb lattice is shown in
Fig. 2.1b, where the reciprocal lattice vectors are given by

~b1 = 2π
3a0

(
1√
3

)
and ~b2 = 2π

3a0

(
1
−
√

3

)
. (2.2)
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2.1. Pristine Graphene

Of special interest are the the so called Dirac-points (DPs) which are situated
at the K and K′ points of the Brillouin zone. The latter are located at the
positions

~K = 2π
3a0

(
1√
3

)
and ~K′ = 2π

3a0

(
1
−
√

3

)
, (2.3)

respectively. The band structure of graphene can be derived with a tight-
binding model, assuming that the charge carriers can hop to nearest neigh-
bours. The nearest-neighbour vectors in real space are given by

~d1 = a0

(
1
0

)
and ~d2 = a0

2

(
−1
−
√

3

)
and ~d3 = a0

2

(
−1√

3

)
.

(2.4)
Since the unit-cell of graphene consists of two atoms, we start with the follow-
ing Ansatz for the wave-functions:

ψj(~r) = 1√
N

∑
~Rj

ei~q
~Rjφj(~r − ~Rj), (2.5)

where N is the number of lattice points, ~q is the wave vector, φ(~r) is the π-
orbital wave-function of an isolated atom, j is the sublattice index (A and B
atoms) and ~Rj is the location of the j-th atom. Due to the two sublattices,
the Hamiltonian takes the form of a 2× 2 matrix with the elements:

H =
(
HAA HAB
HBA HBB

)
. (2.6)

The diagonal terms of the Hamiltonian can be calculated according to:

HAA = 〈ψA(~r)|H |ψA(~r)〉 . (2.7)

By explicitly writing down equation 2.7 using equation 2.5, one finds a term
given by 〈φA(~r)|H |φA(~r)〉, which defines the on-site energy term (ε). The
latter is commonly set to zero for undoped graphene. Furthermore HAA =
HBB, since the A and B sublattice are the same. The off-diagonal terms can
be calculated according to:

HAB = 〈ψA(~r)|H |ψB(~r)〉 (2.8)

with HAB = H∗BA. Upon considering only nearest-neighbour hopping (~di =
~r − ~R with i = 1, 2, 3) and defining the nearest-neighbour hopping energy as
t = 〈φA(~r)|H |φB(~r)〉 which is roughly −2.7 eV [50], equation 2.8 reads as

HAB = t ·
(
ei~q

~d1 + ei~q
~d2 + ei~q

~d3
)

= t · f(~q) (2.9)
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2. Theoretical background

and the full Hamiltonian is then given by:

H = t ·
(

0 f(~q)
f(~q)∗ 0

)
. (2.10)

Solving the eigenvalue problem one ends up with E± = ±t
√
|f(~q)|2 where

the plus sign accounts for the conduction band, and the negative sign for the
valence band. By plugging in the nearest-neighbour coordinates ~d1, ~d2, ~d3 one
obtains:

E±(~q) = ±t

√
1 + 4 cos

(3
2qya0

)
cos
(√

3
2 qxa0

)
+ 4 cos

(√
3

2 qya0

)2

(2.11)

which is plotted in Fig. 2.2a for the first Brillouin zone1. At zero energy, the
valence- and conduction band touch at the 6 DPs, which can be separated
into K and K′ valley as it is already shown in Fig. 2.1b. The energy disper-
sion reveals that graphene is a zero-gap semiconductor, which distinguishes it
from conventional metals and semiconductors. In the former the valence- and
conduction band are overlapping while in the latter they are separated by a
finite energy-gap. In pristine graphene the Fermi energy is located at E = 0
and it can be tuned into the valence or conduction band (p- and n-doped re-
spectively) upon introducing a finite on-site energy. In experiments this can
be realized via electrostatic gating as done in this Thesis.
In most transport experiments it is only the low-energy spectrum which can
be accessed. The full Hamiltonian can be expanded around the ~K ( ~K′) vector
by introducing ~q = ~K + ~k, where | ~K| � |~k| and ~k is the vector measured
relative to the corresponding DP. The linearised Hamiltonian around the K
and K′ points reduces then to [6, 50–52]:

H = ±~vF~k~σ = ~vF
(

0 ±kx − iky
±kx + iky 0

)
with ~σ =

(
±σx
σy

)
,

(2.12)
where the plus and minus sign account for theK andK′ valley, vF = 3ta0/(2~)
∼106 m/s is the Fermi velocity [53] and ~σ is given by the Pauli-matrices σx
and σy. The resulting low-energy spectrum, plotted in Fig. 2.2b, is then given
by

E±(~k) = ±~vF|~k| (2.13)

where the plus and minus sign account for the conduction and valence band.
Notice that equation 2.13 is independent of the valley and one thus obtains a
two-fold valley degeneracy (discussed in section 2.5) which adds to the two-fold

1In Fig. 2.2a next-nearest neighbour hopping was included which accounts for the asym-
metric valence- and conduction band.
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2.1. Pristine Graphene

(b)(a) (c)

ΚΚ’

valence band

conduction band

Figure 2.2. Band structure of graphene. a, Energy spectrum (in units
of t) for t =2.7 eV and t′ =−0.2 t. Figure adapted from Ref. [50]. b, Low-
energy spectrum near the Dirac-point. c, Cut for ky = 0 as indicated in (a,b)
with the black, semi-transparent plane. The orientation of the pseudospin
(~sK,K’) is parallel (anti-parallel) to the the group-velocity (~vG) in K and K′
cone. Furthermore ~vG is parallel (anti-parallel) to ~k in the conduction (valence
band).

spin degeneracy.
In Fig. 2.2c an illustration of a cut though the first Brillouin-zone at ky = 0 is
shown. The group-velocity (~vG), indicated in Fig. 2.2c with the black arrows,
is given by:

~vG = 1
~
∂E

∂~k
, (2.14)

where ~vG is parallel to ~k for electrons in the conduction band, while ~vG is anti-
parallel to ~k for holes in the valence band. The charge carriers in graphene
are called “massless” in analogy to photons obeying a similar Dirac equation.
The density of states (DOS) in graphene can be calculated according to

ρ(E) = ∂N(E)/∂E, where N(E) is the number of states at energy E. Since
N(E) is not known, one can start with:

N(|~k|) = g

∫
dV

∫ k

0
ρ(~k)d~k (2.15)

where g is the degeneracy of the k-states in graphene, and ρ(|~k|) is given by
(2π)−d (d = 2 is the dimensionality of the system). In graphene the Fermi sur-
face in a given valley describes a circle with radius k, therefore the integration
over d~k simply yields π|~k|2, thus equation 2.15 turns into

N(|~k|) = g
V

4π |
~k|2. (2.16)
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2. Theoretical background

By replacing ~k with the low-energy dispersion relation given in equation 2.13,
and taking the derivative with respect to the energy, the DOS is given by

ρ(E) = g
V

2π
E

(vF~)2 . (2.17)

From the above given equation it can be seen, that ρ(E) scales linear with the
energy E. From equation 2.16 one can furthermore derive the relation between
charge carrier density n and the wave vector. Using n = N(|~k|)/V and g = 4,
one ends up with:

|~k| = kF =
√
πn. (2.18)

2.1.2. Pseudospin
A consequence of the two-atomic unit-cell in graphene is that the charge car-
riers have an additional degree of freedom, commonly called the pseudospin.
Starting with the Hamiltonian given in equation 2.12 it can be rewritten using
~k = kFe

iθ~k :

H = ±~vFkF
(

0 ±e∓iθ~k

±e±iθ~k 0

)
(2.19)

where θ~k = arctan(ky/kx) and the plus and minus sign account for the K and
K′ valleys. Solving the eigenvalue and eigenvector problem for equation 2.19,
a possible solution of the normalized eigenvectors in the conduction |EVC〉 and
valence band |EVV〉 is given by:

|EVC〉 = 1√
2

(
e∓iθ~k

/2

e±iθ~k
/2

)
and |EVV〉 = 1√

2

(
e∓iθ~k

/2

−e±iθ~k
/2

)
(2.20)

where the plus and minus sign account again for the K and K′ valleys. Equa-
tion 2.20 can be generalized by introducing the parameter s which accounts
for the valence band (holes, s = −1) and conduction band (electrons, s = 1)
respectively, which then yields

|s〉 = 1√
2

(
e∓iθ~k

/2

se±iθ~k
/2

)
. (2.21)

It is equation 2.21 which defines the amplitude of the electronic wave-function
on the A and B sublattice respectively. In fact, the vector can be viewed as
the result of a spinor-rotation of θ~k around the z-axis (R(θ~k)) which reads as

R(θ~k) = e−iθ~k
/2σz =

(
e−iθ~k

/2 0
0 eiθ~k

/2

)
, (2.22)

where σz is a Pauli-matrix. By performing a rotation around 2π of equa-
tion 2.22, which is equivalent to a charge carrier encircling the origin in k-
space, a phase of π is picked-up. This phase is the so-called the Berry-phase.

10



2.1. Pristine Graphene

Assuming an initial state |s0〉 pointing in the ±x-direction, an arbitrary state
(equation 2.21) can be written as:

|s〉 = R(θ~k) |s0〉 =
(
e−iθ~k

/2 0
0 eiθ~k

/2

)
1√
2

(
1
s

)
(2.23)

where |s〉0 is defined for θ~k = 0. From equation 2.21 it can be seen that the
pseudospin is tied to the ~k-vector, which results in the following two relations:
i) In the K-cone the pseudospin is parallel to the ~k-vector in the conduction
band (right-handed Dirac fermions) while it is anti-parallel in the valence band
(left-handed Dirac anti-fermions). In the K′-cone these relations are reversed.
ii) The pseudospin is parallel (anti-parallel) to ~vG in the K− (K′−) cone. This
is summarized in Fig. 2.2c. The observation of the Berry’s phase of π was first
given by McEuen et al. [54] with the observation of a higher conductance of
metallic over semi-conducting carbon nanotubes2 based on the theory of Ando
et al [55]. The first experimental proof of a Berry’s phase of π in graphene was
given by the observation of the anomalous half-integer quantum Hall effect
[12, 13] as a consequence of the exceptional topology of the graphene band
structure [55–57]. Later on the Berry’s phase of π was additionally observed
as a sudden phase-shift at finite magnetic field in the transmission resonance
in a ballistic, phase coherent graphene p-n-p device [58] based on the theory
of Shytov et al. [59].

2.1.3. Quantum Hall effect in graphene
One of the benchmarks of single-layer graphene is the half-integer Hall-effect,
which shall be discussed in the following. Let us start with a macroscopic
conductor of width W , along which a current flows in the x-direction (Ix).
If a magnetic field is applied perpendicular to the current flow (Bz), then
the charge carriers with charge q exhibit a combination between electrostatic-
(~FE) and Lorenz-force (~FL), which is given by ~F = q · ( ~E + ~v × ~B). The
Lorenz-force causes the charge carriers to perform a circular motion, which
are called cyclotron orbits, if the device is clean such that the charge carriers
are not scattered. Furthermore, the cyclotron orbits have a radius RC, called
the cyclotron radius, which is given by:

RC = ~
√
nπ

eB
. (2.24)

charge carriers which are located in the very vicinity of a physical edge of
the sample cannot perform a full cyclotron orbit because they hit the sample

2Metalic carbon nanotubes have a linear dispersion relation comparable to graphene,
while semi-conducting carbon nanotubes have a parabolic one where Klein tunneling
is absent.
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2. Theoretical background
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Figure 2.3. Edge states in the QHE regime. a, Illustration of two
populated edge states in a four-terminal junction where the graphene is n-
doped (red). Contacts are shown in orange. b, Energy dispersion along a
linecut as indicated in (a) with the black, dashed line. The yellow dots indicate
the location of the edge states along the y-axis.

edge instead. This results in so called skipping orbits moving along the edges.
Furthermore, the equilibrium between ~FE and ~FL result in an accumulation of
charge carriers along the y-direction, which can be measured as the so called
Hall-resistance (RH = Rxy, where RH = Vxy/Ix, see Fig. 2.3a) [60]. The quan-
tum Hall effect is the quantum mechanical version of the Hall effect which is
observed by reducing the dimensionality of the system to a two-dimensional
electron gas (2DEG) which is of high mobility and typically being measured
at low temperatures where scattering events due to e.g. phonons are strongly
suppressed. At low magnetic field RH scales linearly with the magnetic field
comparable to the conventional Hall effect. For high enough magnetic fields
(Bz > BC) the Hall-resistance starts to be quantized [61]. Above Bz > BC
the charge carriers can perform a full cyclotron orbit without being scattered
[62], which corresponds to 2πRC ≥ lmfp, where lmfp is the mean free path
(section 2.3). In conventional 2DEG’s with a parabolic band dispersion the
quantization conditions at a finite magnetic field leads to discrete energy lev-
els, so called Landau levels. Note that in real samples the energy-levels are
not discrete, but broadened (δE) mostly due to impurities and a finite tem-
perature. Their energy is equidistant depending on the Landau level index j
(integer) and the perpendicular magnetic field Bz according to

Ej(2DEG) = ~eBz

meff
(j + 1

2). (2.25)

Furthermore, for the observation of the QHE the ratio between level-broadening
and level-spacing (δE/(Ej+1 −Ej)) must be small enough such that the DOS
between two neighbouring Landau levels can vanish. Compared to equa-
tion 2.25, in single layer graphene (SLG) with its linear energy dispersion
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2.1. Pristine Graphene

the Landau levels are given by [57, 63]:

Ej(SLG) = sign(j)
√

2e~v2
F|j|Bz. (2.26)

Comparing equation 2.25 and equation 2.26, two differences are evident: i)
The lowest Landau level (LLL) in SLG is at zero energy, being half filled with
electrons and half filled with holes. ii) The energy-spacing between the dif-
ferent Landau levels is not equidistant, but has a square-root dependence on
the Landau-level index j and the perpendicular magnetic field. In fact, the
energy-splitting between the j = 0 and j = 1 Landau levels is large enough to
observe the quantum Hall effect even at room-temperature [64].
The bulk of the 2DEG is only fully insulating if the Fermi energy is located
in between two Landau levels as sketched in Fig. 2.3b. In that case the
current flows exclusively along the edges in so called chiral edge states and
back-scattering along a channel is suppressed (Rxx = 0). The real-space po-
sition of the edge states is given by the intersection between the Fermi en-
ergy and the energy levels which bend up or down at the graphene edges
( lim
y→±y/2

E(y) = ±∞) due to the confinement originating from the edges, as
sketched in Fig. 2.3b. The propagation along these edge states in x-direction
is dissipation-less (Rxx = 0) because the strong magnetic field (RC � W )
prevents back-scattering. The latter would correspond to scattering events
between edge states propagating in opposite directions which are separated by
roughly W as they lie on opposite sides of the sample. A plane wave, rep-
resenting an edge state of the j-th Landau level running along the edges in
x-direction can be written as:

Sj(x, y) = aje
i|~kj|xχj(y) (2.27)

where aj, ~kj and χj(y) are the amplitude, the wave vector in the x-direction and
the corresponding transverse mode of the j-th Fermi level wave-function. The
width of such an edge state is roughly given by the magnetic length [65–67],
given by:

lB =
√

~
eB

. (2.28)

Since in graphene the charge carriers are four-fold degenerate (spin and valley),
every completely filled Landau level occupies 4 edge states with exception of
the LLL, which occupies only two edge states. Each edge state contributes
one conductance unit (e2/h) because back-scattering is suppressed, therefore
the plateaus in SLG are characterized by the sequence

GH = 4e2

h
(j + 1

2). (2.29)

More often the above given equation is written as a function of the filling factor

13



2. Theoretical background
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Figure 2.4. Quantum Hall effect on a single layer graphene in a two-
terminal device. a, Numerical derivative of the conductance as a function
of VBG (back-gate voltage) and B of a two-terminal junction. The evolution of
the filling factors according to equation 2.30 (with g = 4) is indicated with the
red lines. The Orange arrows indicate a degeneracy lifting due to spin and/or
valley. b, At the LLL the degeneracy is fully lifted. A constant resistance was
subtracted to match the expected plateau-values.c, Illustration of no (g = 4),
partial (g = 2) of full (g = 1) degeneracy lifting with increasing magnetic field.

ν which represents the charge carrier density (n) per flux quantum given as:

ν = nh

eB
. (2.30)

In the absence of any degeneracy splitting this leads to equation 2.29 with
the famous sequence of ν = ±2,±6, ... at fully filled Landau levels. At these
filling factors the Fermi energy is located between two neighbouring Landau
levels, which is equivalent to a plateau of GH. In Fig. 2.4a the evolution of
the filling factors are indicated with the red lines as a function of gate voltage
(n ∝ VBG assuming a plate capacitor model) and magnetic field, tracking the
Hall-plateaus (GH =const.). More general, in a four-terminal measurement
the Hall conductance is given by:

GH = νe2

h
(2.31)

where in clean samples the fourfold spin-valley-degeneracy can be partially
or fully lifted3. Full degeneracy lifting of the LLL is shown in Fig. 2.4b and
illustrated in Fig. 2.4c. From symmetry arguments alone it is not possible to
discriminate whether the spin or the valley degeneracy is preferentially lifted.

3The splitting of the degeneracy is typically first seen for the lowest Landau levels, since
there the energy-spacing is largest.
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Figure 2.5. Classical versus quantum description. a, Illustration of
charge carrier trajectories evolving from skipping orbits at low magnetic field
towards edge states at high-magnetic field. b, Ratio between the cyclotron
radius and magnetic length as a function of density and magnetic field.

It turns out that the order of degeneracy lifting depends on external symmetry-
breaking fields [68]. To gain knowledge whether a given degeneracy-splitting is
due to the spin or valley degree of freedom one might consider measurements
in tilted magnetic fields. While spin-splitting (defined by the Zeeman-energy)
depends on the total magnitude of the magnetic field, the in-plane motion
relevant to electron-orbital interactions (e.g. valley-splitting) depend only on
the magnetic field perpendicular to the graphene plane [69, 70]. The hierarchy
of the energy-scales for spin- and valley-splitting furthermore determines if at
zero energy an edge state is present or not (insulator scenario) [68, 69, 71, 72].
The quantum Hall effect is ideally measured in a Hall-bar as sketched in
Fig. 2.3a, where σxx and σxy can be measured separately. Note that here
σxy and Gxy are equivalent, since the Hall resistance is independent on the
sample width. However, most of the measurements done in this Thesis involve
only two-terminal devices where a mix between σxx and σxy is measured. The
mixing manifests itself in a over-shooting (under-shooting) of the conductance
at the beginning (end) of the plateau depending on the aspect-ration (L/W ,
where L is the length and W is the width of the graphene) of the device
[73, 74]. Over-shooting is the case for L/W < 1 while under-shooting is the
case for L/W > 1, and perfect plateaus are expected for L/W = 1. In Fig. 2.4
a constant resistance-value was subtracted which accounts for the contact re-
sistance and the resistance of the cryostat-lines. More details on this can be
found in section 4.2.1.
While at low magnetic field the charge carriers move in cyclotron orbits (classi-
cal regime), at high magnetic fields they form edge states (quantum regime) as
shown in Fig. 2.5a. In many cases it is the ratio between the cyclotron radius
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2. Theoretical background

(RC, equation 2.24) and the the magnetic-length (lB, equation 2.28) which
defines the crossover from classical to quantum regime around lB/RC ∼ 1.
Therefore, for lB/RC � 1 the cyclotron motions dominate over the width of
the wave-function while in the opposite case, lB/RC � 1, the skipping tra-
jectories do not influence the path of the wave-function much, thus resulting
in edge states. Furthermore, using kF =

√
nπ and the the definition of the

filling factor (equation 2.30), one finds that the condition of RC = lB is given
for ν = 2. The criterion of RC � lB (RC � lB) defining the classical-regime
(quantum-regime) is consequently equivalent to ν � 2 (ν � 2), which is
sketched in Fig. 2.5b.

2.2. P-n junctions

For the realization of many experiments in graphene regions of different charge
carrier densities are required, which can be achieved by applying an external
potential (e.g. via electrostatic gating) [50]. At the interface between two
region of different charge carrier density, so called p-n and n-n’ junctions are
formed. They can be operated in the unipolar regime where both regions
have the same polarity but different doping-levels (n-n’ or p-p’) or they can
be operated in the bipolar regime where the regions have opposite polarity
(p-n or n-p). In the following section the most important aspects of these p-n
junctions, with regards to the experiments performed in this Thesis, shall be
discussed. This includes Klein tunneling, the ability of positive and negative
refraction and the angle dependent transmission probability for sharp and
smooth p-n junctions.

2.2.1. Klein tunneling

A direct implication of the pseudospin which is tied to the ~k-vector (section
2.1.2) is that the transmission probability of charge carriers incident perpen-
dicular to a graphene p-n junction is equal to one (back-reflection ~k → −~k
is forbidden), independent on the height of the potential step [15]. Let us
consider an electron in the K cone and with ~k = |~k|~ex which is approaching
a p-n junction located along the y-axis. Reflection of the electron at the p-n
junction from kx to −kx within the same valley would require a pseudospin flip
event (Fig. 2.6a), which is forbidden at low energies. Alternatively one might
consider a scattering process to −kx in the K′ cone which does not require a
pseudospin flip (Fig. 2.6b). However, the latter requires intervalley scattering
i.e. scattering over large ~k-vectors. This is equivalent to short-range scatterers
in real space such as e.g. defects or edges, which are absent in clean graphene.
Consequently the only option left is intra-valley scattering into the valence
band, where a hole with −kx and identical pseudospin is present (Fig. 2.6c).
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(a)

ΚΚ’Κ

(b) (c)

Κ

Κ

n-doped n-doped n-doped p-doped

Figure 2.6. Klein tunnelling at graphene p-n junctions. a,b Reflection
processes (here sketched for the n-doped side) are absent because pseudospin
flip and intervalley scattering are suppressed in clean graphene. c, The inter-
valley scattering which leads to transmission from the n-doped to the p-doped
side.

This event corresponds to a transmission of a charge carrier across the p-n
junction. Because this effect was postulated by O. Klein for Dirac-fermions
[14] in 1929, one speaks of Klein-tunnelling.

2.2.2. Snell’s law in graphene

In the previous section we looked at charge carriers with trajectories perpen-
dicular to the p-n junction. Now we concentrate on the situation where they
have a finite incident angle (θ 6= 0) with respect to the p-n junction normal. If
a wave with momentum ~p and θ 6= 0 hits the interface (the refractive indices
on both sides are different), then the momentum-component parallel to the
interface (p‖) is conserved while the momentum-component perpendicular to
the interface (p⊥) is not. Let us consider a n-n’ junction which is located
parallel to the y-axis as sketched in Fig. 2.7. Using the relations ~p = ~~k, thus
ky,L = ky,R and sin(θ) = ky/|~k|, one ends up with Snell’s law which is given
by:

|~kL| · sin(θL) = |~kR| · sin(θR) (2.32)

where θL,R are the angles with respect to the interface-normal on the left
(incident) and right (emerging) side of the n-n’ junction. In Fig. 2.7a the
density in the left cavity (nL) is larger than in the right cavity (nR), leading
to a reduced kx,R compared to kx,L since k2

x + k2
y = nπ and ky is conserved.

According to equation 2.32 the angle of the emerging wave (θR) is therefore
larger compared to the angle of the incident wave (θL). In analogy to optics
the critical angle (θC) upon which total-reflection is expected is defined as
θC = arcsin(|~kR|/|~kL|) if |nL| > |nR| is fulfilled.
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Figure 2.7. Illustration of Snell’s law in unipolar n-n’ and bipolar
p-n junctions. a, Positive refraction across the junction is observed in the
unipolar regime. The bold arrows indicate the group-velocity of the electrons.
b, If operated in the bipolar regime, the charge carriers undergo negative
refraction. Figure adapted from Ref. [75]

So far the situation is still comparable to optics with positive refraction. How-
ever, if we tune the interface from the unipolar to the bipolar regime, one ends
up with negative refraction. We recapitulate that the group-velocity (~vG) in
the conduction band is parallel to its wave vector ~k, while is anti-parallel in
the valence band. Because on both sides of the p-n junction the electrons
propagate into the same x-direction (sign(vG,x,l) = sign(vG,x,r), since on the
right side the wave propagate away from the interface), one ends up with:

sign(kx,R) = −sign(kx,L) and consequently sign(θR) = −sign(θL),
(2.33)

which means that the refraction angle, on the contrary to optical experiments,
is negative as sketched in Fig. 2.7b. Besides refraction, reflection can occur,
which is always specular.
In summary, the index of refraction, which is defined as sin(θR)/ sin(θL), is pos-
itive in the unipolar regime and negative in the bipolar regime. Snell’s law was
experimentally verified using transverse magnetic focusing (see section 2.3.2)
across a p-n and p-p’ junction [34].

2.2.3. Sharp and smooth p-n junctions

In the previous section Snell’s law was introduced for charge carriers passing
though a n-n’ and p-n junction. Now we concentrate on the transmission
probability of charge carriers as a function of incident angle θ, the Fermi
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Figure 2.8. Angle dependent transmission probability trough a
smooth p-n junction. a, Calculated transmission probability as a func-
tion of charge carrier density and incident angle for a symmetric p-n junction
with a smoothness of d =50 nm according to equation 2.35. Corresponding
wavelengths are given for selected densities. On the right hand side: typical
density ranges reached in encapsulated graphene. b, Illustration of charge car-
rier trajectories with different incident angles (θ). Tunnelling is indicated with
oscillating lines. The intensities of the lines are proportional to occupation-
probability before and after reflection/transmission. Figure adapted from
Ref. [76].

wavelength λF and the electrostatic profile of the p-n junction itself. In exper-
iments, the charge carrier density does not change abruptly but rather varies
gradually within a distance d, which depends on the relative distances be-
tween the gates, and the spacing between the gate and the graphene. One can
distinguish between “sharp” and “smooth” p-n junctions depending on the
ratio between the Fermi wavelength λF and d. A p-n junction is considered as
sharp, if λF � d, and as smooth, if λF � d. In the following we only consider
symmetric p-n junctions, which means that the doping on both sides of the
cavity is equivalent, but opposite in sign.
In the case of a sharp p-n junctions, it is valid to substitute the gradual
density-profile with a step-potential (V (x) = −V/2 for x < 0 and V (x) = V/2
for x > 0). The angle dependent transmission probability can consequently be
calculated by matching the wave-functions on both sides of the p-n junction,
leading to [15]:

t(θ) = cos(θ)2. (2.34)

However, in most experimental measurements the ratio of λF/d is typically
in the range of ∼0.5 to 5 for encapsulated devices and even larger for sus-
pended devices, which implies that the p-n junction can be considered to be
rather smooth. In this case the problem becomes more complex as the density-
gradient varies within a length-scale not being negligible. It turns out that for
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a smooth p-n junctions the angle dependent transmission probability is given
by [15]:

t(θ) = exp(−πkFd sin(θ)2) (2.35)

in good agreement with experimental findings [34]. In Fig. 2.8a the transmission-
probability is plotted as a function of the charge carrier density in the bulk
and the incident angle for a p-n junction with a smoothness of 50 nm. This
value is realistic for encapsulated devices (see section 3), where d is roughly
given by the thickness of the hBN separating the gates from the graphene.
An qualitative understanding of equation 2.35 is given in the following. At
zero incident angle the charge carriers have a transmission-probability of one
due to Klein-tunnelling [14, 77] (section 2.1.2). However, at finite incident
angle, the charge carriers are gradually deflected away from the p-n junction
as indicated in 2.8a. The deflection can be seen as a sequence of positive
refractions at regions with different charge carrier densities (n varies upon ap-
proaching the center of the p-n junction). Once the charge carrier trajectory
is parallel to the p-n interface, is has reached its minimal distance from the
center of the p-n junction (x0) which is denoted as lmin. This distance can be
calculated according to lmin = vFpy/| ~E|, where ~E is the electric field present
in the p-n junction due to the potential-gradient [76]. At the turning-point,
the charge carriers have the choice, to i) either stay at the same side of the
p-n junction, which results in reflection or ii) to tunnel to the other side of
the p-n junction, which results in transmission. With increasing incident an-
gle of the charge carriers (corresponding to an increasing py component) lmin
increases, which consequently reduces the tunnelling-probability across the p-
n junction (tunnelling processes are known to depend exponentially on the
tunnelling-distance).

2.3. Characterization of the device quality

In order to characterize the device quality, several different values and sig-
natures can be investigated. In the following section some of these relevant
values/signatures shall be discussed, even though it is not a complete list.

2.3.1. Conductivity, mobility and residual doping
In contrast to four-terminal measurements which probe only the graphene
resistance, a two-terminal measurement probes the sum of the graphene re-
sistance and the contact resistance (RCT, neglecting the line-resistance of the
cryostat). In Fig. 2.9a the conductance as a function of back-gate voltage of a
typical two-terminal device is shown. Starting from classical transport theory
(Drude), the relation between current and electric field is given by ~E = ~j · ρ,
with ρ = m/(ne2τ) and τ being the average scattering time of the charge
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carriers. By replacing the charge carrier mass in graphene with m = |~p|/vF,
the conductivity (σ = 1/ρ) in the diffusive regime can be written as:

σ = 2e2τvF
√
πn

h
, (2.36)

where τ is the average time between two momentum scattering events. The
behaviour of τ on |~kF| can depend on many factors such as the influence of
the substrate, surface contaminations, static distortions (e.g. ripples) and
phonons. Usually, the two main scattering mechanisms are [78] the charge
impurity scattering with τ ∝ |~kF| [79] and the local impurity scattering with
τ ∝ |~kF|−1 [80], even though many more mechanisms exist [81–85]. It turns
out that for graphene encapsulated in hBN the conductivity is described quite
well with a linear dependence according to:

σ ∼ neµ (2.37)

where µ is the charge carrier mobility [21]. The fact that equation 2.37 holds
well with a density independent mobility suggests that charge impurities are
likely to dominate over local impurities. The relation between the measured
conductance G and the conductivity is defined via the aspect-ratio (W/L) as
G = σW/L. Upon increasing the charge carrier density in a two-terminal
device the conductance becomes non-linear as shown in Fig. 2.9a because the
contact resistance start to dominate over the graphene resistance. Taking the
contact resistance of a two-terminal device into account, the conductivity as
a function of charge carrier density is given by:

σ =
[

1
neµ+ σ0

+RCT

]−1

(2.38)

where σ0 is the minimal conductivity which originates from the residual doping
(charge puddles). In a quantum Hall configuration the quantized plateaus of
the conductance is exclusively defined via the charge carrier doping and the
magnetic field. Thus, by combining equation 2.30 and equation 2.31 the charge
carrier doping can be extracted according to:

n = GHB

e
. (2.39)

However, in a two-terminal devices GH is not directly accessible. We therefore
used a plate capacitor model with C = ε0εrA/d to approximate the gate
capacitance. For the global back-gate the capacitance per unit-area is given
by

C−1 = 1
ε0

(
dSiO2

εSiO2
+ dhBN
εhBN

)
, (2.40)
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Figure 2.9. Field-effect measurements. a, Conductance of a two-
terminal device as a function of global back-gate. b, Conductivity fit-
ted with equation 2.38 within a restricted range as indicated in (a) yield-
ing µe =150 000 cm−2/(Vs). c, Residual doping (n0 ∼3× 1013 m−2 to
6× 1013 m−2) extracted from the saturation in conductance (four-terminal
measurement) in the double-logarithmic representation. Inset: Illustration of
the puddle-landscape with respect to the Fermi energy.

with dielectric constants of εSiO2 ∼ εhBN ∼ 4, dSiO2 ∼300 nm and dhBN ∼20 nm
to 60 nm.

An alternative way to extract the mobility compared considers the onset of
the quantum Hall plateaus [86]. The onset of the observation of a quantized
conductance indicates that the charge carriers can perform a full cyclotron-
orbit without being scattered [62] as described in section 2.1.3. This is equiva-
lent with τ > 1/ωC, where ωC is the cyclotron frequency given as ωC = eB/m.
With the conductivity given as σ = 1/ρ = neµ, where ρ = m/(ne2τ) (Drude-
model), one ends up with µ = 1/B. This definition of the mobility will be of
special interest in chapter 5 as no knowledge on the aspect-ratio of the device
is required in contrast to equation 2.38.

The strong asymmetry between n- (electron) and p- (hole) doping originates
from the formation of a p-n junction near the Cr/Au side-contacts which
strongly dopes the graphene with electrons in its proximity. In Fig. 2.9b the
conductivity is fit with equation 2.38 in order to extract the mobility. The
mobility values extracted from the hole-side are often significantly smaller
than the ones from the electron-side due to the formation of this additional p-
n junction near the contacts (if the graphene is hole-doped). This effect is not
taken into account in equation 2.38. The mean free path (lmfp) of the charge
carriers is given by lmfp = vFτ , where τ can be deduced from equation 2.36.
Furthermore, by using equation 2.37 lmfp can be written as:

lmfp = ~
e
µ
√
nπ. (2.41)
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2.3. Characterization of the device quality

Note that in very short graphene junctions the mobility is limited by the device
size since scattering events at the contacts start to dominate over those within
the graphene. Consequently equation 2.38 and equation 2.41 under-estimate
the real values of µ and lmfp within the bulk of graphene.
Upon reaching ballistic transport equation 2.38 and equation 2.41 start to
fail since in this regime scattering only happens at the edges and the contacts,
hence µ and lmfp will be limited by the device size. Consequently the values of µ
and lmfp should be used with care as they can give only a rough estimate upon
approaching the ballistic regime. On the other hand, by following a purely
ballistic approach the conductance depends only on the width of the graphene
junction which defines the number of modes fitting trhough the device. The
conductance can then be given by [87]

G = 4e2

h

W

λ/2 . (2.42)

where each modes carries a conduction-quantum of 4 e2/h due to the spin-
and valley-degeneracy of the charge carriers in graphene. With λ = 2π/|~k|
and |~k| =

√
πn the conductance can be rewritten as:

G = 4e2

h
W

√
n

π
. (2.43)

In section 4.4 it is shown that equation 2.43 fits quite well for narrow constric-
tions (W ∼100 nm) in agreement with the results found in Ref. [87]. Accord-
ing to equation 2.37 (diffusive) and equation 2.43 (ballistic) the conductivity
is supposed to vanish in the limit of n → 0. However, according to various
theoretical studies [82, 88–90] the conductivity does not go below a minimal
value (σD) even at n = 0. Even though this is well established, the value of
σD varies with possible results of [89]:

σD = 4e2

πh
,

πe2

2h ,
e2

πh
, etc. (2.44)

The large number of σD depends on the exact order how the function de-
pendent parameters of σ, namely the temperature, frequency, Fermi energy,
impurity scattering strength and the system size are tuned to zero (CNP).
These values are just slightly below the minimal conductivity extracted from
measurements as shown in Fig. 2.9c where σ0 ∼3 e2/h.
Besides the mobility, the residual doping is another important value in order
to characterize the graphene. In the double-logarithmic plot shown in Fig. 2.9c
the residual doping is given as the value below which the conductance satu-
rates (σ 6= neµ). Below this doping level electrostatic-gating is inefficient since
the doping in graphene is dominated by the puddle-landscape (potential fluc-
tuations which cannot be screened due to the low density of charge carriers) as
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Figure 2.10. Different scenarios of partially or fully clean graphene
with the corresponding field-effect measurements. a, Central region
of graphene is clean while close to the contacts the graphene is diffusive. b,
Graphene is e.g. clean near the edges, but diffusive in the middle part. c,
Graphene is clean everywhere.

illustrated in the insets of Fig. 2.9c. Extracting the mobility, mean free path
and residual doping from field-effect measurements as shown previously gives
a first hint on the device quality, but it does not allow to draw any conclusion
on the spatial distribution of possible contaminations. In Fig. 2.10 three dif-
ferent scenarios with their corresponding conductance as a function of charge
carrier density are illustrated. In Fig. 2.10a the graphene is diffusive except
of one region spanning the whole width of the device, which is ballistic. Even
though the sample is mostly diffusive, charge carrier have to pass this clean
region which is tuned very effectively by the gate, thus revealing a sharp dip
in the conductance at the CNP. On the other hand, if the graphene is clean
only on the sides but continuously diffusive in the inner part of the device (or
vice versa) as shown in Fig. 2.10b, then the device will not show a Dirac-peak
behaviour. If the device is completely clean as shown in Fig. 2.10c, the con-
ductance as a function of the charge carrier density shows again the typical
Dirac-peak behaviour. This example illustrates that in order to distinguish be-
tween the situation sketched in Fig. 2.10a and Fig. 2.10c more measurements
are required. Effects such as e.g. snake states, transverse magnetic focusing,
bend-resistences or Fabry-Pérot resonances are useful to do so.

2.3.2. Ballistic transport
Charge carriers are considered to be ballistic, if scattering events, and thus a
change of the ~k-vector, is negligible within the bulk of the sample (L� lmfp).
Prominent examples of ballistic transport in graphene are transverse magnetic
focusing (TMF) [31, 33], snake states [37, 38] or bend-resistance measurements
[29, 30]. In Fig. 2.11a a classical illustration of TMF is shown, where a mag-
netic field perpendicular to the graphene plane is applied. The charge carriers
which are injected at the bottom-left contact undergo a cyclotron motion with
a radius of RC (equation 2.24). With the sketched measurement configuration
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Figure 2.11. Transverse magnetic focusing. a, False-color SEM-image
where the leads are indicated with yellow, and the hBN/graphene/hBN stack is
indicated in cyan. With a magnetic-field applied perpendicular to the graphene
plane charge carriers perform a cyclotron motion as indicated with red arrow.
b, Non-local resistance as a function of charge carrier density (n ∝ VBG) and
magnetic field. Black-dashed lines indicate expected peak-maximum.

a non-local resistance RNL = VNL/IAC is observed whenever the condition
d = i · 2RC is fulfilled, where d is the distance between injector- and collector-
lead and i is an integer. The dashed lines in Fig. 2.11b correspond to the
expected peak-maximum with no fitting-parameters included. Observing one
or several peaks directly implies ballistic transport over a distance of at least
πd. Furthermore, TMF is an excellent tool to characterize the edge quality [91]
since for the observation of higher-order peaks (i = 2, 3, 4...) specular reflection
at the graphene edges is required [33]. The latter occurs if the graphene edge
is smooth on the order of the wavelength which implies λF being much larger
than the edge roughness. Effects which only depend on ballistic transport,
such as TMF or snake states, are quite robust with temperature (they sur-
vive up to ∼100 K [31, 33, 38]), since phonon-scattering and electron-electron
scattering [33], which suppress ballistic transport, are strongly reduced below
these temperatures.

2.3.3. Phase coherent transport

Besides the discrimination in ballistic (L � lmfp) and diffusive (L � lmfp)
transport, one can additonally distinguish between phase coherent and non
phase coherent transport (applies to ballistic and diffusive samples). One
speaks of phase coherent transport over length L if the phase of charge car-
riers is preserved over a distance L, namely lΦ > L where lΦ is the phase
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Figure 2.12. Fabry-Pérot resonances in a p-n-p junction. a, Schematic
sketch of Fabry-Pérot resonances between two semi-transparent interfaces. b,
Numerical derivative of the conductance as a function of local top-gate and
global bottom-gate in a two-terminal p-n-p junction with a total length of
∼1 µm between the contacts. c, Illustration of the different resonances present
in the system.

coherence length. Example of coherent transport in diffusive samples are uni-
versal conductance fluctuations (UCF) and weak localization effects, while in
ballistic samples Fabry-Pérot resonances is a prominent example.
In the following, the details of phase coherent transport shall be discussed

with the example of Fabry-Pérot resonances. In Fig. 2.12a a cavity with two
semi-transparent interfaces (0 < t1,2(θ) < 1 where t1,2(θ) are the angle de-
pendent transmission coefficient) and a length L is sketched. Constructive
interference is observed, if the path-difference between the waves Ψ1 and Ψ2
(indicated as the red section for the most simple case) satisfies the relation
2L = iλ where i is an integer. In graphene, the semi-transparent interfaces
are established via p-n junctions and the wavelength is tuned according to
λ = 2

√
π/n [40, 41, 92]. If Fabry-Pérot resonances are observed, it is a clear

signature of phase coherent transport within a distance of at least 2L. In
Fig. 2.12b multiple types of Fabry-Pérot resonances can be seen, as sketched
in Fig. 2.12c. Since we see Fabry-Pérot resonances in the unipolar regime,
it indicates that at least a certain part of the charge carriers trajectories are
phase coherent (and in this case as well ballistic) over a distance of at least
2 µm down to a very low doping-range. The oscillation amplitude (∆Gosc) of
the Fabry-Pérot resonances is proportional to [58]:

∆Gosc ∝
∑
θ

e−2L/lΦ ·
(
|t1(θ)|2|t2(θ)|2|r1(θ)||r2(θ)|

)
. (2.45)
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2.4. Moiré superlattice on hBN substrate

Equation 2.45 describes the sum over all trajectories (varying incident angle
θ) where exp(−2L/lΦ) is proportional to the vanishing fraction of phase coher-
ent (and ballistic) trajectories and the expression within the bracket (where
r(θ) = 1 − t(θ)) depends on the p-n junction smoothness. More details of
∆Gosc on the p-n junction smoothness will be given in chapter 6.
The vanishing of phase coherent transport originating from temperature smear-
ing can be estimated by comparing the thermal fluctuations with the phase
difference between the interfering paths. In the single-particle interference
model [93] the interference-signal decays due to the temperature-smearing of
the charge carrier source, which is given by ∆E ∼ kBT (kB being the Boltz-
mann constant). The phase coherence is completely lost if charge carriers
along two paths of different length (e.g. L1 and L2 in Fig. 2.12a), and emit-
ted at different energies, acquire a phase-difference around ∆Φ ∼ 2π. Fur-
thermore, ∆Φ = |∆~kF| · ∆L, where ∆L = L2 − L1 is the path difference
between the interfering paths [94]. If the path-length of the two interfering
trajectories is equivalent (∆L = 0), all charge carriers will interfere construc-
tively within the cavity, independent on their ~k-vectors. This consequently
does not lead to a smearing effect within the cavity due to energy-broadening.
However, for ∆L 6= 0, different ~k-vectors will experience different resonance
conditions (varying from constructive to destructive interference), leading to a
smearing of the signal within the cavity due to the energy-broadening. With
∆E = ~vF|∆~kF| coherent transport in graphene is expected to survive up to
temperatures on the order of [58, 95]:

T = hvF
kB∆L. (2.46)

Alternative mechanisms accounting for a loss of the phase coherence might be
an enhanced coupling between graphene and its environment or a change of the
scattering rates (e.g. via enchanced electron-electron interactions at elevated
temperature[33, 96]). However, in order to make quantitative predictions one
needs a detailed knowledge of the scattering mechanisms.

2.4. Moiré superlattice on hBN substrate

Graphene and hBN are isomorph materials which means that they both have
a hexagonal unit-cell. However, hBN has a two-atomic unit-cell with two
different atoms, namely boron and nitrogen, which alternate as illustrated in
Fig. 2.13a. The lattice constant of hBN is 1.8 % larger than the one of graphene
and instead of a zero-gap semiconductor hBN is an insulator with a large band-
gap of 5.97 eV. In the case of graphene encapsulated in hBN (chapter 3 and
chapter 4), a Moiré superlattice can be formed between hBN and graphene due
to the small lattice mismatch between hBN and graphene. A superlattice is
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Figure 2.13. Superlattice wavelength as a function of relative an-
gle mismatch between hBN and graphene. a, Graphene and hBN are
isomorph crystals, but graphene consists of only carbon atoms, while hBN con-
sists of two different atoms, namely boron and nitrogen. b, Illustration of the
Moiré superlattice between two lattices with a different lattice constant and
β =0◦. c, Superlattice wavelength according to equation 2.47 (black curve).
The red curve indicates the gate voltage (dSiO2 =300 nm, dhBN =30 nm) where
the satellite Dirac-peaks are expected according to equation 2.48.

a superior lattice structure which forms if two or more materials, each having
their own periodic lattice structure, are superimposed as shown in Fig. 2.13b.
This was first observed by Johansson and Linde in 1925 by studying the X-ray
diffraction on gold-copper and palladium-copper systems [97]. In the following
section, the implication of such a Moiré superlattice on the electronic band
structure of graphene are discussed. From simple trigonometric considerations,
the superlattice wavelength (λ) which forms between hBN and graphene can
be calculated according to [98]:

λ = (1 + β)a√
2(1 + δ)(1− cosβ) + δ2

, (2.47)

where δ = 0.018 is the difference of the lattice constants between hBN and
graphene, a =2.46Å (a =

√
3a0) is the graphene lattice constant and β is

the relative rotation angle between graphene and hBN. For β =0◦ the su-
perlattice wavelength reaches its maximum with λ∼15 nm, while it decreases
rapidly with increasing rotation-angle as shown in Fig. 2.13c. The presence
of the Moiré superlattice causes a band reconstruction in graphene, which
includes the emergence of so called satellite Dirac peaks (satellite DPs). At
these satellite DPs the band structure of graphene is strongly modified as
shall be discussed in the next section in more detail. It is worth mention-
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2.4. Moiré superlattice on hBN substrate

ing, that even though on hBN there is always a Moiré superlattice present,
the effects of the band reconstruction are experimentally only observable for
small misalignment angles (β) between hBN and graphene [98, 99]. This is
due to the fact that for small lattice periods the band reconstruction appears
at high energy, which is not accessible by conventional gating. This is shown
in Fig. 2.13c where the gate voltage required to observe the satellite DPs is
calculated for typical experimental device parameters using equation 2.47 and
equation 2.48. The formation of a Moiré superlattice has been demonstrated in
various spectroscopy [98, 100, 101] and transport [33, 102–109] experiments.
Besides experiments, considerable effort has been invested to calculate the
band structure of graphene under the influence of such a Moiré superlattice
[110–112], which is in the focus of the following section.

2.4.1. Band reconstruction

The band reconstruction in graphene manifests itself in transport measure-
ments as an increased resistance at high doping at the position of the satellite
DPs, comparable to the main DP at the CNP. Since the wavevector of the
superlattice Brillouin zone is given by G = 4π/(

√
3λ) [103], and the energy is

given by ES = ~vFG/2, the relative rotation-angle between hBN and graphene
can be extracted from experiments as shown in Fig. 2.14a, using:

λ =
√

4πe
3(Vg,± − V0)C (2.48)

where Vg,± (V0) is the gate voltage at which the satellite (main) DP is observed,
and assuming a parallel plate capacitor model (equation 2.40) to calculate the
charge carrier density. A representative field-effect measurement at zero mag-
netic field and a quantum Hall measurement of a two-terminal device is shown
in Fig. 2.14a,b. In Fig. 2.14b the evolution of the filling factors follow equa-
tion 2.30 with a degeneracy of g = 4 for main and satellite DPs. Even though
the filling factors emerging from the satellite DPs follow equation 2.30, the ab-
solute density is replaced by the density relative to the satellite DP according
to n′ = n − (ng,± − n0). While the origin of the satellite DPs is well under-
stood, the exact shape of the band reconstruction is still not fully known yet.
In the following a family of possible Moiré band reconstructions for graphene
on hBN substrate are discussed which were calculated by J. Wallbank et al.
[110] using a general symmetry-based approach. Because the relatively large
number of model-dependent parameters of the symmetry breaking potential
can strongly influence the obtained Moiré perturbation, the focus was on the
generic features for different sets of parameters used. In Fig. 2.15, the density
of states (DOS) for three different sets of parameters is plotted. Details on the
parameters can be found in Ref. [110]. Independent of the model-parameters

29



2. Theoretical background

d/
dV

BG
 G

 (e
2 /h

)

0

2

4

-60 -40 -20 0 20 40 60
VBG (V)

B 
(T

)

6

-15

158

2.0
1.5
1.0
0.5R

 (k
O

hm
)

(a)

(b)

V0

Vg,-

Vg,+

ν=2ν=-2 ν=6ν=-6ν=2ν=-2 ν=-2ν=-6ν=6

Figure 2.14. Transport measurements. a, Field effect measurement at
B =0 T. b, Quantum Hall measurement where the numerical derivative of the
conductance is plotted. The evolution of the filling factors of the main and
satellite DPs are shown in red, blue (EF < 0) and green (EF > 0).

the DOS drops to zero at a single point only for the satellite DP on the hole
side (EF < 0) while on the electron side (EF > 0) only a modulation of the
DOS can be observed. Since a vanishing DOS at a single point is one of the
benchmarks of a Dirac cone, only the satellite DP at the hole side actually
qualifies as a “real” DP. Energy-spacings between various points can be ex-
tracted from Fig. 2.15, using b = 4π

3a0

√
δ2 + β2. Comparable to the main DP,

in the vicinity of the satellite DPs (EF < 0), where the band structure is
roughly linear, the doping can be converted into an energy according to:

E = ~vF,sat.DP

√
π∆n
gSDP

(2.49)

where vsat.DP =0.45× 106 m/s is the rescaled Fermi velocity extracted from ca-
pacitance measurements at the satellite DP [100], ∆n is the density measured
from the satellite DP and gSDP is the additional degeneracy of the satellite
DP with respect to the main DP. The number of satellite DPs generated in
the mini-Brillouin zone for each main DP can be extracted from quantum
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Figure 2.15. Band-reconstruction including Moiré mini-bands. a-c,
Calculations of three different families of band reconstructions using differ-
ent model-parameters. Top: Energy as a function of the ~k-vectors. Bot-
tom: DOS as a function of the energy. The blue, dashed line indicates the
DOS of graphene in the absence of a Moiré superlattice. Figure adapted from
Ref. [110].

Hall measurements [103, 104, 113] by fitting the evolution of the filling fac-
tors (ν) at fully filled Landau levels according to equation 2.30. For the main
DP g = 4, reflecting the spin- and valley-degeneracy. For the satellite DPs
a degeneracy of g = 4 is found which implies that there is only one satellite
DP in the mini-Brillouin zone for each main DP. This 1:1 correspondence is
somewhat surprising, since following a simple band-folding picture one would
expect two satellite DPs per main DP [98, 103]. However, it is in agreement
with the two models shown in Fig. 2.15b,c [110], capacitance measurements
[100], angel-resolved photoemission spectroscopy (ARPES) [114] and more re-
cent band structure calculations [115].
The comparison between experiments and simulation of transverse magnetic
focusing (TMF) on graphene with a Moiré superlattice [33] suggest that model
3 (Fig. 2.15c) is the most likely band reconstruction.
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2.5. Valley Isospin

Charge carriers in graphene are 4-fold degenerate, due to the spin- (up- or
down) and valley- (K or K′) degree of freedom (chapter 2.1.1). Within the
recent years valleytronics became a rapidly growing field since it was realized
that not only the charge or spin-degree of freedom, but as well the valley degree
of freedom can be used for encoding or processing informations. Comparable
to the spin degree of freedom, the valley degree of freedom can be described
with a two-component spinor wave-function with quantization axis ~ν, which
can be represented on the Bloch sphere according to:

|~ν〉 =
(

cos β2
eiα sin β

2

)
(2.50)

where α = [0; 2π] is the angle within the equatorial-plane and β = [0;π] is the
angle with respect to north-pole of the sphere which represents the K′ (or K)
valley. An ideal material system to observe valley-physics has a band structure
consisting of two (or more) degenerate, but inequivalent valleys (local energy
extrema). The latter can be manipulated in order to encode, process and store
information. However, the valley degree of freedom is only a good quantum
number, and thus useful for valleytronics, if unwanted valley-scattering due
to defects (leading to large k-scattering) is sufficiently suppressed. In systems
that lack inversion symmetry, such as for example monolayers transition metal
dichalcogenides (TMDC’s), charge carriers in different valleys are subject to
different Berry curvatures, which act like an effective magnetic fields in the
presence of an in-plane electric field. These materials may therefore exhibit
Hall-like currents, which are opposite for K and K′ valley, flowing transversely
to the applied electric field even in the absence of an external magnetic field.
In optics right and left circular polarized light can be used to selectively ad-
dress the two valleys due to different selection rules [116, 117]. As graphene
lacks a broken inversion symmetry it does not seem to be an ideal candidate
for valleytronics. However, the inversion-symmetry of single layer graphene
can be artificially broken using a graphene/hBN Moiré superlattice [105]. Al-
ternatively one might consider bilayer graphene where the inversion symmetry
can be broken upon applying an electric field perpendicular to the graphene
plane [118, 119].
Besides the above mentioned results there exist several theoretical proposals
on how to address the valley degree of freedom in single-layer graphene, in-
cluding strained graphene [120, 121] or p-n junctions in graphene nanoribbons
(GNRs) at high magnetic fields [45]. Before discussing the basics of the latter
proposal, a short introduction in GNRs is given.
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Figure 2.16. Graphene nanoribbons with different chiralities a,
Graphene sheet where zigzag and armchair GNR are indicated. b, For a
zigzag GNR, the top- and bottom-edge consists of A- and B-atoms (indicated
with the black and white dots respectively) exclusively. c, For armchair GNR,
both edges consist of A- and B-atoms. d,e, Band structure of a zigzag GNR in
magnetic field. Only if the lowest Landau level is occupied the charge carriers
moving along the edges are valley-polarized (K or K′) as shown in (d) for
holes with a positive group-velocity. Band structure courtesy of M.-H. Liu.

2.5.1. Graphene nanoribbons

While in theory graphene is always considered as an infinite sheet, in real de-
vices the graphene has a finite size. Nevertheless, edge effects are in most cases
negligible as the most structures are rather large, where the transport is dom-
inated by the bulk. However, by reducing the confinement in one or even two
dimensions down to a few tens of nanometers, edge effects start to dominate.
Examples of narrow confinements are quantum dots with an energy-spacing
and possibly the observation of localized edge states [122], but probably the
best studied systems revealing a confinement are the GNRs. They consist of
graphene which is translation invariant in one direction (transport direction),
while they are confined in the direction perpendicular to it. GNRs can have
any arbitrary chirality, but the two most studied GNRs are zigzag or armchair
GNRs as shown in Fig. 2.16a. GNRs are of special interest, as their proper-
ties can be tuned by carefully choosing their width and chirality. In perfect
zigzag GNRs, as shown in Fig. 2.16b, spin-polarized transport [123, 124] and
valley helical edge modes [125] are predicted. Armchair GNRs, as shown in
Fig. 2.16c, exhibit a width dependent energy-gap near the charge neutrality
point (CNP) [123, 126] which might be of interest for graphene based field-
effect transistors with a high on-off ratio [127].
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At finite magnetic field it turns out that the A and B sublattice are directly
linked to the valley degree of freedom (K and K′) if only the LLL is occupied
[57]. Since in the quantum Hall regime edge states carry the current, the ter-
mination of the edges in GNRs will be linked to the valley-polarization of the
edge states. In Fig. 2.16d this can be clearly seen as illustrated for a zigzag
GNR where the charge carriers moving along the edge, which is defined by ei-
ther A or B atoms, is fully polarized in either the K or K′-valley respectively.
As soon as higher Landau levels are occupied charge carriers moving along the
edges can have contributions from both valleys, as it is shown in Fig. 2.16e.
While GNRs are an ideal playground for various theoretical studies, the fabri-
cation of clean GNR with a well defined chirality and width is still challenging.
Defining the GNRs via reactive ion etching (RIE) [126, 128] can have limita-
tions such as i) the creation of localized states due to dangling bonds and
chemical edge modifications, and ii) the edge roughness which is in the or-
der of a few nanometers, since this is the resolution-limit of standard e-beam
lithography required to define the etching mask. A more suitable top-down
approach is the definition of GNRs via hydrogen-plasma etching [129–131]
where the chirality of the GNR is well defined. However, the exact width is
still difficult to control. Bottom-up approaches, such as the surface assisted
self-assembly [132], allows an exact control of the chirality and width, but they
are yet limited to very small GNRs [127].

2.5.2. Valley-valve effect

Based on the finding of direct coupling between sublattice and valley in the
LLL, Tworzydło et al. predicted a valley-isospin dependence of the conduc-
tance in GNRs with a smooth p-n junction located perpendicular to the trans-
port direction [45]. The device is based on a two-terminal GNR with perfect
edges (armchair or zigzag) where a p-n junction is located perpendicular to
the transport direction is sketched in Fig. 2.17a. In magnetic fields the charge
carriers injected at the bottom right contact travel in skipping orbits along
the edge [12, 13, 133] while the bulk is insulating. In the presence of a p-n
junction the charge carriers additionally flow along the p-n junctions within
the bulk, connecting the bottom- and top-edge [134, 135]. These edge states
are furthermore valley-degenerate if the p-n junction is smooth on the scale of
the lattice constant [136, 137]. Surprisingly, in high magnetic fields where only
the LLL is occupied the conductance is solely determined by the chirality and
width (number of unit-cells (N) between bottom- and top-edge) of the GNR,
assuming a perfect bulk where no scattering events are present. The suggested
device operates in close analogy to a spin-valve [138], where the bottom- and
top-edges are the polarizer and analyzer units, while the p-n junction is the
channel. Even more, in a perfect armchair GNR the conductance is given by
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N=26

N=22

NNNNN PPPPP

NNNNN PPPPP

(a) “polarizer” “analizer”(b)

Figure 2.17. Illustration of a the valley-valve effect on an armchair
GNR. a, Two armchair GNRs with the same chirality, but different widths,
where the charge carriers are injected at the bottom-edge and guided along
the p-n junction to the top-edge. If the relative angle (Φ) between the valley-
isospins at the two edges (same polarity) is equal to π (e.g. for N=26), back-
reflection is forbidden. b, Illustration of the valley-isospin configuration for
bottom- (black, ~νB) and top-edge (red, ~νT) where Φ is π (N=26) and π/3
(N=22) respectively.

the simple relation [45]:

G = e2

h
(1− cos Φ) , (2.51)

where Φ denotes the relative angle between the two valley-isospin configura-
tions at the bottom- (~νB) and top-edge (~νT) for the same polarity. Equa-
tion 2.51 can be easily derived if we remember that in the LLL the valley-
isospin is directly coupled to the sublattice [57]. Since the edges of a armchair
GNR consist equally of A- and B-atoms as shown in Fig. 2.16c, the valley-
isospin has to be located in the equatorial plane on the Bloch sphere. The
valley-isospin is consequently a coherent superposition of the K- and K′-valley
[139], which can be written as:

|~νB〉 = 1√
2

(
1

eiαB

)
and |~νT〉 = 1√

2

(
1

eiαT

)
. (2.52)

The expectation value for charge carrier to be transmitted across the p-n
junction is then given by:

T = 1− | 〈~νT|~νB〉 |2. (2.53)

By introducing a relative angle between the bottom- and top-edge isospin
configuration given as Φ = αT −αB, and assuming that in the LLL the trans-
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mission corresponds to T =2 e2/h since two edge states are populated (sec-
tion 2.1.3), one ends up with equation 2.51. For the case of an armchair GNR,
the measured conductance across the p-n junction is given by

G =
{

2 e2/h N mod 3 = 2 (Φ = π)
0.5 e2/h N otherwise (Φ = ±π/3)

(2.54)

where Φ is the relative angle between “analyzer” and “polarizer” edge as
sketched in Fig. 2.17b. Furthermore, the condition N mod 3 = 2 is equiv-
alent for obtaining a metallic GNR. Similar results can be obtained for zigzag
GNRs, leading to conductance values given by:

G =
{

2 e2/h N odd
0 e2/h N even.

(2.55)

It is worth noting that the results of equation 2.55 do not originate from
equation 2.51, which is only valid for armchair GNRs. The rigorous derivation
of equation 2.55 is more complicated and goes beyond the scope of this Thesis,
therefore it shall not be discussed in more detail.

Diffusive devices

So far many studies concentrated on the equilibration of edge states in diffusive
p-n or p-n-p junctions which does not allow the observation of valley-isospin
oscillations, since scattering events do not preserve the valley-isospin degree
of freedom. Edge state equilibration means that the Landau-levels are not
decoupled from each other and that charge carriers can scatter from one edge
state into another, mediated by scattering events. For the most simple device,
namely a two-terminal p-n junction, and assuming that all Landau levels mix
equivalently (full equilibration), the conductance in the bipolar regime is given
by [134]:

G = e2

h

|νl · νr|
|νl|+ |νr|

, (2.56)

where νl and νr are the filling factors (equation 2.30) within the left and
right cavities. In the unipolar regime the conductance is simply given by (no
equilibration):

G = e2

h
min [|νl|, |νr|] . (2.57)

The concept of edge state equilibration can be easily extended to a p-n-p
junction, which yields in the bipolar regime [140]:

G = e2

h

|νin||νout|
2|νin|+ |νout|

(2.58)
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Figure 2.18. Equilibration of edge states in a p-n-p junction at
B = 3 T. a, In the unipolar regime (top and middle row) the edge states
equilibrate along the graphene edges while in the bipolar regime (bottom row)
the equilibration takes place along the p-n junctions. b, Simulation assuming
full equilibration of all edge states [140] in comparison with c, the experimental
data.

where νin (νout) are the filling factors in the inner (outer) region as sketched
in Fig. 2.18a. In the unipolar regime the conductance is given by:

G = e2

h

|νin||νout|
2|νin|+ |νout|

if |νout| ≤ |νin| (2.59)

or

G = e2

h
|νin| if |νout| > |νin|. (2.60)

Analysing the experiments, it turns out that the equilibration along the
graphene edges (unipolar regime) is much more efficient compared to equi-
libration along the electrostatically defined p-n junction (bipolar regime) as
shown in Fig. 2.18b,c. In fact, equilibration along the p-n junction is almost
negligible as shown in Ref. [47]. There are mostly two effects accounting for
this observation: i) At the graphene edges (hard-wall potential) the potential-
profile is much steeper compared to the p-n junction, which causes a stronger
overlap, between the wave-functions of the different Landau levels. ii) The
roughness of the graphene edge, often defined via reactive ion etching, is in
most cases significantly higher compared to the electrostatically defined p-n
junction, which can mediate the mixing between different edge states.
This kind of measurement can therefore reveal valuable informations about

37
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the graphene edge and p-n interface roughness since little edge state equili-
bration is an indication for a good quality of the graphene edges/p-n junction
[141]. More recent studies on edge state equilibration along the p-n junction
include only mixing between the lowest Landau level, while higher Landau
levels remain unaffected [133]. This model is more suitable for samples with
better graphene edge quality.
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3 Suspension and Encapsulation

1 µm 400 nm

The very first experiments on graphene were performed on a SiO2 substrate
[3, 12, 13]. However, quite soon after these first measurements, the limita-
tions of SiO2 as a substrate became evident. The most limiting factors are:
i) The relatively rough surface [21, 142, 143] of the SiO2 dielectric, which is
most commonly grown either thermally or using a chemical process, giving
rise to strain in graphene [144, 145]. ii) During the growth process of SiO2
charged species can be trapped, giving rise to a non-homogeneous potential
landscape [142, 143, 146], which leads to impurity scattering in graphene [147].
These effects significantly limit the residual doping and mobility (table 3.1),
making the interesting Dirac-physics close to the charge neutrality point inac-
cessible. In order to overcome these limitations, new techniques to decouple
the graphene from its environment were explored. Nowadays the two most
prominent ones are suspension and encapsulation which shall be discussed in
the following chapter.

mobility [cm2V−1s−1] residual doping [m−2]
SiO2 1× 103 to 1× 104 [50, 148] >5× 1014 [149]
hBN 1× 105 to 1× 106 [29, 30, 148] >5× 1013 m−2 (Fig. 2.9)

suspended 5× 105 to 3× 106 [150] >5× 1012 m−2 [86]

Table 3.1. Typical values in graphene on different substrates.
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Figure 3.1. Current-annealing of suspended graphene devices. a,
False-color SEM image of a suspended graphene (cyan) on LOR (green), with
contacts (yellow) and top-gates (red) before annealing. b, Representative
traces (resistance-voltage curve) for the first (top) and last (bottom) steps
during the current-annealing process. c, Conductance as a function of the
global back-gate after current-annealing (VTG =0 V). d, Conductance as a
function of global bottom-gate and local top-gate (T =230 mK).

3.1. Suspension

Probably the most straight-forward approach to increase the graphene quality
is to suspend it. This can be achieved by etching the SiO2 below the contacts
away using Hydrofluoric acid (HF) [151, 152]. The drawback of this technique
is that only a very limited amount of materials survive the aggressive HF
etching step. An alternative approach suspending devices without the need of
HF etching was given by Tombros et al [153] using a polymer-support (LOR:
lift-off-resist) onto which the graphene is exfoliated or transferred. This pro-
cess is compatible with most standard e-beam lithography and evaporation
processes using PMMA. Suspension of the grahene is done in the last step
by exposing the LOR-resist with a very high e-beam dose (significantly higher
than that required for the PMMA) and subsequent developing in Ethyl-lactate.
The suspension-process based on this technique has several advantages: i) No
dangerous chemicals are required. ii) It is compatible with a wide range of
materials. iii) The leads can be fully suspended in comparison with HF etch-
ing where the leads remain partially supported by the SiO2. This can be an
advantage as will be explained later on. Independent on the specific type of
suspension, directly after fabrication the graphene is strongly contaminated
with various polymer and solvent residues as shown in Fig. 3.1a. Before mea-
surement the graphene has therefore to be current-annealed: a process where
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3.1. Suspension

a high current is applied, heating up the device to several hundreds of de-
grees [154]. For the current-annealing a voltage biased configuration is chosen
which is favoured over the current biased one. This is because upon approach-
ing clean graphene, the resistance at the Dirac-peak (Vgate =0 V) increases,
thus lowering the dissipated power (current) across the device (the opposite is
the case in the current biased configuration). During the annealing procedure,
the voltage is ramped up and down, with a continuously increasing ampli-
tude. In the last annealing-step, the resistance usually increases step-like as
shown in Fig. 3.1b, since nearly all contaminations are evaporated while the
clean graphene remains (Fig. 3.1c,d). The current-annealing step is not only
the last step before measurement, it is very often as well the most delicate
one during the whole fabrication. The probability with which it is possible
to get rid of all the contaminations without destroying the graphene is very
small. During the annealing-procedure the contaminations tend to aggregate
at the coldest spot of the sample. Therefore, having fully suspended leads (sus-
pension via LOR) which are significantly less substrate-cooled [75] compared
to partially supported leads (HF etching), allows the fabrication of graphene
which is not only clean in the center of the device, but as well in the very
proximity of the leads.

3.1.1. Top-gated devices on LOR

To tune the charge carrier density in graphene one might consider using a
global back-gate or local bottom-gates. However, this is not sufficient for sev-
eral experiments including electric fields [118, 119, 155, 156], which can be
achieved by combining bottom- and top-gates. In suspended devices using
HF-etching this is typically done via so called “air-bridges“ [157], where prior
to the suspension with HF amorphous SiO2 is evaporated between graphene
and the top-gate, defining the spacing between the graphene and the metal-
gate. On the other hand, the fabrication of top-gates in suspended devices on
LOR is far from being straight forward [158]. The first attempts to establish
top-gates in suspended graphene on LOR involved a dielectric between the
top-gate and the graphene, namely: i) The evaporation of a thin MgO layer
between the graphene and top-gate prior to suspension. ii) The transfer of a
hBN flake on top of the already suspended device and the subsequent fabri-
cation of the top-gates in a separate step. However, both techniques result
in significantly lower current-annealing yields because the top-gates which are
separated by the MgO and hBN respectively can act as heat sinks. In the
latter case the hBN might furthermore prevent the evaporation of contami-
nations as it is likely to fully cover the suspension-mask. Here we present a
new method based on fully suspended top-gates and present measurements in
a dual-gated bilayer graphene as a proof of principle [158].
The fabrication procedure of the fully suspended top-gates is sketched in
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(a) (b) (c)(a) (d)(b) (c)(b) e-beam

Figure 3.2. Fabrication of local top-gates. a, Fabrication of contacts
(grey) to graphene on LOR (green) [153]. b, Spin-coating of the spacing layer
(PMMA + LOR) between graphene and top-gate and exposing the suspension
mask. c, Evaporation of top-gates and d, subsequent suspension of the device.
Figure adapted from Ref. [158].

Fig. 3.2. Similar to Ref. [153] it starts by etching the graphene in its de-
sired shape (if needed) and evaporation of the metal-contacts as shown in
Fig. 3.2a. This is followed by spin-coating a second layer of LOR (∼500 nm
thick) which defines the spacing between the graphene and top-gate. In be-
tween the two layers of LOR a thin (80 nm) layer of PMMA is added, since
without this protection layer the contacts can be deformed during the spin-
coating of the second layer of LOR, and no electrical contact between the
contacts and graphene can be created. Prior to the evaporation of the top-
gates the suspension mask is exposed using a high e-beam dose (1100 µC/cm2)
as shown in Fig. 3.2b,c. However, the suspension using Ethyl-lactate is done
in the very last-step (Fig. 3.2d).
A field-effect measurement of a bilayer graphene after current-annealing is

shown in Fig. 3.1c. In Fig. 3.1d a conduction-map as a function of global
back-gate and local top-gate is shown. In bilayer-graphene an energy-gap can
be opened upon applying a displacement-field ( ~D) [156] which is defined by:

~D = (αVTG − βVBG)/2eε0 (3.1)

where the parameters α and β describe the gate coupling parameters for VTG
and VBG respectively. Moving along the black, dashed line in Fig. 3.1d tunes
the magnitude of the energy-gap in the dual-gated region of graphene while
keeping the Fermi-energy simultaneously at zero (zero charge carrier doping).
This results in a suppression of the conductance across the device with in-
creasing displacement field. The effect of the gap-opening is very moderate in
comparison with the results presented in Ref. [156]. Possible reasons for this
might be the limited device quality (µ ∼25 000 cm2V−1s−1) and/or the use of
a local top-gate instead of a global top-gate. By moving along the direction
indicated with the purple arrow, the energy-gap remains zero while the doping
can be tuned.
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Figure 3.3. Top-gated multi-terminal device. a, Illustration of a sus-
pended, multi-terminal device intended to measure Veselago-lensing using pin-
hole collimators. b, False-color SEM image of a device as shown in (a) with
top-gates (red). c, Cross-sectional view as indicated in (b) with the white
arrows.

Suspension of graphene turned out to be very successful for two-terminal
devices with a rectangular graphene flake in order to investigating e.g. ballistic
transport [159], the disorder limit [86], quantum Hall effects [160], broken-
symmetry and spontaneously gapped states in bilayer graphene [156, 161],
Fabry-Pérot resonances [40, 41, 162] and snake states [37]. However, there
are major limitations to this techniques, such as the length over which the
contacts/top-gates can be suspended (typically a few microns), the current-
annealing which becomes much more challenging for multi-terminal devices
or devices with a more complex graphene shape as described in the following
section.

3.1.2. Complex device designs

In two-terminal devices with a rectangular graphene flake the current-annealing
is straight-forward since the current-density throughout the whole device is
roughly homogeneous. While for multi-terminal devices with a rectangular
graphene shape current-annealing is still doable [37, 135, 151, 152, 160, 163],
the suspension-technique certainly reaches its limitation for more complex
device designs as e.g. sketched in Fig. 3.3. This device, intended to mea-
sure Veselago-lensing [33, 164] as sketched in Fig. 3.3a, includes 6 contacts,
a narrow graphene constriction, and two local top-gates. However, from a
total of more than 40 devices, not a single one could successfully be current-
annealed. This is because any contacts which are not actively involved in
the current-annealing process act as heat-sinks and the current distribution in
graphene can be strongly non-uniform. Both effects leads to locally varying
temperatures of the graphene which makes it very challenging to get rid of
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all contaminations in the device. We implemented top-gates instead of pre-
patterned bottom-gates [27, 37, 41] as they were thought to complement the
local bottom-gates in further projects [158].

3.2. Encapsulation

While suspension allowed already quite early the fabrication of high-quality
graphene, no real alternative to SiO2 as a support was available until hexagonal
boron-nitride (hBN) was introduced as a gate dielectric in 2010 by Dean et
al. [21]. The crystal-growth of hBN allows to reduce the density of charge
impurities to a much lower level and since it is a layered material it holds the
potential to be atomically flat [21, 142, 143, 148]. Similar to the exfoliation of
graphene, the exfoliation of hBN follows the scotch-tape technique (section 4.1)
which yields hBN flakes of all kind of sizes, thickness and shapes. Since the
size of the hBN flakes is typically in the order of a few tens of micrometers in
each direction, it is typically used in combination with a SiO2 gate dielectric.
The latter separates the leads from the global back-gate, while the hBN is
primarily used to decouple the graphene from the SiO2.

3.2.1. Hexagonal boron-nitride

In the early days of hBN supported graphene, the graphene was transferred on
top of the hBN using a wet-transfer method including a polymer [21]. While
this method yielded the highest graphene quality on substrate at that time,
it comes with the disadvantage that after the transfer-process the graphene
is still strongly contaminated with polymer-residues. Even though various
processes such as thermal annealing or “AFM ironing” [165] remove most of
these residues, a residual contamination will always remain. This shortage was
overcome by introducing an all-dry stacking-process [1], where the graphene
never comes directly into contact with any polymer or solvent, and therefore
should yield an increased quality. While several variations of this dry-stacking
process exist (using slightly different transfer-polymers for the hBN), the as-
sembly of the heterostructure (described in more detail in section 4.1) used
in this Thesis follow the original approach by Wang et al [1]. In contrast
to suspension, encapsulation using the dry-stacking does not require any an-
nealing step after fabrication. Furthermore, encapsulation allows much more
complicated device structures because almost no limitations on the number of
leads, top- and/or bottom-gates (chapter 4) and the shape of the graphene are
given. Furthermore, encapsulation of graphene in hBN does not only allow
quasi-ballistic and phase coherent transport, but is as well suitable to obtain
a Moiré superlattice in graphene due to the small lattice mismatch between
graphene and hBN (1.8 %) as described in section 2.4.
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3.2.2. Other substrates
Soon after it was realized that hBN, a crystal-grown and layered material, has
such a dramatic impact on the whole graphene community, other layered sub-
strates moved into the spotlight [19, 166]. They are of particular interest since
they can be used for the assembly of complex Van der Waals heterostructure
including semi-conducting [22], superconducting [23, 24] or even ferromagnetic
[25, 167] layered materials [168]. However, not all of them are stable in air,
such as e.g. black phosphorous [169], which requires encapsulation in e.g. hBN
or storage in vacuum to protect it from degradation [170] in ambient condi-
tions. Using the wide range of layered materials, effects normally absent in
graphene, such as strong spin-orbit interaction [171–173] or superconductivity
[24] can be introduced by simply establishing a Van der Waals heterostructure
choosing the appropriate materials.

3.3. Conclusion

Suspension and encapsulation have both their advantages and disadvantages.
Therefore, depending on the project the more suitable method has to be cho-
sen. The quality of suspended graphene is still difficult to reach with encap-
sulated devices as shown in table 3.1, even though considerable improvements
have been made within the last years. Suspension is furthermore very suit-
able to establish relatively soft p-n junctions. In contrast, encapsulated devices
hold the potential to establish very sharp p-n junctions because its smoothness
is basically limited by the thickness of the insulator (e.g. hBN) which defines
the spacing between the electrostatic gate and the graphene. Furthermore the
encapsulation poses fewer limitations on the device fabrication as compared
to suspension. However, the great success of the encapsulation technique can
be mostly attributed in its huge versatility which allows to combine the whole
class of Van der Waals crystals into complex heterostructures. This paved the
road to taylor the property and shape of the final device nearly at will and
with very few restrictions.
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4 Fabrication and basic characterization

This chapter describes the fabrication of the hBN/graphene/hBN heterostruc-
tures via Van der Waals assembly and the implementation of contacts and local
gates in detail. It is organized chronologically, starting with the assembly of
the hBN/graphene/hBN heterostructure [1] as introduced in section 3.2. This
is followed by the detailed description of how to establish self-aligned side-
contacts, local top-gates and local bottom-gates. The exact parameters for
both, the hBN/graphene/hBN assembly and the fabrication of the contacts
and local gates are given in Appendix A. The chapter is closed with a rough
statistics on the contact resistance and the mobility of the fabricated devices,
some remarks on thermal annealing and a brief description of the measurement
set-up.
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4.1. Assembly of the hBN/graphene/hBN heterostructures

SiO2 + PPC

Scotch tape

exfol. hBN
exfol. graphene

PDMS

t-hBN
PPC

graphene

exfol. b-hBN

(a)

(b) (d)

(c)

(d1)
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(d2) (d3)
SiO2

graphene

t-hBN

graphene
hBN

PDMS

SiO2

PPC

Figure 4.1. Fabrication of encapsulated graphene following the
method introduced by Wang et al. [1]. a,b, Exfoliation of the top-hBN
on PPC. c, The polymer is then peeled-off and transferred on a PDMS stamp
placed on a glass-slide. d,e, Pick-up of graphene from SiO2 and subsequent
release on the bottom-hBN.

A flow-chart illustrating the assembly of a hBN/graphene/hBN heterostruc-
ture is shown in Fig. 4.1. It starts with spin-coating a ∼1 µm thick poly-
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propylene-carbonate (PPC) film on a Si++/SiO2 chip. A scotch-tape with a
frame removed in the center is then fixed on top of the PPC film as shown
in Fig. 4.1a, followed by the exfoliation of the top-hBN shown in Fig. 4.1b.
All components of the stack, namely bottom-hBN, top-hBN and graphene
(from natural graphite) were obtained by exfoliation of their corresponding
bulk-crystals using Nitto tape1. The high-quality hBN used in all devices was
obtained from T. Taniguchi and K. Watanabe [174]. Using an optical micro-
scope with bright- and dark-field, we scanned the chip for hBN flakes, being
ideally 10 nm to 30 nm thick and atomically flat. Having found a suitable
hBN flake the PPC layer is peeled of from the Si++/SiO2 support and trans-
ferred on top of a ∼0.5 mm thick, home-made Polydimethylsiloxane (PDMS)
pad, which was previously placed on a glass-slide as shown in Fig. 4.1c. The
PDMS pad is used as a soft spacer between the thin PPC and hard glass-slide.
The latter is then fixed up-side down in a transfer stage which allows manip-
ulation with roughly µm-precision using micro-screws. In parallel, graphene
was exfoliated on a Si++/SiO2 chip, which was previously cleaned with a Pi-
ranha solution (H2O2:H2SO4 mixture removing organic residues on the chip,
Appendix A.1.1). The thickness of graphene (single-, bi- or multi-layer) was
optically identified using a microscope-camera with contrast enhancement. In
over 95 % of all fabricated devices (> 80) the targeted number of graphene
layers was obtained without using Raman-microscopy for verification of the
graphene thickness. Using a long-distance microscope mounted on top of the
transfer-stage, the top-hBN and graphene can be aligned respectively to each
other as shown in Fig. 4.1d. By lowering the glass-slide with the top-hBN,
the PPC/PDMS stamp is brought into contact with the Si++/SiO2 chip and
eventually the hBN touches the graphene as shown in Fig. 4.1d1 and 4.1d2. By
gently retracting the glass-slide, the PPC detaches again from the Si++/SiO2
chip as shown in Fig. 4.1d3. The pick-up of graphene by the hBN relies
on the strong Van der Waals interactions forces between graphene and hBN
(atomically flat crystal) which are larger than the forces between graphene
and SiO2 (amorphous, rough substrate). When bringing the hBN and the
graphene (or any other layered materials) into contact with each other, this
should be done as slow as possible since this allows the Van der Waals forces,
which are very strong between layered materials, to push remaining contam-
inations/adsorbate being trapped between the layers into pockets (so called
“bubbles“) [166, 175, 176]. Generally the larger flake picks up the smaller flake
with few exceptions. The top-hBN is chosen to be significantly larger than any
other layered material to be picked-up since it is the starting layer for the whole
assembly-process. The pick-up process is done at room-temperature and can
in principle be repeated multiple times using various materials to obtain com-
plicated multi-layer devices [22]. Finally the hBN/graphene is brought into

1SPV 224P, Nitto Europe NV
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Figure 4.2. Identification of clean areas. a, Contrast enhanced optical
image where the location of the graphene is indicated with the red, dashed
line. b, AFM image as indicated in (a) with the green, dashed square. The
location of the device (Hall-bar in this case) was chosen where the least bubbles
were observed. The contacts and the etching mask as designed are indicated
in orange and cyan.

contact with a bottom-hBN which was exfoliated on a Si++/SiO2 substrate,
as shown in Fig. 4.1e. The heterostructure is released on the Si++/SiO2 sub-
strate by raising the temperature up to 80 ◦C which causes the PPC to detach
from the PDMS stamp. The PPC is dissolved in Chloroform followed by an
annealing step in a Ar:H2 atmosphere. Even though contaminations cannot
be removed by annealing because they are trapped between the two layers, it
can cause an aggregation of several smaller bubbles into a larger one, leaving
extended areas free of contaminations. After the complete assembly of the
hBN/graphene/hBN heterostructure it is inspected using an optical micro-
scope with contrast enhancement (Fig. 4.2a) and an atomic force microscope
(AFM, Fig. 4.2b) in order to identify the cleanest areas.

4.1.1. Alignment for a Moiré superlattice
In graphene superlattices can be formed using narrow spaced electrostatic
gates [177, 178] or taking advantage of the formation of a Moiré superlat-
tice upon precisely aligning the graphene with respect to either the top- or
bottom-hBN layer, as discussed in section 2.4. The rotation-angle is mea-
sured between the main crystallographic axis being either armchair or zig-zag.
Since we used exfoliated graphene and hBN, the flakes tend to tear along their
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(a) (b) (c)

(d) (e) (f )

Figure 4.3. Fabrication of side-contacts. a, Full hBN/graphene/hBN
heterostructure on substrate. b-e, Exposing the graphene edges using a
CHF3:O2 plasma and subsequent metalization to establish the side-contacts.
e, Additional option to implement local top-gates as described in section 4.3.1.

main-crystallographic axis, which manifests itself in straight edges and angles
between the edges which are a multiple of 30◦ [179]. In our devices we manu-
ally aligned a straight edge of the top-hBN with a straight edge of the graphene
with a precision of a few degrees. The aligned half-stack was then placed with
a significant rotation angle on the bottom-hBN to ensure that only one type
of Moiré superlattice is formed.
An alternative approach to obtain a small rotation angle between two hexag-
onal, layered materials is based on thermal self-alignment [180, 181]. In that
case much less care has to be taken for the alignment between graphene and
hBN, since upon thermal annealing the two lattices tend to align with respect
to their main-crystallographic axis due to energetically favourable reasons.

4.2. One-dimensional side-contacts

Before the dry-stacking technique was introduced the graphene being placed
on top of e.g. SiO2, hBN or LOR was electrically contacted using so called
top-contacts, where metals such as e.g. Ti/Au or Pd were directly evapo-
rated on top of the exposed graphene. However, in a hBN/graphene/hBN
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4. Fabrication and basic characterization

heterostructure where the graphene is sandwiched between two layers of hBN
as illustrated in Fig. 4.3a, the former is no longer directly accessible. In this
case the graphene can be contacted by etching though the hBN/graphene/hBN
heterostructure and subsequently evaporating Cr/Au contacts on the exposed
graphene edge, forming so called one-dimensional side-contacts [1]. In this
Thesis a slightly modified version on how to establish these side-contacts with
respect to Ref. [1] was used. The major difference lies in the fabrication of
self-aligned side-contacts as shown in Fig. 4.3b,c. Self-aligned means that the
same PMMA mask is used for etching the hBN/graphene/hBN heterostruc-
ture (Fig. 4.3b,c, Appendix A.3.1) and subsequent evaporation of the Cr/Au
contacts (10 nm/50 nm, Appendix A.4) as shown in Fig. 4.3d. This leads to
very transparent contacts (50 Ωµm to 100 Ωµm) (see section 4.2.1) since the
exposed graphene edge never comes into contact with any solvent or polymer in
contrast to the fabrication of side-contacts as introduced by Wang et al [1]. For
all e-beam lithographic processes involved in the fabrication, we used 100 nm
to 300 nm thick PMMA 950K as a resist, exposed with a dose of 450 µC/cm2

to 500 µC/cm2 and developed with chilled (∼5 ◦C) IPA:H2O (7:3). This low-
stress development significantly improved the yield of non-cracked PMMA on
hBN since it reduces swelling of PMMA during development [33, 182]. The
cracking occurs on the first-hand due to the lower adhesion of PMMA to hBN
compared to SiO2.

4.2.1. Contact resistances

In a two-terminal measurement as illustrated in Fig. 4.4a, the overall resistance
is the sum of several contributions such as the line-resistance of the cryostat
(Rlines, which is a priori known), the contact resistance between leads and
graphene (RCT) and the graphene resistance (RG). All together it can be
written as:

R = 2Rlines + 2RCT +RG. (4.1)

Since normally RG is not know, it is impossible to extract RCT from equa-
tion (4.1). However, in the quantum Hall regime RG is well known, namely
RG = G−1

H where GH is given by equation 2.29. In this case, RCT can be
extracted from equation (4.1) the following way (Fig. 4.4b): by subtracting
a fixed resistance value (which corresponds to 2RCT) from the raw measure-
ment values (dashed lines) all the quantum Hall plateaus can be shifted to their
expected values (dashed, horizontal lines). The contact resistance per unit-
length is then given as RCT ·W . While the best self-aligned contacts were as
low as ∼50 Ωµm (Fig. 4.5a), the average is in the order of 100 Ωµm to 200 Ωµm.
For many devices the fixed resistance value which has to be subtracted from
the raw-data is higher for the hole-side compared to the electron-side. This
is because an additional p-n junction, giving rise to a p-n junction resistence
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Figure 4.4. Contact resistance extracted from quantum Hall mea-
surements. a, Two-terminal measurement configuration (Rlines not included
in the sketch) where the leads are given in orange, and the graphene in cyan.
b, Original conductance (dashed lines) and conductance where contact and
line resistance were subtracted.

Rpn, is established in the proximity of the contacts (which are n-doped) only
if the graphene is p-doped (see section 2.3.1). On the hole-side the subtracted
resistance value therefore accounts in fact for 2RCT + 2Rpn. Since Rpn is un-
known, we concentrate on the values extracted on the electron-side where Rpn
is absent. In Fig. 4.5a a summary of RCT (using equation 2.38 in the n-doped
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Figure 4.5. Device statistics. a, Contact resistance extracted from quan-
tum Hall measurements as shown in Fig. 4.4b. Total number of measurements:
56. b, Field-effect mobility extracted from two-terminal measurements using
equation 2.38. Total number of measurements: 80.
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4. Fabrication and basic characterization

regime) is given for over 50 measured junctions. The contact resistance were
extracted only for a fraction of all measured junctions, and contacts which are
not-working at all are extremely rare (below the percent range). An alterna-
tive approach to investigate the contact resistance at zero magnetic field even
as a function of charge carrier density is the transfer-length-method described
e.g. in Ref. [1]. However, since the dependence of the contact resistance on
charge carrier density was not the main focus of this Thesis, we did not inves-
tigate it in more detail. A statistics for the charge carrier mobility extracted
from field-effect measurements using equation 2.38 is shown in Fig. 4.5b.

4.3. Local gates

In this Thesis several physical transport effects relying on p-n junctions were
investigated. A prerequisite to form such p-n junctions is the ability to tune
multiple graphene regions independently (section 2.2). This can be realized
via the implementation of local electrostatic gates in combination with a global
back-gate. Here the fabrication details of two device types are given, which
consist either of a single p-n junction or two p-n junctions in series. While
the former was achieved via local bottom-gates, the latter was done via local
top-gates.

4.3.1. Local top-gates
The assembly of hBN/graphene/hBN heterostructures used for two-terminal
p-n-p junctions is summarized in section 4.2, with the additional modification
that in most cases narrow graphene flakes (<2 µm) are used. This is illustrated
in Fig. 4.3a. Narrow flakes are beneficial when fabricating p-n-p junctions using
local top-gates (in Fig. 4.3f) for two reasons: i) The spacing between the top-
gate and graphene is only defined by the thickness of the top-hBN layer which
can be chosen very thin. Therefore we can achieve high carrier concentrations
and we are able to establish relativly sharp p-n junctions. ii) No additional
etching step is needed to shape the graphene. Using the global back-gate and
a local top-gate the charge carrier density in the inner (nin) and outer (nout)
regions can be controlled separately. In order to reduce the cross-talk between
the gates we used a thin (10 nm to 30 nm) hBN layer. The charge carrier
density in the outer (nout) and inner (nin) cavity can be calculated according
to:

nout = (VBG − V 0
BG) ·

(
1

CSiO2
+ 1
ChBN,b

)−1

(4.2)

and

nin = (VBG − V 0
BG) ·

(
1

CSiO2
+ 1
ChBN,b

)−1

+ (VTG − V 0
TG) · ChBN,t (4.3)
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(a) (b) (c)

(d) (e) (f )

Figure 4.6. Fabrication of two-terminal p-n devices with local
bottom-gates based on few-layer graphene. a, Few-layer graphene
used for bottom-gates on substrate. b,c, Shaping the bottom-gates with a
PMMA:HSQ negative mask and subsequent O2 plasma etching. d, Transfer-
ring the pre-assembled hBN/graphene/hBN heterostructure on top. e, Expos-
ing the graphene edges using a CHF3:O2 plasma and subsequent metalization
to establish the side-contacts. It is important that the bottom-hBN is not
completely etched through. f, Shaping the graphene using again a CHF3:O2
plasma.

where CSiO2 ,ChBN,b,ChBN,t are the geometrical capacitances per unit area
(equation 2.40) of the SiO2, bottom and top hBN, VBG,VTG are the applied
back- and top-gate voltages and V 0

BG,V 0
TG are the offset voltages of the Dirac-

peak. The Cr/Au contacts dope the graphene in its proximity n-type, inde-
pendent of VBG.
For more complex device structures (e.g. Hall-bar) an additional etching-step
to shape the device prior to the fabrication of the top-gates might be neces-
sary. In this case the evaporation of a thin insulating layer (e.g. MgO) just
before evaporation of the top-contacts (using the same PMMA mask) has to be
added in order to passivate the exposed graphene edges. The latter prevents
shortening between top-gates and graphene.
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4. Fabrication and basic characterization

4.3.2. Local bottom-gates

The formation of p-n junctions using local top-gates is not very well suited, as a
very thick insulating layer would be required to separate the top-gate from the
leads2. Therefore we used local bottom-gates based on few-layer graphene to
locally tune the graphene in combination with the global back-gate [178]. The
fabrication of the local bottom-gates starts by etching the few-layer graphene
using a PMMA:HSQ hard-mask and a O2-plasma as shown in Fig. 4.6a,b. The
PMMA below the HSQ is used as a sacrificial layer which makes the lift-off very
simple using acetone. Afterwards a pre-assembled hBN/graphene/hBN het-
erostructure is transfered on top of the local bottom-gates, shown in Fig. 4.6c,
followed by the etching and evaporaton of the side-contacts shown in Fig. 4.6d.
Here an accurate control of the etching-rates is crucial since the bottom-hBN
must not be fully etched through to prevent shortening between the leads and
the local bottom-gates. This is illustrated in the inset of Fig. 4.6d. In the
last step the device is shaped into 1.5 µm wide graphene channels shown in
Fig. 4.6e,f. Again, the bottom hBN must not be fully etched through as with
this one might disconnect the various bottom-gate fingers which are connected
by one common contact. The charge carrier density in the two cavities tuned
by the global back-gate (nBG) and a local bottom-gate (nlbg) can be calculated
according to nBG = VBG · (1/CSiO2 + 1/ChBN,b)−1 and nlbg = Vlbg · ChBN,b.
Again, the Cr/Au contacts dope the graphene in its proximity n-type.

4.4. Etching of constrictions

In the previous sections the graphene heterostructures were etched into rectan-
gular devices. However, etching processes can as well be used to create nanorib-
bons as introduced in section 2.5.1 [126, 183–185], anti-dot arrays [186, 187],
narrow constrictions comparable to quantum point contacts [87] or even quan-
tum dots [188, 189]. In Fig. 4.7 transport through a narrow constriction of
W =110 nm (150 nm by design) is shown at zero and finite magnetic field. The
constriction was established by reactive ion etching the hBN/graphene/hBN
heterostructure using a PMMA mask and a SF6 plasma (see Appendix A.3.2).
The conductance as a function of gate voltage is shown in Fig. 4.7a in direct
comparison with the fully ballistic model given in equation 2.43 (including a
shift n0), which is in agreement with the measurement on the n-doped side.
A constant resistance accounting for the contact and line resistance was sub-
tracted by matching the quantum Hall plateaus (plateaus were adjusted on

2An alternative approach is to transfer an additional thin layer of hBN on top of the
device with the contacts established. However, in this case the capacitive coupling of
the top-gate to graphene varies within the first few hundred nanometers apart from the
contacts, since this is the distance it takes the hBN to fully relax for contacts being
∼70 nm thick.
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Figure 4.7. Constrictions in a two-terminal hBN/graphene/hBN
heterostructure. a, Conductance (contact resistance subtracted) as a func-
tion of gate voltage through a constriction as shown in (b). The black,dashed
line is the fit (equation 2.43) yielding W =111 nm. b, Illustration of transport
at finite magnetic field, where edge states can be transmitted or reflected at
the constriction. c, Numerical derivative of the conductance with increasing
magnetic field. The conditions of RC = W/2 is indicated with the red line,
and the filling-factors are indicated with the orange, dashed lines.

the n-doped side, section 4.2.1). By applying a perpendicular magnetic field
the charge carriers are moving in skipping orbits/edge states (section 2.1.3)
along the perimeter of the device as sketched in Fig. 4.7b. If the charge carriers
perform very small cyclotron orbits such that RC �W (for RC the charge car-
rier density within the bulk was assumed, equation 2.24), then they can pass
the constriction and the usual fan-plot is seen as shown in Fig. 4.7c with the
orange, dashed lines. However, by reducing the magnetic field and/or doping,
RC increases and around RC = W/2 the charge carriers start to be reflected
at the constriction [87].

4.5. Thermal annealing of hBN/graphene/hBN
heterostructures

Thermal annealing is supposed to aggregate contaminations in pockets result-
ing in larger areas of clean graphene [166, 175, 176] as mentioned in section 4.1.
The positive effect of thermal annealing was not only realized during fabrica-
tion, but as well in between measurements. Upon applying high gate voltages
to our heterostructures, the device quality sometimes degraded over a longer
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Figure 4.8. Self-cleaning properties of hBN/graphene/hBN het-
erostructures upon thermal annealing. a, Conduction map with FP
resonances clearly visible in the bipolar region. b, Same map after degrada-
tion of the sample where the FP resonances are nearly absent. c, Most of
the FP resonances are restored after thermal annealing at 200 ◦C for 20 min
(outside the cryostat). d, Linecuts as indicated in (a)-(c) in comparison.

time period (2 weeks). The degradation over time and the subsequent improve-
ment upon thermal annealing was observed in several samples independently.
In between the maps shown in Fig. 4.8a and 4.8b, the global and local gates
were swept over a wide range (e.g. ±60 V for the global back-gate) for an ex-
tended time period (2 days). An example before and after thermal annealing3
is shown in Fig. 4.8a-c. In Fig. 4.8d an identical linecut of the original (red),
degraded (green) and annealed (blue) sample are shown in comparison. We
speculate that the decrease of the device quality might come a charge trans-
fer into trapped-impurities in the SiO2 or hBN which cannot be de-charged
at low temperatures. An alternative explanation might be the migration of
contaminations when continuously sweeping the gates to high voltages. By
applying a thermal annealing step, these trapped charges (contaminations)
might be removed (aggregate again in pockets), leading to the recovery of the
high sample quality.

4.6. Cryogenic measurement setup

Measurements of all samples were performed in a cryogenic set-up with a vari-
able temperature insert (VTI) having a base-temperature of 1.5 K as sketched
in Fig. 4.9. Unless stated otherwise, measurement were performed at the
base-temperature. The system is equipped with a vector-magnet with maxi-

3No significant difference between annealing on a hotplate in air at 200 ◦C to 250 ◦C or
in a rapid thermal annealer under forming-gas atmosphere (Ar/H2) at 300 ◦C could be
found.
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Figure 4.9. Cryogenic measurement setup. Schematic of a set-up for
a typical voltage-biased measurement of the differential conductance at low
temperatures using standard low-frequency lock-in techniques. Adapted from
Ref. [190].

mum fields of BZ =9 T and BX =3 T. For the measurements, standard low-
frequency lock-in technique (Stanford SR830, frequencies were set in the range
of f =77.77 Hz to 277.77 Hz) was used to measure the differential conductance.
Unless stated otherwise, the excitation voltage was VAC =10 µV such that the
electronic excitation is below the bath-temperature (VAC < kBT/e where kB is
the Boltzmann constant). As DC-sources (for the gates or bias spectroscopy)
we used Yokogawa YK7651 with a maximum output voltage of 32 V. If needed,
home-made voltage-amplifiers were attached in order to reach ±60 V or more
as required for the measurements described in chapter 6. Furthermore home-
built low-noise I/V-converters were used. All measurement programs are based
on Labview.
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5 Point contacts in encapsulated graphene

Ga-FIB

SiO2

In previous chapters we have shown that high mobility graphene can be achieved
via encapsulation. However, in the fabrication shown before only the edge of
the graphene can be accessed via side-contacts [1]. A different type of con-
tacts, namely inner point contacts (PCs), are desirable to realize several theo-
retical proposals on graphene such as e.g. the Veselago lensing [164] in single
[28, 95, 191] layer graphene, valley [192, 193] or spin focussing [194] in graphene
or for the investigation of skipping and snake orbits of charge carriers at a p-
n junction at high magnetic fields [195, 196]. In order to make PCs in the
middle of the graphene sheet evaporated, sputtered or atomic layer deposited
dielectrics (e.g. MgO, SiO2 or Al2O3) have been used so far [163]. However,
these materials are inferior to hBN when it comes to the preservation of the
graphene quality [21]. Even though it is possible to establish PCs on graphene
using a STM tip, this is extremely challenging at low temperatures, especially
upon involving several PCs at the same time. While recently PCs were re-
alized to suspended graphene using the air-bridge technique [197, 198], their
contact-diameter remains quite large (∼1 µm). The results presented in this
chapter are describing a method to establish PCs in encapsulated graphene by
pre-patterning the hBN flake prior to the dry-stacking process. This allows to
contact the graphene at arbitrary position with contacts smaller than 100 nm
in diameter. The graphene quality is extracted from two- and four-terminal re-
sistance measurements which are compared with a simple electrostatic model.
Furthermore localization of the edge states around the PCs in a magnetic field
is shown, as expected for a proper inner contact in the quantum Hall regime.
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Figure 5.1. Fabrication of PCs on a hBN/graphene/hBN het-
erostructure (not to scale). a, Drilling the holes into the top-hBN using
a Ga-FIB. b, False color SEM image of the top-hBN on SiO2 substrate after
drilling the holes with the Ga-FIB. Inset: Close-up of a single hole. c, Expos-
ing the top-hBN flake to a CHF3/O2 plasma to avoid pinning of flake to the
SiO2 substrate. d, Removing the top-hBN flake with the holes from the SiO2
support by spin-coating PPC on top of the wafer and then peeling it gently of.
e, The remaining assembly of the hBN/graphene/hBN stack follows Ref. [1].
f, Optical image of a final stack where the different layers are indicated in red
(bottom hBN), black (graphene) and blue (top hBN). The holes are indicated
with arrows. g, False color SEM image of the final stack (cyan) with Pd con-
tacts (yellow) overlapping the drilled holes. h, Schematic of the cross-section
as indicated in (g) with pink arrows and the dashed line.

5.1. Fabrication

The herein presented method to establish PCs is based on pre-patterning the
top-hBN with a gallium based focused ion beam (Ga-FIB) prior to the dry-
stack assembly in contrast to establishing the holes with conventional e-beam
lithography and subsequent etching. The former method has the advantage
that the drilled holes are better defined in shape and the diameter can be
adjusted more reliably. For the Ga-FIB an acceleration voltage of 30 keV and
the smallest possible current (1.1 pA) was used in order to obtain highest res-
olution.
The hBN to be patterned was exofliated on a Si++/SiO2 substrate with a
315 nm thick oxide, using the scotch-tape technique. The chips were previ-
ously carefully cleaned using Piranha solution (Appendix A.1.1) since it is the
bottom face of the hBN which will later on contact the graphene. Once an
ideal hBN flake (10 nm to 30 nm) was identified by optical microscopy, the Ga-
FIB was used to drill several holes into the flake (with diameter d ∼100 nm
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5.2. Zero magentic field measurements

and a equidistant spacing of 1 µm to 2.2 µm) as sketched in Fig. 5.1a,b. Before
picking-up the hBN from the SiO2 wafer, it was briefly exposed to a CHF3/O2
plasma (Appendix A.3.1, but etching for only 15 s) as shown in Fig. 5.1c. It
turned out that without exposing the hBN flakes to the plasma, the hBN flakes
could not be picked-up from the SiO2 substrate. A possible explanation might
be that during the drilling of the holes with the Ga-FIB, SiO2 from the wafer
is sputtered on the side of the holes which pins the flake to the wafer. The
CHF3/O2 plasma removes this layer and allows therefore a successful pick-
up of the flake from the SiO2 chip. To pick-up the top-hBN, the SiO2 chip
was spin-coated with ∼1 µm of poly-propylene-carbonate (PPC) and backed
at 80 ◦C for 5 minutes. By peeling-off the PPC gently from the substrate,
as shown in Fig. 5.1d, all hBN flakes are transferred from the SiO2 onto the
PPC polymer. Peeling-off the PPC without breaking the hBN flakes works
best when slowly releasing the PPC at a low angle from the SiO2 chip (drilled
flakes are more likely to break). Since only the top side of hBN comes in
contact with the polymer, the method preserves the clean fabrication of dry-
stacking graphene. The PPC with the hBN flake was then placed on a home-
made PDMS stamp (∼0.5 mm thick). The remaining assembly procedure of
the hBN/graphene/hBN heterostructure follows the dry-stacking approach as
described in chapter 4 and shown in Fig. 5.1e. [1]. A contrast adjusted optical
image of the finished stack is shown in Fig. 5.1f. In the last step the 100 nm
thick palladium (Pd) contacts were established using standard e-beam lithog-
raphy and e-gun evaporation. A false color SEM image of the contact area is
shown in Fig. 5.1g with a cross-sectional schematic of the final device shown
in Fig. 5.1h as indicated with the purple arrows/dashed line in Fig. 5.1g. In
total 4 different samples were produced all showing a similar behaviour.
For the characterization we fabricated devices having 4 PCs (having an equidis-
tant spacing of 1 µm to 2.2 µm) as described above. In the following, first the
contact resistance and the field-effect measurements at zero magnetic field are
discussed. In the second part, the behaviour of the devices at high magnetic
field perpendicular to the graphene plane is presented.

5.2. Zero magentic field measurements

For the calculation of the charge carrier mobility, a model fitting the device ge-
ometry is introduced. The nomenclature of the various differential resistances
is given as Rij,nm = dVnm/dIij, with Iij flows from PC i → j and the voltage
Vnm measured as the difference between PC n and m, with i, j, n,m ∈ 1− 4.

5.2.1. Four-terminal measurements
Figure 5.2a shows Rij,nm for all possible four-terminal configurations. Out
of the six possible configurations, only three are independent: measurements
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Figure 5.2. Four-terminal measurement of the graphene resistance
between different combinations of PCs. a, The original four-terminal
resistance Rij,nm measured between the six different lead combinations. Mea-
surements with inverse voltage and current probes are identical. b, Resistance
of the same data presented in (a) multiplied by a factor depending on the mea-
surement geometry as given by equation 5.2. In the non-local measurement
R12,34, the voltage V = Vn − Vm was negative in the n-doped region.

with inverted current and voltage probes are identical as expected from the On-
sager relations [199]. The resistance traces show a sharp maximum around zero
doping, corresponding to the charge neutrality point (CNP) of graphene. For
rectangular graphene devices, where the current density within the graphene
sheet is constant, the mobility µ can be deduced by measuring the field-effect
of the longitudinal resistance Rxx, taking the length and width of the Hall bar
into account (equation 2.37). For PCs, which are situated in the middle of the
graphene sheet, a different formula has to be used since the current density
within the graphene sheet varies. Here a model to extract the sheet conduc-
tivity (σ) from the four-terminal measurement of the resistance is introduced,
assuming an infinite graphene sheet with a constant σ. The four contacts are at
positions ~rx with x = i, j, n,m and assuming diffusive transport. Starting from
a single PC at position ~ri, the current spreads isotropically into the graphene.
This leads to a current density of ~j(~r) = I/(2π|~r−~ri|) at distance |~r−~ri| away
from the PC, where I is the current. According to ~j(~r) = ~E(~r)σ, the electric
field ~E(~r) ∼ 1/|~r − ~ri| leads to an electrostatic potential V (~r) ∼ ln (|~r − ~ri|).
Assuming a current flow between two PCs from i→ j, the potential at position
~r is obtained by the superposition principle:

V (~r) = − Iij
2πσ ln (|~r − ~ri|) + Iij

2πσ ln (|~r − ~rj|) + C, (5.1)

where C is an integration constant. In the four-terminal measurement only
the voltage difference between the two leads at position n and m (Vnm =
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5.2. Zero magentic field measurements

V (~rn) − V (~rm)) is measured. For simplicity it is assumed that the voltage
probes do not influence the electric field pattern in graphene as shown in
Fig. 5.3a and b. This leads to

Vnm = Iij
2πσ ln

(
|~rn − ~rj|
|~rn − ~ri|

|~rm − ~ri|
|~rm − ~rj|

)
, (5.2)

from which the conductivity σ can be extracted from the measurement. Note
that equation 5.2 is mathematically equivalent to the van der Pauw method
[200, 201]. Using the linear relation between the conductivity and the charge
carrier density (equation 2.37) it is possible to deduce the mobility from
equation 5.2. The hole and electron doped region revealed mobilities of µh
∼35 000 cm2V−1s−1 and µe∼25 000 cm2V−1s−1 respectively. Similar mobili-
ties have been obtained using the onset of the Shubnikov de Haas oscillations
(section 2.1.3 and section 5.3). Confirmation that a single layer graphene is
encapsulated in hBN was given by the observed sequence of filling factors in
magnetic field and by Raman spectroscopy (not shown). From equation 5.2 it
follows that in case of a homogeneous σ, all four-terminal resistance measure-
ments can be renormalized according to

R̃ij,nm = Rij,nm ln
(
|~rn − ~rj|
|~rn − ~ri|

|~rm − ~ri|
|~rm − ~rj|

)−1

. (5.3)

With all four contacts at equidistant spacing the logarithm in equation 5.3
simplifies to ln(4), ln(3) or ln(3/4) depending on the measurement configura-
tion. If the model with all the assumptions is valid, all R̃ij,nm should be equal
and given by 1/2πσ. The difference between the original and renormalized
values can be seen in Fig. 5.2a and 5.2b, respectively. The renormalized val-
ues R̃ij,nm in Fig. 5.2b are not exactly overlapping, as would be expected for
a perfect system given in equation 5.3. However, one can see that the non-
local measurements (voltage probes outside the current path), shown in green,
which were in the original data smaller by a factor of 7.5 (8) from the blue
(red) curve, deviates now only by a factor of 2 (1.6) after renormalization. On
the other hand, the local measurements, the blue and red curves are in rather
good agreement before and after renormalization. Overall, the rescaled values
are much closer to each other than the unscaled ones, which indicates that the
theoretical model is realistic.
The deviations from the ideal case can be related to the boundary conditions
assumed for the model. The most significant deviations from the ideal model
are probably i) the finite dimensions of the metallic PCs and ii) the finite size
of the graphene sheet, which both change the electric field pattern. Besides,
the sheet conductivity does not seem to be fully uniform within the sample
as can be seen by the slight shift of the CNP between several measurements.
The charge neutrality points are at −2.6 V, −2.8 V and −4.8 V respectively
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5. Point contacts in encapsulated graphene

as shown in Fig. 5.2b. Finally, equation 5.3 was derived assuming a com-
pletely diffusive sample. However, the charge carriers in the sample are most
likely in an intermediate regime between the diffusive and the ballistic regime.
The scattering mean free path, as given in equation 2.41 can reach 1 µm at
VBG =30 V, which is in the same order as the contact distance a =2.2 µm.
In this intermediate regime it can occur that the voltage drop over a larger,
but clean (ballistic) area is lower compared to a smaller, but dirty (diffusive)
area. Moreover, for ballistic trajectories the probability of arriving at a con-
tact, which is farther away can be higher. This picture explains the negative
resistance at certain doping values observed in the non-local measurement in-
dicated with an arrow in Fig. 5.2b. For all the configurations where the voltage
probes are (at least partially) within the current path, the bias voltage will be
dominant and consequently no negative signal can be seen.

5.2.2. Two-terminal measurements and contact resistance
In order to extract the contact resistance RCT which arises between the metal
leads and the graphene, we turn to two-terminal measurements. To calculate
the contact resistance the two-terminal resistance R2T was measured between
the outer contacts (1,4) as sketched in Fig. 5.3a. In this case the contact
resistance can be calculated according to:

R2T = 2RCT +A ·R4T, (5.4)

where A ·R4T = A ·R14,23 is the intrinsic graphene resistance including a ge-
ometry factor A (which will be evaluated in the following) and R2T = R14,14.
Here we assumed the same contact resistance for the two contacts. Due to the
higher electric field near the source and drain contacts, shown in Fig. 5.3a,
the voltage changes faster near them. This can be seen in Fig. 5.3b, where
the potential along the line connecting the contacts is sketched. The resis-
tance coming from the non-linearity of the potential near the contacts is called
spreading resistance and leads to a potential difference that is marked as Vsp
in Fig. 5.3b [202]. It is of the same origin as Maxwell’s resistance that occurs
in metallic point contacts [203].
To calculate the geometrical factor A in equation 5.4, we used equation 5.2 in
combination with a cut-off at d/2 away from the singularity, where d is the
diameter of the contact. The cut-off is required because in reality the poten-
tial is not singular at position ~ri and ~rj, but constant within the metallic PCs
(|~ri,j − ~r| < d/2) as sketched in Fig. 5.3a. For i = 1 and j = 4 both terms in
the numerator and denominator of equation 5.2 become (3a − d/2) and d/2
respectively, where a is the distance in between two neighbouring contacts.
This leads to

R2T = 1
2πσ ln

[(6a
d
− 2
)2
]

+ 2RCT. (5.5)
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Figure 5.3. Contact resistance extracted from two- and four-
terminal measurements. a, The two-terminal measurement setup and a
sketch of the corresponding electric field profile. The two-terminal measure-
ment is performed between the two outer-most PCs which have a distance of
3a from each other, whereas the reference four terminal measurement between
contacts 2 and 3. b, The red, dashed line represents the linear interpolation of
V23 compared to the actual electrostatic potential (black, solid line) along the
line connecting the contacts. The resulting potential difference at distance d/2
from source- and drain-center is indicated with Vsp. c, Two-terminal resistance
between 1 and 4 is shown in red, whereas the four-terminal resistance R14,23
is shown in blue. Extracted contact resistance of the configuration given in
(a) using equation 5.4 and 5.6

.

Using R4T = R14,23 where R14,23 = ln(4)/(2πσ) the geometrical factor be-
comes:

A = ln
[(6a

d
− 2
)2
]

1
ln (4) . (5.6)

In Fig. 5.3c the extracted contact resistance is shown using a geometry factor
of A=7.04 (a=2.2 µm and d =100 nm). The contact resistance of different
contact configurations and different devices is of the order of RCT =0.5 kΩ to
1.5 kΩ at high doping. This value is quite remarkable for PCs of only 100 nm
in diameter since as well top-contacts with significantly larger areas (in the
order of µm2) have resistances in the kΩ range. Moreover, at high doping the
graphene becomes very conductive and the voltage-drop over the graphene is
minimal, therefore R2T ∼ 2RCT.
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Figure 5.4. Two- and four-terminal conductance as a function of
back-gate and magnetic field. a, The conductance between neighbouring
PCs (a =1 µm) becomes zero at high magnetic fields. The black area shows
the threshold for G <0.025 e2/h (R >1 MΩ). A linecut at B =15 T is given
on the right. b, Numerical derivative of the conductance (d/dVBG R12,34)
of a non-local measurement for another device as shown in (a) (a =2.2 µm).
The sequence of the filling factors (red, dashed lines), ν = ±2,±6, ... is in
agreement with the ones expected for SLG.

5.3. Magnetic field measurements

To further characterize the PCs a magnetic field perpendicular to the graphene
sheet is applied, which forces the charge carriers to move along cyclotron or-
bits (section 2.1.3). With a sufficiently high magnetic field the device is driven
into the quantum Hall regime, where the bulk of the sample is insulating, since
charge carriers will be localized either around the PCs or along the edges of the
sample, which decouples the PCs from each other and the edge of the sample.
In the case of a ballistic device (ωcτ > 1) which is homogeneously doped, one
would expect complete insulation as soon as the cyclotron orbit and the mag-
netic length are smaller than the distance between the PCs between which the
current flows. In Fig. 5.4a the two-terminal conductance between two neigh-
bouring contacts (a =1 µm) is shown as a function of back-gate and magnetic
field for a device with µ =15 000 cm2V−1s−1. The black region in Fig. 5.4a
represents values with G <0.025 e2/h (R >1 MΩ). It can be seen that the
sample becomes insulating, however the fields required are much higher than
expected. From simple consideration insulation should start around 2RCT < a,
which would lead to values of 0.5 T to 1 T. One possible explanation why such
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Figure 5.5. Coupling between PCs and edge states. a, If the graphene
is homogeneously doped, the PCs are spatially well separated from the edge
states and coupling between PCs and edge states (indicated with the white
arrows) is suppressed. b, However, if the charge carrier doping in the graphene
located below the contacts is different the separation between PCs and edge
states decreases which favours the coupling between PCs and edge states.

high magnetic fields are required to decouple the neighbouring PCs is based
on a variation of the charge carrier doping within the sample as sketched in
Fig. 5.5. The latter might be explained by local screening of the back-gate by
the top-contacts. This causes the back-gate to tune the charge carrier density
in the graphene located directly below the leads and the gaphene elsewhere
with a different efficiency. In this case some of the edge states will no longer be
restricted to the edges of the graphene (Fig. 5.5a), but can as well flow within
the bulk of graphene along boundaries of different filling factors (Fig. 5.5b).
The reduced spacing between PCs and edge states consequently leads to an
enhanced coupling between the latter, thus giving rise to short-cut currents
between the different PCs. However, we estimate that the screening changes
the gate efficiency by less than 4 % far away from the CNP, where the quantum
capacitance is high. Only close to the CNP, where the quantum capacitance
is small, the screening of the contacts changes the efficiency by up to 20 %.
Furthermore, an additional offset potential may emerge in the regions of the
top-contacts due the formation of a contact potential between the palladium
contacts and hBN. It is worth to emphasize that substantial part of the volt-
age drops in the region close to the contact. As already mentioned, doping
inhomogeneities exist within the sample, as can be seen from the shift of the
charge neutrality point between different two-terminal measurements. The
combination of all these effects can cause local differences in the filling factor,
which can account for the observed high threshold fields. In future devices
insulation at lower magnetic fields can be achieved by choosing devices with
smaller doping inhomogeneities, which can result from bubbles present in the
stacks. Moreover the inhomogeneous screening of the top-contacts or offset
potentials can be circumvented by careful design, in which the flake would be

69



5. Point contacts in encapsulated graphene

fully covered with a metallic plane to achieve a homogeneous doping situation.
Besides two-terminal measurements of neighbouring contacts, non-local mea-
surements in a four-terminal measurement geometry are performed. While in
a Hall-bar configuration a clear distinction between longitudinal- (Rxx) and
Hall-resistance (Rxy) can be done, in the samples presented the situation is
more complex due to the absence of a graphene edge which directly couples to
the contacts. As all four contacts are situated in a row, a separation between
longitudinal- and Hall-resistance is impossible. Nevertheless, in Fig. 5.4b the
non-local measurement clearly shows the evolution of the filling factors se-
quence ν = ±2,±6, ... with varying back-gate and magnetic field according to
equation 2.30.

5.4. Conclusion

In this chapter a method to establish inner point contacts with dimensions
of 100 nm in a hBN/graphene/hBN heterostructure was introduced. The pre-
sented technique is compatible with high-quality encapsulated graphene, since
the hBN flake is patterned prior to the stacking and therefore the graphene
remains clean. With further optimization of the cleanliness of the transfer
process one can expect higher quality devices. Since the method relies on dry
stacking technique mobilities around 100 000 cm2V−1s−1 or higher should be
achievable [1, 204, 205]. The technique also holds the potential to further de-
crease the contact size, since with the Ga-FIB hole diameters below d =20 nm
are possible. The PCs introduced here give the possibility to complement side
and top-contacts in complex devices. Since the publication of this work [92],
novel proposals appeared which include PCs as basic elements. An example is
given in Ref. [206] in which the creation of a highly directional electron beam
using PCs in combination with a parabolic p-n junction is used. The efficiency
of the latter was demonstrated by comparing the signal in a transverse mag-
netic focusing geometry (section 2.3.2), once with a collimation-lens, and once
without one.
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6 Fabry-Pérot resonances in a graphene/hBN
Moiré superlattice
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The study of Fabry-Pérot (FP) resonances have revealed themselves as a pow-
erful tool to investigate various aspects of graphene. Examples are the π-
shift of the FP resonances at low magnetic field originating from Klein tun-
nelling [14, 58, 59, 207] or the proof of ballistic transport over several microns
[40, 41]. While FP resonances and Moiré superlattices are intensively studied
in graphene on hBN, the two effects have not been discussed in their co-
existence. In this chapter we show confinement using band engineering based
on locally gated Moiré superlattices and the appearance of FP resonances de-
fined by the main and satellite DPs, playing the role of reflective barriers.
Although several aspects of FP cavities have been investigated, such as the
effect of the p-n junction smoothness on the visibility of the FP resonances
[41], the electronic tunability of the cavity size has not been studied. First, the
effect of the smoothness of the confining potential on the visibility of the FP
resonances is addressed. Furthermore the evolution of the FP cavity size as a
function of densities inside and outside the cavity in the absence of a super-
lattice is mapped, when the cavity is formed by regular p-n junctions. Using
a sample with a Moiré superlattice, it is shown that an FP cavity can also
be formed by interfaces that mimic a p-n junction, but are defined through
a satellite Dirac point due to the superlattice. By carefully analysing the FP
resonances informations of the band reconstruction due to the superlattice
can be deduced. The findings presented in this chapter are consistent with the
electron-hole symmetry breaking of the Moiré superlattice [110].
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6. Fabry-Pérot resonances in a graphene/hBN Moiré superlattice

6.1. Regular p-n-p

The measurement presented in this chapter were performed on a p-n-p junction
using a global back-gate and a local top-gate as sketched in Fig. 4.3. The length
of the overall device is roughly 1 µm while the width of the top-gate, which
was placed in the center of the device, is 230 nm. The charge carrier mobility
(µ) extracted from field-effect measurements yielded µ∼150 000 cm2V−1s−1.

6.1.1. Visibility of Fabry-Pérot resonances

In Fig. 6.1a the derivative of the differential conductance is shown as a function
of nin and nout for nout < 0. The visible fringes are FP resonances appearing
in the p-p’-p regime (bottom part, nin < 0) and p-n-p regime (upper part,
nin > 0). Specific cuts within an extended (red) or limited (blue, green) gate
range are shown in Fig. 6.1b. While the FP resonances in the inner (outer)
cavities are tuned predominantly by nin (nout) as indicated with the blue
(green) arrow in Fig. 6.1a, the FP resonances between the contacts depends on
both densities as indicated by the red arrow. The three types of FP resonances
are very different in their visibility ∆G/(2 〈G〉). Here ∆G is the difference
between the conductance at constructive and destructive interference, and 〈G〉
denotes the mean conduction in between oscillation maximum and minimum.
The FP resonances between the contacts yield the lowest visibility (∼ 1%),
those in the outer cavities yield an intermediate visibility (∼ 4%) and FP
resonances in the inner cavity yield the highest visibility (∼ 11%). In ballistic
graphene, the FP visibilities depend on the transmission/reflection properties
of the confining boundaries (p-n junction) as shown in equation 2.45. The
transmission/reflection probabilities of a p-n junction strongly depends on the
angle of the incoming charge carrier [76]. In the case of a “sharp” p-n junctions
((d� λF ), section 2.2.3), transmission of charge carriers is possible up to large
angles measured with respect to the p-n junction normal. In contrast, for a
very “smooth” p-n junction (d � λF ), only charge carriers at low angles are
transmitted (here this is around ∼20◦, although it depends strongly on the
gate voltages). Since the performed conductance measurement is not angle
resolved, the measured signal averages over all possible angles and leads to
smearing of the FP resonances. It turns out that for a smooth p-n junction,
which transmits a narrower range of angles, high FP visibilities can be observed
[41].
In the investigated devices one can discriminate between two types of p-n
junctions: i) the p-n junction created in the proximity of the contacts for
nout < 0 and ii) the p-n junction created using the global back-gate and local
top-gate. It is worth nothing that (ii) is much smoother compared to (i).
Following the above given argument one sees that the FP resonance visibility
is highest/lowest when the cavity is defined by two softer/sharper p-n junctions

72



6.1. Regular p-n-p

15
14
13G

 (e
2 /h

)

3

2

1

0

-1

-2

-3

4x1016

nout (m-2)

n in
 (m

-2
)

-1 0 1x1016

d/dnout G (e2/h)

-1.5x1016 -1.0 -0.5 0.0

22
21
20G

 (e
2 /h

)

19

50
30
10G

 (e
2 /h

)

(a) (b)

∆G/(2 G )~0.8%

∆G/(2 G )~4%

∆G/(2 G )~11%

3.43.02.6
VTG (V)

-12 -11 -10 -9
VBG corr. (V)

-30 30
VBG (V)

0-15 15

Figure 6.1. Fabry-Pérot resonances in a two-terminal p-n-p config-
uration. a, Numerical derivative of the conductance as a function of global
back-gate (VBG) and local top-gate (VTG). Here it is replotted as a func-
tion of charge carrier density in the outer (nout) and inner cavity (nin). The
three most important FP resonances present in the system are indicated. b,
Visibilty ∆G/ 〈2G〉 of the FP resonances indicated in (a) in comparison.

if L� lΦ (lΦ being the phase coherence length).

6.1.2. Extracting the cavity length

The effective cavity length (L) from the FP resonances in the central cavity
(cyan arrow in Fig. 6.1) deviates in most cases from the physical width of the
top-gate as shown in the following. The cavity width can be extracted from the
FP oscillations by assuming a FP resonator with a hard-wall potential (fixed
width of the cavity). Constructive interference occurs if the path-difference
between directly transmitted and twice reflected waves is equal to 2L = jλF,
where λF is the Fermi wavelength and j is an integer. The j-th FP resonance
can be rewritten as L√nj = j

√
π using λF = 2π/kF = 2

√
π/n which is valid

for single layer graphene. For two neighbouring peaks, for example j-th peak
at density nj and (j + 1)-th peak at density nj+1:

L =
√
π

√
nj+1 −

√
nj
. (6.1)
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Figure 6.2. Cavity-length as a function of doping. a, Extracted cavity
length of the central cavity as a function of nin, as indicated with the cyan
arrow in Fig. 6.1b for nout ranging from −0.1× 1016 m−2 to −1.7× 1016 m−2.
b, The same data as shown in (a), but now plotted as a function of nin/nout
for experiment (red) and theory (blue). The black, dashed line corresponds to
the width of the top-gate measured with the SEM. The blue, dashed lines are
a guide to the eye for the theoretical data and the theoretical data shifted by
30 nm respectively.

It is worth noting that in equation 6.1 L is independent of nout which is an
oversimplification of the problem. An alternative way to define the cavity
length is to measure the distance between the two zero-density points of the
right and left p-n junctions as it will be discussed in section 6.1.3. However,
since the position of the p-n junction is experimentally not directly accessible,
equation 6.1 will be used to deduce the cavity length.
The cavity length was extracted by taking various linecuts comparable to the
one indicated with the blue arrow in Fig. 6.1a and then using equation 6.1.
An increase of L with increasing nin (for fixed nout), and a decrease of L
with increasing nout (for fixed nin) can be observed as shown in Fig. 6.2a.
Consequently L does depend on nout, as expected. Surprisingly, by plotting
L as a function of nin/nout, all data points lie on one universal curve which
is shown in Fig. 6.2b, independent of the exact position within Fig. 6.1a from
which they have been extracted from. Within the applied gate range, L varies
substantially, by up to 200 nm, which corresponds to a shift of around 100 nm
per p-n junction. The evolution of L as a function of nin/nout extracted
from the experiment was compared with the one extracted from a transport
simulation (based on the method described in Ref. [41]) using equation 6.1.
The latter reveals good qualitative agreement with the experiment as shown
in Fig. 6.2b. The most significant difference between experiment and theory
are: i) an offset of ∆L ∼ 30 nm from the theory to the experiment and ii) a
disagreement between the trends of the two curves when approaching very low
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6.1. Regular p-n-p

charge carrier densities in the outer cavity, corresponding to large values of
nin/nout (the same is true when depleting the inner cavity, not shown here). In
the experiment the cavity length L saturates while it increases continuously in
the theory. A possible explanation for this might be that the measured sample
bears a residual doping (n∗) which is not present in theory. The residual doping
causes that for values below n∗ the electrostatic gates are unable to further
deplete the graphene, thus for VBG → 0 the effective value of nin/nout (tuning
L) remains fixed (section 2.3.1, Fig. 2.9c). On the other hand, the offset of the
two curves might originate from a too narrow top-gate in the theoretical model
if the top-gate in the experiment was measured with an error of ∼30 nm.

6.1.3. Definition of the cavity length

In equation 6.1 introduced in the previous section the cavity length was ex-
tracted from consecutive peaks of constructive interference in the measure-
ment. However, the extracted cavity length in this case does not correspond
to the distance between the two points of zero charge carrier density of the
left and right p-n junction, as one might think intuitively. In this section the
difference between the cavity length extracted from transport measurements
(Ltr) and from electrostatic considerations (Lel) shall be elaborated. Further-
more, two additional aspects which account for minor corrections on the cavity
length are discussed.

Cavity length from electrostatic calculations (Lel)

Probably the most straight-forward definition of the cavity length in a p-n-p
junction is by the distance between the two points where the charge carrier
density is zero. In the simulation, for every set of (VBG,VTG) a density profile
along the x-axis (defined perpendicular to the p-n junction, x = 0 is centred in
the middle of the top-gate) was calculated based on the quantum capacitance
model for graphene [208] with classical self-partial capacitances simulated us-
ing FEniCS [209] and Gmsh [210]. The evolution of Lel (inner cavity) as a
function of nin for the linecuts indicated in Fig. 6.3a are shown in Fig. 6.3b
(bold lines). Note that the transport simulation in Fig. 6.3a is based on the
same electrostatic model. Furthermore, three exemplary profiles (zoom near
the right p-n junction of the inner cavity) are shown in Fig. 6.3c.

Cavity length from transport measurements (Ltr)

The cavity length extracted from the position of two neighbouring FP peaks,
assuming a FP resonator with a hard-wall potential, is given by equation 6.1.
Using a box-shaped potential is an oversimplification and can lead to a differ-
ence compared to Lel which is shown in Fig. 6.3b. The shaded region account
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Figure 6.3. Definition of the cavity length. a, Transport simulation
reproducing the Fabry-Pérot pattern observed for the regular p-n-p junction
in the experiment. The linecuts indicated with 1-5 are at identical positions
with those extracted from the experiment. b, Comparison of the cavity length
extracted from the transport simulation (Ltr) using equation 6.1 (line + mark-
ers) and the cavity length extracted from electrostatic calculations (Lel, bold
line) for different cuts as indicated in (a). Depending on the inner and outer
cavity-doping, Ltr can be larger or smaller than Lel. The two models are in
best agreement for high doping of nin and nout such as shown for cut 5. c,
Three different density profiles where Ltr > Lel, Ltr = Lel and Ltr < Lel. The
inner cavity is centred around x = 0 nm.

for Lel > Ltr. Furthermore, in Fig. 6.3c the calculated Ltr is sketched in direct
comparison with the calculated density profile from electrostatics simulations.

Second order corrections

Besides the major difference of assuming a box-shaped hard-wall potential,
there are further smaller corrections leading to a difference between Ltr and
Lel:

• Assume there is a density-profile as indicated in Fig. 6.4a. Since the
trajectories contributing most to the FP signal have a finite incident
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Figure 6.4. Second-order corrections of the cavity length. a, Finite-
angles of the interfering trajectories and b, a gradual transition of the charge
carrier density at the p-n junction causes an additional deviation of Ltr from
Lel.

angle θ (for θ = 0 one ends up with Klein tunneling, thus no contribution
to the FP [14, 15, 211, 212]), the extracted Ltr actually corresponds to
the diagonal distance. Therefore the real cavity length (which is given
in this case by Lel) is given by Lel = Ltr cos(θ). In this case Ltr over-
estimates the real cavity size. Since the charge carriers with a small
incident angle (with respect to the p-n junction normal) account for
most of the FP signal, this results only in a minor correction.

• Because the density profile is smooth and not abrupt, this leads to a
bending of the charge carrier near the n = 0 density line as sketched
in Fig. 6.4b. Charge carriers are therefore reflected before they hit the
n = 0 density line, which will make the effective cavity size shorter [76]
(section 2.2.3). However, since the trajectories of the charge carriers are
bent, and in addition the density is varying while approaching the p-n
junction, it is hard to make any statements if these two effects will lead
to an over- or under-estimation of the cavity size.

In conclusion, using equation 6.1 to extract the cavity length from FP reso-
nances gives slightly different results than using the definition based on sim-
ulated carrier densities. The extracted cavity lengths Ltr and Lel are only in
good agreement (over a longer density range) when the outer and inner cavi-
ties are highly doped, which is best satisfied for Cut 5 as shown in Fig. 6.3c.
The latter is understandable since at high doping the transition from p- to n-
region is sharper than for low doping, thus best resembling a box-potential.
Nevertheless, using equation 6.1 for the whole gate/density range is justified by
the fact that for both, experiment and theory, the same quantity is extracted.
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Figure 6.5. Fabry-Pérot resonances in in the presence of a Moiré
superlattice. a, Numerical derivative of the conductance as a function of nin
and nout. The red, cyan and green lines indicate the regular FP resonances
described in Fig. 6.1. Additional FP resonances emerge if nin or nout is tuned
beyond a satellite Dirac peak. These FP resonances are indicated with orange
and purple arrows. The position of the main and satellite DPs are indicated
with black and purple/orange triangles respectively. b,c, High-resolution mea-
surements (d/dninG (e2/h)) of the regions where the inner cavity is tuned
beyond the satellite DP and the additional FP resonances are present.

6.2. Moiré p-n-p

In the following, graphene which is aligned with a small twist angle with
respect to the top hBN layer (section 2.4) is discussed. The resulting band
reconstruction includes additional satellite DPs which are indicated with the
purple and orange triangles in Fig. 6.5a where the derivative of the conductance
is plotted. The main DP is indicated with the black triangle. At low doping
the semi-transparent boundaries in the bipolar region are defined by the main
DP (comparable to Fig. 6.1a) and FP resonances within inner and outer cavity
are observed, marked by the green and cyan arrows, respectively.
Whereas in Fig. 6.1a,b the contacts are the only boundaries leading to FP
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Figure 6.6. DOS of graphene in the presence of a Moiré superlattice.
a-c, Calculations of three different families of band reconstructions using dif-
ferent model-parameters. The blue, dashed line indicates the DOS of graphene
in the absence of a Moiré superlattice. Figure adapted from Ref. [110].

resonances in the unipolar regime (red arrow), additional semi-transparent
boundaries, formed by the satellite DPs, emerge at high doping in the presence
of a superlattice. As a result, novel FP oscillation are visible at high doping
as indicated with the purple and orange arrows in Fig. 6.5a, which are absent
in Fig. 6.1a (no Moiré superlattice). This new set of FP oscillation resembles
again the pattern known from the bipolar regime and the transition from
FP resonances across the whole sample to FP resonances within the inner
and outer cavity is a direct consequence of the satellite DPs forming these
additional semi-transparent boundaries. There are also charge carriers that
bounce between the contacts and the satellite DP boundary, leading to weak
resonances as a function of nout (not shown).

6.2.1. Visibility of Fabry-Pérot resonances

Next, the visibility between FP resonances across the main DP and the satellite
DPs within the inner cavity for nin > 0 and nin < 0 shall be compared sepa-
rately (µ∼100 000 cm2V−1s−1). Charge carriers for nin < 0 (hole side) bounc-
ing between boundaries formed by the satellite DPs (∆G/(2 〈G〉) ∼ 0.9%)
show a visibility that is 40% lower than the visibility of the main DP oscil-
lation (∆G/(2 〈G〉) ∼ 1.5%), as shown in Fig. 6.5a. In contrast, for nin > 0
(electron side), the visibility is reduced by 85% (∆G/(2 〈G〉) ∼ 0.4% at the
satellite DP compared to ∆G/(2 〈G〉) ∼ 3% at the main DP). To interpret
these observations, a family of possible Moiré minibands for graphene on hBN
substrate, as introduced in section 2.4 and shown again in Fig. 6.6, shall be
considered. The latter were calculated by Wallbank et al. [110] using a general
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symmetry-based approach.
For the case of nin < 0, when crossing the satellite DP on the hole side, the
DOS between inner and outer cavity decreases to zero for all kx,y, independent
on the model used. The latter can be seen in Fig. 6.6. The position of the
satellite DP is indicated with the purple triangle in Fig. 6.5a. The decrease of
the DOS to zero is experimentally supported by capacitance spectroscopy of
hBN/graphene/hBN heterostructures in the presence of a Moiré superlattice
[100]. The vanishing DOS leads to similar reflection/transmission coefficients
as for the main DP, resulting in a comparable visibility of the two FP reso-
nances. A representative cut at fixed nin < 0 is shown in Fig. 6.5c.
For the electron side with nin > 0, the significantly reduced visibility is as well
in qualitative agreement with the band structures shown in Fig. 6.6, since the
DOS at the satellite DP is reduced (depending on the parameters used in the
calculation), but never vanishes. The position of the satellite DP is indicated
with the yellow triangle in Fig. 6.5a. A representative cut at fixed nin > 0 is
shown in Fig. 6.5b. A direct implication of the finite DOS is that only some
charge carriers have a non-zero reflection coefficient, thus contributing to the
FP resonances, while the remaining ones account for a background current. It
is worth noting, that even though the visibility of the FP resonances across the
electron side satellite DP (nin,out > 0) are significantly reduced, they seem to
be more regular over a wider gate range compared to the FP resonances across
the hole satellite DP (nin,out < 0). However, this could be as well just sample-
specific since the mobility in the hole side is significantly lower compared to
the electron side.

6.2.2. Cavity length

In Fig. 6.7a,b the evolution of the position of the individual FP resonance
peaks (|nout| ∼ const.) and their relative spacing ∆nin as a function of nin
are compared. The latter analysis is performed instead of the cavity length
analysis since equation 6.1 does not hold any more if the Fermi energy is
tuned beyond the satellite DP. This is because in equation 6.1 a circular Fermi
surface and linear dispersion relation are assumed, which do not hold in the
presence of a strong band-modulation. In contrast, mapping the FP resonance
peak position as a function of charge carrier density is free of any assumptions
and therefore independent of the band structure. If the semi-transparent inter-
faces are defined via the main DP, the evolution of ∆nin between neighbouring
peaks as a function of nin is in good agreement with the values extracted from
theory (transport simulation in the absence of a Moiré superlattice), which
is indicated with the black, dashed line in Fig. 6.7b. If the semi-transparent
interfaces are defined via the satellite DPs, the density-spacing between the
FP resonance peaks is further increased on both, the electron and hole side.
Although a precise extraction of the cavity size is not possible with equa-
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Figure 6.7. Fabry-Pérot resonances in in the presence of a Moiré
superlattice. a, Position of the individual FP resonance peaks and b, their
relative spacing ∆nin as a function of nin. The black, dashed line indicates the
values expected from theory. If the semi-transparent boundaries are defined
via the satellite DP the spacing is further increased. However, no precise trend
of ∆nin (increasing or decreasing) as a function of nin can be seen from the
few data-points extracted.

tion 6.1, an estimate can still be given. A cavity size of L∼250 nm to 310 nm
is found on the electron side if the density is measured from the main DP,
whereas setting the density to zero at the satellite DP gives an unphysical
cavity size (L∼80 nm to 200 nm). On the electron side the density of states
seems almost unaltered (Fig. 6.6), however the band structure is substantially
modified, which can be seen in Fig. 2.15. The band structure consists of two
non-isotropic bands above the satellite DPs which makes the situation rather
complex, with different visibilities and angle dependent transmissions for the
two bands. On the hole side the cavity size analysis yields cavity sizes of
L∼280 nm to 360 nm if the density is measured from the main DP. At the
satellite DP the density of states decreases to zero, meaning that a real Dirac
point is formed. Therefore one might expect, that the density for the FP os-
cillations should be measured from the satellite DP. However by setting the
charge carrier density to zero at the hole satellite DP, the analysis gives un-
physical results. Note that that close to the hole satellite DP equation 6.1
should be valid if counting the charge carrier density from the satellite DP,
since the band structure is isotropic.
Besides the most pronounced FP resonances indicated with the purple arrow
in Fig. 6.5c, a second set of resonances with a much shorter period seem to
appear in the very vicinity of the hole satellite DP (see inset of Fig. 6.5c).
For these resonances the extracted cavity length leads only to reasonable
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6. Fabry-Pérot resonances in a graphene/hBN Moiré superlattice

values (L∼300 nm) when counting the charge carrier density starting from
the satellite DP. Unfortunately the residual doping (nres∼0.4× 1015 m−2 to
1× 1015 m−2) was too high in order to resolve more of these features in the
very vicinity of the satellite DP. A possible explanation for the different be-
havior of the two sets of FP oscillation (nout < 0) might be the following:
The small resonances are only observed up to densities of ∆n<2× 1015 m−2

(where ∆n is measured from the satellite DP), where the Moiré miniband
remains close to Dirac like (linear dispersion relation as shown in Fig. 2.2).
The Fermi energy corresponding to theses small oscillations is consequently
exclusively tuned in the linear part of the Moiré miniband. From the band
structures it would be expected that the small oscillations should be visible up
to higher doping values, namely values which are larger by a factor of up to
∼ 10 depending on the model. This estimate is based on the energy-spacing
between the satellite DP and the first van Hove singularity at higher energies,
extracted from theory. Note that the extracted energy-spacing corresponds to
an upper bound within which the dispersion relation might be considered as
linear. The Fermi energy corresponding to the stronger resonances indicated
with the purple arrow, does partially reside outside of the linear region of the
Dirac cones where the band structure becomes more complex, including sin-
gularities and band-overlaps.
In the work of Lee et al. [33] they suggest that model 3 shown in Fig. 6.6c is the
one describing the experimental situation best (see as well section 2.4.1). Fur-
thermore, for models where multiple satellite DPs appear near every main DP
(e.g. the model shown in Fig. 2.15a), equation 6.1 would have to be multiplied
by a factor of √gSDP, where gSDP is the additional degeneracy of the satellite
Dirac cones. Upon including additional degeneracies and counting the density
from the satellite DP, the more pronounced oscillations might give reasonable
cavity sizes. However, for the small and fast oscillations, the additional de-
generacies would definitely result in too large cavity sizes. Moreover, most
experimental evidence including QHE measurements (section 2.4.1, Fig. 2.14)
point to a single Dirac cone at the satellite DP.

6.3. Low magnetic field measurements

Magnetic field measurements can complement the measurements done at zero
magnetic field as they reveal additional information on the charge carriers
in the system such as the sign of the charge carriers (electrons or holes)
in quantum Hall measurements [103] or their Berry-phase by measuring the
evolution of the FP resonances with magnetic field [37, 58, 207]. FP res-
onances disperse towards higher doping (k values) with increasing magnetic
field [37, 40, 41, 44, 58, 59]. This results from the resonance condition ∆θWKB+
ΦAB = const. where ∆θWKB is the Wentzel-Kramers-Brillouin phase acquired
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Figure 6.8. Low magnetic field measurements of the FP reso-
nances across the main and satellite DPs. Conductance oscillations
due to FP resonances where a background was subtracted. a, FP resonances
across the main DP with nin > 0 and nout∼0.3× 1016 m−2. b,c, Measure-
ments across the satellite DP with nin < 0 where nout∼− 0.7× 1016 m−2

and nout∼− 2.8× 1016 m−2. d,e, Measurements across the satellite DP with
nin > 0 where nout∼2.1× 1016 m−2 and nout∼2.8× 1016 m−2.

on the path of the charge carriers trajectory, and ΦAB is the Aharonov Bohm
phase [37, 207]. For single layer graphene the Berry’s phase is π as discussed
section 2.1.2. This has been observed experimentally in FP measurements [58]
and quantum Hall measurements [12]. In Fig. 6.8 low magnetic field measure-
ments are shown for FP oscillations across the main DP (a) and the satellite
DP in the hole (b,c) and electron (d,e) doped region. The black lines in Fig. 6.8
were extracted numerically and track the peak position of the FP oscillations
with magnetic field. In Fig. 6.8a the FP resonances across the main DP with
a π-shift at roughly B∼30 mT to 50 mT is shown. Following the previously
given argument, one might expected as well a π-shift for the FP resonances
across the satellite DP on the hole side, since there the DOS drops to zero
comparable to the main DP. However, measurements at different nout, shown
in Fig. 6.8b,c, did not allow a conclusive statement whether such a π-shift is
present or not. It seems however that for both of the presented situations an
intriguing pattern appears at low magnetic fields (i.e. B<200 mT). At higher
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field, the FP oscillations disperse constantly. On the electron side (nin > 0,
shown in Fig. 6.8d,e) the situation is even less clear.

6.4. Conclusion

In conclusion, p-n-p junction were first analyzed in the absence of a Moiré su-
perlattice where the varying visibility of the different types of FP resonances
could be linked to “sharp” and “smooth” p-n junctions in the system. Fur-
thermore, the change of the effective cavity length depending on nin and nout
could be mapped via the FP resonances. In a second sample, the presence of
a Moiré superlattice gave rise to satellite DPs and the modified band struc-
ture resulted in confinement of electronic trajectories and in the appearance of
FP resonances. Although the oscillations are formed in the Moiré minibands,
they can mostly be described as if they would originate from the non-modified
band structures. Further studies will be needed to explain these findings. The
results presented in this section show that confinement of electrons can be
obtained using miniband engineering. Future studies can investigate the angle
dependent transmission properties of such an interface. Moreover combining
the studies of transverse magnetic focusing [33] and bias spectroscopy studies
of FP resonances or more detailed studies of the magnetic field dependence of
FP resonances can reveal further details on the band reconstruction.

84



7 Co-existence of classical snake states and
Aharanov-Bohm oscillations along
graphene p-n junctions

Snake states and Aharanov-Bohm interferences are examples of magnetocon-
ductance oscillations which can be observed along a graphene p-n junction.
Even though they have already been reported in suspended and encapsulated
devices including different geometries, a direct comparison remains challenging
as they were observed in separate measurements. Due to the similar experi-
mental signatures of these effects a consistent assignment is difficult, leaving
us with an incomplete picture. Here we present measurements on a single p-n
junction revealing several sets of magnetoconductance oscillations allowing a
direct comparison of the latter. We analysed them with respect to their charge
carrier density, magnetic field, temperature and bias dependence in order to
assign them to either the snake states or the Aharanov-Bohm oscillations.
Surprisingly we find that snake states and Aharanov-Bohm interferences can
co-exist within a limited parameter range1.

1This chapter represents a preliminary version of a publication (parts of the measurements
are still being discussed) which will be available soon.
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7.1. Introduction

Magnetoconductance is the change of the conductance as a function of mag-
netic field B and is important from both application (e.g. GMR [213, 214],
TMR [215], etc.) and a conceptual point of view (e.g. Aharanov-Bhom effect).
Graphene, which is a zero-gap semiconductor, is an ideal platform to investi-
gate magnetoconductance oscillations along p-n junctions - something which
is difficult in conventional semiconductors. Prominent examples of the latter
are snake states [35–38, 216, 217] and Aharonov-Bohm interferences [46, 218].
While the former effect is usually explained using the picture of classical skip-
ping trajectories at low magnetic field, the latter is commonly explained using
the picture of quantum Hall edge states at high magnetic fields. However,
their signatures are very alike and it is difficult to distinguish the two from
each other. Note that the observation of an Aharanov-Bohm effect requires
phase coherent transport, while snake states are based on ballistic transport.
Here we present measurements in a two-terminal graphene p-n junction in
which both effects are observed simultaneously. This allows a direct com-
parison with respect to their gate, field, temperature and bias dependence,
resulting in a consistent assignment of the different oscillations to their true
origin.

This chapter is organized as follows: First we introduce the most relevant
concepts of snake states and Aharanov-Bohm oscillations along graphene p-
n junctions. Then we present measurements of several sets of magnetocon-
ductance oscillations within the bipolar regime. These magnetoconductance
oscillations are carefully analysed with respect to their gate, magnetic field,
temperature and bias dependence. We show that these oscillations can be
attributed to either snake states or Aharanov-Bohm oscillations as introduced
previously. We furthermore support our findings with theoretical calculations
and quantum transport simulations. Finally, we briefly discuss an additional
type of magnetoconductance oscillations.

7.1.1. Snake states

Skipping trajectories which are moving along a p-n junction are referred to as
snake states [35–38]. The name of snake states originates from the resemblance
with a snake if the classical trajectories are drawn. The trajectories bend in
opposite direction on the two sides of the p-n junction due to an opposite
Lorentz force, as sketched in Fig. 7.1a. Charge carriers with trajectories having
a small incident angle with respect to the p-n junction normal are transmitted
very effectively from the n- to p-doped region of the graphene (and vice versa)
due to Klein-tunneling [14, 15, 76]. In the simplest case the p-n junction
is step-like and symmetric, and the cyclotron radius (equation 2.24) is the
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Figure 7.1. Concept of snake states and Aharanov-Bohm interfer-
ence along a graphene p-n junction. a, Snake states seen in the frame-
work of classical skipping orbits for two different magnetic field values (blue
and red trajectories). b, Principle of Aharonov-Bohm interferences between
edge-states propagating along a graphene p-n interface. At high filling fac-
tors (ν) several different areas are enclosed (green shaded area). However,
the Aharonov-Bohm interference including the least scattering events (Φ1) is
expected to dominant over those which require more scattering events (Φ2,
indicated with the reduced opacity). c, At high magnetic fields Aharonov-
Bohm interference can occur between the spatially separated edge states of
the degeneracy lifted lowest Landau level. The green area corresponds to the
insulating region with ν = 0.

same constant value on both side. However, a more realistic model includes
a gradual change of the charge carrier density across the p-n junction, which
is illustrated in Fig. 7.1a. For a p-n junction which is located parallel to the
y-direction this gives rise to an electric field ~Ex, and consequently a drift-
velocity along the y-direction which results from ~E × ~B [37]. By solving the
semiclassical equations of motion for an ideal graphene p-n junction where the
charge carrier density changes linearly, the skipping-length λS is given by (see
appendix B.1):

λS =
(
π~
eB

)2 |nL − nR|
dn

(7.1)

where nL,nR are the charge carrier densities in the bulk of graphene and dn
is the width across which the charge carrier density varies. Note that S =
|nL − nR|/dn corresponds to the slope of the charge carrier density profile.
The conductance oscillations which can be measured across the p-n junction
of length W can be described by the phenomenological model according to:

G(E) ∼ cos
(
π
W

λS

)
, (7.2)
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which describes the commensurability between λS and W . The cosine itself
accounts for a smooth conductance oscillation. The magnetic field spacing
resulting from equation 7.2, which deviates from the equidistant magnetic field
spacing using an abrupt p-n junction [38], and the temperature dependence
will be discussed later.

7.1.2. Aharanov-Bohm oscillations

While at low magnetic fields the motion of the charge carriers is well described
using the picture of skipping and snaking trajectories along edges and p-n
junctions, upon increasing the magnetic field one enters the quantum regime
where the transport is commonly described with edge states as discussed in
section 2.1.3. The concept of interference formed by spatially separated edge
states is already extensively studied in 2DEGs, including the realization of
Fabry-Pérot and [219] Mach-Zehnder [220] interferometers. The concept of an
interferometer formed by spatially separated edge states in graphene was first
introduced by Morikawa et al. [46]. Coupling between the edge states across
the p-n junction, illustrated in Fig. 7.1b,c with the black, dashed arrows, is
restricted to the disordered graphene edges [46, 218]. As the edge states encir-
cle an enclosed area A at finite perpendicular magnetic field B, the acquired
Aharanov-Bohm phase is given by Φ where Φ = AB is the magnetic flux.
The conductance oscillations can be described by the phenomenological model
according to:

G(E) ∼ cos
(

2π Φ
Φ0

)
, (7.3)

where Φ0 =h/e is the magnetic flux quantum [221]. If multiple Landau lev-
els are populated, several different areas might be enclosed. However, the
Aharanov-Bohm interferences including the least scattering events between
neighbouring edge states, which correspond to Φ1 in Fig. 7.1b, dominate over
those including more scattering events (Φ2). At high magnetic fields the Lan-
dau levels can be partially (or fully) degeneracy lifted. This leads to a spatial
seperation of the edge states associated with the lowest Landau level by an in-
sulating region (ν = 0), as shown in Fig. 7.1c. The idea of an Aharonov-Bohm
interference was generalized by Wei et al. [218] by considering full degener-
acy lifting of the Landau levels. In this case scattering between edge states is
only possible if they are of identical spin, consequently giving rise to two sets
of magnetoconductance oscillations - one for each spin-channel. An increase
of the spacing between neighbouring edge states results in a decreases of the
scattering rate at the flake edge between edge states, giving rise to a reduced
oscillation amplitude. The magnetic field spacing and the temperature de-
pendence of the Aharanov-Bohm dependence will be discussed later in this
chapter.
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7.2. Measurements

7.2.1. Gate-gate dependence
In Fig. 7.2 and Fig. 7.3 the two terminal conductance and its numerical deriva-
tive are shown as a function of the global back-gate (VBG) and the local
bottom-gate (Vlbg) within the bipolar regime at selected magnetic fields. Zero
voltage of the global back-gate or local bottom-gate corresponds roughly to
zero doping in the left or right cavity of the sample. In the gate-gate map,
fine lines are visible along which the conductance is constant, and perpen-
dicular to these lines the conductance oscillates. Within the measured gate
and field range we find three different types of magnetoconductance oscilla-
tions which are labelled with the red, orange and cyan arrows/dashed lines.
All of them have a roughly hyperbolic line shape being asymptotic with the
zero-density lines related to either of the two sides of the samples. However,
they are observed within different parameter ranges. The filling factors (equa-
tion 2.30) corresponding to the bulk value of the cavity tuned by the global
back-gate and local bottom-gate are indicated with the green and purple ar-
rows in Fig. 7.2/Fig. 7.3. The yellow, dashed lines correspond to |ν| = 1 and
|ν| = 2 respectively. Upon comparing the different magnetoconductance oscil-
lations it can be seen that the cyan ones exists at very low filling factors (start-
ing at |ν| > 1), the red ones exist at intermediate filling factors and the orange
ones exist at the highest filling factors. For one orange set, the filling factor val-
ues where the oscillations start to appear are around (νBG, νlbg) ∼ (−4, 8), for
the other orange set around (νBG, νlbg) ∼ (−8, 4). Furthermore, the spacing
of neighbouring conductance oscillations as a function of charge carrier doping
differs significantly for the cyan, red and orange oscillations. Additional lines
at low filling factors, which become more pronounced at higher magnetic field,
are fanning out linearly from the common charge neutrality point. These are
attributed to valley-isospin oscillations and will be discussed in chapter 8.
While for the magnetoconductance oscillations which is labelled with red only
one set is observed, two sets are observed each for the ones labelled with or-
ange and cyan. The two sets of the orange and cyan magnetoconductance
oscillations respectively are furthermore shifted in doping with respect to each
other. Using a device with a geometry enabling gate defined p-n-p or n-p-n
junctions (not shown here) it is possible to exclude that the two orange sets
of magnetoconductance oscillations originate from an additional p-n junction
formed between n-doped graphene near the Cr/Au contacts and a p-doped
bulk.
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Figure 7.2. Conductance of a p-n junction in the bipolar regime
for different magnetic fields. The filling factors are given in green for
the cavity tuned by the global back-gate (νBG), and in purple for the cavity
tuned by the local bottom-gate (νlbg). The yellow, dashed lines indicate filling
factors 1 and 2. The different types of magnetoconductance oscillations are
indicated with the red, orange and cyan arrows/dashed lines.
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Figure 7.3. Numerical derivative of Fig. 7.2 with respect to Vlbg. The
labelling of the magnetoconductance oscillations and filling factors is equiva-
lent to Fig. 7.2.

This is in agreement with quantum transport simulations (see section 7.5),
where two sets of orange magnetoconductance oscillations are reproduced
without including metal leads. Therefore, a double set of oscillations must
be the sign of two different interferometer loops working simultaneously near
the p-n junction in the bulk (see Fig. 7.1b).

91



7. Co-existence of classical snake states and Aharanov-Bohm oscillations
along graphene p-n junctions

3 4 5 6
B (T)

-15

-25

-30

V cu
t (

V)

-20

7 8

d/
dV

cu
t G

 (e
2 /h

)

1

-1

V cu
t (

V)

-5

-10

-15

-20

-25

-30(a)

2 3 4 5
B (T)

6

(b)

Figure 7.4. Magnetic field dependence. a, Numerical derivative of
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in Fig. 7.2/Fig. 7.3 with “Cut (a)”. Within a limited parameter range the
magnetoconductance oscillations indicated with the red and orange arrows
and the red and the cyan arrows, are co-existing. The latter can be better
seen in b, along the linecut as labelled in Fig. 7.2/Fig. 7.3 with “Cut (b)”.

7.2.2. Magnetic field dependence

Next we measured selected linecuts as indicated in Fig. 7.2/Fig. 7.3 with “Cut
(a)” and “Cut (b)” as a function of magnetic field. The differential conduc-
tances as a function of magnetic field and gate voltage are show in Fig. 7.4a,b.
The three magnetoconductance oscillations, which are labelled with the the
red, orange and cyan arrows, follow a roughly (but not exactly) parabolic mag-
netic field dependence where the oscillations shift to higher gate voltages with
increasing magnetic field. Furthermore, we observe a co-existence of multiple
oscillations within a limited parameter range. The co-existence of the red and
orange oscillations is seen in both Fig. 7.4a and Fig. 7.4b while the co-existence
of the red and cyan oscillations is seen only in Fig. 7.4b. The conductance as
a function of the magnetic field, while keeping the charge carrier densities on
both sides of the p-n junction fixed, is plotted in Fig. 7.5a-c for three selected
configurations. In Fig. 7.5a,b large oscillations (red in the previous graphs)
with amplitudes reaching up to nearly 2 e2/h can be seen. Within a limited
parameter range there are smaller oscillations (orange in the previous graphs)
superimposed on top of the red oscillations, having amplitudes reaching up
to ∼0.6 e2/h. The magnetic field spacing (∆B) between neighbouring peaks
is given in Fig. 7.5d-f for the corresponding oscillations shown in Fig. 7.5a-c.
Even though all three types of magnetoconductance oscillations reveal a dif-
ferent spacing of ∆B, they share a common trend, namely the decrease of ∆B
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Figure 7.5. Magnetic field spacing. a-c, Conductance or its numerical
derivative as a function of magnetic field for representative gate-gate configura-
tions of the red (VBG =−20 V,Vlbg =1.8 V), orange (VBG =−27.5 V,Vlbg =4 V)
and cyan (VBG =−18.5 V,Vlbg =1.27 V) magnetoconductance oscillations. The
peak-positions are indicated with the red, orange and cyan dots. d-f, Mag-
netic field spacing (∆B) extracted from (a-c,). A 1/B and linear dependence
of ∆B as a function of B is indicated with the black, dashed lines for the snake
states and Aharanov-Bohm interferences respectively.

with increasing B. Nevertheless, the rate of ∆B as a function of B is quite
different for the red compared to the orange and blue magnetoconductance
oscillations, which is an indication that a different physical mechanisms are
involved.
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perature for different oscillations. c, The solid lines/dots show the experimen-
tal values of TC of the red, orange and cyan magnetoconductance oscillations
(extracted at B =3.5 T, B =3 T and B =8 T respectively) as a function of
charge carrier doping. The red, dashed line corresponds to the vanishing of
snake states according to equation 7.7 using dn =50 nm and W =1500 nm.

7.2.3. Temperature dependence
In Fig. 7.6 the temperature dependence of the red, orange and cyan magne-
toconductance oscillations is given. We extract the temperature at which the
magnetoconductance oscillations decrease to 10 % of their maximal value (TC)
as a function of the charge carrier density. In Fig. 7.6a the red oscillations
are shown as a function of gate voltage and temperature (nBG ∼ nlbg and
B =3.5 T). We characterize the temperature dependence of each oscillation
by calculating the area under the oscillation A. From this the normalized
area, which is defined as Anorm. = A(T )/A(T = 1.6K), can be extracted at
different densities and is plotted as a function of temperature which is shown
in Fig. 7.6b. In Fig. 7.6c TC is plotted as a function of the density for all three
types magnetoconductance oscillations. While the red magnetoconductance
oscillations reveals a significant temperature dependence as a function of the
charge carrier density, surviving up to T ∼100 K at high doping, the orange and
cyan magnetoconductance oscillations vanish at temperatures around T ∼10 K
roughly independent on the charge carrier density. This suggests again that
different mechanism are responsible for the red magnetoconductance oscilla-
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tions compared to the orange and cyan magnetoconductance oscillations. Bal-
listic effects, such as snake states and transverse magnetic focusing, are known
to survive to temperatures up to T ∼100 K to 150 K [31, 33, 38]. On the other
hand, phase coherent transport in similar devices vanishes at temperatures
around ∼10 K (see Ref. [222]).

7.3. Discussion

We have observed different magnetoconductance oscillations, marked with red,
orange and blue. All of the oscillations have a roughly hyperbolic line shapes
in the gate-gate map, but the magnetic field spacing and the temperature de-
pendence suggest that the red oscillations are governed by a different physical
mechanism. Based on the experiments we suggest that the red oscillations
can be assigned to classical snake states while the orange and cyan oscillations
result from an Aharonov-Bohm interference as discussed below.

7.3.1. Red magnetoconductance oscillations

The red magnetoconductance oscillations start to appear in the range |ν| ∼
3 − 6 as can be seen in Fig. 7.2/Fig. 7.3. This corresponds to an occupation
of roughly two edge states (ν = ±4, Landau levels 0 and ±1) without tak-
ing degeneracy lifting into account. The gate spacing between neighbouring
magnetoconductance oscillations extracted from Fig. 7.2/Fig. 7.3 is around
∆VBG ∼0.2 V to 1.5 V (at B =4 T). These values are roughly two orders of
magnitudes larger than what is expected if the underlying physics were based
on charging effects2. Therefore the latter seems rather unlikely to be the origin
of these magnetoconductance oscillations. On the other hand, we now show
that the shape and the gate spacing of the red magnetoconductance oscilla-
tions fit very well to what is expected for snake states following equation 7.1
and equation 7.2. As discussed in the introduction, the oscillation results from
a commensurability relation where the conductance is high or low depending
on where the charge carriers end up. If the magnetic field is fixed, the slope
of the p-n junction is directly proportional to the skipping-length according
to equation 7.1. In Fig. 7.7a the calculated charge carrier density profile at
B =0 T is shown for three exemplary gate-gate configurations. From Fig. 7.7a
it is possible to extract the slope S0 at n = 0 at any gate-gate configura-
tion, which then leads to Fig. 7.7b. In the latter, lines of constant S0, and
therefore a constant λS (if B remains fixed), follow a roughly hyperbolic line

2The gate spacing of a charging effect can be calculated according to ∆Vg · C = e, where
C is the total capacitance of the system. In the most simple model C is dominated
by the capacitance associated with the electrostatic gates (C ∼ Cg), which is easy to
calculate. Even though this is an oversimplification it allows to obtain a rough estimate,
yielding ∆VBG ∼2 mV.
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Figure 7.7. Charge carrier density profile and slope in the bipolar
regime. a, Representative charge carrier density profiles calculated from
electrostatics at positions as indicated in (b) with the triangles. At n = 0
the slope is nearly linear (inset). b, Slope |S0| which was extracted at n = 0
as a function of the gates. Grey lines represent constant values of |S0|, and
consequently as well of λS (equation 7.1).

shape in agreement with the shape of the red magnetoconductance oscillations
(Fig. 7.2/Fig. 7.3). Based on S0 (Fig. 7.7b) one can as well calculate the con-
ductance as a function of an arbitrary linecut and magnetic field (not shown
here), leading to a roughly parabolic magnetoconductance oscillation which
strongly resembles the measurements shown in Fig. 7.4a,b.
By using the model with a constant density gradient the magnetic field spacing
as a function of magnetic field is given by (see appendix B.4):

∆B ∼ 2 π
2~2n

e2Wdn

1
B

(7.4)

where a symmetric p-n junction with n ≡ nL = nR was assumed. By fitting
the measurements shown in Fig. 7.5d with equation 7.4 we extracted a slope
of S =1.82× 10−3 nm−3 which is roughly one order of magnitude larger than
what was calculated in Fig. 7.7b (S0 ∼1.2× 10−4 nm−3). The discrepancy
between the values can be explained by the fact that strictly speaking S0 is
only valid at B =0 T. However, at finite magnetic field the charge carrier
density has to be calculated self-consistently leading to areas with a constant
charge carrier density (compressible reigon) and areas where the charge carrier
density changes rapidly (S > S0, incompressible regions) [223].
Furthermore, the decrease of the oscillation amplitude with increasing mag-
netic field (Fig. 7.5a) is compatible with the picture of classical snake trajecto-
ries, where the conductance oscillation results from the sum over all trajectories
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which form caustics along the p-n junction [195, 196]. Upon increasing the
magnetic field the charge carriers have to pass the p-n junction more often
(decreasing λS). This leads to the reduced oscillation amplitude [217] because
only trajectories with an incident angles being perpendicular to the p-n junc-
tion (θ = 0) have a transmission probability of t = 1, while for all remaining
trajectories t < 1 is valid [15, 34, 76].
From equation 7.1 it is possible to calculate the temperature dependence of
snake states. They are expected to vanish if:

2 (λS,max − λS,min) ·N ∼ 〈λS〉 (7.5)

where λS,max and λS,min correspond to the maximal and minimal skipping-
length due to the temperature smearing ∆kF, the average skipping-length
〈λS〉 is given by equation 7.1 and N = W/(2 〈λS〉). By using the relations
k2
F,max − k2

F,min ∼ 2kF∆kF equation 7.5 can be rereitten as:

∆kF ∼
k3
F

Wdnπ

(
π~
eB

)2
. (7.6)

At finite temperatures T the Fermi-surface is broadened by ∆E ∼ kBT (where
kB is the Boltzmann constant), thus leading to a spread of the Fermi-wavevector
according to ∆kF ∼ kBT/(~vF). Together with kF =

√
nπ (equation 2.18) one

can rewrite equation 7.6 to:

T ∼ 2vF~3

WdnkBe2B2

√
n3π5. (7.7)

The vanishing of the red magnetoconductance oscillations with increasing
charge carrier doping, which is plotted in Fig. 7.6c (red, dashed line), is in
good agreement with what is expected for snake states according to equa-
tion 7.7.

7.3.2. Orange magnetoconductance oscillations
From all the observed magnetoconductance oscillations the orange ones occur
at the highest filling factors starting at roughly |ν| ∼ 6 and persisting up to
|ν| = 20 or even higher, as shown in Fig. 7.2/Fig. 7.3. This corresponds to an
occupation of at least two edge states (|ν| = 0 and |ν| = 4) without taking a
possible degeneracy lifting into account. Similar to the red magnetoconduc-
tance oscillations, the gate spacing between neighbouring peaks (∆VBG ∼0.4 V
to 0.7 V at B =4 T) is roughly two orders of magnitudes larger than what is
expected if the underlying physics were based on charging effects. We note
that even though the orange magnetoconductance oscillations occur in the
most classical regime (highest filling factors), the Landau levels remain well
developed in the bulk of graphene down to B ∼2 T (not shown here).
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the slope of the p-n junction. a, Spacing for a fixed p-n junction density
profile by varying the magnetic field. b, Spacing for a fixed magnetic field for
different p-n junction density profiles. Figure adapted from Ref. [46].

In an Aharanov-Bohm interferometer, the magnetic field spacing ∆B between
neighbouring conductance peaks is given by:

∆B = h

e

1
A
. (7.8)

By considering the width of the sample W , the physical spacing (d) between
the edge states is given by:

d = Φ0

∆B ·W . (7.9)

In the experiments ∆B is not exactly constant because the real-space positions
of the edge states, which define A, varies as a function of magnetic field and
the p-n junctions density profile as illustrated in Fig. 7.8 [46]. By considering
a linear charge carrier density profile across the p-n junction, ∆B decreases
linearly with increasing B. This is in good agreement with what was measured
in Fig. 7.5e,f, indicated with the black, dashed line, therefore likely suggesting
an Aharanov-Bohm type of interference. Even though multiple areas might be
enclosed between the various edge states, only one Aharanov-Bohm interfer-
ences will dominate as explained previously and sketched in Fig. 7.1b. Using
equation 7.9 the magnetic field spacing of the orange magnetoconductance os-
cillations (Fig. 7.5e) was converted into a distance ranging from d∼30 nm at
B∼2 T to d∼55 nm at B∼5.5 T. The decreasing oscillation amplitude (∆Gosc)
with increasing magnetic field (Fig. 7.4b) directly indicates the vanishing cou-
pling between edge states as they move further apart from each other at higher
magnetic fields.
Next we calculate the gate-gate dependence of the Aharanov-Bohm interfer-
ence. For this we start with the electrostatic density profile (as shown in
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Figure 7.9. Aharanov-Bohm interference at B = 2 T. a, Calculation
of the magnetoconductance between the edge states with ν = 0 and ν =
4 according to equation 7.3 as a function of the global back-gate and local
bottom-gate. At low doping ν = 4 is not populated (shaded in gray). b,
Incoherent superposition of two Aharanov-Bohm interferences.

Fig. 7.7a), from which one can identify the spacing d between two edge state
for any set of (VBG,Vlbg) within the gate-gate map. The magnetoconductance
oscillation can then be calculate according to equation 7.3, leading to a roughly
hyperbolic trend as a function of the two gates (at fixed magnetic field) as
shown in Fig. 7.9a. The two sets of the orange oscillations can be reproduced
with a double Aharanov-Bohm interferometer as sketched in Fig. 7.1b, where
the conductance oscillations arising from the interferometers on the left (e.g.
ν = 0 and ν = ±4) and right (e.g. ν = 0 and ν = ∓4) side are added up inco-
herently as shown in Fig. 7.9b. The two sets of orange magnetoconductance
oscillations are slightly shifted in doping with respect to each other because
each of the two gates tunes one side of the p-n junction more effectively. Fur-
thermore, measuring a linecut as a function of magnetic field reveals a roughly
parabolic trend (not shown here). These findings are in good agreement with
the measurements which are shown in Fig. 7.2/Fig. 7.3 and Fig. 7.4a,b respec-
tively.
In interference experiments which depend on phase coherent transport, a van-
ishing of the oscillation patter with temperature can have different origins such
as for example a loss of phase coherence due to enhanced scattierng events. As
soon as lΦ < L, where lΦ is the phase coherence length and L is the total path
length, the interference pattern is completely lost. However, the interference
can as well be lost at finite temperatures even if lΦ > L, if the interfer-
ing paths have different lengths (∆L 6= 0) as discussed in section 2.3.3 (see
equation 2.46). Since for the Aharanov-Bohm interference along a graphene
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p-n junction ∆L is ideally zero (see Fig. 7.1b,c) or very small, this effect is
negligible. Consequently the loss of the interference signal with increasing
temperature depends on the decrease of lΦ, which depends only weakly on the
charge carrier doping [222] , which is shown in Fig. 7.6c.

7.3.3. Cyan magnetoconductance oscillations

The cyan magnetoconductance oscillations were observed at the lowest fill-
ing factors as low as |ν| ∼ 2 or even below and above B ∼4 T as shown in
Fig. 7.2/Fig. 7.3. Since full degeneracy lifting of the lowest Landau level (valley
and spin) is observed for B >5 T, the edge states are spin and valley polarized.
While the spin degree of freedom is conserved along the edges of graphene and
along the p-n junction [218], the valley degree of freedom is only conserved
along the p-n junction. Mixing between the edge states of the lowest Landau
levels having equal spin is consequently prohibited along the p-n junction, but
possible at the graphene edges. Comparable to the orange magnetoconduc-
tance oscillations, the magnetic field spacing of the cyan oscillations (extracted
using equation 7.9) decreases monotonically, corresponding to an edge state
spacing of d ∼9 nm at B =4.5 T to d ∼15 nm at B =8 T. These values were
compared with the edge state spacing deduced from electrostatic simulations.
Assuming that at the lowest filling factors the interference occurs between
the spin-polarized edge states (∆ν = 2) the spacing evolves from d ∼22 nm
at B =4.5 T to d ∼38 nm at B =8 T. The discrepancy between experiment
and calculation might have the following reasons: i) The real-space position
of the edge states is deduced from a charge carrier density profile which is cal-
culated at zero magnetic field as mentioned previously. However, one would
have to take the self-consistent density profile at finite magnetic field into ac-
count [223]. ii) The edge states might be located at a charge carrier density
which deviates slightly from the theoretically expected values of equation 2.30
[46, 72, 224]. The above mentioned effects might both account for the observed
discrepancy by a factor of ∼ 2 between the values extracted experimentally
and from our simple theoretical model.
The oscillation amplitude of the cyan magnetoconductance oscillation shown in
Fig. 7.4c was rather constant with magnetic field including some irregularities.
We note that the cyan magnetoconductance oscillations are predominantly vis-
ible at a charge carrier doping of nBG ∼ nlbg (Fig. 7.2/Fig. 7.3) for reasons
which are unknown yet. Similar to the orange magnetoconductance oscilla-
tions, the temperature dependence of the cyan ones depends only slightly on
the charge carrier density.
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Figure 7.10. Bias spectroscopy of snake states. a Measurement of
the red magnetoconductance oscillations as a function of bias and magnetic
field where a smooth background was subtracted. Gate voltage remains fixed
and is given as indicated in Fig. 7.2 with the yellow star. b, Simulation
following equation 7.14 with the coefficients as given in 7.13. Parameters
used: W =1.5 µm, dn =100 nm, kF corresponding to n ∼1.7× 1012 cm−2.

7.4. Bias spectroscopy

Bias spectroscopy reveals information on how physical effects react under non-
equilibrium conditions. In the following we show the measurements of the
different magnetoconductance oscillations as a function of magnetic field and
DC-bias while keeping the charge carrier densities fixed. The bias was applied
asymmetrically at the source, while the drain remained grounded as sketched
in Fig. 4.9.

7.4.1. Experiments

The red magnetoconductance oscillations which is attributed to snake states
reveals features which are converging from a tilted pattern at lower mag-
netic field into a checker-board pattern at high magnetic field as shown in
Fig. 7.10a. At high magnetic field the visibility of the checker-board pat-
tern decreases with increasing VSD while a similar behaviour is absent (within
the applied bias range of ±10 mV) for the tilted pattern. The orange and
cyan magnetoconductance oscillations, which are shown in Fig. 7.11a,c are
attributed to Aharanov-Bohm interferences, both revealing a tilted pattern
within the measured magnetic field range. The bias dependence of the orange
oscillations persists to ±10 mV, while the bias dependence of the cyan oscilla-
tions vanishes around roughly ±2 mV. This seems to be roughly proportional
to the oscillation amplitude, which is with ∆Gosc(cyan) ∼0.07 e2/h a factor
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Figure 7.11. Bias spectroscopy of Aharanov-Bohm oscillations. a,c,
Measurement of the orange and cyan magnetoconductance oscillations as a
function of bias and magnetic field where a smooth background was subtracted.
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ing equation 7.14 with the coefficients as given in 7.18. Here a bias dependent
gating effect is considered using α =0.32 nm/meVSD (orange oscillation) or
α =0.25 nm/meVSD (cyan oscillations), while a renormalization of the edge
state velocity is neglected (β = 1). Further parameters used are W =1.5 µm,
kF corresponding to n ∼1.7× 1012 cm−2 and d =40 nm (orange oscillations)
or n ∼0.8× 1012 cm−2 and d =20 nm (cyan oscillations).

of 6 smaller compared to the orange magnetoconductance oscillations, where
∆Gosc(orange) ∼0.45 e2/h. In Fig. 7.11c an additional magnetoconductance
oscillations with a narrow spacing of roughly ∆B ∼4 mT to 6 mT can be ob-
served. These oscillations will be briefly discussed at the end of the chapter.

102



7.4. Bias spectroscopy

7.4.2. Simulations
In order to gain more insight to the physical origin of the different patterns
seen in Fig. 7.10a and Fig. 7.11a,c we calculate the bias dependence for two
different scenarios, namely the snake state model as given in equation 7.2
and an Aharonov-Bohm interference between edge states moving around an
area [46] as given in equation 7.3. A charging effect for edge states which are
moving around a charge carrier island [225, 226] can be excluded, as discussed
previously.
Upon applying a bias to a conductance, which is defined at a specific energy
by G(E), the total current is the result of the integration of G(E) over the
bias-window according to:

I ∼
∫ (1−a)(eV )

−a(eV )
G(E)dE (7.10)

where the parameter a (0 < a < 1) defines the bias-window and eV is the
corresponding energy to the applied bias. In the following we suppose that
the bias drops predominantly over the p-n junction. In this case the measured
conductance is given by G ∼ dI/dV .

Snake state interference

By replacing λS in equation 7.2 with equation 7.1, and using ~k = ~kF +E/vF
(~kF is set by the electrostatic gates, E/vF is set by the applied bias and E is
measured with respect to EF), equation 7.2 can be rewritten as:

G(E) ∼ cos
[
We2dnB

2

2(~kF)2

(
1 + E

~kFvF

)−2
]
. (7.11)

Assuming E � ~kFvF, which is reasonable for the applied bias, the Taylor-
expansion 1/(1 + x)2 ∼ 1− 2x can be used leading to:

G(E) ∼ cos
[
We2dnB

2

2(~kF)2 −
We2dnB

2

(~kF)3vF
E

]
, (7.12)

where we substitute:

b ≡ We2dn
2(~kF)2B

2 and c ≡ We2dn
(~kF)3vF

B2. (7.13)

Upon applying a finite bias (equation 7.10), the measured conductance is given
by:

G ∼
{

(1− a) cos
[
(1− a) · eV · c− b

]
+ a · cos

[
a · eV · c+ b

]}
. (7.14)
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In the case of a fully asymmetric biasing (e.g. a = 1), equation 7.14 simplifies
to:

G ∼ cos
(
eV · c+ b

)
(7.15)

reproducing the tilted pattern which is shown in Fig. 7.10b at low magnetic
field. On the other hand, for the case of completely symmetric biasing (a = 0.5)
equation 7.14 simplifies to:

G ∼ cos
(
b
)
· cos

(
eV · c

)
(7.16)

which leads to the checker-board pattern which is shown in Fig. 7.10b at high
magnetic field. The checker-board pattern is in agreement with previous stud-
ies [46] where a similar behaviour was observed. Comparable to the experiment
(Fig. 7.10a), the oscillation period decreases as well with increasing magnetic
field in the simulation (Fig. 7.10b). In order to reproduce the transition from
tilted (asymmetric biasing, equation 7.15) to checker-board pattern (symmet-
ric biasing, equation 7.16), the parameter a was varied linearly from 1 → 0.5
by going from low to high magnetic field. While the increasing magnetic field
seems to be responsible for the transition from a = 1 to a = 0.5, the precise
reason remains unknown so far. We speculate that it might be related to the
capacitances in the system, such as the capacitance related to the insulating
region with ν = 0 or the quantum capacitance from the bulk. The latter
is directly proportional to the DOS [53, 227] and thus changes significantly
upon tuning the Fermi energy from a Landau level into a Landau level gap.
In contrast to the simulation, the checker-board pattern in the experiment
vanishes upon increasing the bias. This was attributed to a dephasing rate of
the charge carriers being proportional to the bias-energy [219, 220, 228–230].
However, this does not seem to apply for the tilted pattern, which persists up
to VSD =±10 mV.

Aharanov-Bohm interference

Next we calculate the the bias dependence for an Aharonov-Bohm interfer-
ometer. Starting from equation 7.3 the magnetoconductance oscillations of a
slightly modified model is given by:

G(E) ∼ cos
[

2πW · (d+ αE) ·B
Φ0

+ k∆L
]
. (7.17)

Here the parameter α is a phenomenological parameter in order to account for
a bias dependent gating effect [94]. For simplicity the edge state spacing d is
modified proportional to the applied bias. The factor k∆L in equation 7.17
accounts for a possible path-difference between the edge states, where k is
replaced by k = kF +E/(~vFβ). The parameter β (0 ≤ β ≤ 1) was introduced
to account for the renormalized edge state velocity compared to the Fermi
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7.4. Bias spectroscopy

velocity [231]. Solving the bias-dependence for equation 7.17 leads again to
equation 7.14, however the coefficients b and c are now given by:

b ≡ 2πWd

Φ0
B + kF∆L and c ≡ ∆L

~vFβ
− 2πWα

Φ0
B. (7.18)

By choosing realistic values for the path-difference (∆L ∼20 nm), using α = 0
and β = 1, the magnetoconductance oscillations reveal no bias dependence
(not shown). Since both, α and β contribute to a bias dependent phase, we
will analyse the two separately.

• Bias dependent gating effect (α > 0 while β = 1):
In order to increase the total flux by one flux-quantum, the edge state
spacing d has to increase by ∆d = Φ0/(B ·W ) while keeping the magnetic
field fixed. This leads to values of ∆d ∼0.79 nm at B ∼3.5 T (orange)
and ∆d ∼0.38 nm at B ∼7.2 T (cyan). Assuming that the applied bias
affects the edge state spacing according to ∆d = α·eVSD, then α can
be extracted from the bias spacing in Fig. 7.11a,c. This leads to values
of α ∼0.32 nm/meVSD and α ∼0.25 nm/meVSD for the orange and cyan
oscillations respectively (which is plotted as well in Fig. 7.11b,d). The
additional doping coming from the biasing will change the electrostatic
profile. In a simple estimate, we keep the width of the p-n junction
fixed (dn = const.) and account for the bias induced doping, which leads
to a change of the slope (see appendix C for more details). From this
simple model we obtain values in the order of α ∼0.09 nm/meVSD to
0.18 nm/meVSD for the cyan magnetoconductance oscillations.

• Renormalized edge state velocity (β < 1 while α = 0):
In order to reproduce Fig. 7.11a,b by taking exclusively a renormalized
edge state velocity into account leads to values of β ≥ 0.012 (orange)
and β ≥ 0.007 (cyan) (using ∆L ≤20 nm). Even though for β all values
between zero and one are possible, we suspect that a renormalized edge
state velocity in the order of ∼1 % of vF is too small.

Therefore we could imagine that the tilted pattern in Fig. 7.11a,c results mostly
from the gating effect, but also the decreased edge state velocity can play a
role.
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7.5. Quantum transport simulations

To complement our measurements, we additionally performed quantum trans-
port calculations based on scaled graphene [232] using the realistic device
geometry. These calculations were able to reproduce the red and orange mag-
netoconductance oscillations. For the calculations electron-electron interaction
were not taken into account, which explains the absence of the cyan magneto-
conductance oscillations (which requires the formation of a ν = 0 region). In
Fig. 7.12a the conductance is shown as a function of the local bottom-gate and
the global back-gate at B =3 T within the bipolar regime. Comparable to the
measurements presented in Fig. 7.2, two sets of orange magnetoconductance
oscillations can be seen which are shifted in doping. In Fig. 7.12b the evolution
of the red and orange oscillations are shown as a function of gate and magnetic
field. The calculations show that the orange magnetoconductance oscillations
seen in the experiments can be reproduced without the splitting of the lowest
Landau level.
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Figure 7.12. Quantum transport calculations. a, Transmission function
(T ) of charge carriers though the p-n junction as a function of a local bottom-
gate and a global back-gate. Red and orange magnetoconductance oscillations
are indicated with the dashed lines/arrows. Filling factors of the global back-
gate and the local bottom-gate are indicated with the green/purple arrows.
Low doping values (shaded in grey) were omitted to reduce the computational
load. b, Linecut as indicated in (a) with the black line as a function of magnetic
field.
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Figure 7.13. Additional magnetoconductance oscillation at high
magnetic field. a, Numerical derivative of the conductance as a function
of the global back- and local bottom-gate at B =8 T where two additional
sets of fine oscillation can be seen, indicated with the green, dashed line. b,
Net oscillation of the conductance ∆G as a function of magnetic field within
a limited field range. The peak-positions are indicated with the green dots. c,
Magnetic field spacing (∆B) extracted from (b).

7.6. Additional magnetoconductance oscillations at high
magnetic field

We now briefly describe and discuss the characteristics of the additional set
of magnetoconductance oscillations which was observed already in Fig. 7.11c.
From now on we will label this set of magnetoconductance oscillations with
green. In Fig. 7.13a the gate-gate dependence of the green magnetoconduc-
tance oscillation is shown in the bipolar regime, revealing a gate spacing
within the measured gate range from VBG ∼40 mV at lower doping up to
VBG ∼150 mV at higher doping. In Fig. 7.13b the magnetic field dependence
at a fixed gate-gate configuration, as indicated in Fig. 7.13a with the yellow
star, is shown. From the latter a magnetic field spacing of ∆B =6 mT at
B =5.8 T to ∆B =4 mT at B =8 T was extracted as shown in Fig. 7.13c.
However, the magnetic field spacing of the second set of green magnetocon-
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Figure 7.14. Bias and temperature dependence of the green magne-
toconductance oscillations. a, Magnetoconductance oscillations as a func-
tion of bias and magnetic field where a smooth background was subtracted.
The gate voltage remains fixed as indicated in Fig. 7.13a with the yellow star).
b, Temperature dependence of the green magnetoconductance oscillation as
indicated in Fig. 7.13a with the red line.

ductance oscillations, which is not shown here, yields different values ranging
from ∆B =25 mT at B =6 T to ∆B ∼10 mT at B =8 T. The bias and tem-
perature dependences are furthermore shown in Fig. 7.14 where a vanishing of
the green magnetoconductance oscillations is seen around VSD ∼±1 mV and
T ∼2 K to 3 K.
From the narrow gate spacing we first suspected that the green magnetocon-
ductance oscillations originate from a charging effect as illustrated in Fig. 7.15
[225]. In the latter a combination of edge states and charge carrier island
co-exist in the device. Hopping of charge carrier from the edge states into the
charge carrier island (or vice versa) is indicated in Fig. 7.15a with the black,
dashed arrows. Such systems have been investigated in 2DEG Fabry-Pérot
interferometers [226, 230]. The charging model could explain two different
values of the magnetic field spacing for each set of the green magnetoconduc-
tance oscillations (while enclosing the same area A). This is because for the
charging effect the magnetic field spacing ∆B depends on many parameters
which can vary on the two sides of the p-n junction. As derived in Ref. [225]
the magnetoconductance oscillation for the charging model is given by:

G ∼ cos
[
−2π Φ

Φ0
+ 2π∆X

∆

(
ν̃

Φ
Φ0

+N −Ngate

)]
, (7.19)

where Φ and Φ0 correspond to the magnetic flux though the area A and the
magnetic flux quantum respectively, ∆X describes the coupling energy for
one extra electron on the island, ∆ is the level spacing, ν̃ is the number of
completely filled edge states (integer part of equation 2.30), and N and Ngate
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Figure 7.15. Charging effects in a graphene p-n junction at finite
magnetic field. a, Formation of a charge carrier island which is capacitively
coupled to the edge states (red/blue lines). b, Energy dispersion along a
linecut as indicated in (a) with the green arrows. The edge states are indicated
with the red dots.

give the number of charges on the island and attracted by the electrostatic gate.
While the values of ν̃ and ∆ = 2π~vF/L [225], where L is the total interference
path surrounding the island, are known, we do not have any knowledge of ∆X.
Equation 7.19 might explain the different magnetic field spacings. However
the gate spacing does not match a charge carrier model where we would expect
values of ∆VBG (and ∆Vlbg) which are at least one order of magnitude smaller
than what was measured. The green magnetoconductance oscillations are
furthermore not parallel with respect to the charge neutrality lines of the
left and right side of the p-n junction. This we would naively expect for a
charging effect where each cavity is predominantly tuned by one of the two
gates. A possible explanation might be the shift of the p-n junction position
(see section 6.1.2), which depends on VBG and Vlbg, consequently changing the
area of the two cavities.
Note that the formation of a charge carrier island requires edge channels which
are weakly coupled to the leads. However, our system is more likely in the
strong coupling regime. This assumption is based on the observation of integer
quantum Hall plateaus which are well developed throughout the whole unipolar
regime (not shown here). If the edge states were weakly coupled to the leads
one could measure fractional values of the quantum Hall plateaus in parts of
the unipolar regime [134, 140], similar to what is shown Fig. 2.18b,c.
Even though the charging model does not fit the experiments in various points,
an Aharanov-Bohm oscillation cannot explain the green magnetoconductance
oscillations either. This is because the resulting edge state spacing extracted
from the two sets would be very different, namely ∼700 nm and ∼150 nm. This
contradicts the device geometry where the two cavities have roughly the same
dimensions. To resolve these inconsistencies further studies will be needed.
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7.7. Conclusion

In conclusion, we presented measurements on three sets of magnetoconduc-
tance oscillations which can be observed along a graphene p-n junction. From
the gate-gate map at a fixed magnetic field alone it is challenging to properly
assign the different magnetoconductance oscillations to their corresponding
origin as most of them follow a similar, hyperbolic trend. We showed that by
additionally analysing the magnetic field, temperature and bias dependence
the different magnetoconductance oscillations can be consistently assigned to
the two concepts of classical snake states and Aharanov-Bohm interferences.
The magnetoconductance oscillations labelled with red, being present at inter-
mediate filling factors, are best explained using a classical snake state model,
while the magnetoconductance oscillations labelled with orange and cyan are
best explained using an Aharanov-Bohm interference model. So far we always
discussed the snake states and the Aharanov-Bohm interference independently,
using either the picture of classical skipping trajectories or quantum Hall edge
states - two models which seem to be based on different physical concepts.
However, triggered by the co-existance of these two effects within our mea-
surements, we now motivate why both models are compatible with each other.
In p-n junctions the presence of an electric field mixes the Landau levels of
the bulk (no electric field), and new states are formed from combination of the
Landau level wavefunctions (obtained without E-field). In Ref. [231] it has
been shown, that the lowest mode has similar weight on both sides of a p-n
junction, mimicking classical snake states. Moreover, the edge state velocity
obtained for this mode is in good agreement with the classical snake state ve-
locity. Such a mixing can be naively describe as a coherent oscillation between
the edge channels with the cyclotron frequency, since the edge channel wave-
functions (original Landau level wavefunctions) are not eigenstates of the p-n
junction (similarly to Rabi-oscillations in qubits). In our case, the situation is
a bit more complex compared to the one described in Ref. [231] since in real
devices it is the slope of the charge carrier density which is (roughly) constant
across the p-n junction, and consequently the electric field depends on the
distance from the center of the p-n junction, which makes the quantitative
analysis very challenging.
Finally, the orange magnetoconductance oscillations can be reproduced nearly
perfectly using quantum transport simulations (where no Zeeman-term was
included in the Hamiltonian). This makes us confident to exclude partial or
full degeneracy lifting of the lowest Landau level in order to explain the latter.
For the same reason the cyan magnetoconductance oscillations remain absent
in the quantum transport simulations.
Further studies might focus on the origin of the green magnetoconductance
oscillations, or discuss the origin of the transition between tilted and checker-
board pattern in the bias-dependence of the snake states.
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8 Giant valley-isospin conductance
oscillations in ballistic graphene
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At high magnetic fields the conductance of graphene is governed by the half-
integer quantum Hall effect [12, 13]. By local electrostatic gating a p-n junction
perpendicular to the graphene edges can be formed, along which quantum Hall
channels co-propagate [74, 134]. It has been predicted that if only the lowest
Landau level (LLL) is filled on both sides of the p-n junction, the conductance
is determined by the valley (isospin) polarization at the edges and by the
width of the flake [45]. This effect remained hidden so far due to scattering
between the channels co-propagating along the p-n junction (equilibration).
Here we investigate p-n junctions in encapsulated graphene [1] with a movable
p-n junction [233, 234] with which we are able to probe the edge configuration
of graphene flakes. We observe large quantum conductance oscillations on the
order of e2/h which solely depend on the p-n junction position providing the
first signature of isospin-defined conductance. Our experiments are underlined
by quantum transport calculations.
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Figure 8.1. Valley-isospin-dependent conductance of a (simplfied)
two-terminal p-n junction at high magnetic fields. a, Charge carriers
are injected to the bottom-edge and guided along the p-n junction to the top-
edge. If at the position of the p-n junction the relative angle between the
valley-isospins at the two edges (same polarity) is equal to π, back-reflection
is forbidden. The valley-isospin configuration for bottom- (black, ~νB) and top-
edge (red, ~νT) is illustrated on the bottom. b, By moving the p-n junction to
a region of the flake with a different width, the relative angle between ~νB and
~νT, which is denoted by Φ, can change. For Φ6= π a nonzero back-reflection is
allowed. In the experiment multiple steps are present.

8.1. Concept to measure the valley-isospin

The working-principle of a valley-valve based on the idea of Tworzydło et
al. [45] was introduced in section 2.5.2 and is summarized (for an armchair
GNR) in Fig. 2.17. We recapitulate that the proposal of Ref. [45] suggests a
two-terminal GNR (armchair or zigzag) with a fixed number of unit cells (N)
between bottom- and top-edge which determines the width of the GNR, and a
p-n junction which is located perpendicular to the transport direction. If only
the LLL is occupied, the conductance is exclusively determined by the width
and the chirality of the GNR in the vicinity of the p-n junction. It has been
shown in Ref. [45] and section 2.5.2 that the conductance through a perfect
armchair GNR is given by [45]:

G = e2

h
(1− cos Φ) , (8.1)

where Φ denotes the relative angle between the two valley-isospin configu-
rations at the bottom- (~νB) and top-edge (~νT) for the same polarity. The
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conductance can take the values 0.5 e2/h or 2 e2/h for armchair GNRs (equa-
tion 2.54) and 0 or 2 e2/h for zigzag GNRs (equation 2.55). Even though
considerable effort has been invested on theoretical studies [45, 235–237], an
experimental proof remains missing. The latter can be attributed to the need
of very clean samples where the valley-isospin information is preserved along
the p-n junction (section 2.5.2) and the fact that the control over the edge
structure in top-down1 fabricated devices remained rather limited so far.
Here we combine a position-tunable p-n junctions with nonuniform edges in
a ballistic device. The idea of our experiment is illustrated in Fig. 8.1, where
an ideal armchair GNR with its width changing only at a single position is
sketched. The valley-isospin configuration of the bottom- and top-edge in the
vicinity of the p-n junction (valley-polarized along ~νB and ~νT respectively,
plotted at the same polarity of the junction) is shown for two different situ-
ations. Depending on the exact position of the p-n junction, which can be
shifted as a function of electrostatic gate voltages [234], the edge polariza-
tion ~νT varies (while ~νB remains fixed), resulting in a different conductance
as shown in Fig. 8.1a and Fig. 8.1b. By moving the p-n junction we are able
to locally probe the valley-isospin configurations at different positions of the
edge. We report on conductance oscillations appearing in the presence of a
p-n junction and in the regime of the LLL. The oscillating conductance is ob-
served to depend on the position of the p-n junction and agrees with quantum
transport simulations. In contrast to former studies of diffusive, two-terminal
p-n junctions in graphene [135], where the conductance is dominated by mode
mixing [134], we enter a novel regime where the conductance is dominated by
valley-isospin physics. Surprisingly, even though our samples have rough edges
the conductance oscillations are still large in the order of e2/h.

8.2. Setup and basic characterization

The same type of two-terminal p-n junction as introduced in chapter 7 was
used as well in this chapter (µ∼80 000 cm2V−1s−1). The position of the p-n
junction (xpn) is adjustable due to capacitive crosstalk of the gates and the ra-
tio of nlbg/nBG [233, 234], where nlbg (nBG) is the charge carrier density tuned
by the local bottom-gate (global back-gate). With the above given device ge-
ometry, the potential profile of the p-n junction is well within the smooth limit
with respect to the length scale of the lattice constant2, a basic requirement
to observe the valley-isospin dependent oscillations [45]. The devices show
clear signs of ballistic transport, namely Fabry-Pérot resonances [39–44, 234]

1Even though two-terminal field-effect transistors based on bottom-up synthesized GNRs
with a very controllable width and chirality [132] were reported recently [238], the
combination of the latter with a p-n junction is even more challenging and has not
been demonstrated so far.

2These information we extracted from electrostatic simulations which are not shown here.
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Figure 8.2. Signatures of ballistic and phase coherent transport.
a, Numerical derivative of the conductance as a function of global back-gate
(VBG) and local bottom-gate (Vlbg) at zero magnetic field where Fabry-Pérot
resonances are visible (indicated with the red, blue and green arrows respec-
tively). b, Representative linecuts within a (restricted) gate range for two
types of Fabry-Pérot resonances as indicated in (a). c, Magnetoconductance
oscillations along the pn-junction as discussed in chapter 7. d, Simulated p-n
junction position xpn as a function of VBG and Vlbg. G(Vcut, B) in (c) was
measured along the linecut indicated with the black, dashed line.

(Fig. 8.2a,b) and snake states [37, 38] (Fig. 8.2c), which prove the absence of
intervalley scattering within the bulk of graphene. A detailed description of
the snake states can be found in chapter 7 and in Refs. [36–38, 217]. An elec-
trostatic simulation of xpn as a function of VBG and Vlbg is shown in Fig. 8.2d,
where lines of a constant xpn are fanning out linearly from the global charge
neutrality point (CNP).
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Figure 8.3. Conductance as a function of the gates and magnetic
field. a, Conductance as a function of global back-gate (VBG) and local
bottom-gate (Vlbg) at B =8 T. The valley-isospin oscillations emerge as radial
fringes converging to the common CNP. The black, dashed lines are a guide to
the eye showing the oscillation maximum for selected valley-isospin oscillations.
b, Linecut as indicated with the orange line in (a) as a function of magnetic
field. The xpn dependent conductance oscillations are independent of magnetic
field, and persist down to fields of roughly B =2 T. For magnetic fields below
B∼3 T snake states (chapter 7) appear as curved features indicated with the
green, dashed line.

8.3. Measurements

8.3.1. Gate and field dependent measurements

We now concentrate on the regime of small filling factors. Features appearing
at higher filling factors are discussed in chapter 7. A conductance map at
B =8 T is shown in Fig. 8.3a as a function of the two gate voltages in the
bipolar regime. Most prominent are the conductance oscillations on the order
of e2/h, fanning out linearly from the common CNP. The linear dependence
on the two gates implies that the conductance is determined by the position of
the p-n junction (see Fig. 8.2d). In Fig. 8.3b a linecut (orange line in Fig. 8.3a)
is shown as a function of B. By tuning the gates, xpn can be shifted by several
tens of nanometers. The conductance oscillation fringes (dashed, black lines)
remain mostly unchanged (horizontal) over a large range of B and thus depend
only on xpn. With decreasing magnetic field the oscillation peaks become wider
and remain visible as long as edge states are present. This is in qualitative
agreement with what is expected for conductance oscillations originating from
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Figure 8.4. Temperature dependence of the conductance in the
bipolare regime. a, Temperature dependence of the linecut indicated with
the orange line in Fig. 8.3a where a background (G(T = 60 K)) was sub-
tracted. With increasing temperature the valley-isospin signal becomes weaker
and eventually vanishes. b, Same conductance as shown in Fig. 8.3a but at
T =100 K. Expected conductance values assuming full edge state equilibra-
tion along the p-n junction according to equation 2.56 are given with the black
numbers.

valley-isospin physics since it is the valley-isospin in the range of the magnetic
length lB ∼25.6 nm/

√
B [T] which matters [45].

8.3.2. Temperature dependence
The temperature dependence of the oscillations is shown in Fig. 8.4a where we
observe an increase of the oscillation amplitude up to the order of e2/h while
approaching the base-temperature of 1.6 K. On the other hand, the valley-
isospin oscillations vanish around ∼60 K due to the scattering processes which
start to be more dominant at elevated temperature [1, 33, 239, 240].
At this point we emphasize that the theory of the valley-isospin oscillation
is based on the fact that p- and n-doped regions are at their LLL (|ν| = 2),
while within the measured gate range Landau levels with |ν| > 2 are populated
as shown in Fig. 8.3a. Insight in the underlying mechanisms can be gained
from measurements at elevated temperature where the scattering probability
of the charge carrier is enhanced such that e.g. the valley-isospin oscillations
are washed-out. According to the diffusive model presented in section 2.5.2
the conductance in the bipolar regime is given by equation 2.56. However, the
expected conductance values according to equation 2.56, which are indicated
in Fig. 8.4b with the black numbers, do obviously not match with the con-
ductance of the measurement which always remains ∼1 e2/h independent of
the filling factor (in the bipolar regime). This indicates that at high magnetic
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Figure 8.5. Position correlation. Rescaling an exemplary linecut (indi-
cated in Fig. 8.3a with the green line) from G(VBG) to G(xpn).

fields higher Landau levels remain too far away to interact with the lowest Lan-
dau level due to the smoothness of the p-n junction in agreement with other
theoretical and experimental studies [133, 141]. Landau levels with |ν| > 2
can therefore be considered to be decoupled from the LLL and do not play a
role in the transport.

8.3.3. Position correlation

Having knowledge about the correlation between xpn and (VBG,Vlbg), which is
shown in Fig. 8.2d, it is possible to rescale the magnetoconductance G(VBG) as
a function of xpn as shown in Fig. 8.5. Using the rescaled magnetoconductance
one can deduce a characteristic spacing between peaks corresponding roughly
to the edge disorder correlation length. We extracted values on the order
of a few nanometers (with lB ∼9 nm). It comes as a surprise that even for
edges defined by reactive ion etching, which are expected to be rough, the
conductance oscillations do not fully average out [236].

8.3.4. Resolution limit

The resolution with which it is possible to resolve edge properties depends on
several factors. Here we discuss two effects, namely the magnetic length and
the stepsize ∆xpn (shift of the p-n junction between two measurement points).

Magnetic length

It was pointed out by Tworzydło et al. [45] that one probes the valley-isospin
configuration between ~νB and ~νT within the magnetic length lB. In Fig. 8.6a
the evolution of a selected valley-isospin oscillation is plotted as a function
of magnetic field. The evolution of the oscillation-width for a given B-field
was extracted by fitting a Gaussian to each cut from which the full width at
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Figure 8.6. Resolution limit due to the magnetic length lB. a, Zoom
at a valley-isospin oscillation as a function of magnetic field. b, Representative
slices from (a) for different magnetic fields (slices are offset by 0.15 e2/h for
clarity). The width of the peaks were fitted with a Gaussian as shown in black.
c, The evolution of the full width half maximum (FWHM), normalized by the
FWHM at B =8 T, is plotted as a function of magnetic length lB for three
individual peaks. The data from (a,b) corresponds to Peak 1.

half maximum (FWHM) was extracted. In Fig. 8.6b four exemplary cuts from
Fig. 8.6a are shown. At B =8 T two individual peaks are clearly visible and
the corresponding FWHM is smallest. However, with increasing lB (decreasing
magnetic field) the peaks broaden and eventually merge into one single peak,
as seen at B =5 T in Fig. 8.6b. The normalized FWHM were then plotted
as a function of the magnetic length for three individual peaks, as shown in
Fig. 8.6c. The increase of the extracted peak-width with increasing lB is in
qualitative agreement with what is expected. However, a more quantitative
analysis seems very challenging since for the exact width-dependence as a
function of lB an isolated step (with otherwise perfectly flat edges) would be
needed, which requires atomically precise control of the edges. We suspect
that the different dependences of the normalized FWHM with lB in Fig. 8.6c
might be explained by the different edge configuration. This seems reasonable
since at a given magnetic field the latter can give rise to various widths of
the valley-isospin oscillations even without any averaging (see simulations on
armchair and zigzag GNRs). Moreover, averaging over multiple steps can also
lead to different dependences of the width in magnetic field.

Stepsize

The resolution with which one can map the edge properties of the GNR using
the valley-isospin oscillation, as shown in Fig. 8.5, does not only depend on
the magnetic length, but as well on the stepsize ∆xpn, which must be chosen
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given in Fig. 8.2d.

accordingly3 (∆xpn ≤ lB). However, the stepsize ∆xpn varies as a function of
VBG and Vlbg. For a given set of values (∆VBG,∆Vlbg) it turns out that the
resolution is highest at high charge carrier doping while it increases dramat-
ically as soon as either of the cavities approaches its CNP [234]. The linecut
shown in Fig. 8.7a was measured with different resolutions of ∆VBG while Vlbg
was fixed at 1.2 V. Far away from the Dirac peak (VBG<− 10 V) a resolution
of ∆VBG =0.1 V seems sufficient to resolve all the peaks which are seen as well
with the highest resolution (∆VBG =0.001 V). But for VBG approaching the
CNP only the traces with smaller stepsize of ∆VBG seem to capture all the
relevant features as shown in Fig. 8.7b,c. The decrease of the conductance
and the absence of oscillation upon approaching the CNP (at very low dop-
ing) is explained by the extension of an insulating state with ν = 0. This is
in contrast to the simulation (section 8.4) where no decrease of the oscillation
amplitude is observed because electron-electron interaction is not taken into
account, an ingredient essential for the formation of an insulating state (ν = 0
plateau).

8.3.5. Hot-spot equilibration
Another effect which might give rise to a p-n junction position dependent
oscillation could be the probing of equilibration hot-spots along the sample
edge. These hot spots could originate from increased local disorder or chemical
doping. At high magnetic field the LLL splits due to electronic interactions
[69, 70, 241], and instead of a single channel localized at zero doping two (or
four) channels are formed on opposite side of the zero density region. These
channels can equilibrate at the edges of the sample, where their mixing is
possible, and by moving the p-n junction the equilibration rates can change

3In order to measure with sub-atomic resolution∆xpn ∼ lB ≤ a0, where a0∼1.42Å is the
inter-carbon distance.
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Figure 8.8. Quantum transport simulations for armchair GNRs.
a, Illustration of the model used for the calculation shown in b, where the
conductance as a function of xpn for a ribbon with Lstep � lB (Lstep defined
in (a)) and magnetic field B =16 T is shown. Metallic sections of the GNR
are shaded in black, and semiconducting (SC) ones in green.

leading to conductance oscillation. However, since these channels are not
positioned at zero charge carrier density any more, their position relative to the
center of the p-n junction is also tuned by the magnetic field. This contradicts
our finding, because the position of these oscillations remains magnetic field
independent as shown in Fig. 8.3b. Also in the gate-gate map such oscillations
might lead to more complex, hyperbolic lines as shown in chapter 7 (e.g. in
Fig. ??). The latter is opposite to our findings where the lines are fanning out
linearly from the common CNP. Finally, our simulations (see below) reproduce
the experimental findings even in the absence of electron-electron interaction
and splitting of the lowest Landau level.

8.3.6. Summary
In summary, we see conduction oscillations with an amplitude on the order of
e2/h, which are independent of doping and magnetic field to a wide extent,
but depend on xpn. The latter suggests that the conductance is determined
by the edge configuration and therefore by the local isospin configuration of
the edges. This is supported by quantum transport simulations as shown in
the next section.

8.4. Quantum transport simulations on armchair GNR

In the following transport simulations, we focus on armchair GNRs unless state
otherwise. In contrast to the experiment, the exact edge profile of the GNR
is known, allowing us to draw a direct relation between the edge profile and
the conductance. The quantum transport simulations are based on unscaled
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Calculations of the conductance though a GNR (SC for xpn < 0 and metallic
for xpn > 0) as a function of xpn for different magnetic fields.

graphene since we want to investigate edge effects, which would scale corre-
spondingly as well upon using scaled graphene [27, 37, 234, 242]. In order to
minimize the computational load we chose small GNRs (∼40 nm in width and
∼100 nm to ∼300 nm in length) for the calculation presented in the following
unless specified otherwise.

8.4.1. Ideal model

For our model we considered nonparallel edges with one side flat and one side
tilted (flat regions followed by a change of the ribbon width by one row of
atoms), as sketched in Fig. 8.8a. The resulting conductance G will be solely
determined by the position of the p-n junction xpn. Figure 8.8b shows G(xpn)
for a ribbon with at a constant magnetic field B =16 T. Note that the rather
strong B (corresponding to lB∼4.3 nm) is considered here to ensure lB � W
as in our experiment. If the p-n junction is tuned far away from the tran-
sition regions, where Φ is π or ±π/3, the conductance shows plateaus with
0.5 or 2 e2/h (conductance values as expected by equation 8.1). However, by
approaching a transition region, the conductance G(xpn) undergoes a smooth
transition between the two adjacent conductance plateaus, deviating from 0.5
or 2 e2/h [243]. In Fig. 8.9 the transition-region4 is calculated for three dif-
ferent magnetic fields. From the calculation in Fig. 8.9 one can see that the
transition length between two adjacent plateaus clearly depends on lB, which
is in agreement with the expectations of Ref. [45] and our measurements.

4The quantum-transport calculation in Fig. 8.9 is based on a GNR with a single-atomic
step at the top-edge located at x = 0.
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(green, δL∼1 nm, δW∼4 nm) of edge disorder. The real-space structure of the
ideal and disordered edge is shown on the right of the graph (same scale in the
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8.4.2. Edge disorder
Having perfect armchair edges, it is Lstep which defines the distance at which
the number of unit cells between bottom- and top-edge varies. However, upon
introducing a random edge roughness (details see below), the regular pattern of
G(xpn) naturally randomizes where oscillations with high amplitudes remain,
although they become irregular. These findings are summarized in Fig. 8.10
directly comparing a GNR with perfect (red curve) and disordered (green
curve) edges. The distance between neighbouring peaks in the disordered case
is on the order of the magnetic length, similar to what has been observed in
the experiment in Fig. 8.7b. The exact edge configuration of the GNRs used
in the simulation is shown on the right-hand side of Fig. 8.10.
The mathematical model describing the edge roughness includes two relevant
parameters, namely the correlation length (dL) and the correlation amplitude
(dW ) [244, 245]. For the calculation presented in Fig. 8.10 we used dL =1 nm
and dW =4 nm, where the resulting edges are stabilized such that no dangling
bonds remain.

8.4.3. Zigzag GNR
To complement the quantum transport calculations on armchair GNRs we
performed similar calculations on zigzag GNRs as shown in Fig. 8.11. The
conductance takes the values of 0 and 2 e2/h far away from the transition
region (Fig. 8.11a), which is in perfect agreement with the values expected
from theory [45]. However, in contrast to the armchair GNRs, the transition
region in between plateaus is shorter for the case of zigzag GNRs but still
remains roughly within the predicted value of ∼ lB. Upon introducing edge
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Figure 8.11. Quantum transport simulations for zigzag GNRs. a,
Calculation of the conductance as a function of xpn similar to Fig. 8.8b using
the same values of L =100 nm, W =40 nm, B =16 T. b, Calculation as in (a)
but with disordered edges, including the same correlation length (dL =1 nm)
and correlation amplitude (dW =4 nm) as in Fig. 8.10.

disorder an oscillation of the conductance results as shown in Fig. 8.11b. The
faster oscillations can be attributed to the shorter transition region in between
plateaus as described above. The results obtained for zigzag GNR are in
agreement with the results expected from ideal [45] and disordered GNRs
[236].

8.4.4. Gate and field dependent simulations

To qualitatively reproduce the features reported in our experiment, we con-
sider (for simplicity) a clean and edge disorder-free ribbon (W∼80 nm and
L∼100 nm) with its charge carrier density individually tunable in the left (nL)
and right (nR) region. The slope of the tilted edge is such that the chirality
changes about every 2 nm, and the p-n junction shifts a few tens of nanometers.
With a fixed magnetic field of B =36 T, Fig. 8.12a shows a radial oscillation
pattern fanning out from the common CNP of G(nR, nL), similar to Fig. 8.3a.
Finally, we examine the magnetic field dependence of the conductance along
the density sweep indicated in Fig. 8.12a by the black arrow. The horizontal
fringes clearly visible in Fig. 8.12b indicate the independence of the conduc-
tance on B, similar to our measurement reported in Fig. 8.3b. Note that
within the density range marked in Fig. 8.12a and considered in Fig. 8.12b,
the position of the p-n junction shifts by about 30 nm, covering about 15 steps
and hence 5 periods of the alternating edge chirality, well agreeing with the
number of the observed fringes shown in Fig. 8.12a and Fig. 8.12b.
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Figure 8.12. Quantum transport simulations of the conductance as a
function of the gates and magnetic field at B = 36 T. a, Conductance
of another ribbon (see text) as a function of left and right densities, G(nR, nL).
The black arrow indicates the density sweep considered in b, where the con-
ductance as a function of the correlated nL and B is shown.

8.5. Conclusion

In summary, we have shown first signatures of conductance oscillations orig-
inating from the local isospin configuration of the edges of a graphene flake.
Although the edge of the flake is not controlled, the conductance is still de-
fined by the local properties of the edges and the local width of the flake, in
agreement with transport simulations. Furthermore, we can exclude that the
equilibration between edge states at the intersection between p-n junction and
the graphene edges (so called hot-spots) is responsible for the conductance
oscillations. We have observed similar oscillation in more than 15 p-n and p-
n-p devices, some of them also having naturally cleaved graphene flakes [179]
(presumably less edge defects compared to reactive ion etching), and also on
suspended p-n junctions (not shown). Finally, there are new techniques ap-
pearing, such as hydrogen-plasma etching [129–131] or chemical synthesis of
GNRs [132], allowing for a much better control over the edges. This could be
used in further studies to draw a correlation between transport measurement
and the edge of the measured samples (e.g. via atomic resolution imaging)
underlining the isospin origin of these oscillations.
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9 Michelson Morley interferometer

200 nm200 nm

200 nm

In this last experimental chapter, another type of interference experiment is
discussed, which complements the Fabry-Pérot interferometer presented in
chapter 6. While the latter belongs to the class of multi-mode interferometers,
another class is the two-path interferometer. Probably one of the most famous
two-path interference experiment is the so-called Michelson-Morley interferom-
eter (MMI) by A. Michelson and E. Morley [246]. With this experiment the
two physicists investigated in 1887 the hypothesis that the propagation of light
requires a medium which was called “ether”. The experiment consists of sev-
eral key-components, namely a (monochromatic) light-source, a beam-splitter
which is basically a semi-transparent mirror splitting the incoming light into
two separate paths with a fixed length, mirrors at the end of each path which
reflect the light back to the semi-transparent mirror where they can recombine
and finally reach the detector. The experiment was based on the idea that if
the light propagates in the “ether”, penetrating the universe and therefore
moving with a certain velocity with respect to the earth - then the observed
interference pattern should change by changing the global orientation of the
experiment. However, by doing so no change was observed, thus the hypoth-
esis of the “ether” could be disproved.
With the recent progress in graphene, providing an excellent platform to real-
ize semi-transparent interfaces via p-n junction in combination with ballistic
and phase coherent transport [40, 41, 234], the realization of an electronic
counterpart of the Michelson Morley experiment seems within reach. While
various two-path interferometers such as double-slit experiments [247–249] or
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the electronic version of a Mach-Zehnder interferometer [220] have been real-
ized in 2DEGs, their realization in graphene is yet to happen. In this chapter
a measurement configuration to realize a Michelson Morley interferometer in
graphene is presented which might provide a conclusive method to directly
prove negative refraction in graphene [28, 34] and to demonstrate the utility
of graphene based electron-optical elements such as beam-splitters or mirrors.
This could be of great interest for the realization of entangled states [250] in
graphene.

9.1. Concept and Theory

The electronic counter-part of the MMI experiment in graphene, where the
source and drain take the place of the light-source and detector respectively,
the p-n junction acts as a semi-transparent mirror and the graphene edges act
as mirrors as sketched in Fig. 9.1a. The position of one of the mirrors and
the detector is reversed with respect to the optical setup as a consequence
of the negative refraction at the p-n junction in graphene. In Fig. 9.1b the
two-terminal realization in a hBN/graphene/hBN heterostructure is shown.
Assuming an ideal device including ballistic and phase coherent transport,
specular reflection at the graphene edges and a very-sharp p-n junction (sec-
tion 2.2) results in T (θ) = cos(45◦)2 = 0.5, the phase (φ) acquired by a wave
(Ψ) being once reflected and once transmitted (includes two possible combi-
nations) at the p-n junction is given by:

φ1 =
∫ lp+2wp

0

~kpd~l +
∫ ln

0

~knd~l = −|~kp|(lp + 2wp) + |~kn|ln (9.1)

and

φ2 =
∫ lp

0

~kpd~l +
∫ 2wn+ln

0

~knd~l = −|~kp|lp + |~kn|(2wn + ln) (9.2)

where the minus sign in the p-doped region comes from the fact that the
~k-vectors in p- and n-doped regime are of opposite sign (section 2.2). Interfer-
ence between electrons and holes has already been demonstrated in diffusive,
but phase-coherent devices, using a dual-gated Aharanov-Bohm rings [251].
Furthermore, for an efficient operation of the MMI negative refraction with
|θin| = |θout| is required, thus one can write |~kp| = |~kn| = |~k| (symmetric p-n
junction). The phase difference between Ψ1 and Ψ2, which accounts for the
interference effect, is then given by:

∆φ = −2|~k|(wn + wp) (9.3)

where wn + wp defines the total width (W ) of the device. This implies that
the resonance condition is equivalent for all incoming waves (as long as they
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Figure 9.1. Michelson-Morley interferometer in
hBN/graphene/hBN heterostructures. a, Schematic of the device
where a p-n junction is tilted by 45◦ with respect to the charge carrier
trajectories. S,D and M indicate source, drain and the edges which operate
as mirrors. b, False-color SEM image of a two-terminal device. The leads
are indicated in yellow, the top-gate in red and the hBN/graphene/hBN
heterostructure in cyan. The thin MgO layer below the top-gate (green) pas-
sivates the exposed graphene edges of the etched heterostructure. Scale-bar
equals 200 nm. c, Tight-binding simulation of a device as shwon in the inset
(values in µm) or in (b). d, Linecut along symmetric doping in the bipolar
regime (nin = −nout) where interference is observed.

hit the p-n interface under a 45◦ angle) and only depends on the total width
of the device and the ~k-vector of the charge carriers. The spacing between the
expected interference peaks is given by equation 6.1 as derived for the Fabry-
Pérot resonances, but the width of the device replaces the cavity-width.
The main challenges in the experiment are the realization of a very sharp

p-n junction to allow large transmission angles and well defined edges which
reflect specularly and phase coherently. A tight-binding simulation on scaled
graphene for a device geometry as shown in Fig. 9.1b is given in Fig. 9.1c.
Note that in contrast to the sketch shown in Fig. 9.1a, in the real device
an additional p-n junction parallel to the contacts is added due to the use
of a triangular shaped top-gate. This is not only because the fabrication of
local top-gates overlapping with a contact is challenging (section 4.3), but
more because it acts as a collimator for the charge carriers which are injected
with a random angle from the source [34, 252]. The signal of the MMI is
present along the line of symmetric p-n junction (|nin| = −|nout|) as shown in
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Fig. 9.1d, however it is rather small. A small signal is expected because: i)
The transmission probability at 45◦ is below the ideal value of 0.5 because the
p-n junction cannot be classified as “sharp” where d � λF (section 2.2). ii)
However, for an effective collimation, a very soft p-n junction would be ideal.
Even-though the p-n junction parallel to the leads will be responsible for a
certain degree of collimation, charge carriers with a quite large angular spread
will be transmitted, giving rise to a smearing of the signal. The pronounced
features in the bipolar regime (nout < 0) indicated with the green arrows are
attributed to Fabry-Pérot resonances between the lead and the parallel p-n
junction (collimator).
Note that in this calculation perfect edges were used, but upon introducing
a random edge disorder of around ∼10 nm1 the interference signal vanishes.
The latter might be one of the main-challenges to overcome in experimental
devices as shown in the following section.

9.2. Measurements

We performed measurements on various types of devices, divided into different
“generations”. With each generation we tried to implement major improve-
ments. In the following a chronological list of the different device generations
is given. For all devices we used a combination of the global back-gate and a
local top-gate to tune the charge carriers in the different cavities independently.

1st generation (two-terminal, edges defined via reactive ion etch-
ing):
We started with the most simple device geometry, namely a two-terminal de-
vice where the edges were defined via reactive ion etching shown in Fig. 9.1b.
A representative measurement of such a device is shown in Fig. 9.2a where
the MMI signal is absent. The charge carrier mobility of µ∼90 000 cm2V−1s−1

might be one among several limiting factors to see the Michelson Morley in-
terference. Since in p-n-p devices Fabry-Pérot resonances (chapter 6) over
comparable distances were observed it does not seem to be the only limiting
factor. Two further major drawbacks of this design are: i) The edge roughness
induced via reactive ion etching might be strong enough to completely wash-
out the signal upon reflection. This assumption is supported by tight-binding
simulations, but we lack experimental proof of this hypothesis. It is worth
noting that in TMF experiments (section 2.3.2) specular reflection at edges
defined via reactive ion etching did not pose a major problem. However, the
latter does not depend on phase coherent transport either. Currently we lack a
deeper knowledge on how effectively rough edges influence the phase coherence
upon reflection. ii) Due to the exposed graphene edges a thin layer of MgO

1This number is realistic for edges defined via reactive ion etching.
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Figure 9.2. Measurements in two-terminal devices. a, Conductance
as a function of the global bottom-gate and the local top-gate for a device
where the graphene edges were defined via reactive ion etching as shown in
Fig. 9.1b. The green arrows indicate Fabry-Pérot resonances between the leads
and the collimator. b, Comparable measurement for a device with naturally
torn edges. c, Zoom of the insets shown in (b).

was evaporated between the metallic top-gates and the hBN/graphene/hBN
heterostructure in order to prevent a short (section 4.3). This additional layer
significantly increases the p-n junction smoothness, thus lowering the trans-
mission probability at the tilted p-n junction.

2nd generation (two-terminal, naturally torn edges):
In the 2nd generation of devices we tried to overcome the problem of rough
edges by choosing naturally torn graphene flakes with parallel edges, which are
presumably much smoother compared to the ones defined via reactive ion etch-
ing [179]. Furthermore, using natural edges allows the fabrication of sharper
p-n junctions since no additional dielectric to passivate the exposed graphene
edges is required (section 4.3.1). The sharper p-n junction is an advantage
and disadvantage at the same time, because the transmission probability at
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Figure 9.3. Split-contacts. a, False-color SEM image of a device with
split-contacts. Zoom: Indicates the possibility of additional Fabry-Pérot os-
cillations. Scale-bar equals 200 nm.b, Measurement of the conductance G2 as
a function of global back-gate and local top-gate.

the tilted p-n junction will be increased, while the collimator operates less
effectively. In Fig. 9.2b a measurement of such a device having a charge car-
rier mobility of µ∼60 000 cm2V−1s−1 is shown. The MMI is expected to be
most pronounced at low doping2 because there the wavelength is the longest
and consequently the p-n junction appears effectively much sharper. Therefore
high-resolution maps at lower doping are shown in Fig. 9.2c. Unfortunately no
MMI signal was observed in this configuration either. We speculate that the
large background signal originating from charge carriers being reflected at the
p-n junctions and thus being scattered within the different cavities, account
for a large background signal which makes it very challenging to observe the
small signal of the MMI.

3rd generation (multi-terminal, edges defined via reactive ion etch-
ing):
The last generation of devices produced is based on the idea to absorb the

charge carriers which are reflected at the collimator p-n junction. In Fig. 9.3a a
false-color SEM image with the measurement configuration of a four-terminal
device is shown. Here the charge carriers are injected at the central contact on
the right, while the current is simultaneously measured at the three remaining

2Note that in a diffusive sample the mean free path will be shortest at low doping ac-
cording to equation 2.41. However, in a fully ballistic sample this might not hold.
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contacts. Two of them (I1 and I3) are responsible to drain the reflected charge
carriers, while the signal of interest is measured at I2. The conductance (G2)
as a function of local top-gate and global back-gate is plotted in Fig. 9.3b. In
the presented device the mobility is too low (µ∼40 000 cm2V−1s−1) to observe
ballistic transport over the full device length, therefore it is not surprising that
no MMI signal was observed. However, interference over a shorter distance
could be observed, namely the oscillations indicated in Fig. 9.3b with the red
arrows. The period of the latter roughly fits to the distance between the
split-contacts. Therefore we suspect that these oscillations can be attributed
to Fabry-Pérot resonances as sketched in the inset of Fig. 9.3a with the red
arrows.

9.3. Outlook and Conclusion

In conclusion, multiple devices were measured, having different types of edges
and different lead configurations. So far the observation of the MMI sig-
nal remains elusive, which can have several reasons, ranging from disordered
graphene edges, non-ideal measurement configurations (leads, top-gates) up
to a limited bulk graphene quality. For further devices the following improve-
ments are suggested:

• Reduce edge roughness to a minimum: The use of naturally torn
graphene edges seems a reasonable start, but significant improvement
could yield the use of edges defined via plasma-etching [129–131, 253],
which are atomically precise.

• Sharp p-n junction: Using either natural edges or defined via plasma-
etching does not require an additional passivation of the edges otherwise
exposed by reactive ion etching. Upon using a local graphite bottom-gate
and local top-gates the thickness between both gates and graphene is ex-
clusively defined via the thickness of the bottom- and top-hBN layer re-
spectively. A p-n junction where the charge carrier density varies within
d ∼20 nm seems therefore realistic, thus leading to significantly sharper
p-n junctions.

• Improved collimator: Implementing a more effective collimator in
order to approach the ideal case where all incoming charge carriers have
a 45◦ angle with respect to the tilted p-n junction. For an efficient
collimator the parallel and tilted p-n junctions have to be fabricated
independently, since the former should be as soft as possible, while the
latter should be as sharp as possible. Two alternative approaches are
presented in Ref. [254] and Ref. [206]. The former is based on a pin-hole
collimator while in the latter a parabolic-shaped p-n junction is used
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to create an beam of parallel charge carrier trajectories. In addition,
absorbers, such as shown in Fig. 9.3a, might be implemented on both
sides of the devices.

Implementation of all improvements might complicate the device fabrication
significantly, therefore a detailed analysis on the impact of each of the sug-
gested improvements should be useful. However, these analysis go beyond the
scope of this Thesis and are therefore left for other studies.

132



10 Summary and Outlook

In this Thesis various quantum transport phenomena in encapsulated graphene
p-n or p-n-p junctions were discussed. A short introduction covering the most
important physical concepts with respect to this Thesis was given in chap-
ter 2, followed by a short comparison between suspended and encapsulated
graphene devices in chapter 3. While each of the two techniques have their
own advantages and disadvantages, encapsulation of graphene in hexagonal
boron nitride qualified itself to be more suitable for the experiments performed
in this Thesis. The fabrication details which were presented in chapter 4
consequently covered the encapsulation technique. This included details how
electrical contacts, electrostatic-gates or constrictions with respect to this sys-
tem were fabricated.
Chapter 5 introduced a novel method to establish inner point contacts, which
complement the side- [1] and top-contacts to graphene. In contrast to the side-
and top-contacts, inner point contacts hold the potential to create an isolated
contact in the middle of a graphene sheet. The herein presented method,
which is compatible with the dry-stacking technique, enables its combination
with ballistic transport studies [193, 195, 206]. The use of a Ga-FIB instead
of conventional e-beam lithography and subsequent etching allows a higher
degree of control on the point contact size and shape. As a proof of principle
we fabricated four inner point contacts in a row, which allowed to perform
multiple two- and four-terminal measurements. In high magnetic fields we
demonstrated insulation between neighbouring contacts, a characteristic ex-
pected for inner point contacts. In future studies inner point contacts might
be combined with an electrostatic lens in order to create highly directional
(collimated) electron beams [206]. The latter might significantly increase the
signal visibilities of several electron-optical experiments such as for example
transverse magnetic focusing [31, 206].
In chapter 6 the observation of Fabry-Pérot resonances in a p-n-p junction
in the absence and presence of a Moiré superlattice was discussed. It was
shown that the visibility of the Fabry-Pérot resonances can be used to deduce
informations about the p-n junction, such as its relative smoothness. The
experimental findings are in good agreement with quantum transport simu-
lations suggesting that the p-n junctions defined via electrostatic gates are
significantly softer compared to the p-n junctions formed in the proximity of
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the contacts (n-doped) if the bulk is p-doped. Furthermore, using a simple
model assuming a cavity which is defined via a “hard-wall potential”, the ef-
fective cavity length could be deduced considering two neighbouring peaks
of the conductance oscillations. Even more, the exceptional quality of the
Fabry-Pérot resonances allowed to study the exact evolution of the cavity-
length as a function of charge carrier density, yielding a tunability of nearly
100 nm per p-n junction within the applied gate range. In the presence of a
Moiré superlattice it was shown that it is not only possible to establish a semi-
transparent interfaces in the bipolar regime, but as well in the unipolar regime
if the Fermi-energies on opposite sides of the interface are tuned across the
satellite DP. The different visibilities of the Fabry-Pérot resonances resulting
from semi-transparent interfaces created by either the main or the satellite
DPs are in qualitative agreement with what would be expected considering
the theoretical calculated band reconstruction [110]. In future experiments
it would be interesting to study the evolution of the Fabry-Pérot resonances
as a function of density, or the Berry-phase attributed to the satellite DPs.
In a wider context, the detailed study of semi-transparent interfaces (beam-
splitter) is of great interest since they can be used for electron optical elements
or for creating entangled states [250, 255].
Upon applying a magnetic field, the charge carriers start to move in skip-
ping orbits (edges) and snake states (p-n junction) respectively. By applying
a stronger magnetic field, the classical picture of skipping orbits and snake
states is normally replaced with the picture of edge states. In chapter 7
we presented experimental results of three different types of magnetoconduc-
tance oscillations along a graphene p-n junction within the same measurement.
These oscillations are carefully characterized with respect to their doping, mag-
netic field, bias and temperature dependence. This allows us to consistently
assign the different types of magnetoconductance oscillations to either snake
states or Aharanov-Bohm interferences. Motivated by the co-existence of the
two effects within a limited parameter range in our experiments, we have mo-
tivated the appearance of snake states as coherent oscillation between Landau
levels.
In chapter 8 transport through a p-n junction at high magnetic field is dis-
cussed. In this regime the transport is dominated by the lowest Landau level.
The fact that in the lowest Landau level the K/K′ valleys are directly linked
to the A/B sublattice [57] allows to access the valley degree of freedom with
the measurement-configuration as presented in this chapter [45]. We demon-
strate by shifting the position of the p-n junction at high magnetic fields that
the variation of the local edge configuration is responsible for the observed
conductance oscillation faning out linearly from the common charge neutral-
ity point. Even though the exact configuration of the graphene edges is not
known, it was shown that the spacing of the conductance oscillation is on the
same order than the correlation length of the edge disorder in GNR which are
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defined via reactive ion etching. Furthermore, quantum transport simulations
were performed to investigate the transition from perfect to disordered GNRs,
revealing a good qualitative agreement with our experimental results. It is
for the first time that experimental results observing conductance oscillations
originating from valley-isospin physics are presented. It is surpirising that
the oscillations survived even though the edges are disordered. This includes
experimental and theoretical studies which might focus on GNRs with well
controlled edges or the role of interacting and splitting of Landau levels. In a
wider context, being able to access the valley degree of freedom in graphene
[105] allows to manipulate, process and store informations other than using
the electrical charge or the spin-degree of freedom [138]. This might be of
special interest for a new generation of device operation in the future.
In the last experimental chapter, chapter 9, the electronic counterpart of a
Michelson Morley interferometer was introduced. In contrast to the Fabry-
Pérot interferometer which belongs to the class of multi-mode interferometers,
the Michelson Morley interferometer is a two-path interferometer similar to
the Mach-Zehnder interferometer. Even though no interference signal could
be detected in the experiment yet, conceptual ideas, theoretical calculations
and preliminary results were discussed. Furthermore, suggestions on how to
circumvent the currently encountered problems based on the experimental
findings, eventually leading to a possible realization of this experiment are
given. Similar to the knowledge gained from the experiment observing Fabry-
Pérot resonances, this experiment might lead to a deeper understanding on the
realization of beam-splitters and mirrors in graphene and how to efficiently use
them. Furthermore, it would be an elegant way to directly proof negative re-
fraction in graphene, complementing the results of previous studies [28, 34].
To sum up, the results presented within this Thesis can help to better un-
derstand the behaviour of p-n junctions in graphene. There are still several
open questions which require a better understanding of some details, however,
soon more complex device architectures including interferometers based on p-
n junctions, point contacts and quantum point contacts will be investigated.
The advance of graphene fabrication, the modification of its properties such
as inducing ferromagnetic or superconducting correlations, pave the road to
novel device concepts. Interesting times and devices are ahead of us.
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A Fabrication Recipes

Already in the chapter 4, fabrication techniques are discussed. The aim of this
appendix is to provide details of the fabrication recipes.

A.1. hBN/graphene/hBN assembly

A.1.1. cleaning the wafer for graphene exfoliation

1. Dicing the wafer in ∼1 cm2 large chips

2. Clean in Acetone, IPA and H2O for each ∼5 min in ultrasonic

3. Clean in Piranha solution (1:3 ratio of H2O2 (30 wt%):H2SO4 (98 wt%))
for ∼15 min

4. Clean in H2O (high purity) in a ultrasonicator for ∼5 min (3 times)

5. Blow-dry with N2

A.1.2. Markers on Si++/SiO2 chip (∼300 nm oxide)

1. Spin-coat full wafer (3 inch) with ∼1 µm AZ 1512 optical resist

2. Bake at 100 ◦C for 60 s

3. Expose with marker-grid to UV (wavelength of 365 nm)

4. Develop with MIF 726 for 17 s, stop in DI-water for 30 s

5. Metallization with 5 nm Ti + 40 nm to 60 nm Au

6. Lift-off in Acetone
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A. Fabrication Recipes

A.1.3. Assembly of hBN/graphene/hBN stack following Ref. [1]

1. Spin-coat ∼1 µm Poly-propylene carbonate (PPC) (dissolved in anisole)
on a Si++/SiO2 chip

2. Exfoliate top-hBN on (PPC)

3. Exfoliate graphene on Piranha cleaned Si++/SiO2 chip

4. Exfoliate bottom-hBN on the Si++/SiO2 chip (∼1 cm2)

5. Peel-off PPC from support and transfer on home-made PDMS stamp
(∼1 nm thick) which is on a glass-slide

6. Pick-up graphene at room-temperature

7. Only for devices with local bottom-gates: Pick-up bottom-hBN at room
temperature

8.1. Devices with local top-gates (or no top-gates): Release half-stack (top-
hBN/graphene) on bottom-hBN (raise temperature to 80 ◦C to release
PPC from PDMS)

8.2. Devices with local bottom-gates: Release full-stack (top-hBN/graphene/bottom-
hBN) on pre-patterned local bottom-gates (raise temperature to 80 ◦C
to release PPC from PDMS)

9. Remove PPC from the complete stack with chloroform (∼1 h)

10. Thermally anneal the complete stack in a Ar/H2 atmosphere for 3 h at
300 ◦C

A.2. E-beam lithography and development

A.2.1. PMMA resist for contacts and etching (negative mask)

1. Spin-coat PMMA (thickness may vary, bake at 250 ◦C for 15 s)

2. Expose with E-beam (V 20 keV; Dose=500 µC/cm2)

3. Cold-development in IPA:H2O (ratio 7:3) at ∼5 ◦C for 60 s, blow-dry
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A.3. Reactive ion etching

A.2.2. PMMA/HSQ resist for etching (positive mask)
1. Spin-coat PMMA (200 nm, bake at 250 ◦C for 15 s)

2. Spin-coat HSQ (100 nm, bake at 90 ◦C for 5 min)

3. Expose with E-beam (V =20 keV; Dose=100 µC/cm2, use smallest cur-
rent possible)

4. Develop HSQ in TMAH (25 wt%):H2O (ratio 1:1) for 30 s, stop in H2O
for 30 s, blow-dry

A.3. Reactive ion etching

A.3.1. CHF3:O2 plasma
1. Parameters: CHF3:O2 (40 sccm/4 sccm), P =60 W, p =60 mTorr, t =60 s

to 90 s

2. Etching rates:
hBN: 20 nm/min to 30 nm/min
SiO2: ∼60 nm/min
PMMA: <10 nm/min

It is used for:
• The exposure of the side-contacts before evaporation, as it yields the

lowest contact resistances (down to ∼50 Ωµm).

• As it allows a very precise control of how much hBN is etched (small
etching rates) it is well suited for any etching purposes if e.g. the stack
must not be fully etched though (e.g. section A.5.1).

A.3.2. SF6:Ar:O2 plasma
1. Parameters: SF6:Ar:O2 (20 sccm/5 sccm/5 sccm), P =50 W, p =25 mTorr,
t =20 s

2. Etching rates:
hBN: 600 nm/min
SiO2: ∼20 nm/min
PMMA: 80 nm/min

It is used for:
• It is used to define the shape of a device if the hBN/graphen/hBN het-

erostructure can be fully etched through.
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A. Fabrication Recipes

A.3.3. O2 plasma
1. Parameters: O2 (20 sccm), P =60 W, p =40 mTorr, t =4 min

2. Etching rates:
hBN: negligible
SiO2: negligible
PMMA: ∼100 nm/min
graphene: several layers per minute

It is used for:

• Etching of PMMA used as a spacer between HSQ (negative etching re-
sist) and the device.

• Etching of the few-layer graphene which define the local bottom-gates.

A.4. Cr/Au leads

1. Type: E-beam evaporation

2. Pumping to base-pressure of <2× 10−7 Pa

3. Evaporate away ∼30 nm of Cr before opening the shutter since the Cr-
target was stored in ambient condition (where it oxidises)

4. Open shutter

5. Evaporate 10 nm of Cr (0.7Å/s to 1.2Å/s)

6. Evaporate 50 nm to 70 nm of Au (0.7Å/s to 1.2Å/s)

A.5. Local gated devices

A.5.1. Bottom-gates
1. Exfoliate graphite on a Si++/SiO2 chip with markers

2. Define PMMA/HSQ etching mask (section A.2.2)

3. Reactive ion etching with O2-plasma for 4 min.

4. Remove PMMA/HSQ in warm acetone (∼2 h), flush with IPA, blow-dry
with N2
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A.5. Local gated devices

5. Anneal bottom-gates (section A.1.3)

6. Release full-stack on bottom-gates, remove PPC and anneal (section A.1.3)

7. Define PMMMA mask for contacts (section A.2.1)

8. Expose side-contacts with CHF3:O2 (section A.3.1)

9. Metallize (E-beam evaporation) with Cr/Au (10 nm/70 nm), lift-off in
warm acetone

10. If needed, shape device with a 200 nm thick PMMA mask (section A.2.1)
and a CHF3:O2 plasma (section A.3.1). It is important that the bottom-
hBN must not be fully etched though as otherwise a short to the bottom-
gates is more likely.

11. Remove PMMA mask in warm acetone.

A.5.2. Top-gate (no shaping of device required)
1. Starting with the full stack being on the Si++/SiO2 chip with markers

2. Define PMMMA mask for contacts (section A.2.1)

3. Expose side-contacts with CHF3:O2 (section A.3.1)

4. Metallize (E-beam evaporation) with Cr/Au (10 nm/70 nm), lift-off in
warm acetone

5. Define PMMMA mask for top-gates (section A.2.1)

6. Metallize (E-beam evaporation) with Ti/Au (5 nm/70 nm), lift-off in
warm acetone

A.5.3. Top-gate (shaping of device required)
1. Starting with the full stack being on the Si++/SiO2 chip with markers

2. Define PMMMA mask for contacts (section A.2.1)

3. Expose side-contacts with CHF3:O2 (section A.3.1)

4. Metallize (E-beam evaporation) with Cr/Au (10 nm/70 nm), lift-off in
warm acetone

5. Shaping of the device with a 200 nm thick PMMA mask (section A.2.1)
and a SF6:Ar:O2 plasma (section A.3.2).
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A. Fabrication Recipes

6. Remove PMMA mask in warm acetone.

7. Define PMMMA mask for top-gates (section A.2.1)

8. Evaporate a thin MgO layer (12 nm to 14 nm) (E-beam evaporation) to
passivate the exposed graphene-edges.

9. Subsequently metallize (E-beam evaporation) with Ti/Au (5 nm/70 nm)
using the same PMMA layer, lift-off in warm acetone
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B Skipping-trajectories along a smooth p-n
junctions

B.1. Skipping-length along a smooth p-n junctions
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Figure B.1. Simplified and realistic snake state models. a, Simpli-
fied snake state model including a step-function which models the p-n junc-
tion. b, More realistic snake state model including a linear change within
the distance dn between the charge carrier density nL and nR across the two
sides of the p-n junction. c, Comparison between analytically extracted skip-
ping length λS from equation 7.1 in direct comparison with the values ex-
tracted from numerical calculations. Used parameters are dn =200 nm and
nL = nR =1× 1016 m−2.

For the most simple snake state picture one considers a situation as sketched
in Fig. B.1a where the p-n junction is modelled by a step-function where the
absolute value of the density is constant, but opposite in sing on both sides of
the p-n junction. The cyclotron radius is therefore everywhere given by:

RC = ~kF
eB

(B.1)

where kF =
√
|n|π. However, a more realistic model as illustrated in Fig. B.1b

includes a gradual change of the charge carrier density across the p-n junction
within the distance dn. If the p-n junction is centred at x = 0, the bulk the

157



B. Skipping-trajectories along a smooth p-n junctions

charge carrier density is given by nL and nR for |x| > dn/2 while across the
p-n junction (for |x| < dn/2) it is given by:

n(x) = |nL − nR|
dn

x = S · x (B.2)

where S defines the slope. In the following we assume a positive slope as
sketched in Fig. B.1b. In the following we concentrate on the regime where
|x| < dn/2. The total force acting on a charge carrier is given by:

~F = ~~̇kF = q
(
~E + ṙ × ~B

)
, (B.3)

where ṙ = (ẋ, ẏ, 0), ~E = (Ex, 0, 0) and ~B = (0, 0, Bz) as sketched in Fig. B.1b.
In graphene we can write q = −χe (e < 0 being the elementary charge and
χ = ±1 accounts for the electron (+) and hole (−) branch). By explicitly
working out ṙ× ~B, equation B.3 can be written component wise according to:

~k̇x = −χe (Ex + ẏBz) and ~k̇y = χeẋBz. (B.4)

Furthermore, using the energy dispersion relation of graphene (E = χ~vFkF),
where kF =

√
k2
x + k2

y, the values of ẋ and ẏ are given by:

ẋ = ∂E(kx, ky)
∂kx

= vF
kx
kF

and ẏ = ∂E(kx, ky)
∂ky

= vF
ky
kF
. (B.5)

Based on the semiclassical equation of motions (equation B.4 and equation B.5)
we now verify for a charge carrier starting perpendicular from the p-n junction
that:

• kx and ky perform a circular motion in k-space

• the real-space trajectory of a charge carrier is given by a cycloid.

To do so, the equation of motions are formed in such a way that the particles
switche their charge when crossing the junction, but no the group velocity.

B.2. Circular motion of kx and ky in k-space

To prove that k̇x and k̇y perform a circular motion in k-space we start by
forming the ratio of the two according to k̇x/k̇y = dkx/dky. Using equation B.4
where k̇x and k̇y are defined, and equation B.5 leads to:

k̇x

k̇y
= −

(
Ex + vFBz

ky
kF

)
vFBz

kx
kF

. (B.6)
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B.3. Cycloid motion in real space

The electric field Ex is given by:

Ex = −χ~vF
e

dkF
dx

. (B.7)

where
dkF
dx

= χSπ

2kF
. (B.8)

having used kF =
√
|n|π =

√
S|x|π. Finally, plugging equation B.8 into

equation B.7 leads to:
Ex = −~vFSπ

2kFe
. (B.9)

With equation B.9 we can now evaluate equation B.6, leading to:

dkx
dky

= k0 − ky
kx

(B.10)

where k0 ≡ (~Sπ)/(2eBz) is a constant. Solving equation B.10 leads to:

k2
x + (ky − k0)2 = k2

0 (B.11)

which describes a circular motion in k-space. From equation B.11 we can learn
that at the extremum of the trajectory (yellow triangle in Fig. B.1b), kx = 0
and therefore ky = kF = 2k0. The local cyclotron radius (equation B.1) at the
extremum is given by:

Rcyc = ~2k0

eB
=
( ~
eB

)2
Sπ. (B.12)

B.3. Cycloid motion in real space

To verify that the circular motion in k-space describes indeed a cycloid motion
in real space, we parametrize kx and ky on the hole side (χ = −1) according
to:

kx = k0 sin(φ(t)) (B.13)
and

ky = k0(1− cos(φ(t))) (B.14)
where the initial conditions are given by: φ(t = 0) = 0, ky(t = 0) = 0 which
is increasing with time and kx(t = 0) = 0 which is decreasing with time.
Assuming that the cycloid motion has the same parameter φ(t), the real-space
trajectory is described by:

x = r(cos(φ(t)− 1) (B.15)

y = r(φ(t)− sin(φ(t))) (B.16)
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B. Skipping-trajectories along a smooth p-n junctions

and its derivative after t is then given by:

ẋ = −rφ̇(t) sin(φ(t)) (B.17)

ẏ = rφ̇(t)(1− cos(φ(t))) (B.18)

The value of φ̇(t) is determined the following way: The value of ~k̇y is given
once by combining equation B.4 and equation B.5, and once by taking the
time-derivative of equation B.14 multiplied with ~. This leads to:

− evF
kx
kF
Bz = ~k0 sin(φ(t))φ̇(t). (B.19)

By replacing kx with equation B.13 this leads to:

φ̇(t) = evFBz

~kF
. (B.20)

Finally, by plugging

sin(φ(t)) → from equation B.13
(1− cos(φ(t))) → from equation B.14

k0 → see below equation B.10
φ̇(t) → from equation B.20

into the cycloid motion (equation B.17 and equation B.18) we find that the
latter are equivalent with the equation of motion as given in equation B.5, if:

r = Rcyc

2 → Rcyc is defined in equation B.12. (B.21)

The skipping-length λS in a cycloid is given by λS = 2πr, where r is the radius
of the ”rolling circle", therefore leading to:

λS =
( ~π
eB

)2
S (B.22)

which is equivalent to equation 7.1. A direct comparison between numerical
result and analytical formula according to equation 7.1 is shown in Fig. B.1c,
revealing an excellent agreement.

B.4. Magnetic field spacing

The magnetic field spacing can be extracted from equation 7.1. For simplicity
we substitute c ≡ (π~)2S/e2, such that it can be written as λS = c/B2.
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B.4. Magnetic field spacing

Undergoing one full oscillation period, one goes from 2λSN = W to 2λS(N +
1) = W . With equation 7.1, this can be rewritten as:

2 c

B2
N
N = W and 2 c

B2
N+1

(N + 1) = W (B.23)

and consequently:

2c = W (B2
N+1 −B2

N) = W (BN+1 −BN)(BN+1 +BN). (B.24)

For large N one can approximate (BN+1−BN) ∼ ∆B and (BN+1−BN) ∼ 2B.
Finally, this leads to

∆B = c

W

1
B

(B.25)

which is equivalent to equation 7.4.
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C Biasd dependent gating effect

Here we present a very simple model in order to estimate the shift of the edge
states in real space upon applying a finite bias to an Aharanov-Bohm interfer-
ometer (section 7.1.2). In the following we assume that the Aharanov-Bohm
interferometer is located in the center of the p-n junction around the insulat-
ing region (ν = 0), as shown in Fig. 7.1c, and we neglect a renormalization
of the edge state velocity (β = 0). Furthermore, we consider a symmetric p-n
junction for simplicity, where the slope S1 is given by S1 = 2n1/dn, and n1
corresponds to the charge carrier doping induced by the electrostatic gates.
By symmetrically applying a bias of energy E = eVSD/2 at each sides of the
p-n junction the bulk density increases from n1 to:

n2 =

(√
n1π + eVSD

2~vF

)2

π
(C.1)

as illustrated in Fig. C.1 with the grey arrows. The increase of the bulk density
leads to a shift of the real space position of the edge states by ∆x as indicated
with the red and blue dots. Assuming that at n1 the edge states are located

0

n (a.u.)

real space (a.u.)

n1

n2

0 x1x2-x1 -x2

bias

|∆x|

dn

d1

d2

Figure C.1. Bias dependent gating effect. By applying a finite bias, the
charge charier density in the bulk changes, consequently leading to a different
slope across the p-n junction (if dn remains fixed). Comparable to what is
shown in Fig. 7.8b, this then leads to a shift of the real space location of the
edge state (red and blue dots).
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C. Biasd dependent gating effect

at ±x1 (symmetric p-n junction), then the new locations are given by:

± x2 = ±x1
S1

S2
. (C.2)

Finally, the shift of the edge state is given by |∆x| = |x1 − x2|, or:

|∆x| = x1

∣∣∣1− n1

n2

∣∣∣ , (C.3)

where S ∝ n (dn = const.) was used.
For the cyan magnetoconductance oscillations the gate induced bulk den-
sity was given by n1 ∼9× 1015 m−2, and the bias spacing was extracted to
VSD ∼1.5 mV (Fig. 7.11c). Using equation C.1, then n2 is given by n2 ∼9.122 m−2

(at VSD ∼1.5 mV). Based on the charge carrier density profile calculated from
electrostatics we estimate x1 ∼5 nm to 10 nm. Note that the change of the
edge state spacing ∆d = d1 − d2 is given by |2∆x|, leading to |2∆x| ∼0.13 nm
to 0.25 nm, or α ∼0.09 nm/meVSD to 0.18 nm/meVSD.
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