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1 Introduction

Noise is defined as random fluctuations of a signal in time. The fundamental require-
ment for noise is some sort of randomness. Noise is well-known and infamous to every
experimentalist - whether he is working in the field of electronics, optics, acoustics or
anywhere else - since such fluctuations are inherent and unavoidable in many systems.
For most of us, the word noise has a negative connotation. It is considered to be

an unwanted disturbance superposed on a useful signal, which tends to obscure the
signal’s information. The natural reaction to this nuisance is trying to reduce it as
much as possible, be it with a longer averaging time or an improved setup. In this
respect, the signal-to-noise ratio, which compares the level of the desired signal with
the level of the superposed noise, is the relevant quantity. A signal-to-noise level
larger than one has to be achieved in order to observe the requested signal. In fact,
noise is often a limiting factor in experiments and there are many examples where a
reduced noise level led to the revelation of unexpected features.
In this sense, noise seems to be a tedious, annoying matter and it is a fair question

to ask why one would make it the topic of an entire thesis. While noise is primarily
an experimental affair, theoretical studies on the statistics of these fluctuations have
been carried out for a long time, too. These studies draw an interesting picture.
Measuring the average current through a system delivers partial information on the
mechanisms responsible for conduction. But a more complete description and further
information on the conduction mechanisms are given by the probability distribution
of the current, containing both the average current and its fluctuations.
Even though the fluctuations appear randomly, they are caused by well-defined

processes like the thermal motion of charges, the discreteness of charge carriers and
the probabilistic character of scattering [1]. Each noise source exhibits distinct char-
acteristics. Measuring the noise properties of a system and knowing the underlying
process, one might be able to infer complementary insight beyond what is possible
with the mean current. Hence, a profound knowledge of the noise processes does
not only help to find a way for reducing the noise level, but can also be used as a
diagnostic tool [2].
It was Einstein who realised in 1909 that electromagnetic fluctuations differ if the

energy is carried by waves or particles [3]. He derived a linear relation between the
mean energy and the corresponding fluctuations for waves, whereas the fluctuations
scale with the square root of the mean energy for particles. Another example where
fluctuations can provide information about the charge carriers was proposed by Schot-
tky in 1918 in the context of vacuum tubes [4]. Shot noise (which is not a dangerous
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1. Introduction

effect at all despite its name) arises from the granularity of charge and therefore
scales with the unit of charge. Indeed, the doubled charge of Cooper pairs [5] and
the fractional charge of composite fermions [6, 7] was confirmed in this way. In 1928,
the dependence of fluctuations due to thermal agitation was studied experimentally
by Johnson [8] and theoretically by Nyquist [9]. In the following, the extrapolation
of thermal noise to zero amplitude was used to determine the absolute zero of tem-
perature and a value for the Boltzmann constant was deduced from the temperature
dependence of thermal noise.
Typical currents that occur in nanoelectronics are tiny. Current fluctuations com-

ing from these samples are even smaller and more challenging to detect and one has
to come up with a clever measurement scheme. We are mainly interested in shot
noise, whose spectral density is frequency-independent up to a few gigahertz. In con-
trast, electronic components add an undesired noise contribution, which is inversely
proportional to the frequency f . At gigahertz frequencies, the amplitude of this 1/f -
noise is considerably reduced. Moreover, measuring at high frequencies has a second
advantage. Higher frequencies enable us to measure over a larger bandwidth and
consequently to acquire more signal. For these reasons, we started the noise project
by building up a microwave measurement scheme.
Our main interest lies in noise studies of high-resistance mesoscopic devices, such

as quantum dots. However, the combination of high-frequency measurements with
impedances on the order of R = 100 kΩ or larger suffers from the large impedance mis-
match to the standard characteristic impedance of the measurement line, Z0 = 50 Ω.
According to voltage division, the suppression of detectable signal power on the 50 Ω
side is on the order of (Z0/R)2. Hence, there is a solution needed to enhance the
transmission from the device to the instrument. This is achieved with impedance
matching, for which we use a so-called stub impedance-matching circuit. It is a res-
onant circuit based on transmission lines.

This thesis about noise detection with a stub impedance-matching circuit is struc-
tured as follows: It starts in chapter 2 with an introduction to the characteristics
of microwave transmission lines, which are the building blocks of the later used mi-
crowave circuit. The development of carbon nanotube samples with an integrated
stub impedance-matching circuit for noise detection as well as building up the high-
frequency measurement setup were important parts of this PhD project. For this
reason, it is documented in detail in the thesis. A description of the stub impedance-
matching circuit’s properties is found in chapter 3. It also mentions impedance
matching with an LC circuit and ends with a comparison of the two approaches.
All fabrication considerations and recipes are collected in chapter 4. Chapter 5 gives
an overview of the measurement setup, which is partially inside a dilution refrigera-
tor. The remaining two chapters are devoted to results from a quantum dot formed
in a carbon nanotube. Chapter 6 discusses RF reflectometry in the presence of a stub
impedance-matching circuit. It is shown how to extract the circuit parameters and
the device impedances from the reflection spectrum. Finally, noise measurements and

2



1. Introduction

their analysis are presented in chapter 7. The good agreement of our noise data in the
single quantum dot regime with previous studies is a confirmation that the developed
methods for noise detection with stub impedance matching and for calibration are
well suited and allow for accurate noise results.
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2 Microwave Transmission Lines

This introductory chapter is devoted to the question how to transmit microwave
signals and how to characterise such transmission lines. It provides some background
for the radio-frequency (RF) circuits discussed in subsequent chapters.
In simple words, a transmission line is an arrangement of conductors for a guided

wave propagation. After explaining in general how to model a transmission line and
introducing the basic quantities, the following section focuses on coplanar transmis-
sion lines. Later, transmission line resonators are discussed and it is demonstrated
in theory and experimentally how they can be used to determine the properties of
transmission lines.

2.1. Lumped-Element Circuit Model for Transmission Lines 1

The description of circuit elements differs strongly if the wavelength of the electrical
signal is much larger than or comparable with the element size. In the first case,
the voltages and currents within the element are constant and a lumped-element de-
scription of the circuit is justified. This usually does not hold for gigahertz frequency
signals since the voltages and currents are varying within a circuit element and hence
a description with one lumped element is no longer accurate. Instead, it has to be
treated as a distributed element.
A transmission line (TL) is clearly a distributed element. Still it can be modelled

as a series of infinitesimal lumped-element pieces of length ∆x. One of these pieces
is shown in Fig. 2.1. In order to carry transverse electromagnetic (TEM) modes, a
TL has to consist of (at least) two conductors, illustrated by the top and the bottom
lines. The quantities R, G, L and C are all per unit length and describe the following
properties:

• R is the series resistance for both conductors caused by conductor losses.

• G is the shunt conductance due to dielectric losses.

• L is the inductance of the two conductors.

• C is the capacitance between the conductors.

1This section closely follows chapter 2 in [10]
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2. Microwave Transmission Lines

R·Δx

Ṽ(x,t)

Ĩ(x,t)

L·Δx

G·Δx

Δx

C·Δx Ṽ(x+Δx,t)

Ĩ(x+Δx,t)

Figure 2.1.: Lumped-element circuit model for an incremental TL piece of length ∆x.
A description of the elements is found in the text.

2.1.1. The Telegraph Equations
Considering the lumped-element model of TLs, standard circuit theory can be applied
to derive the voltage and current distributions along a TL. Kirchhoff’s voltage law
applied to the circuit in Fig. 2.1 leads to the relation

Ṽ (x, t)−R∆xĨ(x, t)− L∆x∂Ĩ(x, t)
∂t

− Ṽ (x+ ∆x, t) = 0, (2.1)

and Kirchhoff’s current law results in

Ĩ(x, t)−G∆xṼ (x+ ∆x, t)− C∆x∂Ṽ (x+ ∆x, t)
∂t

− Ĩ(x+ ∆x, t) = 0. (2.2)

Dividing both equations by ∆x and taking the limit ∆x→ 0 results in

∂Ṽ (x, t)
∂x

= −RĨ(x, t)− L∂Ĩ(x, t)
∂t

and

∂Ĩ(x, t)
∂x

= −GṼ (x, t)− C∂Ṽ (x, t)
∂t

.

(2.3)

These two coupled first order partial differential equations are called the telegraph
equations. They can be combined to the following pair of equations:

∂2

∂x2 Ṽ = LC
∂2

∂t2
Ṽ + (RC +GL) ∂

∂t
Ṽ +RGṼ

∂2

∂x2 Ĩ = LC
∂2

∂t2
Ĩ + (RC +GL) ∂

∂t
Ĩ +RGĨ.

(2.4)

2.1.2. Wave Solutions of the Telegraph Equations
Eqs. (2.4) describe voltages and currents along a TL. In the lossless case, when R =
G = 0, only the first term on the right-hand side does not vanish and one ends up

5



2. Microwave Transmission Lines

with wave equations for Ṽ and Ĩ, whose solutions are plane waves. One can extend
the plane wave ansatz to the general lossy case and write

Ṽ (x, t) = Re{V (x) · eiωt}
Ĩ(x, t) = Re{I(x) · eiωt},

(2.5)

where ω is the angular frequency. V (x) and I(x) are the voltage and current ampli-
tudes, respectively. With this ansats, Eqs. (2.4) read

∂2

∂x2V (x)− γ2V (x) = 0

∂2

∂x2 I(x)− γ2I(x) = 0,
(2.6)

where the complex propagation constant in units [1/m] is defined as

γ =
√

(R+ iωL)(G+ iωC) = α+ iβ. (2.7)

The general solutions to Eqs. (2.6) are

V (x) = V +e−γx + V −eγx

I(x) = I+e−γx + I−eγx,
(2.8)

which is a superposition of right-moving and left-moving waves, whose amplitudes
are denoted with plus and minus signs, respectively. A relation between current and
voltage can be derived with the help of the telegraph equations (2.3):

I(x) = γ

R+ iωL

[
V +e−γx − V −eγx

]
. (2.9)

The characteristic impedance Z0 is defined as the ratio of the voltage to current
amplitudes

Z0 = V +

I+ = −V
−

I−
. (2.10)

Comparing Eq. (2.9) with the second line of Eq. (2.8) leads to the expression for the
characteristic impedance

Z0 = R+ iωL

γ
=
√
R+ iωL

G+ iωC
. (2.11)

The current of Eq. (2.8) can be written in the form

I(x) = V +

Z0
e−γx − V −

Z0
eγx. (2.12)

By inserting the first line of Eq. (2.8) and the definition of γ in Eq. (2.7) into
Eq. (2.5), the voltage along a TL becomes the form

Ṽ (x, t) = V + · e−αx cos(ωt− βx) + V − · eαx cos(ωt+ βx). (2.13)

6



2. Microwave Transmission Lines

The real part of the propagation constant γ in Eq. (2.7), α, causes an amplitude
damping. The movement of the wave is given by the cosine terms. Considering the
first term, to stay on a fixed point of the wave requires that the argument ωt− βx =
const. With increasing time t, the position x is moving to the positive direction.
The phase velocity is the speed at which a specific point x on the wave is changing
position:

vp = dx
dt = d

dt

(
ωt− const.

β

)
= ω

β
= λf, (2.14)

with the wavelength λ = 2π
β being the peak to peak distance at a certain time.

The wavenumber for a plane wave in a lossless medium is given by the permittivity
ε and the permeability µ and reads k = ω

√
µε. The dielectric constant (or relative

permittivity) εr = ε
ε0

is defined relative to the permittivity of free space, ε0. In the
same way, the relative permeability µr = µ

µ0
is defined with respect to the permeability

of free space, µ0. The propagation constant reads with these relative parameters
k = ω

√
εrµr

c . Here, we have used that the speed of light is c = 1√
ε0µ0

. In order to
extend the free propagation of plane waves in an homogeneous medium to the guided
wave propagation in a TL, we set the imaginary part of the wavenumber β = k,
leading to

β = ω

√
εeff
c

. (2.15)

Here, it is assumed that µr = 1 and the effect of the dielectric substrate and the TL ge-
ometry are combined in the effective dielectric constant εeff . According to Eq. (2.14),
a phase velocity vp = c/

√
εeff is obtained. Since it is frequency independent, there is

no dispersion in a TL.

2.1.3. Low-Loss Approximation
In most practical cases, especially when using superconducting metals, the loss α
is small, which allows to make some useful approximations. Stopping the Taylor
expansion of the propagation constant γ given in Eq. (2.7) after the first two terms
leads to

γ ≈ 1
2

R
√
C

L
+G

√
L

C

+ i · ω
√
LC, (2.16)

and thus the wavenumber β ≈ ω
√
LC is the same as in the lossless case. In the same

way, the characteristic impedance of Eq. (2.10) can be approximated to

Z0 ≈

√
L

C
, (2.17)

which is again the same as for a lossless TL.

7



2. Microwave Transmission Lines

2.2. Terminated Transmission Line
So far, infinitely long TLs were considered. Now, the we will discuss the effect of a
load impedance ZL terminating the TL as sketched in Fig. 2.2.

V(x) ZLZin Z0, α, βI(x)

x
0-d

Figure 2.2.: Schematic of a transmission line with length d, characteristic impedance
Z0, loss α and wavenumber β, which is terminated by a load impedance
ZL.

We start by assuming that a right-moving wave of the form V + · e−iγx is excited
at the left side of the TL. At this moment, the voltage to current ratio is Z0. But
this ratio has to be ZL after the wave arrived at the load resistance. To fulfil this
condition, a second reflected wave has to be evoked. In general, the total voltage and
current on the line have the form [see Eq. (2.8)]

V (x) = V +e−γx + V −eγx

I(x) = V +

Z0
e−γx − V −

Z0
eγx.

(2.18)

The boundary condition at the end of the line (x = 0) mentioned above requires that

ZL = V (0)
I(0) = V + + V −

V + − V −
. (2.19)

Solving for the amplitude ratio of reflected to incident voltage, called the reflection
coefficient, gives

Γ = V −

V + = ZL − Z0
ZL + Z0

. (2.20)

Generalising Eq. (2.19) to a distance d away from the load leads to

Zin = V (−d)
I(−d) = Z0 ·

V +eiγd + V −e−iγd

V +eiγd − V −e−iγd
. (2.21)

By using the boundary condition at d = 0 [Eq. (2.19)], the input impedance looking
towards the load at a distance d can be brought to the form

Zin(d) = Z0 ·
ZL + Z0 tanh(γd)
Z0 + ZL tanh(γd) . (2.22)

8



2. Microwave Transmission Lines

In words, the impedance along the TL - the ratio of the total incoming and reflected
voltage to the total current - becomes position dependent. Due to the imaginary part
of γ, Zin(d) is periodic.
The two special cases of an open (ZL =∞) and a short end (ZL = 0) are like mirrors

for microwaves. The reflection coefficient Γ of Eq. (2.20) is +1 and −1 respectively.
And Eq. (2.22) for the impedance along the TL simplifies to

Zopen = Z0 coth(γd)
Zshort = Z0 tanh(γd).

(2.23)

One can also calculate the average power in the line at position d by combining
Eqs. (2.18) and (2.20) to be

P = 1
2 Re{V (d)∗I(d)} = 1

2
|V +|2

Z0

(
1− |Γ|2

)
. (2.24)

The star symbol ∗ denoted the complex conjugate. It shows that the power is constant
along the line (independent of d), even though the impedance is changing periodically.
In the case of a matched load impedance, when Γ = 0, all the incident power 1

2
|V +|2
Z0

is delivered to the load while if Γ is non-zero, a fraction |Γ|2 of the power is reflected.

2.3. Coplanar Transmission Line
A coplanar transmission line (CTL), as sketched in Fig. 2.3 (a), is composed of a
centre conductor and ground planes on both sides. All conductors are on the same
plane, which makes them convenient to fabricate and which is probably the reason
why CTLs are so widespread.
The centre conductor of width s is separated by a gap of size w from the ground

planes on both sides. These metallic parts of thickness t lie on a substrate of height
h and with dielectric constant εr. To minimise the conductor losses, we use niobium,
which becomes superconducting below 9.25 K. As a substrate, we take undoped silicon
with a thin layer of silicon oxide on top. It is important to have an undoped substrate
because free charge carriers in the substrate would absorb energy from the microwave
field and hence would increase the dielectric loss significantly. The silicon oxide layer
helps for the fabrication, as explained later in the fabrication section 4.2.2.

2.3.1. Basic Properties
The fundamental, preferred mode in a CTL is quasi-TEM, meaning that it is a TEM
mode in a good approximation [11]. A rough sketch of the electric and magnetic field
lines is shown in Fig. 2.3 (b).
The CTL dimensions and the dielectric constant of the substrate determine its

characteristic impedance Z0 and its wavenumber β. For this, the conformal mapping
method can be used. It basically maps the CTL geometry to a plate capacitor, for
which it is straightforward to derive the desired quantities. A cross-section through
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(a)

w s w
t

εr

B-field
E-field

h

(b)

Figure 2.3.: (a) Illustration of a coplanar transmission line. The centre conductor
width is s and the size of the gap to the ground planes is w. The metal
thickness is t and the substrate thickness h. (b) Electric and magnetic
field lines of the fundamental quasi-TEM mode.

(a) ww s
t

εr h

(b) (c) ww s
t

εr h

ww s
t

εr2

εr1 h1
h2

Figure 2.4.: Cross-sections through different kinds of coplanar transmission lines. The
grey area is metal and the white are dielectric. (a) Basic type as already
shown in Fig. 2.3. (b) Substrate consisting of two dielectric layers. (c)
With grounded back plane.

the basic CTL type is shown in Fig. 2.4 (a). If the finite metal thickness t is neglected,
which is a good approximation since usually this is by far the smallest dimension of
the structure, the effective dielectric constant is found to be [12]

εeff = 1 + εr − 1
2 · K(k1)K(k′0)

K(k′1)K(k0) . (2.25)

The functionsK are the complete elliptical integrals of the first kind. Their arguments
are defined by the CTL geometry as

k0 = s

s+ 2w
k′0 =

√
1− k2

0

k1 = sinh(πs/4h)
sinh(π(s+ 2w)/4h)

k′1 =
√

1− k2
1.

(2.26)

The wavenumber β is related to the effective dielectric constant via Eq. (2.15). More-
over, the characteristic impedance is

Z0 = 30π
√
εeff
· K(k′0)
K(k0) . (2.27)

Because of the elliptical integrals, the influence of the CTL parameters on Z0 is not
intuitive. Fig. 2.5 helps to capture the main characteristics. The dependence of Z0 on
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the centre conductor width s and gap size w is plotted in Fig. 2.5 (a) when assuming
a silicon substrate with εr = 11.9 [10] and thickness h = 500 µm. Z0 = 50 Ω is
highlighted by the red contour line. As long as the substrate height h is by far the
largest dimension (h � s, w), the characteristic impedance does almost not depend
on h. It can be seen in Fig. 2.5 (b) that Z0 is inversely proportional to the dielectric
constant εr.

0
4

8
12

48121620
20
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60
80

w (µm)

s (µm)

Z 0 (
Ω

)

εr = 11.9
h = 500 µm

(a) (b)
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100

120

εr

Z 0 (
Ω

)

s = 12 µm
w = 6.5 µm
h = 500 µm

Figure 2.5.: (a) Characteristic impedance Z0 of a CTL as a function of conductor
width s and gap size w. Eq. (2.27) for a basic CTL as shown in Fig. 2.4 (a)
is used. The red contour line marks Z0 = 50 Ω. (b) Dependence of Z0
on the substrate’s dielectric constant for a geometry on the red 50 Ω line
in panel (a).

The CTL properties are altered by other environment configurations, like a con-
ducting back plane or a layered dielectric substrate. These are actually the situations
occurring in our experiments, but the deviations to the results for a basic CTL given
in Eqs. (2.25) and (2.27) are tiny in our cases.
Our Si/SiO2 bilayer substrate has a SiO2 top layer with dielectric constant εr1 and

a bulky Si bottom layer with εr2. For this bilayer substrate, as depicted in Fig. 2.4 (b),
the formulas are modified to [13]

εeff = 1 + εr1 − εr2
2 · K(k1)K(k′0)

K(k′1)K(k0) + εr2 − 1
2 · K(k2)K(k′0)

K(k′2)K(k0)

Z0 = 30π
√
εeff
· K(k′0)
K(k0) .

(2.28)

If the top layer height is h1 and the height of the bottom layer h2, the arguments of
the elliptical integrals are

k0 = s

s+ 2w

k1 = sinh(πs/4h1)
sinh(π(s+ 2w)/4h1)

k2 = sinh(πs/4(h1 + h2))
sinh(π(s+ 2w)/4(h1 + h2))

k′i =
√

1− k2
i with i = 0, 1, 2.

(2.29)
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Even though the SiO2 layer is closest to the CTL and thus penetrated by the largest
fields, it only has a minor effect in our case since its thickness of 170 nm is very thin
compared to the silicon thickness of 500 µm.
Printed circuit boards (PCBs) usually have a conducting back plane, which is also

grounded. Also our samples are placed on a grounded plane. For this situation, as
sketched in Fig. 2.4 (c), the formulas are [14]

εeff =
1 + εr ·

K(k1)K(k′0)
K(k′1)K(k0)

1 + K(k1)K(k′0)
K(k′1)K(k0)

Z0 = 60π
√
εeff
· 1
K(k0)
K(k′0) + K(k1)

K(k′1)

,

(2.30)

with the elliptical integral arguments

k0 = s

s+ 2w

k1 = tanh(πs/4h)
tanh(π(s+ 2w)/4h)

k′i =
√

1− k2
i with i = 0, 1.

(2.31)

It is not very surprising that a back plane behind a 500 µm-thick substrate does not
affect the fields around the CTL much.
Nowadays, there also exists software to conduct electromagnetic simulations of

CTLs and actually any structure you can imagine. They are especially helpful when
dealing with more complex structures, for which analytical expressions are lacking,
or to figure out parasitic effects of junctions, discontinuities and so on. In our lab we
use Sonnet, a finite-element analysis software. It basically solves Maxwell’s equations
with the boundary conditions given by the structure by dividing the space into small
boxes of constant electromagnetic fields.

2.3.2. Kinetic Inductance
As stated by Lenz’ rule, a change of current through a conductor is opposed by a
change in the induced magnetic field. The corresponding self-inductance or magnetic
inductance for a CTL can be calculated with the conformal mapping technique [15]:

Lm = µ0
4 ·

K(k′0)
K(k0) . (2.32)

In an ideal conductor, a change of current is additionally opposed by the mass of
the charge carriers, since they have to be accelerated. Although the origin is different,
the effect is the same as for a magnetic inductance and hence a second inductance,
the kinetic inductance Lk is defined. For the kinetic inductance to be significant, the
collision time of the charge carriers has to be much longer than the inverse of the
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AC signal frequency. Otherwise, the effect of accelerated charge carrier is lost rapidly
by collisions. Therefore, kinetic inductance is only relevant in superconductors or in
normal metals at optical frequencies.
Again, conformal mapping leads to an expression for the kinetic inductance of a

superconducting CTL [15]:

Lk = µ0 ·
λL(T )2

ts
· g(s, w, t), (2.33)

with the geometry factor g arising from conformal mapping to be

g = 1
2k2

0K(k0)2

[
− ln

(
t

4s

)
− s

s+ 2w ln
(

t

4(s+ 2w)

)
+ 2(s+ w)

s+ 2w ln
(

g

s+ w

)]
.

(2.34)
The London penetration depth λL is the depth to which supercurrents flow. Since the
derivation for Lk assumes a uniform current distribution, Eq. (2.33) is only correct
for thin films with thicknesses t < 2λL. If the thickness is larger, it might be more
accurate to use 2λL instead of the actual thickness t.
The temperature dependence of the kinetic inductance is implicitly given by the

penetration depth, which reads in the BCS theory [16]

λL(T ) = λL(0)√
1− (T/Tc)4 (2.35)

Here, λL(0) is the penetration depth at 0 K and Tc is the critical temperature. If the
temperature is raising, λL increases and hence Lk as well. The reason for this increase
of the kinetic inductance with decreasing Cooper pair density is that to maintain a
constant current at a lower density, the velocity has to be higher and as a consequence
the kinetic energy is higher, too. Kinetic inductance photon detectors [17] exploited
the fact that photons impinging on superconducting CTLs break Cooper pairs and
in turn change Lk of high-kinetic inductance superconductors.
In conclusion, the appearance of an extra series inductance in superconducting

CTLs, the kinetic inductance Lk, causes a temperature dependent reduction of the
characteristic impedance Z0 and a reduction of the resonance frequency of TL res-
onators, as seen later.

2.4. Transmission Line Resonators
As the name suggests, the purpose of TLs is to transmit microwave signals. Still, they
can also be utilised to store electromagnetic waves when arranged into a resonant
configuration. According to Eq. (2.20), short and open TL ends completely reflect
microwaves like a mirror. Thus, terminating a TL segment with an open or short end
on both sides gives a Fabry-Pérot type resonator.
The shortest version of a TL resonator is a λ/4-resonator and is schematically

drawn in Fig. 2.6 (a). It consists of a TL segment that is a quarter of the fundamental
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resonance wavelength long and terminated by one open and one shorted end. The
boundary condition at the open end is that the current is zero and therefore the
voltage has a maximum. In contrast to the short end, where the current is maximal
and the voltage zero. For a discrete set of frequencies, the waves bouncing back and
forth in the resonator add up constructively to a standing wave. Fig. 2.6 (b) displays
the fundamental mode voltage and current distributions along a λ/4-resonator. This
first mode contains one quarter of a full wave, the next higher mode three quarters
and so on.

Z0, α, β

x

I
I0

V
V0

0 λ /4

(a) (b)

x
0 λ /4

Figure 2.6.: (a) Illustration of a CTL segment of length λ/4 with an open and a
shorted end. (b) Voltage and current amplitudes of the first resonant
mode. This forms a so-called λ/4-resonator.

Superconducting TL resonators are used nowadays in a variety of applications [18],
be it for radiation detectors [17, 19], for parametric amplifiers [20, 21] or for circuit
quantum electrodynamics [22]. Our application is more modest. We have seen that
a CTL is completely characterised by knowing Z0, εeff and its damping α (see sec-
tion 2.1.2). While the first two parameters can be calculated as described for CTLs
in section 2.3.1, α strongly depends on the experimental conditions and TL materials
and has therefore to be determined experimentally. In order to achieve a measurable
effect caused by a tiny loss α, we make resonators with CTLs, such that the long
signal lifetime in the resonator multiplies the effect of CTL losses.
In Fig. 2.7, there is a collection of pictures of our λ/4-resonators. A theoretical

description of their properties is given in this section and measurements are presented
in section 2.4.4.
Fig. 2.7 (f) illustrates a cross-section of the resonators. We sputter a niobium film

on a silicon/silicon oxide substrate and then use photo or electron-beam lithography
followed by plasma etching to make the transmission line pattern. Details of this
process are found in section 4.2.2.
For excitation and read-out, the resonators are capacitively coupled to the measure-

ment line, as shown in Figs. 2.7 (b) and (d). The configuration in Fig. 2.7 (a) allows
for reflectometry. One common line - connected to the bond pad on the left hand side
- is used for the incoming and the reflected signal. On the other hand, the resonator
can be coupled to a feedline as in Fig. 2.7 (c), through which the transmission is mea-
sured. Compared to reflection, transmission measurements with a feedline have two
advantages. Firstly, several resonators with different resonance frequencies can be
coupled to one common feedline. Secondly, all reflections at imperfections along the
line (for example at connectors) and standing waves arising from these reflections are
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(a)

(b)

(f)

(e)

(c)(d)

0.5 mm

0.5 mm

400 µm
350 µm

Nb (150 nm)

Feedline

6.5 µm
12 µm

Si (500 µm)

SiO2 (170 nm)

Figure 2.7.: Images of λ/4-resonators with their first mode at about 3 GHz. (a) Con-
figuration for reflection measurements. The input and output launcher
is the pad on the left side. (b) Magnified coupling capacitor. (c) Con-
figuration for transmission measurements by coupling to a feedline. (d)
Coupling capacitor and (e) shorted end. (f) Sketch of the cross-section.

detected in reflectometry. In contrast, when only the transmitted part is detected,
the background is flatter and reflections along the line have mainly a damping effect.
These advantages are the reason why we focus on transmission experiments in the
following.

2.4.1. Scattering Parameters
A common way to describe the properties of microwave elements are scattering pa-
rameters or short S-parameters. Considering an general N -port network, they relate
the wave amplitudes incident to the ports to those coming back from the ports. The
amplitude of the incident voltage on port i is labelled V +

i and accordingly the voltage
amplitude of the wave coming out from port i is labelled V −i . The amplitude vectors
with N elements are related by the scattering matrix S via ~V − = S~V +. A specific
element of the scattering matrix is found by measuring the outcoming voltage V −i
from port i when port j is driven by the voltage V +

j :

Sij = V −i
V +
j

∣∣∣∣∣
V +

k
=0 for k 6=j

with i, k, j = 1, 2, ..., N. (2.36)

The incident waves on all other ports than j have to be zero, which means that all
ports must be terminated in matched loads to avoid reflections. These S-parameters
can be accessed directly in with a network analyser.
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2.4.2. Resonator Basics
In the context of λ/4-resonators coupled to a feedline as in Fig. 2.7 (c), S21 denotes
the transmission coefficient from one to the other end of the feedline. It can be derived
using the impedance formula for a TL [Eq. 2.22], as explained in appendix A. In the
low-loss limit (α� 1) and close to f0, the resonance frequency of the first mode, the
transmission spectrum can be approximated by [23]

S21(∆f) =
Smin

21 + i · 2Ql
∆f
f0

1 + i · 2Ql
∆f
f0

, (2.37)

with the relative frequency defined with respect to the resonance frequency to be
∆f = f − f0. Here, the two fit parameters are Smin

21 , the amplitude of the resonance
and Ql, the loaded quality factor. In fact, three additional fit parameter are used to
account for the setup properties, as described at the end of appendix A.4. These are
the background attenuation, its slope and an asymmetry factor to take into account
contributions from standing waves in the setup.
While the relevant expressions for quality factors are given in the following, the

derivations of these formulas are found in appendix A.1. The quality factor is a
measure of the loss of a resonator. The lower the loss, the higher the quality factor.
Furthermore, the quality factor is inversively proportional to the bandwidth or full
width at half minimum ∆FWHM of a resonance:

Q = f0
∆FWHM

, (2.38)

where ∆FWHM is defined as the frequency range where the transmission coefficient
S21 is less than (1 + Smin

21 )/2.
The total, loaded quality factor Ql can be separated into an internal part Qi arising

from damping in the TL and a coupling part Qc caused by leakage to the measurement
line. The quality factors add like resistors in parallel:

1
Ql

= 1
Qi

+ 1
Qc
. (2.39)

In the so-called overcoupled regime [18], where Qc � Qi, the measured quality factor
is dominated by Qc. With Cc being the coupling capacitance, the coupling quality
factor is

Qc = 1
8π(fZ0Cc)2 . (2.40)

In the other undercoupled limit, Ql is restricted by internal losses (expressed by Qi),
which is therefore the preferred regime to determine α. The internal quality factor is
related to the CTL parameters via

Qi = β

2α, (2.41)
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where the wavenumber β is given by the CTL geometry, as discussed in section 2.3.1.
The relation of the resonance amplitude, the second fit parameter in Eq. (2.37), to

the quality factors is
Smin

21 = Qc
Qi +Qc

. (2.42)

Hence, the two parameters Ql and Smin
21 obtained by fitting a resonance spectrum to

Eq. (2.37) can be transformed to another set of parameters with the help of Eqs. (2.39)
and (2.42):

Qi = Ql
Smin

21

Qc = Ql
1− Smin

21
,

(2.43)

which eventually allows to deduce the CTL loss α by using Eq. (2.41).
The bare resonance frequency of the resonator fr is reduced due to the coupling

(expressed by Qc) to the measured resonance frequency

f0 = fr ·
(

1−
√

2
Qcπ

)
. (2.44)

With the relation between frequency and wavelength given in Eq. (2.14) and the fact
that the resonator length l = λ0/4, the bare resonance frequency can be written as

fr = c

λ0
√
εeff

= c

4l√εeff
= 1

4l
√
LC

, (2.45)

where λ0 denotes the wavelength at resonance and the low-loss approximation given
in Eq. (2.16) is used for the last step. Remembering from section 2.3.2 that the
inductance in a superconducting CTL is the sum of the magnetic inductance Lm and
the temperature dependent kinetic inductance Lk, the resonance frequency becomes

fr(T ) = 1
4l
√
LmC

√
1 + Lk(T )/Lm

. (2.46)

Since everything else is set by the CTL geometry, this formula for the bare resonance
frequency can be used to extract the kinetic inductance. The temperature dependence
of Lk as described by Eqs. (2.33) and (2.35) contains the parameter λ0, the London
penetration depth at T = 0. In other words, a fit of Lk with Eq. (2.33) results in a
value for λ0.
In conclusion, TL resonators are, apart from multiple other applications, a handy

tool to measure the loss α of a CTL. But where are these losses originating from?

2.4.3. Loss Mechanisms
Loss sources for superconducting CTLs in different temperature and power regimes
and for several materials are well described in the literature. Here is a short summary
of their findings.
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As already assumed in the lumped element circuit model for TLs (see Sec. 2.1),
there are conductor losses leading to R and dielectric losses, for which G is used.
Dielectric loss stems from microwave absorption of nearby two-level states (TLSs)
located at defects in the dielectric substrate and at the metal-air and metal-substrate
interfaces [24]. The choice of an appropriate substrate is important to minimise
these losses. Sapphire [23] and high resistivity silicon [18, 24] are shown to be good
candidates. Silicon dioxide and silicon nitride introduce more losses [24, 25], but for
some fabrication processes, a thin layer of them is helpful. Another possibility to
decrease dielectric losses is to minimise the number of coupled TLSs at the interface.
It is shown that an extensive substrate cleaning before the metal deposition reduces
the number of TLSs and an extremely deep anisotropic substrate etching in the gap
between the centre conductor and the ground plane moves the interface away from the
high electric field region what in turn reduces the coupling to interfacial TLSs [26].
With increasing temperature or power, all TLSs get saturated and they cannot absorb
energy any more. Hence, dielectric losses are most relevant at low temperatures.
High quality resonators are fabricated from various superconductors like aluminium

[18, 24] and materials with a higher Tc like niobium [25], niobium titanium nitride
[26] and molybdenum rhenium [23]. But loss and superconductors, this seems like
a contradiction at first sight. The point is that at finite temperatures, apart from
superconducting electrons, there are also thermally excited quasiparticles. The coex-
istence of superconducting and normal electrons is captured in the so-called two-fluid
model [16]. A DC current lower than the critical current can flow without resistance
because the normal and superconducting electrons provide two channels in parallel
and obviously, the zero-impedance superconducting channels carries all the current.
The situation changes when an ac current is applied since it acts on all charge carriers,
in particular also on the normal electrons, which experience ohmic losses. According
to the BCS theory, the number of quasiparticles in a superconductor with an energy
gap ∆ is proportional to e−∆/kBT . Since conductor losses are proportional to the
number of quasiparticles, they increase exponentially with temperature, as well.

2.4.4. Measurements at 4.2 K
After the introductory sections from before, some resonator data are discusses. The
resonator shown in Fig. 2.7 (c) is put inside a copper box for characterisation in liquid
helium at 4.2 K. A picture of the box containing the sample chip is in Fig. 2.8 (a).
The two SMA connectors on the outside are connected to both ends of the feedline
and the box is closed with a metallic cover for the measurements. The transmission
coefficient is detected with a vector network analyser (VNA). The fundamental mode
of the coupled λ/4-resonator is plotted in Fig. 2.8 (b). By applying Eqs. (2.37) and
(2.43), one can extract the internal and the coupling quality factor, as indicated in
the figure. Details on the fitting procedure are given at the end of appendix A.4.
The power applied to the TL is −34 dBm, which corresponds to 0.4 µW. The

simple dipstick setup used does not contain amplifiers (see section 5.5). Therefore,
a rather high power is needed to achieve a clear signal. But since there is no power
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dependence of the resonance observed from −24 dBm down to −64 dBm (not shown
here), we conclude that the obtained results are reliable and no high-power effects
obscure the results.
This measurement serves as a confirmation that the quality of the sputtered nio-

bium is alright and that our fabrication process is suitable for high quality resonators.
The same kind of resonator experiments will appear again later in the thesis, namely
in section 4.1.2. There, the compatibility of RF circuit fabrication with carbon nano-
tube growth and the influence of a silicon nitride layer is examined. One has to say
that the quality factors of resonators, which are even fabricated together and are on
the same feedline, scatter quite a lot. Quality factors as high as 8000 were mea-
sured on several resonators, but other resonators showed only half of it without any
optically observable defect in the CTL. In conclusion, we see that with our way of
fabrication, it is not possible to achieve consistent quality factors. Nevertheless, we
learn the range which we can expect, which is already helpful for further planning.
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Figure 2.8.: (a) Picture of the copper box with a resonator chip inside for dipstick
measurements. The horizontal feedline on the chip is slightly visible.
(b) Transmission spectrum for one of the resonators together with a fit.
(c) Temperature dependence of the spectrum and the internal quality
factor (inset). (d) Extracted bare resonance frequency fr and kinetic
inductance Lk with a fit to the BCS-prediction. The power applied to
the feedline is −34 dBm for all measurements.

Looking at the temperature dependence of the resonance leads to further insights.
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Fig. 2.8 (c) shows the resonance evolution at higher temperatures. As expected, the
resonance frequency is decreasing with increasing temperature because of the rising
kinetic inductance (see section 2.3.2) and the quality factor is dropping due to a
enhanced quasiparticle loss (see section 2.4.3).
With the help of Eq. (2.44), the measured resonance frequency can be transformed

to the bare resonance frequency fr. The resulting frequencies are plotted in fig. 2.8 (d).
The CTL has a conductor with s = 12 µm and a gap size w = 6.5 µm and consists of
a niobium layer on 170 nm silicon dioxide with εr = 3.9 and silicon beneath with εr =
11.9. For this bilayer substrate, Eq. (2.28) can be applied and leads to a capacitance
of 175 pF/m and a magnetic inductance Lm = 411 nH/m. Knowing this, one can
extract from the resonance frequency the kinetic inductance according to Eq. (2.46),
with the results plotted in the figure. However, we will see in the next paragraph
that the London penetration depth of niobium is short and the condition t < 2λL is
not fulfilled for the lowest temperatures, which might add some deviation.
The critical current of our niobium films was previously determined to be 9.25 K. A

fit of the kinetic inductance to the temperature dependence given by the BCS theory
[Eq. (2.35)] gives a London penetration depth at T = 0 of λL(0) = 62 nm, which is
quite close to the 43 nm stated in literature for similar niobium film thicknesses [27].
One can conclude from the figure that at milli-Kelvin temperature, where we want
to conduct our later experiments, the kinetic inductance of our niobium films is tiny
compared to the magnetic inductance and hence its influence can be neglected for
planning the geometry of CTLs and resonators operating at these temperatures.

2.5. Miscellaneous
2.5.1. Transmission Line versus Waveguide
In the literature, transmission lines (TLs) and waveguides are not always strictly and
consistently separated. The distinction between the two terms used in this thesis is
motivated and explained in the following paragraph.
TLs and waveguides are both structures to carry electromagnetic waves. But due

to their geometry, they support different kinds of modes. TLs on the one hand consist
of at least two conductors, which are separated by an insulator. Their operating mode
is quasi-TEM and they transmit signals from DC up to high frequencies. The most
important kind of TLs for this work is a coplanar transmission line. More details on
this type are found in section 2.3. Another prominent example is coaxial cables.
On the other hand, waveguides are either made out of one conductor usually in the

form of a metallic pipe or out of dielectrics with different dielectric constants, like for
instance optical fibres. The transmission in waveguides happens due to reflections at
the metallic boundaries or at the dielectric interfaces. The standing wave condition
inside the waveguide sets a lower bound to the supported signal frequency depending
on the waveguide’s lateral dimension. The electromagnetic field pattern in waveguides
is either transverse electric (TE) or transverse magnetic (TM), but not TEM.
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2.5.2. Why 50 Ω?
The common characteristic impedance of coaxial cables is 50 Ω. Thus, to be impedance
matched and avoid signal reflections, that is also the standard input and output
impedance of most components and instruments. A plausible explanation for this
convention goes as follows. The attenuation constant α for an air-filled (εr = 1)
coaxial cable has a minimum at 77 Ω. The maximum power handling is limited by
voltage breakdown above an electric field of 3 · 106 V/m for room temperature air at
sea level pressure. For air-filled coaxial cables, maximal power handling is achieved
for a characteristic impedance around 30 Ω. Hence, 50 Ω represents a compromise
between both requirements of minimal loss and maximal power handling [10].
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3 Impedance Matching

This chapter deals with the electronic engineering task of impedance matching. In
particular, it focuses on a microwave impedance-matching circuit based on coplanar
transmission lines (CTLs), called stub impedance-matching circuit or shorter stub
tuner. While the general properties of CTLs are the topic of the previous chapter,
this chapter contains a detailed description of the CTL-based stub tuner and some
proof-of-principle measurements of this circuit. Details on the circuit fabrication and
more measurements are found in subsequent chapters. At the end of the chapter, an
alternative way of impedance matching with an LC circuit is presented and compared
to stub impedance matching.

V0 Z0

ZL

ZL

VL
Impedance- 

matching circuitV0 Z0

ZL

VL

(a) (b)

Figure 3.1.: (a) Schematic for simple noise detection without impedance matching.
The noise voltage VL generated at the load impedance ZL is measured
over an impedance Z0. (b) An impedance-matching circuit transforms
the detection impedance Z0 to the load impedance ZL.

But what is our motivation for impedance matching? The aim of this thesis is
to detect noise generated by high-resistance devices. Noise emitted by a device of
impedance ZL can be modelled as a voltage source in series. The problem with noise
detection of high-resistance samples gets apparent in Fig. 3.1 (a). A high-impedance
device of typical impedances ZL ∼ 0.1 − 1 MΩ emits the voltage noise VL. When
measuring the voltage noise with an instrument of input impedance Z0 = 50 Ω,
only the tiny fraction Z0/ZL of the emitted voltage VL is measured. This fraction
can be increased by adding an impedance-matching circuit between the load and the
instrument, as shown in Fig. 3.1 (b). At full matching, the circuit transforms the
impedance seen by the load from Z0 to ZL.
In principle, it is possible to achieve matching between any complex load impedance

and Z0 for a certain frequency. Impedance matching is a standard task in electronic
engineering and there are different types of impedance-matching circuits readily found
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3. Impedance Matching

in textbooks [10]. However, the physical implementation of each method has a limited
range of applications for which it works reliably.
One possibility is to use a network consisting of an inductor and a capacitor. While

lumped-element LC networks are easy to assemble and well suited up to a few hun-
dreds of megahertz, parasitic effects get more pronounced at higher frequencies. For
example the equivalent circuit of a real inductor consists of the ideal inductance in
parallel with an inter-winding capacitance. Whereas at low frequencies this capaci-
tance represents a high-impedance path with low influence, at higher frequencies it
starts to become important. Nevertheless, we have recently started to work on a
microwave implementation of an LC matching network because it provides a large
bandwidth of high transmission. More on this is found in section 3.2.
However, for the operation at GHz frequencies, it seems more natural to use a

distributed element approach to achieve well reproducible results. Such a circuit is the
so-called quarter-wave transformer; a section of CTL with intermediate characteristic
impedance Z∗0 =

√
Z0ZL and a length of one quarter of the wavelength at resonance.

In order to match a device with an impedance in the order of 10 kΩ, a characteristic
impedance Z∗0 of a few kΩ is needed, which is difficult to obtain (see section 2.3.1).
For this purpose, a CTL containing a series SQUID array at the centre conductor has
been developed to boost the CTL inductance [28]. An advantage is that by changing
the magnetic field through the SQUID loops, one can change the inductance and thus
has a tunable matching circuit for free.
A possibility for a matching circuit made out of low characteristic impedance CTLs

is the stub tuner, the main matching circuit utilised in this thesis. As presented in
this and the next chapter, stub tuners are easily fabricable and computable. In earlier
experiments, stub tuners were fabricated on a PCB, to which the nearby mesoscopic
device was bonded [29]. Later on, stub impedance matching has been integrated
on-chip [30].

3.1. Stub Impedance-Matching Circuit
An image of a stub tuner made with niobium on silicon together with a schematic are
found in Fig. 3.2. Looking from the left low-impedance side, the stub tuner consists
of two parallel CTL segments with characteristic impedance Z0. One CTL segment
of length D2 has an open end, whereas the other one of length D1 is terminated by
the load impedance ZL. Both lengths are close to λ0/4, with λ0 being the wavelength
at resonance.
The working principle of a stub tuner can be understood by considering it as an

interferometer. In a simplified picture, an incident wave at the low-impedance input
is split at the T-junction. The wave reaching the open end is completely reflected,
while the amplitude and phase of the reflection at the other end depends on ZL (see
section 2.2). In the matched situation, the lengths D1 and D2 are such that for a
specific frequency and load impedance the reflected waves add destructively at the
T-junction, meaning that nothing is coming back from the stub tuner. But now let
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3. Impedance Matching

(a) (b)

ZL

D1

D2

Z0

Z0, γ

YD2

YD1YinΓ

Z0, γ

Zout2 mm

Figure 3.2.: (a) Image of an open stub tuner with 150 nm-thick niobium (light area)
on a Si/SiO2 substrate (grey). The stub tuner input is on the left side.
The launcher is connected with bond wires (black). At the T-junction,
where the two CTLs split, there are three bond wires (black) serving as
airbridges between the ground planes. The device area is on the top-right
CTL end. Bond wires around the sample edge establish a good connec-
tion of the ground plane to the setup ground. The pattern is defined
with photolithography followed by plasma etching. (b) Schematic of a
stub tuner (on a yellow background) consisting of two CTLs in parallel
(orange).

us turn to a more rigorous description of the circuit.

3.1.1. Matching with a Lossless Stub Tuner
First, the simple case of a stub tuner with lossless CTLs is treated since it has
analytical solutions [10] and it provides an illustrative picture of the basic properties.
A schematic of the stub circuit is shown in Fig. 3.2 (b).
Stub tuning makes use of the fact that the impedance on a terminated CTL depends

on the distance from the load, as expressed by Eq. (2.22). The admittance at the T-
junction looking along the terminated CTL is denoted by YD1. If the load impedance
is separated according to ZL = R+i·X, the admittance stemming from the terminated
CTL reads

YD1 = 1
ZD1

= 1
Z0
· Z0 + i · (R+ i ·X)t1

(R+ i ·X) + i · Z0t1
, (3.1)

with the abbreviation t1 = tan(β0D1) and β0 being the wavenumber at the matched
frequency f0. Separating the expression for YD1 = G1 + i · B1 into its real and
imaginary components leads to

G1 = R(1− t21)
R2 + (X + Z0t1)2

B1 = R2t1 − (Z0 −Xt1)(X + Z0t1)
Z0 [R2 + (X + Z0t1)2] .

(3.2)
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3. Impedance Matching

In contrast, the admittance of the open-ended CTL at the T-junction is purely imag-
inary and reads [see Eq. (2.23)]

YD2 = i ·B2 = i · 1
Z0
· tan(β0D2). (3.3)

The input admittance seen from the low-impedance side in front of the T-junction is
the sum Yin = YD1 + YD2 and is in general complex. Impedance matching requires
that Yin = 1/Z0, which results in the two conditions for the real and imaginary parts

G1 = 1
Z0

and B1 = −B2. (3.4)

The first condition gives a quadratic equation for t1 with the two solutions

t1 = tan(β0D1) = X ±
√
R [(Z0 −R)2 +X2] /Z0

R− Z0
, forR 6= Z0. (3.5)

Solving for D1 leads to the following two shortest lengths (in terms of λ0, the wave-
length at resonance)

D1 =
{
λ0
2π arctan(t1), for t ≥ 0
λ0
2π [arctan(t1) + π] , for t < 0

. (3.6)

Due to the periodicity of tangents, D1 + n · λ/2 are also (longer) solutions, where
n is a non-negative integer. The corresponding imaginary components are found by
inserting t1 in B1 of Eq. (3.2). The second condition that B1 has to be cancelled by
the open-ended CTL leads to the lengths [using Eq. (3.3)]

D2 = −λ0
2π · arctan(B1Z0), (3.7)

with periodicity λ0/2, too. If one of the lengths turns out to be negative, λ0/2 has
to be added.
If we restrict ourselves to a real load impedance (X = 0) and to R > Z0, we find

the two principal solutions

D1 = λ0
2π · arctan

(√
R

Z0

)
and D2 = λ0

2 −
λ0
2π · arctan

(
R− Z0√
RZ0

)
(3.8)

or D1 = λ0
2 −

λ0
2π · arctan

(√
R

Z0

)
and D2 = λ0

2π · arctan
(
R− Z0√
RZ0

)
. (3.9)

If there is some loss in the CTL, it is not possible any more to find analytical solutions
for the stub tuner lengths. One can use numerical methods to find the minimum of
Γ, as for example with the NMinimize function of Mathematica. Although being
quantitatively not exact, the lossless results from above still capture the features of
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Figure 3.3.: (a) Stub tuner lengths needed to match at 3 GHz with a lossless stub
tuner. Red dots indicate the solution at R = 100 kΩ, which are used
for the remaining plots and for Fig. 3.5, too. (b) Reflectance amplitude
dependence on frequency and load resistance. (c) Amplitude and phase of
the reflectance as a function of load resistance at the resonance frequency,
which corresponds to a horizontal cut of (b) at 3 GHz. (d) Reflectance
amplitude when a capacitor C is added in parallel to the load resistor,
while the real part is kept at 100 kΩ.

a stub tuner qualitatively as long as the losses are small and thus they are used for
the following analysis.
Without loss of generality, we focus on the solution of Eq. (3.8). The lengths needed

for matching at a resonance frequency f0 = 3 GHz as a function of load resistance are
plotted in Fig. 3.3 (a). D1 is always shorter than D2. The order would be reversed
with the other set of solutions. For large matched resistances Rmatch the arctan-terms
are converging towards π/2 and both lengths are approaching λ0/4. The flattening
for large load resistances points out a fabrication limitation. Small deviations in the
CTL lengths (also indirectly induced by changes of the effective dielectric constant εeff
or Z0) cause a larger shift of the matched resistance the larger the desired Rmatch. In
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3. Impedance Matching

other words, the stub tuner becomes more sensitive to fabrication-induced deviations
the larger the matched resistance.

3.1.2. Input Impedance of a Stub Tuner
By looking at the schematic of a stub tuner in Fig. 3.2 (b), it is obvious that the input
admittance Yin seen from the low-impedance side is the sum of the admittances of
the two CTL arms. Adding these two contributions given in Eqs. (3.1) and (3.3) and
taking the inverse leads to the stub tuner input impedance

Zin = 1
YD1 + YD2

= Z0 ·
Z0 + ZL · tanh(γD1)

ZL [tanh(γD1) + tanh(γD2)] + Z0 [1 + tanh(γD1) tanh(γD2)] .
(3.10)

This is the general expression including a finite CTL loss α. The absolute value of
the input impedance over a large frequency range is plotted in Fig. 3.4 (a) for a load
R = 100 kΩ. The stub tuner is matched at 3 GHz to this resistance Rmatch = 100 kΩ.
In the zero-frequency limit, it approaches R as expected. The behaviour at higher
frequencies is somewhat peculiar. Away from the matched frequency, the stub tuner
looks like a short. Only close to matching, the impedance rises to some finite value,
as seen in Fig. 3.4 (b). As desired, the input impedance reaches 50 Ω at full matching
(red curve). If R is higher than the matched resistance (blue curve), Zin goes above
50 Ω at the resonance frequency and if R is smaller than the matched resistance
(green curve), Zin stays below 50 Ω.
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Figure 3.4.: Input impedance magnitude of a lossless stub tuner matched at 3 GHz
to a load of 100 kΩ. (a) Plot over a large frequency range with the load
being R = Rmatch = 100 kΩ. (b) Enlarged around the first resonance for
three different load resistances.
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3. Impedance Matching

3.1.3. Reflectance of a Lossless Stub Tuner
The purpose of reflection measurements on a stub tuner is twofold. First of all,
it enables to obtain the stub tuner parameters α, εeff , D1 and D2 from fitting the
reflection spectrum at a known load impedance (see section 3.1.5). Once the stub
tuner parameters are known, the variable load impedance value can be deduced from
the reflection amplitude (see section 6.3.2). In this way, reflectometry on a stub tuner
is a fast and sensitive way to measure impedances at high frequencies [31].
The reflection coefficient at an impedance step from Z0 to Zin is defined in Eq. (2.20)

to be Γ = (Zin − Z0)/(Zin + Z0). For a lossless stub tuner, the input impedance of
Eq. (3.10) becomes

Zin = Z0 ·
Z0 + i · ZL · tan(βD1)

i · ZL [tan(βD1) + tan(βD2)] + Z0 [1− tan(βD1) tanh(βD2)] . (3.11)

As seen in section 3.1.2, the stub tuner transforms the load impedance to Z0 at full
matching and thus the reflection coefficient Γ vanishes. The general load impedance
ZL can be divided into real and imaginary parts: ZL = R + i ·X. In the beginning,
we will consider a purely real ZL = R. The reflectance amplitude given a matched
load resistance R = 100 kΩ is plotted in Fig. 3.3 (b) as a function of frequency and
load. If the load resistance R moves away from the matched value, the resonance dip
is increasing, but the resonance frequency stays constant.
The influence of a load resistance modification on the reflection coefficient becomes

more evident in Fig. 3.3 (c), which is a cut of Fig. 3.3 (b) at f = f0. The phase is
jumping by π when crossing the matched load and the reflection dip is increasing by
moving away from the matched load. This shows the possibility to deduce the load
resistance R from Γ when knowing the stub tuner parameters D1, D2 and β.
The influence of an imaginary part X in the load ZL is different. For example,

a capacitance C parallel to the load resistor leads to the load impedance 1/ZL =
1/R+ i · ωC. The corresponding reflectance spectrum is shown in Fig. 3.3 (d). Here,
the real part is kept at the matched value of 100 kΩ while the capacitance is increased.
In addition to the change of the resonance amplitude because one is moving away from
matching, the resonance frequency is decreasing. This demonstrates the use of a stub
tuner as a capacitance or inductance detector.
Now, we will turn back to a purely real load resistance. For a more quantitative

discussion, Fig. 3.5 (a) shows the reflectance spectrum at different load resistances,
which corresponds to vertical cuts in Fig. 3.3 (b). The plots reveal the resonant
nature of a stub tuner. In the limit R � Z0, the two CTL segments have both
roughly the length λ0/4. The sum of these two segments can be considered as being
a λ/2-resonator with one open end and one almost open end. In contrast to the
usual λ/2-resonators used in circuit QED [18], the coupling to the resonator is not
capacitive. Instead, the 50 Ω measurement line is directly connected at the current
node in the centre of the stub tuner CTL. The direct connection of the RF line to
the stub tuner allows to apply a DC voltage in addition to the RF excitation to the
device via the same port.
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Figure 3.5.: Reflection spectrum of a lossless stub tuner for several load resistances,
with the matched load being 100 kΩ at 3 GHz. (a) Amplitude and (b)
phase.

When considering the stub tuner as a resonator, the load resistance R represents a
resonator leak. This leak gives rise to a load quality factor (see section 2.4.2), which
is in the limit R� Z0

QL = π

4 ·
R

Z0
, (3.12)

as derived in appendix B.1.2. On top of the resonance dip behaviour discussed earlier,
one observes in Fig. 3.5 (a) a monotonic decrease of the bandwidth with rising resis-
tance, which can be understood with the proportionality of the load quality factor to
the resistance.
The phase dependence of Γ on the resistance is found in Fig. 3.5 (b). The slope at

the resonance frequency has a different sign for resistances below and above matching.
This phase jump when crossing the matched resistance is also seen in Fig. 3.3 (c).

3.1.4. Effect of Losses
A stub tuner consisting of a lossy CTL can be described as a resonator with a second,
internal leak in addition to the load leak. This leak gives rise to an additional quality
factor, Qi. The same argument as for λ/4-resonators given in appendix A.1 leads
again to the expression for an internal quality factor

Qi = β

2α. (3.13)

According to Eq. (2.39), the total quality factor is a combination of the load and
internal quality factors: Q = QLQi/(QL + Qi). In order to be sensitive to the load
resistance, the internal quality factor must be larger than the external one. In this
case, the total quality factor is dominated by the load quality factor, and consequently
the resonance is sensitive to changes of the load.
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Figure 3.6.: In all three figure, the stub tuner is fully matched for Rmatch = 100 kΩ
and f0 = 3 GHz. (a) CTL lengths D1 and D2 needed to achieve full
matching as a function of α. (b) Reflection amplitude and phase de-
pendence on α at the resonance frequency. The circuit is matched when
α = 0.028 m−1. (c) Reflection amplitude dependence on the load resis-
tance at the resonance frequency when being matched for three different
losses α.

In case of a lossy stub tuner, there is no analytical formula to find the required
CTL lengths D1 and D2 for matching, as it exists in the lossless case [see Eqs. (3.8)
and (3.9)]. Instead, the reflection coefficient amplitude

|Γ| = |(Zin − Z0)/(Zin + Z0)|. (3.14)

can be minimised numerically. Here, Zin is the stub tuner input impedance from
Eq. (3.10). The resulting CTL lengths needed to match a load of 100 kΩ at 3 GHz
as a function of damping α are plotted in Fig. 3.6 (a). The higher the loss, the larger
is the difference between D1 and D2.
Fig. 3.6 (b) shows the reflection amplitude and phase dependence on α when being

matched to one specific value of α. The important message is that there are two
possible values of α for one given reflectance amplitude. Consequently, fitting to the
magnitude of a resonance spectrum as for instance done in Fig. 3.7 (b) can converge
to two different values of α. To find the correct damping, one can either take into
account the phase of Γ or compare the bandwidth of the measured spectrum with
f0/Qint = f0 · 2α/β [see Eq. (3.13)]. Those two bandwidths are only equal for one α.
Fig. 3.6 (a) confirms that full matching with a lossy stub tuner is still possible. A

larger difference between the CTL lengths compensates for a finite α. But as expected,
loss reduces the sensitivity of the stub tuner resonance on the load resistance. In
Fig. 3.6 (c), the reflection amplitude at the matched frequency is plotted as a function
of load resistance. When the loss is increasing, the curves get flatter or in other words
the resonance dip is less sensitive to resistance changes.
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3.1.5. Reflection Measurements of an Open Stub Tuner
We will discuss now the first experiments we carried out with stub tuners. The bare
stub tuner shown in Fig. 3.2 (a) was first cooled down to 4.2 K and later even to
milli-Kelvin temperatures for reflection measurements. The area at the end of the
upper CTL, where we eventually intend to connect the high resistance device, is left
open in this sample. These measurements serve as a test of the circuit fabrication and
of the fitting routine used to extract the stub tuner parameters from the reflection
spectrum. Furthermore, since these were one of the first measurements performed
on the newly build cryogenic RF setup, they also served as a check of the setup.
While this section is devoted to the measurements results, the stub tuner fabrication
procedure is explained in section 4.2.2.
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Figure 3.7.: Measurements of the open stub tuner shown in Fig. 3.2 (a). (a) Reflection
coefficient with and without airbridges close to the T-junction at 4.2 K
probed with -24 dBm. (b) Close-up view in the range of the red dashed
area in (a). Dots are measured points of the stub tuner resonance probed
with -34 dBm. The fitted curve is plotted in red and the corresponding
parameters are written in the figure. (c) Resonance at higher temper-
atures. The fitted values of α are indicated. (d) The same stub tuner
in the dilution refrigerator with a base temperature of 20 mK measured
with an excitation power of −102 dBm.
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Considering first the green reflectance curve of Fig. 3.7 (a) measured at 4.2 K, one
sees apart from the narrow stub tuner resonance a broad resonance. The difference to
the blue curve, where the broad resonance is absence, it that there are no airbridges
yet close to the T-junction. Such airbridges, connecting the different ground planes
close to the junction where the CTL splits, can be seen as black lines in Fig. 3.2 (a).
These airbridges prove to be crucial to suppress spurious resonances evolving from
potential variations between the different parts of the ground plane. For the same
reason, it is important to nicely connect the ground plane all along the sample edges
with bond wires to the sample holder ground. Still, the bond wires around the chip
turn out to be not enough, as they were already there when the green curve was
measured.
This measurement is conducted in the RF dipstick (see section 5.5). In the large

range scan of Fig. 3.7 (a), wiggles on top of the background reflection appear. From
their period, a wavelength in the range of meters is estimated. Therefore, they are
attributed to standing waves in the coaxial cables going to the instrument. These
resonances could be damped with attenuators interrupting the coaxial cable.
A close-up view on the reflection amplitude is given in Fig. 3.7 (b). It can be

accurately fitted to Eq. (3.14) with reasonable parameters. The fitting parameters
α, εeff , D1 and D2 can be found in the figure. Details on the fitting method can
be found in appendix B.1.1. The requirement that Qi > QL to be sensitive to the
load (see section 3.1.4) allows to judge the usability of this stub tuner with a loss of
α = 0.017 m−1: The load quality factor is dominating as long as the load resistance
is smaller than ∼ 300 kΩ.
In Fig. 3.7 (c), the temperature dependence of the stub tuner resonance is investi-

gated. With higher temperatures, the increased loss broadens the resonances and the
increased kinetic inductance lowers the resonance frequency. This behaviour is very
similar to what is observed with λ/4-resonators in section 2.4.4.
The reflection of the same open stub tuner probed in a dilution refrigerator with a

base temperature of 20 mK can be seen in Fig. 3.7 (d). The loss α is almost as high
as at 4.2 K. The most striking difference to the 4.2 K data is the lineshape, which is
much more asymmetric. Reasons for the enhanced asymmetry can be spurious modes
in the setup or an enhanced effect of spurious modes in the niobium ground plane
due to lower temperatures [32]. Since several later measurements on other samples
showed more symmetric resonances in this setup, the asymmetry is attributed to not
ideal grounding of this sample. Probably, the asymmetry could be lowered by making
the bond wires to the ground plane around the chip denser than the chosen spacing
of about 0.5 mm.
The findings from the open stub tuner measurements are very similar to the ones

from the λ/4-resonator measurements in section 2.4.4. For CTL characterisations
alone, λ/4-resonators are preferable because of their less complex structure, which
results in fewer fit parameters and a more straightforward and reliable analysis. In
addition, λ/4-resonators need less space, which makes it is easier to couple several
of them to one feedline for obtaining statistics. However, the stub tuner circuit is
the one we intend to use for noise studies and in this respect, the open stub tuner
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measurements presented here give us more confidence to go towards the final circuit
with a nanoscaled device attached to the stub tuner.

3.1.6. Output Impedance of a Stub Tuner
So far, the input impedance of a stube tuner seen from the low-impedance side and
the resulting reflection properties were discussed. Intuitively, it is quite obvious that
at matching, when there are no reflections for a signal entering the stub tuner, a signal
generated at the device can leave the stub tuner without reflections, too. With the
formulas given above, this argument can be confirmed. According to the schematic
in Fig. 3.1 (b) that the output impedance seen by the load looking towards the stub
tuner input is

Zout = Z0 ·
Zout,T + i · Z0 tan(βD1)
Z0 + i · Zout,T tan(βD1) , (3.15)

where Zout,T = Z0ZD2/(Z0 +ZD2) is the output impedance at the T-junction. Using
Eq. (3.3) and inserting the matching conditions given in Eqs. (3.5) and (3.7), a lengthy
but simple calculation leads indeed to the result Zout = ZL = R+ i ·X. In summary,
the matching circuit transforms ZL to an input impedance Z0 and in turn, looking
into the other direction, transforms Z0 to an output impedance of ZL.
This conclusion does not entirely hold any more when introducing loss in the CTL.

Full impedance matching is always possible from both sides, because adjustments of
the stub tuner lengths can account for the loss contributions [see Fig. 3.6 (a)]. But
since the stub tuner is not a symmetric circuit, one ends up with a different set of
stub tuner lengths depending on which side has to be matched.

3.1.7. Transmission Coefficient of a Stub Tuner
Now, we turn to the transmission properties of a stub tuner. What is relevant for
noise measurements is to know the transmission function from the high-resistance
device side to the 50 Ω instrument side. The goal of this section is to derive an
expression for the transmission coefficient and to clarify its properties.

R
Z0 V(D1)

x
0 D1 D1+D2

Z0, γ Z0, γ

VR

ΓL R
Z0 V(D1)

VR

(a) (b)

Figure 3.8.: (a) Sketch showing the stub tuner consisting of two CTL segments (or-
ange) on a yellow background. It is connected to a load of resistance
R and to the measurements line of impedance Z0. (b) Schematic for
wideband detection in the absence of any impedance-matching circuit.
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3. Impedance Matching

In Fig. 3.8, a schematic of a stub tuner is drawn. It is equivalent to the schematic
of Fig. 3.2 (a) from before. We consider the case when a real load resistance R is
attached. According to Eq. (2.8), the voltage in a CTL has the general waveform
V (x) = V +e−γx + V −eγx resulting from the telegraph equations. The voltage co-
efficients of the left CTL segment, where 0 ≤ x ≤ D1, are called V +

1 and V −1 for
the waves moving in positive and negative direction, respectively. It is derived in ap-
pendix B.2.1 how the boundary conditions at the two CTL ends and at the T-junction
lead to the following expressions for the voltage coefficients:

V −1 = −VR ·
Z0

R+ Z0
· 1

ΓL + e2γD1 · [1 + 2 coth(γD2)]
V +

1 = −V −1 · e2γD1 · [1 + 2 coth(γD2)] ,
(3.16)

by using the definition ΓL = (R − Z0)/(R + Z0), which is the reflection coefficient
directly at the load before the stub tuner.
We assume a noise voltage VR to be emitted by the device with resistance R.

What is detected at the stub tuner input side is the the voltage V (D1) dropping
over a resistance of Z0. Using the coefficients from Eq. (3.16) leads to the voltage
transmission function of a stub tuner

tV (f) = V (D1)
VR

= V +e−γD1 + V −eγD1

VR

= 2Z0
R+ Z0

· eγD1 coth(γD2)
ΓL + e2γD1 · [1 + 2 coth(γD2)] .

(3.17)

All relevant stub tuner parameters can be deduced from reflection measurements,
as demonstrated in the previous section 3.1.5. The frequency dependence is implic-
itly given by the frequency dependent wavenumber β appearing in the propagation
constant γ = α+ i · β [see Eq. (2.7)].
Under some conditions, the transmission function can be simplified, as derived in

appendix B.2.2. If the stub tuner is fully matched to a resistance R at f0, R � Z0
and furthermore the frequency is close to resonance (∆f � f0, where ∆f = f − f0),
the voltage transmission function is well approximated by

tV (∆f) ≈ 2Z0
R
·

π
2 ·

∆f
f0
∓
√

Z0
R

±4Z0
R + i · 2π∆f

f0

. (3.18)

The upper (lower) signs are valid for the set of solutions Eq. (3.9) [Eq. (3.8)], where
D1 > D2 (D1 < D2), respectively. See the end of appendix B.2.2 for more details on
this.
In both cases, the amplitude squared takes on approximately the form of a Lorentzian:

|tV (∆f)|2 ≈ Z0
4R ·

1

1 +
(
π
2 ·

R
Z0
· ∆f
f0

)2 . (3.19)
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The transmission peak value at ∆f = 0 is |tV |2 = 1/4 · Z0/R. For comparison, the
schematic in the absence of an impedance-matching circuit is drawn in Fig. 3.8 (b). In
this case, the voltage transmission squared would be t2V ≈ (Z0/R)2 when R� Z0 due
to voltage division. In contrast, the 1/R-dependence of the stub tuner peak value
implies a significantly higher transmission within a small frequency window when
dealing with high load resistances R. The FWHM of the transmission function in
Eq. (3.19) is found to be ∆fFWHM = f0 · 4/π · Z0/R, which is the same result as in
Eq. (3.12) obtained for the reflection coefficient.
Some example spectra of the stub tuner transmission amplitude are shown in

Fig. 3.9 (a), assuming lossless CTLs. These curves are calculated using Eq. (3.17).
The load resistance is fixed to the matched value for each curve. Full matching hap-
pens at f = 3 GHz. The required CTL lengths for this matching conditions are
obtained via Eq. (3.8). In agreement with Eq. (3.19), the peak values and the band-
width are both proportional to 1/R. It gets apparent that the stub tuner behaves
like a band-pass filter.
The peak values at the matched frequency of 3 GHz as a function of load resis-

tances are plotted in Fig. 3.9 (b). The red curve represents an upper bound of the
transmission achievable with any impedance-matching circuit since the matching is
perfect at each point. In contrast, the blue curve shows the peak transmission with
the stub tuner lengths fixed to get full matching only at 100 kΩ.
Fig. 3.9 (c) focuses on the bandwidth of the transmission resonance. Again, the

bandwidth when being matched to each resistance is plotted in red and the band-
width when being matched only at 100 kΩ is plotted in blue. Surprisingly, there is
a crossover at 100 kΩ. For lower resistances, the bandwidth for perfect matching is
larger. However, the order changes above 100 kΩ and the bandwidth is even larger
in the not perfectly matched case. The situation becomes more evident by looking at
the two sample spectra shown in the insets. The peak transmission at f0 is lower for
both resistances when not being matched (blue curves). But while the bandwidth of
the non-matched blue curve is smaller for resistances below matching (left inset), the
bandwidth for resistances above matching (right inset) is in fact larger when being
not matched (blue curve) than when being matched (red curve).
In our experiments, we are going to detect the transmitted signal integrated over

a frequency range. The integrated transmission coefficients over all frequencies from
zero to infinity are shown in Fig. 3.9 (d). Below the matched resistance of 100 kΩ,
the integrated signal shown in blue is smaller than the optimal value achieved when
always being matched. But above 100 kΩ, the effects of lower peak values and larger
bandwidths seen in the right inset of Fig. 3.9 (c) compensate each other and it is pos-
sible to gain as much signal without full matching as with perfect matching. However,
being matched is still favourable in terms of signal to noise. In order to reach the
same integrated signal, the required integration bandwidth is larger without matching
than with perfect matching, but a larger integration bandwidth implies picking up
more background noise, as well. If the signal integrated over a small frequency range
around f0 was plotted, the matched circuit would always deliver a larger signal than
the non-matched one. This is further explained in the next paragraph.
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Figure 3.9.: Voltage transmission amplitude |tV |2 of a lossless stub tuner. (a) Fre-
quency dependence when being matched at 3 GHz to four different load
resistances. (b) Peak value at the matched frequency as a function of
load resistance R. While the red curve shows the optimum achieved by
matching to each resistance R, the stub tuner parameters are fixed for the
blue curve to have full matching at 100 kΩ. (c) Full width at half maxi-
mum (FWHM) again matched to each load resistance (red) and matched
to 100 kΩ (blue). The insets show two spectra for resistances below and
above 100 kΩ. (d) Transmission amplitudes integrated over frequency.

3.1.8. Figure of Merit for Noise Measurements
In this last section about stub tuners, we are going to quantify the benefit of a stub
tuner for noise measurements. To this end, the situations with and without impedance
matching are compared. In the later case, the signal is strongly reduced due to
impedance mismatch, but itoffers significantly more bandwidth. However, in reality,
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the bandwidth (BW) is not infinite but always limited by circuit components like
circulators and amplifiers. In our setup, the component with the smallest bandwidth
of about 500 MHz is the circulator (see appendix D).
Schematics for the two cases of narrowband detection with a stub tuner and of

wideband detection without impedance matching are in Fig. 3.8 (a) and 3.8 (b), re-
spectively. In any case, the voltage drop over Z0 caused by a voltage generated at the
resistance side, VR, can be expressed with the help of the transmission function as
V (D1)2 = V 2

R ·
∫
BW|tV |2 df . Then, the signal power detected over Z0 and integrated

in a bandwidth BW is

P =
∫

BW

V (D1)2

Z0
df = V 2

R

Z0
·
∫

BW
|tV |2 df. (3.20)

In the absence of impedance matching, the transmission function is simply a constant
given by voltage division:

tV = Z0
Z0 +R

≈ Z0
R
, (3.21)

for R � Z0. Hence, the detected power of Eq. (3.20) can be evaluated without
impedance matching to be

P0 = BW · V
2
RZ0
R2 . (3.22)

For a lossless stub tuner at full matching, the transmission function of Eq. (3.19) can
be integrated analytically over the stub tuner bandwidth f0 · 4/π · Z0/R:∫ BW/2

−BW/2
|tV |2 df = f0

4 ·
(
Z0
R

)2
, (3.23)

where f0 is the resonance frequency. This leads to the ideal detected signal power for
a lossless stub tuner at full matching

Pstub = f0
4 ·

V 2
RZ0
R2 . (3.24)

In comparison with P0 of Eq. (3.22), the stub tuner provides an improvement in
detected power as soon as f0/4 > BW.
One may argue that it is not worth making the setup more complex by adding a

stub tuner in consideration of the small gain in signal. However, the real strength of a
stub tuner is that it enables to measure with a much smaller bandwidth of only some
MHz. To make this evident, one has also to consider the background noise which is
added after the matching circuit. The main noise source in our setup is coming from
the amplifier chain. Assuming a constant background noise power spectral density
Sbg, the collected background noise depends linearly on the measurement bandwidth.
In this respect, narrowband detection is very beneficial. This is captured by the signal
to noise ratio (SNR), which is given in general by

SNR = P

SbgBW =
∫

BW|tV |2 df
BW · V 2

R

SbgZ0
, (3.25)
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when using Eq. (3.20) for the signal power. Without matching circuit, the signal
power given in Eq. (3.22) leads to

SNR0 = V 2
RZ0

SbgR2 . (3.26)

While the BW drops out in the case of no impedance matching, the SNR of a stub
tuner depends on the chosen BW. Integrating the transmission function of a lossless
stub tuner at matching, as done in Eq. (3.19), results in

SNRstub = V 2
Rf0

πSbgRBW · arctan
(

BW · πR

4f0Z0

)
. (3.27)

The BW dependence of the SNR is plotted in Fig. 3.10 (a). It is maximal at zero BW
and decreases for higher BWs. On the other hand, the signal increases with larger
BWs. This interplay is captured by the product SNR ·P , where P is the signal power
of Eq. (3.20). For a lossless stub tuner at matching, this product becomes

SNRstub · Pstub = V 4
Rf

2
0Z0

2π2SbgR3BW · arctan2
(

BW · πR

4f0Z0

)
. (3.28)

It has a maximum slightly higher than the FWHM, as illustrated in Fig. 3.10 (b).
Setting its derivative to zero leads to the optimal bandwidth

BWopt = 1.39 · FWHM = 1.39 · f0 ·
4
π
· Z0
R
. (3.29)

Thus the choice that BW = FWHM which we made for the signal power in Eq. (3.24)
and which we continue to use is close to the optimal value and moreover simplifies the
calculations. With the signal power of Eq. (3.24), the SNR of a stub tuner matched
to an resistance R� Z0 is

SNRstub = π

16 ·
V 2
R

SbgR
. (3.30)

This is an upper bound in the absence of loss and at full matching. The transmission
function of Eq. (3.17) can be integrated numerically to obtain the SNRstub under
realistic conditions.
In order to compare the efficiency of a matching circuit for different matching

conditions and even different impedance-matching circuits, we introduce the figure
of merit gSNR = SNRmatching/SNR0. With the help of Eqs. (3.25) and (3.26), the
general expression for the figure of merit is found to be

gSNR = SNR
SNR0

=
(
R

Z0

)2
·
∫

BW|tV |2 df
BW , (3.31)

and Eq. (3.30) gives an optimal figure of merit of a lossless stub tuner at perfect
matching:

gSNR = π

16 ·
R

Z0
. (3.32)

As the load resistance R is in our case much larger than Z0, a stub tuner provides a
tremendous increase in performance for noise measurements and other experiments
for which a high signal transmission is crucial.
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Figure 3.10.: (a) The SNR for measurements with a lossless stub tuner at full match-
ing is decreasing monotonically with the bandwidth (BW). The SNR0
without stub tuner of Eq. (3.26) would be five orders of magnitude
lower. (b) The product SNR times signal power P has a maximum
slighly above the FWHM, which is indicated by the red dashed line.

3.2. LC Matching Network
Another, more common lumped-element approach for impedance matching is a com-
bination of an inductor and a capacitor. In this section, the properties of a simple
LC matching circuit are introduced and compared with stub impedance matching.
Later on, our concept for a microwave LC circuit is briefly mentioned.

3.2.1. Basic Properties
The circuit drawn in Fig. 3.11 is one possibility of an LC matching circuit (not
including losses). At first, the matching conditions on L and C are derived. For that,
we consider the input impedance seen from the low-impedance side, which is

Zin = iωL+ 1
1/R+ iωC

= R+ iω · (L− CR2 + ω2LC2R2)
1 + ω2C2R2 . (3.33)

The requirement for matching is that Zin = Z0. Equating the real and imaginary
parts results in

C ≈ 1
ω0
√
RZ0

and L ≈
√
RZ0
ω0

. (3.34)

if R� Z0 and with ω0 being the angular frequency at matching. Equivalently, these
relations can be written as

ω0 = 1√
LC

and L

C
= RZ0. (3.35)

The next step is to find a formula for the transmission function from the load to
the low-impedance side. Kirchhoff’s laws lead directly to the expression

tV = VZ0
VR

= Z0
R
· 1

1 + Z0
R − ω2LC + iω · (CZ0 + L

R)
. (3.36)
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R
Z0VR VZ0C

L
Zin

Figure 3.11.: Schematic of a simple lossless LC matching circuit.

When the circuit is matched to the load R and frequency f0, the frequency can be
written in terms of the matched frequency as f = f0 + ∆f and the capacitance and
inductance of Eq. (3.34) can be inserted. This leads to the transmission function

tV = Z0
R
· 1

1 + Z0
R + i · 2

√
Z0
R

(
1 + ∆f

f0

)
−
(
1 + ∆f

f0

)2 , (3.37)

which can be approximated when R� Z0 to

tV ≈ −
Z0
2R ·

1
∆f
f0
− i ·

√
Z0
R

. (3.38)

In this limit, the amplitude squared of the transmission function takes on the Lorentzian
lineshape

|tV |2 ≈
1
4 ·
(
Z0
R

)2
· 1
Z0
R +

(
∆f
f0

)2 . (3.39)

From this, the FWHM can be directly inferred to be

∆fFWHM = f0 · 2

√
Z0
R
. (3.40)

The integral of the transmission in Eq. (3.39) can be evaluated to be∫
BW
|tV |2 df = f0 ·

π

8 ·
(
Z0
R

)3/2
, (3.41)

when the bandwidth is set to the FWHM. This leads to the signal power detected
with a lossless LC circuit of [see Eq. (3.20)]

PLC = πf0V
2
R

8 ·

√
Z0
R3 . (3.42)

With the help of Eq. (3.25), the SNR becomes

SNRLC = π

16 ·
V 2
R

SbgR
, (3.43)
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FWHM Signal power SNR gSNR

Stub tuner f0 · 4
π ·

Z0
R

f0V 2
R

4 ·
√

Z0
R ·

√
Z0
R3

π
16 ·

V 2
R

SbgR
π
16 ·

R
Z0

LC circuit f0 · 2
√

Z0
R

πf0V 2
R

8 ·
√

Z0
R3

π
16 ·

V 2
R

SbgR
π
16 ·

R
Z0

Table 3.1.: Summary of the key properties of stub tuner and LC matching circuits in
the absence of loss, at full matching and when R� Z0.

and finally the figure of merit for measurements with an LC circuit is obtained by
Eq. (3.31):

gSNR = π

16 ·
R

Z0
. (3.44)

For comparison, table 3.1 summarises the key parameters of stub tuner and LC
matching circuits. The bandwidth of the high transmission window of an LC circuit
is larger than the one of a stub tuner by a factor π/2 ·

√
R/Z0. Also the power

of the detectable signal is enlarged by the same factor. This is not very surprising
since the peak transmission coefficient at the matched frequency is fixed to |tV |2 =
1/4 · Z0/R for any matching circuit and only the bandwidth varies from circuit to
circuit. Consequently, the larger signal power of an LC circuit and the increased
background noise due to the larger bandwidth compensate each other, leading to the
same SNR and figure of merit gSNR than for a stub tuner.
In conclusion, an LC matching circuit provides the same increase in SNR than a

stub tuner. But the bandwidth for an LC circuit scales with
√
Z0/R instead of Z0/R

for a stub tuner, which results in a much higher bandwidth when the load resistance
is large. This has advantages and disadvantages. If one wants to reduce the read-out
time, an LC circuit is a better choice. The downside of a large bandwidth is that
the unavoidable frequency dependence of the signal transmission through the setup
complicates the calibration. Within the stub tuner bandwidth of some megahertz
when being matched at 3 GHz to a high-resistance sample, the setup transmission is
well approximated by a linear curve. But for larger bandwidths, a better knowledge
of the frequency dependence is necessary.
At the end of the discussion on how to optimise the SNR, we want to note that it

is equally important to minimise the background noise Sbg in the first place, as for
instance with Josephson parametric amplifiers [20, 21]. Furthermore, the SNR is not
the only limiting characteristic of an experiment. What counts experimentally is to
reach a certain SNR which is high enough for the intended accuracy. Any further
increase of the SNR does not reveal new features. But the larger the figure of merit,
the smaller is the averaging time needed to reach the same SNR.
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3.2.2. Towards a Microwave Realisation
The capacitance and inductance values needed for matching are obtained by Eq. (3.34).
For example, to match a load of 100 kΩ at 3 GHz, a capacitance as low as C = 24 pF
and an inductance as high as L = 120 nH are needed. Parasitic capacitances and re-
sistances of commercial lumped-element inductors with such a high inductance make
it difficult to operate at gigahertz frequencies.
Our approach is to use superconducting spiral inductors [33, 34] as shown on the test

sample in Fig. 3.12 (a). As a low-loss substrate, we use an undoped silicon substrate
with a 170 nm-thick layer of silicon oxide. This substrate is compatible with our usual
fabrication process for nanoscale devices. Therefore, it would be possible to place the
high resistance device on the same chip between the inductor and the ground plane.
In this way, the stray capacitance between the matching circuit and the device - which
would lead to an RC-filtering effect - is minimised. The light grey area in Fig. 3.12
is 150 nm-thick sputtered niobium. The inductor pattern with 9 turns is written
by PMMA-base electron-beam lithography and subsequent etching with an Ar/Cl
plasma in an inductively coupled plasma (ICP) machine. The outer diameter of the
inductor is 240 µm, the line width is 2 µm and the spacing between the lines 2 µm,
as well.
In order to connect the planar coil centre to the outside, a bridge is needed. In

the test resonator of Fig. (3.12), the bridge is directly connected to the ground plane.
The idea for later samples is to place the high-resistance device between bridge and
ground. A closer look on the bridge can be taken in Fig. 3.12 (b). The niobium bridge
has a width of 3 µm and is supported by a crosslinked PMMA layer with a height
of about 500 nm, which looks black in the picture. Crosslinking PMMA is achieved
with an e-beam dose approximately 10 times higher than its clearing dose. The bridge
fabrication including two additional lithography steps is actually more difficult than
the fabrication of the planar inductor itself.

(a) (b)Niobium

Feedline

Ground plane

Device would
come here

50 µm

20 µm

Figure 3.12.: (a) Picture of a spiral inductor with an inductance of about 80 nH. It is
made with niobium on Si/SiO2. is connected to a feedline on the bottom
and at the other side to ground via a bridge. The high-resistance device
is going to be placed between bridge and ground. (b) Rotated close-up
view on the niobium bridge, which is supported by crosslinked PMMA,
which looks black in the picture.
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The test sample in Fig. 3.12 (a) is an LC resonant circuit, with the capacitance
arising from stray capacitances to the nearby ground plane and to the back plane. A
resonance spectrum is gained by measuring the transmission of the attached feedline.
By fitting to an appropriate model, values for L and C are obtained. A simple LC
model applied to the first measurements on this kind of circuits reveal an inductance
in the order of 80 nH for an inductor with 9 turns.
The work on LC matching circuits is successfully carried on by the PhD student

Cezar Harabula. In the meantime, he did an extensive study on parasitic effects,
worked on a more comprehensive and accurate model than the simple one presented
here and achieved good matching to a carbon nanotube quantum dot.

3.3. Bode-Fano Criterion
In the context of the discussion about the resonant circuit bandwidth, the question
arises whether there is any fundamental bandwidth limit. This small section is meant
as a side remark, as it is not the intention of this thesis to push the bandwidth to the
limit.

(a) (b)

RL

ω

1

0
Δω

CLossless 
matching circuit

Γ(ω)

|Γ|

Γm

Figure 3.13.: (a) Matching network with a parallel RC load as an example for the
Bode-Fano limit. (b) Example reflection coefficient with a transmission
window of size ∆ω.

The Bode-Fano criterion [10] gives a theoretical limit of the bandwidth achievable
with any (lossless) impedance-matching circuit. The criterion depends on the type of
load impedance. In case the load consists of a resistance R and a capacitance C in
parallel, as illustrated in Fig. 3.13 (a), the Bode-Fano criterion states that∫ ∞

0
log

( 1
|Γ(ω)|

)
dω ≤ π

RC
. (3.45)

It sets a restriction to the frequency dependent reflection coefficient Γ(ω). More
precisely, a small reflection coefficient (or good matching) is only possible in a limited
frequency range. To clarify this, let us assume we wish to design a circuit with the
reflection characteristic shown in Fig. 3.13 (b). Then, the Bode-Fano criterion leads
to the restriction∫ ∞

0
log

( 1
|Γ(ω)|

)
dω =

∫
∆ω

log
( 1
|Γm|

)
dω = ∆ω · log

( 1
Γm

)
≤ π

RC
. (3.46)
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It shows the trade-off between large bandwidth ∆ω and small reflection minimum
Γm. A perfect matching, meaning that Γm=0, is only possible for a discrete set of
frequencies with ∆ω = 0.
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4 Fabrication of Carbon Nanotube
Samples

Quantum dots (QDs) formed in single-wall carbon nanotubes (CNTs) have been in-
tensively investigated in our group for a long time. In particular when combining
quantum dot physics and superconductivity, exciting results have been achieved. Hy-
brid device geometries consisting of CNTs with superconducting and normal leads
have resulted in the observation of highly-efficient Cooper pair splitting [35], in stud-
ies of the interplay between the Kondo effect and superconductivity [36] or in detailed
sub-gap spectroscopy revealing Andreev processes [37, 38], to name only a few. In
these experiments, the average currents were measured using low-frequency lock-in
techniques. Our aim is to extend the measurement scheme by a stub impedance-
matching circuit, which allows to additionally measure the noise on top of the average
current. These measurements can provide otherwise unattainable insight into trans-
port processes. In spite of profiting from the CNT fabrication knowledge acquired
over many years in the group, some adaptions were necessary to make it compatible
with the on-chip microwave circuit fabrication.
For optimal RF results with a stub tuner attached to a CNT device, the following

requirements should be fulfilled:

1. The microwave losses of the stub tuner must be kept as small as possible, such
that its internal quality factor exceeds the load quality factor up to large device
resistances (see section 3.1.4).

2. The distance between the stub tuner and the device must be as short as possi-
ble. The device resistance together with the stray capacitance of the line, which
connects the device with the stub tuner, form an RC low-pass filter. In con-
clusion, a long distance between the device and the stub tuner causes a signal
reduction.

During the PhD time, I have carried out several fabrication test runs and investiga-
tions to live up to these requirements. The resulting fabrication procedure is presented
in this chapter. A table with a step-by-step description can be found in appendix C.
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4.1. Carbon Nanotube Stamping
4.1.1. Carbon Nanotube Growth
CNTs are grown by chemical vapour deposition (CVD) at high temperatures. During
the PhD thesis of Jürg Furrer, a dedicated CVD oven was built and a growth recipe
was developed, which delivers a large amount of single-wall, high-quality CNTs [39,
40].
The basis for the growth are catalyst particles. We use a mixture of small iron,

molybdenum and aluminium oxide particles, which are diluted in isopropanol. This
dilution is sonicated with a strong power to separate all particles clusters. Then,
the catalyst dilution is spin coated on the substrate. If desired, CNTs can be grown
locally by spin coating the catalyst on a resist mask. A careful resist lift-off still keeps
most of the catalyst particles on the unprotected area. Finally, the growth is done
for 10 minutes at 950 ◦C in a hydrogen/methane atmosphere. While heating up and
cooling down, the oven is flushed with a mixture of argon and hydrogen. The detailed
growth recipe can be found in appendix C.

4.1.2. How to Get an On-Chip Stub Tuner
The best way to bring the CNT sample and the matching circuit close together is
to place them on the same chip. Apart from minimising the RC-filtering effect as
mentioned above, this makes the circuit performance more reproducible, as well. The
RF properties of bond wires are not easy to model and to reproduce because they
depend strongly on the wires’ length, shape and their surrounding.
Combining a microwave circuit with CNTs is complicated by the fact that CNT

growth is done at high temperatures. These growth temperatures destroy the su-
perconducting properties of niobium. In contrast, niobium nitride is supposed to be
robust against high temperatures. In fact, thermal annealing even causes a higher
critical temperature due to less lattice distortions [41]. In order to test the RF quality
of niobium nitrite after CNT growth, we studied the resonance of λ/4-resonators, as
it is demonstrated in section 2.4.4. We observed that the quality factors drop below
100 at 4.2 K. In conclusion, fabricating a stub tuner and then growing CNTs on-chip
is not an option.
Therefore, we have checked a reversed fabrication order. The idea was to grow

CNTs first locally, protect this area with a resist layer and then sputter niobium.
Niobium is lifted off in the CNT area and in the following, a stub tuner can be
patterned on the niobium layer close to the CNTs. Finally, a CNT can be chosen and
connected to the stub tuner in a last evaporation step.
As a test, we have fabricated λ/4-resonators on substrate, which was in the CVD

oven before. Again, these resonators showed a drastic quality factor reduction to
values below 100 at 4.2 K. A possible reason might be amorphous carbon deposited
during growth. To confirm this assumption, the substrate surface was cleaned with a
long oxygen plasma between growth and niobium deposition. Indeed, the resonances
got sharper and quality factors around 500 were measured at 4.2 K, which is on the
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other hand still considerably smaller than the quality factors of about 5000 obtained
with pristine substrate. This indicates that the growth process is also harmful to
the Si/SiO2 substrate itself. Even though a SiO2 reduction in hydrogen requires
temperatures above 1000 ◦C [42], a reaction at lower temperatures might be possible
at defect sites on the surface. When we etch 10 − 20 nm of the SiO2 surface after
growth with an Ar/Cl2 plasma and then make resonators, the quality factors reach
again values up to 3000. An increased surface roughness induced by the plasma
etching might be the reason why the quality factors are not anymore as high as with
pristine substrate. We observed a similar quality factor degradation with a silicon
nitride substrate.
In summary, the results obtained with the order CNT growth and then stub tuner

fabrication are not ideal either. This brought us to the idea to make CNT growth
and the microwave circuit on two separate substrates and to transfer the CNTs later
on.

4.1.3. Stamping Procedure
To overcome the problem of oxide degradation during CNT growth, as discussed in
the previous section, we have adapted a CNT stamping procedure developed in the
group of Takis Kontos [43]. Fig. 4.1 illustrates our CNT stamping process.
The growth substrate is silicon with a 170 nm-thick thermal oxide. We want to

pattern a 2 × 2 mm2-large area full of little squares with electron beam (e-beam)
lithography. The resist has to stay on the exposed squares, which means we are
looking for a negative resist. HSQ is a good candidate because it is very resistant
to plasma etching. On the other hand, we also need wet HF etching for the stamp
fabrication, which easily removes HSQ. Since PMMA withstands HF etching and is
easy to remove in solvents, we use a bilayer of thick PMMA (∼ 1 µm) resist and a
thin layer of HSQ on top. The HSQ development in TMAH after e-beam writing
only removes the unexposed HSQ, while the PMMA remains everywhere. A three-
step etching leads to the pillars, as described in the following. First, the PMMA
not covered with HSQ is removed by an oxygen plasma. In the second step, SiO2
is removed with HF wet-etching. HF also removes the HSQ layer and thus only a
PMMA mask remains. The third step is to etch deeply into silicon with an SF6
plasma and finally to remove the PMMA on the pillars in acetone. The result are
square pillars as shown on the bottom left of Fig. 4.1 with a size of 50 µm and a
height of 4 µm.
What remains is to grow CNTs. As explained before in section 4.1.1, Fe/Mo catalyst

particles are spin coated and then the CVD process is done in the growth oven.
When stamping, only a small amount of the CNTs plus some catalyst particles are
transferred. Therefore, we wish to have a high CNT density on the growth substrate.
This is why we use the original catalyst solution [39] without further dilution and we
spin coat catalyst solution for 5 times.
In the meantime, the target substrate is prepared. As visible in Fig. 4.1 on the right

side, the stamping area contains a grid of bottom gates and markers and connecting
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4 µm

50 µm

200 µm

Growth substrate
Target substrate

10 µm

200 µm

Figure 4.1.: Illustration of the CNT stamping process. CNTs are transferred by press-
ing the growth substrate and the target substrate together in a mask
aligner. The growth silicon substrate is shown on the left half, contain-
ing an area of pillars. The left close-up view shows one pillar before CNT
growth with dark catalyst particles in the centre. The pillar after growth
containing CNTs on the surface is seen in the right close-up view. Im-
ages of the target substrate are shown on the right half. Bottom gates
(dark lines), markers and T-shaped connecting lines to the surrounding
microwave circuit are already prepared. The bottom picture shows an
example of stamped CNTs on bottom gates.

lines to the surrounding RF circuit (not visible). For the CNT stamping process, the
growth substrate is glued with PMMA on a transparent glass plate and mounted in
a mask aligner, which is normally used for UV lithography. The two substrates are
aligned with the optical microscope to be on top of each other and pressed together.
Since the growth substrate is not transparent, only a rough alignment is possible and
the pillar area is larger than the bottom gate area to account for some misalignment.
Alternatively, one could use a transparent quartz growth substrate, which would
allow for a much preciser alignment with the cost of a more laborious pillar etching
process. Once the growth substrate is glued on the glass plate, it is important to
do the alignment and stamping quickly in order that the PMMA glue still remains
soft and is able to balance any gap caused by not perfectly horizontal substrates. In
my experience, one usually ends up with about 3− 6 straight CNTs of usable length
crossing some bottom gates if there are six bottom gate areas on the target substrate,
as shown in the top right picture. This is enough for our purpose, since there is only
space for 3 stub tuners around one stamping area.
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The yield of transferred CNTs decreases rapidly if one uses the same stamp a second
time. But the stamps can be reused in the following way. By wet etching with HF,
approximately 10 nm of the SiO2 pillar surface is removed. One gets back a clean
pillar surface, which allows to spin coat catalyst again and grow CNTs for a next
stamping.
A crucial point for successful stamping is that there are no dirt particles on the

pillar surfaces, which would act as spacers during the stamping. For that, the stamp
substrate needs to be cut to the final size and thoroughly cleaned before spin coating
catalyst. The catalyst solution itself needs to be sonicated for a long time with high
power to avoid big particle clusters, which would also separate the two substrates
while stamping. The reason for doing many small pillars instead of one large one
goes in the same direction. Like this, the contact area is reduced and with it the
chance that a big particle on the surface hinders the stamping yield.
This way of stamping transfers many CNTs in a random manner. In contrast,

there are also more elaborate ways to stamp single CNTs precisely on source and
drain contacts of an otherwise fully prepared and already bonded sample at room
temperature [31, 44] or even inside a cryostat [45].

4.2. Fabrication Steps
This section is devoted to the fabrication procedure. It contains descriptions for the
different fabrication parts, which lead eventually to a CNT device connected to an on-
chip stub tuner. Whereas the main text concentrates on more general considerations
and highlights some crucial steps, all fabrication details are listed in appendix C.

4.2.1. Bottom Gates
As mentioned in section 2.4.3 about coplanar transmission line (CTL) loss sources,
one cannot build a low-loss RF circuit on a doped substrate. Therefore, the often used
gating with a global doped-substrate backgate [46] is not an option and alternative
local gates are needed to define and tune QDs in CNTs.
Two examples of bottom gate structures are shown in Fig. 4.2. Multiple QDs can

be formed by the version with several narrow gates illustrated in Figs. 4.2 (a) and (b).
With the wide gates in Figs. 4.2 (c) and (d), a single QD can be defined.
In any case, a 100× 100 µm2-large area is covered with bottom gates and markers

to locate CNTs later on. One stamping area contains six of these gate areas close
to each other, as shown in Fig. 4.1 on the right side. The gates are patterned with
standard PMMA-based e-beam lithography and subsequently, 5 nm of titanium and
30 nm of gold are deposited in an e-beam evaporation system. The gates are isolated
by a silicon nitride (Si3N4) layer on top with a thickness of 50 nm, which is deposited
in a plasma-enhanced CVD (PECVD) process. This is done externally in the PSI.
The temperature of about 300 ◦C in the PECVD chamber makes it impossible to use
any resist mask and therefore the Si3N4 layer covers the entire substrate. We open
windows at the ends of the gates in the next step to make the gates accessible, as

49



4. Fabrication of Carbon Nanotube Samples

(a) (b) (c)

(d)

20 µm

Si
SiO2 (170 nm)
Si3N4 (50 nm)

300 nm
100 nm

100 nm

20 µm 10 µm

Window

Figure 4.2.: Different kinds of bottom gates, which are covered by Si3N4. (a) Area
with narrow gates, allowing to form single and double QDs. The little
crosses between the gates are markers. (b) Cross-section showing the
gates in yellow (not to scale) (c) Long and wide gate stripes to form
single QDs. (d) Si3N4 window etched to contact the gate later on.

shown in Fig. 4.2 (d). The windows are defined with e-beam lithography and etched
with a CHF3/O2 plasma.

4.2.2. Stub Tuner
Having the covered bottom gates ready, the next step is to fabricate the stub tuner
and in the same step bond pads for the gate lines and their connection to the stamping
area. A picture of the resulting circuit with three stub tuners and ten bond pads for
the DC gates located around the central stamping area is shown in Fig. 4.3 (a). For
this, we cover the bottom-gate area with PMMA resist and deposit 100− 150 nm of
niobium in a magnetron sputtering machine. Lift-off removes the Nb layer on top of
the bottom gate area. Then, the CTLs for the stub tuners are defined with e-beam
lithography. The same structures could also be patterned with photolithography since
our line widths are not smaller than 5 µm. While photolithography is faster and the
available writefield is much larger, the structure can be easily modified with e-beam
lithography. This flexibility is an important advantage during the development of
a new circuit and the writing time for one stub tuner of about 5 minutes is still
reasonably fast for our purpose. The e-beam writefield limitation of our system to
2× 2 mm2 is the reason for the meander-shaped CTLs shown in the figure.
Niobium etching is done in an inductively coupled plasma (ICP) machine. Aniso-

tropic etching is achieved with an Ar/Cl2 plasma. An example of an open-ended CTL
fabricated with niobium on SiO2 and a tilted close-up view on the edge are shown in
Figs. 4.3 (b) and (d), respectively. The etch rates of Si3N4 and SiO2 are not much
lower than the one of niobium. It can be seen that the trenches are almost twice as
deep as the niobium thickness. First of all, the over-etching ensures that all niobium
is definitely gone and secondly, deep etching of the substrates moves possible two-
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(a)

1 mm

DC bond pad

RF bond pad

(b)

(c)

(d)

10 µm

1 µm

SiO2

SiO2

Nb

Nb

Niobium

2 µm

Si

Nb

Figure 4.3.: (a) Image of the entire chip. The stamping area in the centre is sur-
rounded by three stub tuners and ten DC gate lines. The blue area is
SiO2 and the green area Si3N4. (b) Example of a CTL open end made
with niobium on SiO2. (c) Side view on an edge of (b). The cross-section
shows the 150 nm-thick niobium layer (light grey) and the SiO2 below
(dark grey). (d) Edge of another structure using the same plasma etching
process as in (c) but on a silicon substrate without oxide on top. Many
pillars appear on the etched surface due to the high etch rate of silicon.

level states (TLS) at the substrate away from the high-field region and can reduce
dielectric losses of the CTL [26]. The deep etching of the trenches for the stub tuner
removes the entire 50 nm-thick Si3N4 layer beneath and the SiO2 substrate appears
in blue in Fig. 4.3 (a). In the central bottom gate area, niobium is removed by lift-off
and hence the Si3N4 layer is visible in green.
The etch rate of Si is 2-3 times larger than of niobium. As a consequence, it

is problematic to have silicon directly beneath niobium. Niobium residue islands
building at the instance when almost the entire niobium layer is etched, act like etch
masks for the fast Si etching and lead to pillar-like structures on the Si surface, as it
is visible in Fig. 4.3 (d). Because of its smaller etch rate, SiO2 beneath niobium leads
to a much smoother surface (see Fig. 4.3 (c)). The same is true for Si3N4, which has
a similar etch rate to that of SiO2.
We applied two different fabrication orders. The first one goes as follows. Bottom

gates are fabricated, then the CNTs are stamped and already contacted and after-
wards the niobium layer for the stub tuner is sputtered with some overlap between
the CNT contact metal and the end of the stub tuner. Niobium on palladium or gold
leads to reliable ohmic contacts.
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Later on, we changed the order in the sense that the stub tuner is fabricated first
and then the CNTs are stamped on the empty central area. The contact between the
CNT and the stub tuner end is fabricated as a last step. Niobium oxidises quickly and
therefore a short in-situ plasma etching of the oxide layer is needed before evaporating
metal on top of niobium. Because the plasma etching would attack the CNT, it is
not possible to make a direct connection between the stub tuner end to the CNT at
once. Instead, we make short palladium contacts to the stub tuner end, the ground
plane and the gate line even before CNT stamping. Such lines are visible in the top
right image of Fig. 4.1 as T-shaped elements with light beige colour. This additional
lithography step requires more work with the advantage that less lithography steps
have to be done after the CNT is on the chip. This reduces the amount of resist
residues on the CNTs, which can be harmful to their quality. Furthermore, when
making superconducting lead contacts to CNTs (see section 4.2.5), it is crucial to do
the lead evaporation as a last step owing to the low melting point of lead and indium.

4.2.3. Normal Metal Contacts to Carbon Nanotubes
After stamping the CNTs are located and selected with a scanning electron microscope
(SEM). To make the CNTs visible, or more precisely to observe their screening effect
on the substrate, a low acceleration voltage of 1 kV and the in-lens detector are used
[47].
Obviously, we are looking for CNTs crossing a bottom gate and with a reasonable

length of at least a micrometre such that it can be contacted on both sides. Apart
from that, there is no strict rule how to select the CNTs. Straight CNTs are preferred
since curvature and angles are attributed to defects in the CNT lattice. Moreover,
very bright and thick CNTs are possibly multi-wall and therefore ignored.

(a)
(b)

50 µm

stub tuner end

gate
500 nm

Pd

ground

Figure 4.4.: (a) Picture showing the palladium source, drain and gate connections
between the device and the surrounding niobium. (b) Palladium (Pd)
source and drain contacts to a CNT.

Contacts to the selected CNTs are patterned by e-beam lithography. Instead of the
standard PMMA resist, we switched to the resist ZEP for all lithography done after
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the CNT is on the chip. ZEP is shown to leave less resist residues than PMMA and
hence resulting in a higher contact yield [48]. Certainly, clean CNT-metal interfaces
are an important prerequisite for reliable metal-CNT contacts. Still, our contact
resistances scatter within more than an order of magnitude even for samples on the
same chip, which have all experienced the same fabrication conditions.
If a completely transparent contact to a CNT was achieved, the resulting resistance

would be h/4e2 ≈ 6.5 kΩ according to the four channels present in a CNT due to
the two-fold spin and valley degeneracies. The observed resistances however are often
much higher, indicating the formation of a barrier at the metal-CNT interface. On
the one hand, these barriers lead to a charge confinement in the CNT for free. On
the other hand, the lack of control and tunability of the barrier heights sets limits on
experiments with such naturally formed QDs and is one of the main obstacles for the
large scale integration of CNTs in mesoscopic devices. In spite of several theoretical
and experimental studies on contact resistances, partly contradicting results were
obtained and no general conclusion on the underlying mechanism could be drawn yet
[49, 50].
The textbook argument for the electrical properties of a metal-semiconductor in-

terface is given by the Schottky-Mott rule [51]. It is based on the different Fermi
levels of the two materials. If they are brought into contact, the Fermi level differ-
ence is equilibrated by a charge flow across the interface, which in turn leads to the
formation of a Schottky barrier. However, experimental data of bulk materials do
often not agree with predictions from the Schottky-Mott rule. This is explained by
the Fermi-level pinning due to interface states. For one-dimensional semiconductors
on the contrary, such as CNTs, Fermi-level pinning is predicted to play a minor role
[52]. Nevertheless, it is an experimental fact that metals with similar work functions
yield different contacts to CNTs. Interestingly, first-principles studies of the interface
properties on the microscopic level reveal the importance of the chemical bonding
between metal and CNT [53–57]. According to their studies, the contact resistance
depends strongly on the metal’s wetting properties and the hybridisation between
metal and CNT.
In any case, it is established that both palladium [58] and titanium [55, 59] can

provide highly transparent contacts to CNTs and these are therefore our two materials
of choice to contact CNTs.

4.2.4. Superconducting Niobium Contacts to Carbon Nanotubes
In order to observe interesting Cooper pair-involved physics like Andreev processes
[60–62], one superconducting contact to the CNT is needed. The type-II supercon-
ductor niobium with a relatively large gap (bulk value ∆ = 1.45 meV [63]) offers the
potential to resolve subgap features up to high magnetic fields [38].
The recipe used here for niobium contacts to CNTs is developed by Jens Schindele

[50] and Jörg Gramich [64]. The actual contact to the CNT is established via a
4.3 nm-thick titanium layer, which is sputtered with a very low power. We believe
that a too high power might destroy the exposed CNT part, at least we measured
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very high contact resistances with higher sputtering power. The titanium thickness
is a compromise between good CNT wetting and keeping the titanium layer well
proximitised by the niobium above.
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Figure 4.5.: (a) CNT on a silicon nitride substrate with a wide bottom gate beneath.
It is contacted on one side with titanium/niobium (Ti/Nb) and on the
other side with palladium (Pd). The titanium thickness is 4.2 nm and
the niobium is 40 nm-thick. (b) and (c) Differential conductance in
the single dot regime at a base temperature of 20 mK. (b) When the
magnetic field B = 0 T, the conduction suppression for bias voltages
eVbias < ∆ is apparent (with ∆ being the superconducting energy gap).
(c) The superconducting gap is completely suppressed at B = 1 T and
the conduction triangles touch.

An example of a niobium-contacted CNT is shown in Fig. 4.5 (a). The white parts
at the edges are sticking out flakes, which are sputtered on the resist walls. We
intentionally use a vertical resist profile. The reason is that sputtering happens quite
isotropically and the entire undercut area would be filled with metal, leading to a
rather unpredictable stripe width. In contrast, a large resist undercut is desirable to
fabricate the thermally evaporated palladium contact. It simplifies the lift-off step,
flakes along the edge are not present and since thermal evaporation is anisotropic, no
metal residues are left in the undercut area.
The DC conductance of this CNT device with one superconducting niobium contact

at a base temperature of 20 mK is shown in Fig. 4.5 (b). A single QD is formed, whose
energy levels can be tuned by the wide bottom gate. The superconducting density of
states causes a current suppression for bias voltages Vbias < ∆/e. A superconducting
gap ∆ ≈ 0.7 eV is inferred. At a magnetic field of 1 T, the gap is completely closed
and the Coulomb blockade triangles touch, as shown in Fig. 4.5 (c).

4.2.5. Lead Contacts to Carbon Nanotubes
Another large-gap superconductor is lead, which is of type I. Its bulk value of the
superconducting gap is ∆ ∼ 1.3 eV [65]. Contact to CNTs is achieved with a three-
layer system, deposited successively in an e-beam evaporation machine [66]. The
4.5 nm-thin palladium layer on the bottom makes the actual contact to the CNT. A
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sample stage cooling to a temperature below -40 ◦C is crucial to obtain a homogeneous
layer. Due to their low melting points, the lead and indium layers are evaporated at a
sample stage temperature below -90 ◦C. The indium capping layer prevents lead from
oxidising. It is important that lift-off is done at room temperature, without heating.
No high-temperature process is possible at all after lead is evaporated due to the low
melting point of lead and indium.

(a) (b)

Pd

sidegate

bottom gate
edge

Pd/Pb/In

600 nm

500 nm

Figure 4.6.: (a) CNT device with one palladium/lead/indium (Pd/Pb/In) contact
(thicknesses 4.5/110/20 nm) and one Pd contact. There is a side gate
plus a wide bottom gate, which is covered with silicon nitride. The Pb
stripe is surrounded by a ring of particles. (b) A 500 nm-wide Pb stripe
with the same capping layers as in (a) on a SiO2 substrate. There are
almost no particles around the stripe because the substrate could be
thoroughly cleaned before the ZEP-based lithography.

Fig. 4.6 (a) shows a CNT with one lead and one palladium contact. A ring of
particles around the lead stripe is observed. Measurements of such a sample are very
unstable due to charging and discharging of particles next to the CNT. Diffusion of
indium and/or lead to the undercut area causes this particle ring, which is observed
on SiO2 and Si3N4 substrate.
If the same lithography with ZEP is repeated on a well cleaned substrate, on which

no previous fabrication was done, the number of diffused particles is negligible, as seen
in Fig. 4.6 (b). The main difference is that the CNT sample substrate has undergone
three PMMA and one ZEP steps before and a thorough surface cleaning was not
possible any more because it would destroy the CNT. Resist residues probably turn
the substrate surface from hydrophilic to hydrophobic, which enhances the metal
diffusion.
In summary, for combining a CNT device with lead contacts and a RF circuit on-

chip, a method has to be found to turn the substrate surface hydrophilic again before
the lead step without attacking the CNT or perhaps all PMMA steps for fabricating
the stub tuner could be replaced by using a thick ZEP resist, which obviously leaves
much less residues.
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5 Microwave Measurement Setup

A prerequisite for measurements with quantum dots and superconductors is to cool
the device to milli-Kelvin temperatures. Only in this temperature range, the thermal
energy is well below the energy gap of the superconducting material and the addition
energy of a typical quantum dot. We deduced a gap size ∆ ≈ 0.7 meV for our
sputtered niobium (see Fig. 4.5 (b)) and the addition energy of our quantum dots
defined in carbon nanotubes is of the order of 15 meV (see Fig. 6.10).
We were in the lucky position to receive a new dilution refrigerator for our project,

an Oxford Triton cryogen free system, to build up a dedicated microwave measure-
ment setup. It offers a lot of space inside to place bulky RF components at cold
temperatures. The setup is designed to perform RF and DC measurements simulta-
neously. Inside the cryostat, a base temperature of 20 mK is reached. However, due
to the small electron-phonon coupling at low temperature, the conduction electron
temperature is higher. Thermal noise measurements indicate an electron temperature
of about 100 mK (see Fig. 7.9 (d)) for a device connected to the RF coaxial cable.
This corresponds to a thermal energy of kBT ≈ 90 µeV.
Two pictures of the cryostat are shown in Fig. 5.1. The system contains several

plates, which are thermally isolated. The temperature decreases stepwise from the
top plate to the mixing chamber plate. In operation, metallic cans around the plates
act as radiation shields and the entire system is in vacuum to suppress heat exchange.
There are two independent, closed cooling cycles. A pulse tube cooler runs the pre-
cooling cycle and brings the system to an intermediate temperature. In conventional
wet dilution refrigerators, this job is done with a liquid helium bath, which needs to
be refilled regularly. Secondly, the dilution cycle running with a mixture of 3He and
4He and cools the sample stage to milli-Kelvin temperatures.
Even though the cryostat images look fancy, a clearer understanding of the setup

is gained with the help of the sketch in Fig. 5.2. It shows the entire setup and serves
as the basis for the rest of the chapter. A detailed list of all components with brand,
part numbers and technical specifications is given in appendix D. Since our project
included building up the measurement setup, this chapter contains some details on
different parts of it and in the end some ideas about possible improvements.
In the meantime, we even received a second cryostat from BlueFors for our project.

It is a cryogen free system, too. In this croystat, we built up a very similar RF setup
as in the Triton with some additions. Apart from a measurement line for operation
around 3 GHz, there are also lines for 1 and 6 GHz. A very useful component for
calibration is a low-temperature RF switch right before the sample holder. It enables
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(a) (b)
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Figure 5.1.: (a) The Triton cryostat without any cans and without magnet. The sam-
ple puck is mounted on the circular docking station from below. There
are five thermally isolated plates with decreasing temperature from top
to bottom. (b) Mixing chamber (MC) plate showing the mounted RF
components (without circulator). The MC plate has a diameter of about
40 cm.

to switch the RF connection from the actual device to a reference sample and back.
The switching is achieved by sending a voltage pulse to the switch. However, all
results presented here are conducted on the Triton setup.

5.1. Sample Puck
In this section, we consider the lowermost part, where the sample is mounted. The
sample resides inside a so-called puck. A picture of it is seen in Fig. 5.3 (a). The
sample holder in the middle is hanging on the DC wires and the coaxial cables. The
puck’s top part, which is plugged into the docking station of the cryostat, is shown
in Fig. 5.3 (b). In this picture, the puck is closed by a metal shield. Round SMP
RF connector are visible, which are connected by pressing (not screwing like SMA
connectors).
A printed circuit board (PCB) serves as a sample holder. The first PCB version
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Figure 5.2.: Sketch of the cryogenic measurement setup. For reflection measurements,
a vector network analyser (VNA) is used and for noise measurements
a signal and spectrum analyser (SSA) with only the RF output line
attached.

I designed is shown in Fig. 5.3 (c). Samples are glued into the central area. All
connectors are on the front side. There are two SMP connectors for connecting to
the coaxial cable and two nano-connectors, which are connected to the two DC looms
in the cryostat. The connector pins are soldered to metal lines on the PCB. They
lead to the bond pads around the sample area. There are in total 18 pads to connect
to DC wires and 2 RF pads. The PCB back side consists of one large ground plane,
which is connected by many vias to the ground plane on the front side. The PCB is
screwed on a copper plate.
The puck is placed in the centre of a vector magnet with maximum fields of 6 T in

the vertical direction and 1 T in the other two directions. The magnet’s hysteresis is
determined with a Hall bar sample to be in the range of 3 mT.
Thanks to the bottom loading system, the puck can be exchanged while the system

is kept cold with the pre-cooling cycle. This way, a sample exchange can be done
within 24 hours until reaching base temperature again.
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Figure 5.3.: (a) Sample puck with the metal shield removed. DC cables (colored) and
two coaxial cables lead to the PCB, which is in the centre. (b) View on
the top of the puck. This top plate is plugged into the cryostat’s docking
station. The puck is now closed with the metal shield. (c) Sample holder
PCB. Samples are glued to the middle area and bonded to the PCB
pads around. Close to the PCB edge, there are two high-frequency SMP
connectors and two tiny nano-connectors for DC cables from Omnetics.
(d) Measurement schematic concentrating on the DC part. The bias
voltage is applied to the source (S), while the drain (D) lead is grounded.
The DC current is measured on the source side, as well.

5.2. RF Wiring
We now follow the RF signal path depicted with arrows in Fig. 5.2. The input line
is attenuated at each temperature step to damp radiation leaking from the high-
temperature to the low-temperature side. The total attenuation of the input line is
∼ 72 dB around 3 GHz. A stainless steel coaxial cable with a low thermal conductivity
is used. On the mixing chamber (MC) plate, the signal is fed into a directional coupler.
It transmits the signal with 20 dB attenuation to the sample’s source contact, where
some fraction is reflected. The drain side of the sample is grounded.
The directional coupler guides the reflected signal into a separate output line. The

bias tee enables to apply from this side a DC voltage to the RF port of the sample.
A circulator prevents radiation going the way back to the sample, in particular noise
generated by the amplifier. A low-temperature amplifier with a gain of about 35 dB
is placed on plate 2, followed by one (or for noise measurements even two) room
temperature amplifiers, each with a gain ∼ 35 dB. In an amplifier chain, the noise
added by the first amplifier is magnified the most or in other words the dominant
noise source is the first amplifier if its amplification is high enough compared to the
amplification of the following one. Therefore it is crucial to use a low-noise cryogenic
amplifier.
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For reflectometry, the input and output lines are connected to a vector network
analyser (VNA). It combines a signal generation unit used for the input signal and a
homodyne detection unit to quantify the signal on the output line. The impedances
of both ports are Z0 = 50 Ω. In contrast, noise measurements do not need any RF
input signal and a signal. We use a spectrum analyser (SSA) to detect the power on
the output line. Also with the SSA, the power dissipated over a resistance of 50 Ω is
measured.

5.3. DC Wiring
To apply DC voltages to the sample, there are two looms going up the cryostat,
each containing 24 constantan wires. Outside the cryostat, the looms are split in a
break-out box to access them independently.
What follows is a short description of the way we bias the sample and measure

source-drain current. The corresponding sketch is in Fig. 5.3 (d). The sample’s source
(S) is connected to the RF line and the drain (D) is grounded. For DC measurements,
one wire of the loom is merged with the RF line on the MC plate with the help of a
bias tee. We measure the DC current I from source to ground with an I/V -converter,
where an offset voltage on the I/V -converter establishes the source-drain bias voltage
Vbias.
RF grounding of the drain contact immediately after the sample is necessary for

RF measurements. But with respect to DC measurements, there are two disadvan-
tages if one can only access the source side. The loom bridges the large temperature
difference from room temperature to milli-Kelvin temperatures. Since the loom ma-
terial connecting the sample’s source and the cryostat ground material on the drain
have different Seebeck coefficients, we encounter a thermal voltage of 6.9 mV between
source and drain. If the wires leading to source and drain were of the same material,
thermal voltages on both lines would cancel each other. Another issue is that apply-
ing a low-frequency excitation to the I/V -converter offset and recording the resulting
voltage with a lock-in amplifier gives extremely noisy results. We therefore measure
the DC voltage with a multimeter. To circumvent these two issues, we started to
place a second bias tee on the drain side. In this way, the RF part is still grounded
via a capacitor, whereas the DC part is fed into a loom. The RF grounding has to
happen as close to the sample as possible, preferably on-chip.
Like for the coaxial cables, an effective filtering of high-temperature radiation is

crucial for the DC cables, too. I constructed a filter box using the design of Scheller
et al. [67], which is installed on the MC plate. A filter box with a removed cover
is shown in Fig. 5.4 (a). It contains a silver-epoxy filter rod for each wire. A wall
in the middle made out of silver epoxy closes the radiation leak from the left to the
right half. How one of these filters looks like is clarified in Fig. 5.4 (b). It shows the
result after three fabrication steps in fabrication order from left to right. The core is
a copper rod of 3 mm diameter. It is covered with some layers of silver paint (from
Plano GmbH, article number G302), which results in a soft surface. Next, a 1 m long
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Figure 5.4.: (a) Open filter box with 25 silver-epoxy filters on two layers and Cinch
connectors on both sides. The epoxy wall in the middle is a radiation
shield between the left and the right side. (b) Pictures of three filter
fabrication steps in fabrication order from left to right. (c) Transmission
of one filter at room temperature. For that, SMA connectors are attached
to both filter ends as shown in the inset.

isolated copper wire (diameter 0.25 mm) is wound around the rod. The last step is
to cover the coil with silver epoxy (article number E4110 8OZ, weight ratio between
part A and B is 10:1).
The inductance of the coil plus the capacitance to the nearby grounded rod and

silver epoxy layer of C ≈ 2 pF lead to an LC-filtering effect. But interestingly, it
is found that filtering due to the skin-effect is equally important in these filters [67].
The small skin depth at high frequencies reduces the current cross-section to a small
annulus. The excellent filtering properties (with a 3 dB point at 6 MHz) are visible
in the room temperature transmission measurements of Fig. 5.4 (c). These boxes
additionally guarantee a decent thermalisation of the electrons in the DC lines to the
phonon temperature of the MC plate. This is confirmed with a commercial Coulomb
blockade thermometer (CBT) from Aivon, which is fixed on the sample puck and
connected to a DC cable. The CBT thermometer holds 33 tunnel junctions in series.
The electron temperature can be deduced from the bias width of the conductance
dip in Coulomb blockade [68]. We obtain an electron temperature of the DC wires of
32 mK at a base temperature of 20 mK.

5.4. Possible Improvements of RF Wiring
Reflection and noise measurements presented in the following two chapters 6 and 7
confirm that our setup is suited for RF measurements. In the meantime, we gained
a good understanding of the circuit’s RF properties and found a way for an accurate
calibration, as explained in section 7.3.2. Nonetheless, there is room for improvements
of the RF wiring.
When the Coulomb blockade thermometer (CBT) was connected to a DC wire, we

measured a decent temperature of 32 mK. But the electron temperature of the RF
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wires seems to be considerably higher. Thermal noise measurements conducted on a
metallic wire suggest that its electron temperature is around 100 mK (see Fig. 7.9 (d)).
To get a more accurate value, one could once connect the CBT to the RF line.
So it might be beneficial to work on the thermalisation. While the coaxial cable’s
outer conductor is thermally anchored at each plate, the centre conductor is only
thermalised through the dielectric between outer and centre conductor. To enhance
the centre conductor thermalisation, the coaxial cable can be interrupted on the MC
plate by a piece of stripline on a sapphire substrate [69]. Sapphire is a dielectric with
a large heat conductivity. In addition, we suspect that the 50 Ω terminators on the
circulator and the directional coupler deviate at low temperatures from their nominal
resistance and thus, they do not absorb all radiation. Therefore, we are going to
replace them with cryogenic ones.
In principle, the stub tuner in front of our devices is a good filter for microwave

radiation since it reflects all signals, whose frequencies are away from resonance (see
Fig. 3.5). Yet, the stub tuner has higher resonant modes and its transmission proper-
ties for very high-frequency signals is not clear. There is evidence that quasiparticle
generation by infrared light is a mechanism for loss in superconducting resonators [70].
This suggests that attenuating high-frequency signals might be beneficial. Filters
made out of Eccosorb material are a good candidate for this purpose [71]. Eccosorb
CR-110 is a material that absorbs microwaves above 18 GHz and the attenuation
continues at least up to optical frequencies. Eccosorb filters consist of a section of
stripline inside a copper box that is filled with Eccosorb.

5.5. RF Dipstick

(a) (b)

1.8 m

Sample box

Can

Head

Figure 5.5.: (a) Image of the dipstick for measurements in a helium dewar. The
cold part is on the right hand side. Two coaxial cables and DC wires
are leading inside a tube to the head, which contains connectors. (b)
Close-up view of the cold sample part. There are two SMA connectors at
the copper sample box. When cooling down, the copper can is mounted
around the sample box.

For the test experiments with λ/4-resonators (section 2.4.4) and open stub tuners
(section 3.1.5) we built a simple dipstick setup. It is very useful for quick measure-
ments at 4.2 K by dipping into a helium dewar. Two pictures of the dipstick are found
in Fig. 5.5. It consists of a tube with two standard coaxial cables and DC wires inside.
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The overall attenuation of the coaxial cables from top to the sample is approximately
14 dB at 3 GHz. They are attached on the right cold side to the sample copper box
with two SMA connectors. Inside the box, the sample is glued in the centre of a
PCB, which makes the link between the bond pads and the connectors. There is a
thermometer mounted next to the sample box.
We directly measure the reflection and transmission coefficients with a vector net-

work analyser without amplification. Because there are no attenuators, circulators
or directional couplers, the background standing waves are rather high and a ca-
ble calibration is necessary, especially for reflection measurements. For the threefold
calibration at room temperature, we replace the sample box by an open, 50 Ω and
a short termination and record the S-parameters for each termination. During the
measurements of the actual sample, the network analyser calculates the calibrated
coefficients according to the calibration data acquired with the three terminations.
It turned out that the setup properties do not change significantly when it is cold.
Therefore, using the room temperature calibration data leads to satisfying results.
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6 Conductance in the Quantum Dot
Regime

Quantum dots (QDs) are small, quasi one dimensional islands for electrons (or holes)
with typical sizes from nanometres to a few microns. The strong electron confinement
in a QD leads to a discrete energy spectrum and the addition or removal of a single
charge becomes observable. The electronic properties of QDs and of atoms show
many similarities. Therefore QDs are sometimes called artificial atoms [72]. The
experimental control over QDs however is much better than over atoms; with the
gate voltage, one can change the electron number on the dot and hence scan through
the entire periodic table of such an artificial element. We access the QD via tunnel
coupled source and drain contacts and use them to probe the energy spectrum with
electronic transport.
Since their first preparation by Endo et al. [73], carbon nanotubes (CNTs) have

attracted a great deal of attention, not least because of their unique electronic prop-
erties. After discovering how to synthesise CNTs consisting of one cylincrical wall [74],
the majority of experiments were conducted with single-wall CNTs. If we are talking
about CNTs, we therefore mean more specifically single-wall carbon nanotubes. As
described in the fabrication sections 4.2.3 to 4.2.5, CNTs can be contacted with var-
ious normal and superconducting metals. Given that a natural tunnel barrier forms
between metal and CNT, one ends up with a CNT QD by fabricating two contacts
on the CNT, which are close to each other.
The purpose of this chapter is twofold. In the beginning, there are two theory

sections introducing the electronic structure of CNTs as well as properties of quantum
dots in general and when formed in CNTs. The remaining part of the chapter focuses
on the low-temperature conductance of CNTs in the QD regime probed with DC and
RF reflectometry.

6.1. Electronic Structure of Carbon Materials 1

A carbon atom has six electrons. Two of them occupy the inner 1s shell and are
tightly bound to the nucleus. The remaining four electrons, occupying the 2s and 2p
orbitals, are bound weaker. Since the energy difference between the 2s and 2p states
is small compared to the binding energy of chemical bonds, different hybridisations
are possible and hence the four valence electrons can make two, three or four bonds

1This section summarised parts from reference [75]
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to other atoms. Therefore, carbon materials are found in a variety of forms with
very distinct properties like three-dimensional diamond and graphite, two-dimensional
graphene, one-dimensional CNTs and zero-dimensional fullerene.

6.1.1. Graphene Bandstructure
The starting point to understand the bandstructure of CNTs is graphene, because
a CNT can be thought of a rolled-up graphene sheet. Graphene is a flat single
layer of carbon atoms. Its well-known hexagonal honeycomb lattice with a lattice
constant of a0 = 1.44 Å can be seen in Fig. 6.1 (a). The two lattice vectors ~a1 and ~a2
span the marked unit cell, which contains two carbon atoms. Fig. 6.1 (b) shows the
graphene lattice in reciprocal space. The reciprocal lattice vectors ~b1 and ~b2, defined
via ~ai~bj = 2πδij , as well as the corresponding first Brillouin zone are indicated. It
has six corners, of which the three labelled with K and K ′ are connected with lattice
vectors, what makes them indistinguishable.

K
K’

E

EF
K

K’

kx

ky

(a)

a1

b1 b2

a2

a0 K K’

K

K’K

K’

(b) (c)

Figure 6.1.: (a) Hexagonal lattice of graphene in real space. Carbon atoms are on each
corner. The two lattice vectors ~a1 and ~a2 span the unit cell marked with
the blue area, containing two atoms. (b) Reciprocal lattice points with
the first Brillouin zone in orange. ~b1 and ~b2 are the primitive reciprocal
lattice vectors. (c) Graphene bandstructure calculated using the tight-
binding method (adapted from [76]).

The bandstructure of graphene can be calculated with the tight-binding method,
taking into account only nearest neighbour interactions. The result is plotted in
Fig. 6.1 (c). There are two bands, which touch at the six corners of the first Brilloin
zone. In the case of undoped graphene, the lower band is filled and the upper one is
empty. Hence, the Fermi energy EF is located at the crossing points of the conduction
(red) and valence band (blue). For energies close to the Fermi energy - the principal
energy range of interest - the bands have the shape of cones and can be approximated
by the linear dispersion relation

E(~k) = ±~vF|~k|, (6.1)
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with the Fermi velocity vF = 8.2 × 105 m/s. The energy E is relative to the Fermi
energy and the wavenumber ~k is measured with respect to theK orK ′ points. Because
the same dispersion relation also describes massless fermions in the Dirac equation,
the points where the bands touch are known as Dirac points, and the nearby bands as
Dirac cones. Only one third of each cone is inside the first Brillouin zone and instead,
one can consider two full Dirac cones at the positions ~K and ~K ′. These two cones
give rise to a new degree of freedom, the valley-spin or iso-spin. The two distinct
states with wavevectors ~k + ~K and ~k + ~K ′ are energetically degenerate.

6.1.2. From Graphene to Carbon Nanotubes
A CNT can be thought of a graphene sheet rolled up to a cylinder with a diameter of
roughly 1-5 nm. The rolling process is illustrated in Fig. 6.2 (a). There are infinitely
many ways how to select a stripe for rolling up. The CNT structure is specified by
the chiral vector ~c. It indicates the direction, in which the graphene sheet is rolled
up and goes along the CNT equator. With the help of the real space lattice vectors,
the chiral vector is expressed as ~c = n · ~a1 +m · ~a2, where n and m are integers with
m ≤ n. The special case when m = 0 is called a zigzag CNT because a cut of such a
tube on the equator has a zigzag edge. Accordingly, the case when n = m is called
an armchair CNT. All other cases are named chiral CNTs.

(a)

a1

a2

(b)
Metallic Semiconducting

c = n∙a 1
 + m∙a 2

(c)

k||

k┴

EE

k||

k┴

E

Eg

E

Figure 6.2.: (a) Honeycomb lattice of graphene. The green area is rolled up to a CNT
with the chiral vector ~c. (adapted from [77]) (b) The quantisation of k⊥
corresponds to slicing the graphene Dirac cone. If the slice goes through
the Dirac point, the CNT is metallic. (c) If the slice misses the Dirac
point, the bandstructure has a gap Eg and the CNT is semiconducting.
(adapted from [62])

With respect to the CNT symmetry, we split the momentum into two components:
k‖ along the CNT and k⊥ along the CNT equator. A periodic boundary condition
leads to a quantisation of k⊥ with spacing

∆k⊥ · πd = 2π, (6.2)

where d is the CNT diameter. Using this condition, one can construct the one-
dimensional bandstructure of CNTs out of the two-dimensional bandstructure of
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graphene. The quantisation of k⊥ corresponds to cutting slices out of the graphene
Dirac cone, as depicted in Figs. 6.2 (b) and (d). Although the slicing produces many
subbands, the CNT diameter in the nanometre range results in a subband separation
in the range of electron volts. Hence already at room temperature, only the lowest
subband is populated and talking of one-dimensional transport is completely justified.
In case the cut hits the Dirac point, the CNT bandstructure is not gapped and the

CNT turns out to be metallic. In the other case, the bandstructure is gapped. With
this argument, approximately one third of the CNTs are metallic and the other two
thirds are semiconducting. But experiments revealed that even nominally metallic
CNTs have small bandgaps. These gaps were explained either by structural deforma-
tions like curvature and strain or by the formation of a Mott insulating state arising
in a model, which takes electron-electron interactions into account [78, 79].

6.2. Quantum Dots in Carbon Nanotubes
A CNT naturally confines the electronic wavefunction to one dimension. Tunnel
barriers can be introduced in CNTs either with contacts (see end of section 4.2.3) or
in semiconducting CNTs by depleting a short CNT section. If two tunnel barriers
in a CNT are close together, the electronic wavefunction in the short CNT segment
between is confined in all directions and a QD is formed, as illustrated in Fig. 6.3 (a).
When confined to such a small space, Coulomb interactions between electrons (or
holes) become important, which makes for instance charging by a single electron
observable or in particular gives rise to suppressed shot noise. But as a start, this
section gives a brief theoretical description of QDs. In the first part, the energy states
arising in QD are explained and in a second part, electronic transport via these states
is considered.

6.2.1. Quantum Dot States
The strong charge confinement in a QD gives rise to two kind of energy levels. On
the one hand, there is the quantum mechanical confinement energy. Like in the
particle-in-a-box problem, the confinement of a single particle leads to a discrete
energy spectrum. The level spacing is increasing when the QD size is decreasing. For
a QD defined in a CNT, the single-particle level spacing is well approximated by [80]

∆ ≈ 1 meV/L(µm), (6.3)

where L is the QD length in µm. The confinement energy (or single-particle energy)
of an electron in state n is denoted by En.
Coulomb interaction is not yet considered in this picture, but will prove to play a

major role in QDs. It is captured within a capacitance model [81]. As depicted in
Fig. 6.3 (b), we consider the QD tob be a metallic island with capacitive couplings to
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Figure 6.3.: (a) A CNT segment with Ti/Al (4/60 nm-thick) source (S) and drain (D)
contacts, forming a quantum dot (QD) between. A large bottom gate is
below a silicon nitride layer (not visible). (b) Capacitance model of the
QD shown in (a). The tunnel coupling rates to source and drain are ΓS
and ΓD, respectively. The potential on the QD can be tuned via the gate
voltage. (c) Energy level diagram of a QD containing N electrons. The
QD is separated with tunnel barriers from source and drain, which are
both at the electrochemical potential µ = µS = µD. Ground states are
indicated with solid lines and excited states with dashed lines.

source, drain and the gate. The induced charge at the metallic object i is given by

Qi = Q
(0)
i +

3∑
j=0

CijVj , (6.4)

where Q(0)
i is the offset charge when all potentials are at zero as resulting from doping

or impurities. Source, drain and gate have indices i = 1, 2, 3. The voltages applied
to them are known, but Qi are not. The index i = 0 denotes the QD itself. Here,
V0 is unknown but the charge is known to be a multiple of the elementary charge,
Q0 = −|e|N . Solving for the potential on the dot leads to

V0 = Q0 −Q(0)
0

CΣ
−

3∑
j=0

C0j
CΣ

Vj , (6.5)

with CΣ = C00 = −
∑3
i=1C0i being the sum of the capacitances around the QD.

The lever arms of the gates αi = −C0i/CΣ are given by the geometry. Now, the
electrostatic energy required to add N electrons on the dot can be determined:

E(N) =
∫ Q

(0)
0 −|e|N

Q
(0)
0

V0 dQ0 = e2N2

2CΣ
− |e|N

3∑
j=1

αjVj . (6.6)

The total energy of a QD, which is populated with N electrons, is the sum of the
confinement energy En and the electrostatic energy:

Etot(N) =
N∑
n=1
En + e2N2

2CΣ
− |e|N

3∑
j=1

αjVj . (6.7)
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In the constant interaction model, it is assumed that the capacitance CΣ and the
confinement energy En are both independent of the QD occupancy N . In this ap-
proximation, the electrochemical potential of the QD is

µN = Etot(N)− Etot(N − 1) = EN + e2

CΣ

(
N − 1

2

)
− |e|

3∑
j=1

αjVj . (6.8)

The electrochemical potential is the energy needed to fill the QD with the N -th elec-
tron. Due to the constant interaction approximation, the electrochemical potential
describes a ladder with equal spacings

µN − µN−1 = ∆ + e2

CΣ
. (6.9)

This so-called addition energy expresses how much more energy is required to add
the next electron on the QD. The term Ec = e2/CΣ is called charging energy and
originates from classical electrostatics. An expression for the single-particle level
spacing in CNT QDs is given in Eq. (6.3). The size of QDs in CNTs is such that
usually Ec > ∆. The potential ladder is illustrated in Fig. 6.3 (c). The solid lines
mark the electrochemical QD potentials. At zero temperature, the leads are filled
up to the Fermi level µS = µD and the number of electrons on the QD is fixed to
N . The QD is said to be in Coulomb blockade since Coulomb interaction prohibits
the addition of more charges. According to Eq. (6.8), the QD levels can be moved
linearly with the gate voltage. Only if the lead Fermi levels are at the same height as
µN , the Coulomb blockade is lifted and the number of electrons fluctuates between
N and N − 1.
So far, we neglected the valley degeneracy discussed in section 6.1.1 and the spin

degeneracy. Hence, each quantum mechanical state in CNTs can be filled with four
electrons without paying the energy ∆ and the ladder spacing of Eq. (6.9) becomes
N -dependent. If a new confinement state is occupied, the full addition energy ∆+Ec
is needed. But filling the three subsequent levels only requires an addition energy of
Ec.
Finally, we consider that electrons can be in excited confinement states. To include

this, the QD energy of Eq. (6.7) is labelled by E(k)
tot (N) with the integer k, where k = 0

denotes the ground state. The labelling of the electrochemical potential is extended
to µ(k,l)

N = E
(k)
tot (N)−E(l)

tot(N −1). Again, the ground state µ(0,0)
N = µN . Some excited

state levels are indicated in Fig. 6.3 (c) by dashed lines.

6.2.2. Transport through Quantum Dots 2

The previous section was devoted to an equilibrium situation. Now, electronic trans-
port through QDs is considered arising from the tunnel coupling of the QD to source
and drain leads and an applied bias voltage. Large tunnel couplings imply on the

2According to chapter 18 in [81]
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one hand a well measurable transport signal but on the other hand relax the charge
localisation on the QD. The following argument sets a limit to the tunnelling resis-
tances Rt to observe single electron tunnelling. With CΣ being the QD capacitance
and Rt the tunnelling resistance between one lead and the QD, the time to charge
the QD via this lead is given by the RC-time constant: ∆t = RtCΣ. The Heisenberg
uncertainty relation states that ∆E∆t > h. The requirement to resolve at least the
charging energy ∆E = Ec = e2/CΣ translates to a lower bound for the tunnelling
resistance:

Rt >
h

e2 . (6.10)

In words, the tunnelling resistance must be larger than the resistance quantum h/e2 =
25.831 kΩ.
Taking into account the thermal energy leads to a second criterion for charge quan-

tisation on the dot:
kBT �

e2

CΣ
. (6.11)
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Figure 6.4.: (a)-(c) Three energy level diagrams with an applied bias voltage VSD,
not including excited states. Electron tunnelling is sketched with arrows.
(d) Schematic Coulomb blockade diamonds in the presence of fourfold
degeneracy, not considering excited states. The number of electrons is
fixed in the white areas and current can flow in the grey areas. The
points which correspond to the level diagrams in (a)-(c) are marked with
arrows.

Charge transport in the QD-lead system is determined by the positions of the
electrochemical potentials. Three possible configurations are illustrated in the energy
level diagrams of Figs. 6.4 (a)-(c). If a bias voltage VSD is applied between source and
drain, their electrochemical potentials µS and µD differ by eVSD. The energy range
between these Fermi levels is called bias window. If a QD level is inside the bias
window, electrons can tunnel on and off the dot. Because of the finite bias, sequential
tunnelling from one to the other lead occurs trough the QD.
The tunnelling dependence on the gate and bias voltages leads to the characteristic

Coulomb blockade diamonds sketched in Fig. 6.4 (d). In the white diamond-shaped
areas, first-order tunnelling is energetically forbidden. Hence, the number of charges
on the dot is fixed and the QD is called to be in Coulomb blockade. This Coulomb
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blockade is lifted in the grey areas, where a finite current is flowing and the charge
number on the dot is fluctuating. The Coulomb blockade boundaries can be readily
determined with the capacitance model. Along the line with negative slope s−, the
QD level stays aligned with µD, as depicted in Fig. 6.4 (c). We assume that the drain
side is on ground. The general expression for the QD potential is in Eq. (6.5). A
change of the dot potential by VG has to be fully compensated by the source:

CG
CΣ

∆VG = −CS
CΣ

∆VS ⇒ s− = ∆VSD
∆VG

= −CG
CS

. (6.12)

Likewise, the QD level is fixed to µS along the line with positive slope s+. This
situation is sketched in Fig. 6.4 (a). A QD potential change is compensated by the
bias voltage, while also taking into account the influence of the source potential on
the QD level:

CG
CΣ

∆VG = ∆VSD −
CS
CΣ

∆VS ⇒ s+ = CG
CG + CD

. (6.13)

The addition energy sets the size of the Coulomb blockade diamonds. The pattern
arising from a fourfold level degeneracy as it is present in clean CNT QDs is sketched
in Fig. 6.4 (d). The charging energies can be read out from the bias needed to close
the diamonds, as marked in the figure.

(a)

-|e|VSD

1

(b)
Sequential tunnelling Elastic cotunnelling Inelastic cotunnelling

(c) (d)
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µN
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µS µD

Figure 6.5.: (a) Schematic of one Coulomb blockade diamond, including the presence
of one excited state with electrochemical potential µ(1,0)

N . A cotunnelling
current appears in the blue Coulomb blockade areas and a sequential
tunnelling current in the grey areas. (b)-(d) In these energy diagrams,
the corresponding transport processes for three points marked in (a) are
sketched.

Apart from transitions involving the QD ground state, there can also be elastic tran-
sitions via excited states. Such a sequential tunnelling event is drawn in Fig. 6.5 (b).
The conditions are that µ(1,0)

N and the ground state µN are both in the bias win-
dow. This additional transition channel via an excited state enhances the chance of
a charge transfer and therefore leads to an increased current in the dark grey area of
Fig. 6.5 (a).
While first-order tunnelling processes are not allowed inside the Coulomb blockaded

region, second-order processes can occur. Heisenberg’s uncertainty principle allows
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to break the law of energy conservation for a short time. Because it has to happen
quickly, the tunnelling rates need to be large in order to observe cotunnelling. As
illustrated in Fig. 6.5 (c), an electron can tunnel from source to drain via a virtual
state on the QD, which is higher in energy than µS. The process is elastic (energy-
conserving) in the sense that the QD is kept in the same state before and after the
charge transfer.
But inelastic cotunnelling events are possible, as well. One of them is drawn in

Fig. 6.5 (d), where two electrons tunnel in a correlated fashion. First, an electron
leaves the dot by tunnelling to drain, before another electron enters from the source
lead. During this process, the QD is brought from the ground state to the excited
state. For this, the applied bias has to be at least ∆, the single-particle level spacing.
Both, elastic and inelastic cotunnelling result in a small current in the Coulomb

blockade, indicated as blue area in Fig. 6.5 (a). The dark blue area marks the bias
regime where inelastic cotunnelling is possible.

6.2.3. Double Quantum Dots
Two QDs in series can be formed in a CNT with the help of more than one bottom
gate. The characteristics of double QDs are briefly mentioned here as the last part
of the introductory section.
A complete capacitance model of two QDs in series is drawn in Fig. 6.6 (a). An

electron transfer from source to drain involves three sequential tunnelling events from
source to QD1, form QD1 to QD2 and finally from QD2 to drain. The dots’ elec-
trochemical potentials are dominantly tuned by the voltage on the respective closest
gate.
The so-called charge stability diagram is given in Fig. 6.6 (b). The x-axis is the

potential on gate 1 and the y-axis the potential on gate 2. Inside the hexagonal
regions, the charges on the dots is fixed. A level diagram for the situation when a
level of QD1 is on the same height as the source Fermi level is shown in Fig. 6.6 (c).
The corresponding transition line in the charge stability diagram (b) between the
charge states (N − 1,M) and (N,M) is not vertical but has a negative slope due to
the small capacitive coupling of the second gate to QD1.
But owing to the interdot coupling, the charge state on one QD influences the

electrochemical potential on the other dot. The level positions in QD2 in the diagram
of Fig. 6.6 (c) depend on whether µN is occupied or not. This interdot level depencence
gives rise to the lines with positive slope in the charge stability diagram. They
mark the situation when interdot charge transitions are happening [(N − 1,M) ↔
(N,M − 1)]. The two ends of these lines are called triple points. At these points, the
two QD levels and the lead Fermi levels are all aligned. As drawn in the level diagrams
of Figs. 6.6 (d) and (e), the two triple points correspond to the situations when the
empty and occupied dot levels are aligned with the lead Fermi levels, respectively.
Charge transport from source to drain via sequential tunnelling is only possible at

the triple points. At the lines with negative slopes in the charge stability diagram,
a current can only flow with the help of cotunnelling processes, whereas no current
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Figure 6.6.: (a) Capacitance model for a double dot system. Source (S), QD1, QD2
and drain (D) are tunnel coupled in series. The QD levels are tuned by
two gates. (b) Charge stability diagram marking the gate voltage regions
with fixed charges. The upper and lower labels denote the charge number
on QD1 and QD2, respectively. The lines mark the situations when one
or both QDs are on resonance with the Fermi level of the adjacent lead.
The corresponding positions for the level diagrams in (c)-(e) are marked.
(c) Energy level diagram on a transition line of QD1. (d) Level diagram
at the triple point, where both dot levels aligned to the lead Fermi level
are empty. (e) These levels are occupied at the other triple point.

at all is flowing to the leads along the lines with positive slopes. In summary, the
lines with negative slopes are only visible when all tunnel couplings are large and the
lines with positive slope are not visible at all. The situation is different when the
double dot system is coupled to an RF resonator. Interdot charge transitions and
transitions between one dot and a lead cause a capacitance change, which is detected
as a resonance frequency shift [31, 82, 83] [see section 6.5 and Fig. 3.3 (d)].

6.3. Conductance Measurements of a Quantum Dot
After the theoretical introduction to QDs, this section is devoted to measurements. To
start with, the investigated sample is introduced. According to the recipe described
in section 4.2 and listed in more detail in appendix C, we fabricated a CNT device
with an on-chip stub tuner attached to the source contact. An image of the CNT
part is shown in Fig. 6.7 (a) and a schematic cross-section in Fig. 6.7 (b) for clarity.
The stamped CNT crosses four parallel bottom gates coloured in yellow; two narrow
ones of width 100 nm in the centre and two wider ones of width 300 nm on the sides.
These wider gates are partially beneath the leads and meant to adjust the doping
of the CNT segments there. The CNT is separated by the gates with a 50 nm-thick

73



6. Conductance in the Quantum Dot Regime

silicon nitride layer. Normal metal contacts to the CNT are established with Ti/Au
leads of thicknesses 10/40 nm.

SiO2 (170 nm)
Si3N4 (50 nm)

Si (500 µm)

(a)

(b)

(c)
800 nm

CNT

SG

to stub
tuner

DG
LG RG

500 μm
Niobium
(thickness 
150 nm)

Figure 6.7.: (a) False-color image of the CNT connected to Ti/Au leads (orange) and
bottom gates underneath (yellow), which are covered with silicon nitride.
(b) Sketch of the cross section. The gates called source gate (SG), drain
gate (DG), left gate (LG), and right gate (RG) are covered with silicon
nitride. The CNT is stamped on top and contacted with Ti/Au leads. (c)
SEM image of the stub impedance-matching circuit made with niobium.
The 50 Ω side is at the launcher on the right, and the CNT device is
located at the bottom left. The two bond wires on the right next to the
RF launcher are airbridges to connect the ground planes. There are two
square bond pads for the gates visible close to the CNT.

After finishing the fabrication of the CNT device, it is protected with a resist mask
and the stub tuner is fabricated next to it. An overview picture of the final sample
is shown in Fig. 6.7 (c). The CNT device resides in the dark left area. Its source is
connected to one end of the stub tuner, whereas its drain is connected to the ground
plane. The stub tuner input launcher is on the right. As discussed in section 3.1.5,
the two black bond wires next to the T-junction, where the CTLs split, are essential
to suppress spurious modes. The meander structure of the two CTL arms is used to
squeeze the stub tuner into the e-beam writefield of 2 × 2 mm2. The ground plane
is well connected to the sample holder ground via densely spaced bound wires all
around the chip edge (not seen in the figure). The bottom gates are connected to
large bond pads; two of them are visible in the figure close to the CNT.
The measurement setup within the Triton cryostat is explained in detail in chap-

ter 5. Basically, the stub tuner is connected to an RF input and output line for
reflectrometry experiments. Furthermore, a DC cable coupled to the RF line via a
bias tee enables to apply a DC bias and to record the DC current simultaneously
with RF measurements. We reach a base temperature of 20 mK, but the electronic
temperature on the source side is rather in the range of 100 mK, as discussed in
section 7.3.2.
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Figure 6.8.: (a) DC current as a function of the voltages on the left gate (LG) and
right gate (RG) over a huge range at a base temperature of 20 mK. The
source-drain bias is at 1 mV and the source gate (SG) as well as the
drain gate (DG) are kept at −3 V to have p-doped leads. The current is
suppressed between the red dashed lines, where the Fermi level lies inside
the bandgap for a long CNT segment. These bandgap transitions separate
regions (I)-(IV). The yellow horizontal dashed line in region (I) marks the
gate voltage range used for all following measurements in the single QD
regime. The left gate is fixed to VLG = 1076 mV. (b) Rough sketches
of the valence (EV) and conduction (EC) band edges with respect to the
Fermi level (EF) for the four regions of the current map. (c) Enlarged
current map in the single QD regime of region (I) and (d) in the double
QD regime of region (III).

An overview of the CNT device characteristics is gained with Fig. 6.8 (a). It shows
the DC current dependence on the gate voltages on the left and right narrow gates
(VLG and VRG). The two gates below the contacts, called source gate (SG) and drain
gate (DG), are both kept at a potential of −3 V to have p-doped CNT segments
next to the leads. This scan over large gate voltage ranges can be divided into four
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main regions, (I)-(IV). They are separated by stripes of zero current, where the bias
window is inside the band gap in a CNT segment above one of the gates.
The sketches in Fig. 6.8 (b) show roughly the valence and conduction band edges

along the CNT for the four regions. In region (I), the two central gates define one
large QD. In the enlarged current map of Fig. 6.8 (c), parallel resonance lines with
slope −1 are visible. Hence the QD levels can be equally tuned with both the left or
the right gate.
The situation is less clear in regions (II)-(IV). In some areas, clear double dot

features appear, like in the enlarged current map of Fig. 6.8 (d). In other areas, the
features are hardly visible due to a strongly suppressed current or they are washed
out due to large tunnel couplings. Furthermore, there are areas where lines with a
third slope hint at the presence of a triple dot (not shown in a separate figure). There
are several possible reasons for the various features observed in zones (II)-(IV). For
instance, impurities in the substrate below the CNT can locally change the potential
or disorder in the CNT can introduce an additional barrier.
In any case, we stay in the single QD regime of region (I) for all following experi-

ments. More precisely, we fix the left gate to VLG = 1076 mV and sweep VRG along
the yellow dashed line in Fig. 6.8 (a) to change the QD level. In this way, we are able
to form a clean single QD.

6.3.1. Stub Tuner Characterisation
Now, we turn our attention to the other part of the sample, the stub impedance-
matching circuit. The resonance frequency of the fundamental mode is close to the
planned value of 3 GHz and is well inside the setup bandwidth. We consider first the
stub tuner response when the QD is in the Coulomb blockade. The measured reflec-
tion amplitude spectrum around the resonance frequency is plotted as blue triangles
in Fig. 6.9 (a). This spectrum in the blockade serves as a reference for extracting
the stub tuner parameters. Like already demonstrated with the open stub tuner in
section 3.1.5, one can extract the circuit parameters from the reflection spectrum.
A detailed description of the fitting procedure is given in appendix B.1.1. A fit to
Eq. (3.14) assuming G = 0 leads to the set of parameters given in the figure caption.
The stub tuner lengths are close to the design values. The damping α = 0.046 m−1

corresponds to an internal quality facor of about 1600. The frequency-dependent
background reflection is taken into account by a linear curve, represented with a
black solid line in the figure. The values for the two CTL parameters, the charac-
teristic impedance Z∗0 = 44.8 Ω and the effective dielectric constant εeff = 6, are
obtained by simulations with the software Sonnet.
The second spectrum in Fig. 6.9 (a), shown with green circles, is measured at a point

where the DC differential conductance is G = 0.2 e2/h. There is a good agreement to
the calculated reflection spectrum for this conductance when inserting the stub tuner
parameters extracted in the blockade to Eq. (3.14), as shown by the red dashed line.
This example indicates that all relevant parameters to characterise the stub tuner
are gained by fitting to the reflection spectrum in the Coulomb blockade and we are

76



6. Conductance in the Quantum Dot Regime

(a) (b) (c)
 

2.915 2.92 2.925 2.93
f (GHz)

|Γ
|2  (

dB
)

G (e2/h) =
      0.2
      0

−6

−4

−2

0

0 0.2 0.4

−5

−4

−3

 

G (e2/h)

f = f0 G (e2/h) =
      0
      0.2

2.915 2.92 2.925 2.93
0

5

10

15

f (GHz)

Z in
 (Ω

)

Figure 6.9.: Stub tuner properties at a base temperature of 20 mK. (a) Amplitude
squared of the reflection coefficient Γ around the resonance frequency.
Symbols are measured and lines fitted or calculated. The stub tuner loss
α = 0.046 m−1 as well as the two CTL lengths D1 = 10.355 mm and
D2 = 10.589 mm are extracted by fitting (solid red line) to the spectrum
in the Coulomb blockade regime of the QD (blue triangles), where G = 0
is assumed. The black solid line represents the linearised background re-
flection. The upper spectrum for a finite DC conductance of G = 0.2 e2/h
is plotted with a shift of 1 dB for clarity (green circles). It matches well
the calculated reflection coefficient (dashed red line) using the previous
fit parameters. (b) This plot shows the calculated conductance depen-
dence of the reflectance amplitude at the resonance frequency using the
previous fit parameters. The two values corresponding to the spectra
in (a) are marked. (c) Calculated stub tuner input impedance for two
conductances of the attached load.

going to use these parameters for all following calculations concerning this sample.
Even though the curves are shifted vertically, it is already visible that the resonance

for G = 0.2 e2/h is shallower. Knowing the stub tuner parameters, one can calculate
the full load conductance dependence of the resonance. The reflection amplitude dip
at the resonance frequency f0 is shown in Fig. 6.9 (b) as a function of conductance.
The resonance is deepest when G = 0, meaning the circuit is best matched to low
conductances. The monotonic increase with conductance suggests that the differential
conductance can be derived from the resonance amplitude. This possibility is further
investigated in the next section.
The stub tuner input impedance Zin of Eq. (3.10) is the impedance experienced at

the input launcher towards the direction of the device. Fig. 6.9 (c) shows its calculated
frequency dependence for this sample around f0 for two conductances. As already
mentioned in section 3.1.2, the stub tuner looks at the input as an almost zero-
impedance circuit for gigahertz frequencies. Only close to the resonance frequency,
the impedance rises. The peak impedance of this stub tuner at best matching, when
G = 0, is still well below the full matching case of Zin = 50 Ω, meaning that perfect
matching is never achieved with this sample. In agreement with Fig. 6.9 (b), a load
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of G = 0.2 e2/h is more away from matching and hence the impedance peak is lower.

6.3.2. DC and RF Conductance
For the following experiments, we keep the CNT device in the single QD regime. The
left gate is fixed to VLG = 1076 mV and the right gate is used as a plunger gate.
The used gate voltages are indicated in the gate-gate map of Fig. 6.8 with the yellow
dashed line.
Fig. 6.10 shows two differential conductance maps for the same gate and source-

drain voltage (VSD) ranges. For panel (a), the DC current I is recorded and its
derivative dI/dVSD is plotted. The Coulomb diamond contours are marked. The
first and the fifth diamonds is larger then the rest. This is the same pattern as
sketched in Fig. 6.4 (d) for fourfold spin and valley degenerate QD states in CNTs.
The observation of the fourfold degeneracy is a sign for a low-disorder CNT segment
forming the QD island. A charging energy Ec = 12 meV can be directly read out
from the height of the small diamonds. The single-particle level spacing ∆ is equal to
the spacing of the excited states, which amounts to about 8 meV. With the relation
between ∆ and the QD length in CNTs stated in Eq. (6.3), one obtains a QD length
L ≈ 130 nm. This leads to the conclusion that the QD is located mainly between the
two central gates, which are separated by 100 nm.
The conductance shown in Fig. 6.10 (b) is derived from reflectometry. For that,

the reflection amplitude at the stub tuner resonance frequency f0 is detected. Then,
the amplitude dip dependence on conductance, as plotted in Fig. 6.9 (b), is exploited.
Since the function |Γ(G)|2 of Eq. (3.14) can not be inverted by hand, we are looking
for an easily invertible approximate function. We found that |Γ(G)|2 can be well
approximated by

|Γ(G)|2 ≈ a ·
( 1
G
− b
)c

+ d ⇒ G(|Γ|) ≈
[( |Γ| − d

a

)
+ b

]−1
, (6.14)

with the parameters for this stub tuner being a = 2560 1/Ω, b = −21.1 · 103 Ω,
c = −0.85 and d = 0.55. This function is purely empirical and has no further physical
meaning. G(|Γ|) directly converts the measured reflection amplitude at resonance to
the device conductance. Before the conversion, the background reflection has to be
taken into account. This is done by subtracting (in decibel scale) the background
value (black line in 6.9 (a)) at f0 from |Γ|.
One can see a good agreement between the RF and DC conductance maps in

Fig. 6.10, at least qualitatively. The same features are visible in both plots. To
confirm the quantitative agreement, a cut at VRG = 1296 mV along the green dashed
line in Fig. 6.10 (a) is shown in Fig. 6.11 (a). In spite of the DC conductance being
noisier (it is the numerical derivative), the two conductance curves overlap quite well.
Spectra at the same gate voltage as a function of VSD are shown in Fig. 6.11 (b).

The resonance dip is deepest (black) inside the Coulomb blockade. The diamond
boundaries are marked with arrows. There, the conductance spikes lead to a clearly
visible dip increase. This colourmap points out that there is only little conductance
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Figure 6.10.: Measurements in the single QD regime along the yellow dashed line in
Fig. 6.8. (VLG = 1076 mV, VSG = VDG = −3 V) at a base temperature
of 20 mK. (a) Derivative of the DC current (dI/dVSD) as a function of
the voltage on the right gate and of the source-drain bias. The contour
of the CB diamonds is highlighted by the dashed line. (b) Differential
conductance deduced from the reflection amplitude. The procedure is
explained in the text.

dependent resonance frequency shift. The same spectrum maps are recorded in the
entire gate voltage range of Fig. 6.10. The observed frequency shifts relative to the
resonance frequency in the blockade f0 = 2.9218 GHz [see Fig. 6.9 (a)] are plotted
in Fig. 6.11 (c). The Coulomb blockade diamonds are slighly recognisable. The
frequency shifts inside the blockade downwards by about 120 kHz. This converts to
a capacitance change of about 120 aF [see Fig. 3.3 (d)], which is on the same order
than literature values [84]. Compared to the stub resonance bandwidth of about
3 MHz, the frequency shift is less than one twentieth. Thus the mistake is small
when converting the reflection amplitude at the fixed frequency f0 to a conductance.
The speed limit of conventional direct conductance measurements is set by the RC

time constant. The cutoff frequency for measuring a resistance R with a wiring of
capacitance C is given by

fc = 1
2πRC ≈ 1.6 kHz, (6.15)

assuming a device of 100 kΩ and a typical capacitance of the cryostat wiring of 1 nF
resulting from the coaxial cables and filters. With the help of impedance transfor-
mation, one can circumvent this RC-time limitation. The group of Jason Petta has
pushed the speed of conductance read-out to the limit by coupling a double QD to a
gigahertz resonant circuit and by the use of a Josephson parametric amplifier. They
succeeded to obtain a charge stability diagram of a double QD device within 20 ms
[85]. So far, we have not exploited the potential of fast measurements yet. First of
all, one needs the suitable equipment, for instance a fast analog-to-digital converter.
Secondly, we are also recording the DC current simultaneously, which makes the read-
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Figure 6.11.: (a) Differential conductance G along the green dashed line in
Fig. 6.10 (a), where VRG = 1296 mV. The blue curve is the numer-
ical differential conductance dI/dVSD obtained from the DC current,
whereas the green curve is extracted from the reflection amplitude at
the resonance frequency f0. (b) Reflection amplitude spectra around
the resonance frequency as a function of bias voltage at the same gate
voltage as in (a). The red arrows mark the Coulomb blockade bound-
aries. (c) A reflection spectrum is recorded at each point in the bias and
gate range of Fig. 6.10. The colour plot shows the resonance frequency
shift ∆f0 relative to f0 = 2.9218 GHz in the blockade [see blue spec-
trum in Fig. 6.9 (a)], when comparing the frequencies at the reflection
amplitude minima.

out slow. Especially in the beginning, it is important to double-check G extracted
from reflectometry with the DC value. Moreover, differences between RF and DC
conductance might even reveal interesting physical effects [86, 87].

6.4. Quantum Dot with One Niobium Lead
The CNT device with one normal Pd and one superconducting Nb contact is already
introduced in the fabrication section 4.2.4. A picture of the CNT part of the sample
can be seen in Fig. 4.5 (a). The Pd drain lead is grounded and the Ti/Nb source lead is
connected to a stub tuner. There is a wide bottom gate below a silicon nitride layer.
Fig. 4.5 (b) and (c) show the suppressed conductance of this device when the bias
window lies inside the superconducting gap and the closing of the gap with magnetic
field, respectively. In this section, we are discussing some more data from this sample,
especially focusing on states inside the superconducting gap. The attached stub tuner
was not matched well enough to the high resistances in the gap. Therefore, we only
present DC measurements, meant as a brief outlook.
The overview map of Fig. 6.12 (a) shows clear Coulomb blockade diamonds. The

conductance triangles are not touching as an effect of the gapped density of states
(DOS) of the superconducting source. It is known that the superconducting lead with
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Figure 6.12.: DC measurements of the device shown in Fig. 4.5 (a) at a base temper-
ature of 20 mK. The CNT has one superconducting niobium contact
and one normal lead. A single QD is formed and tuned by the wide
gate beneath. (a) Differential conductance as a function of gate voltage
(Vgate) and of source-drain voltage (VSD). (b) and (c) Close-up views
of the conductance inside the superconducting gap for two neighbour-
ing resonances marked with rectangles in (a). The Coulomb blockade
diamond edges are indicated with black dashes lines.

its peaked DOS enhances the resolution of spectroscopic features [88, 89]. Indeed,
Figs. 4.5 (b) and (c) prove that the clearly visible excited state lines fade away when
the superconductivity is suppressed with a magnetic field.
Note that all blue lines in Fig. 6.12 (a) correspond to a negative differential con-

ductance. This is another manifestation of the peaked DOS in the superconducting
lead. According to Fermi’s golden rule, the tunnel current is proportional the DOS
and is peaked whenever a QD level is resonant with the superconducting lead [90].
This translates into a peak-dip structure of the differential conductance.
Figs. 6.12 (b) and (c) show two enlarged conductance maps for low bias voltages.

Surprisingly, resonance lines are visible in the gap parallel to the diamond boundary
lines. Their conductance is one order of magnitude lower than the conductance on
the lines outside the gap. Especially in Fig. 6.12 (b), one line with a negative slope
connecting the two triangle corners is visible (marked with the horizontal arrow).
The existence of this line is a hint for quasiparticles in the gap, possibly due to
imperfections in the RF setup, as explained in section 5.4. In contrast, the lines with
a positive slope (marked with vertical arrows) indicate the presence of distinct subgap
states. Their energy spacing of about 300 µeV is smaller than the spacing between
the excited states of approximately 500 µeV. A plausible origin of these subgap lines
are resonant and inelastic Andreev tunnelling events, which are recently observed in
our group with similar devices [38].
Unfortunately, the matching of the stub tuner for the low conductances inside the

gap was too poor to get enough signal for noise detection. It would be interesting to
investigate in future experiments the noise emitted on these subgap lines. Shot noise
could confirm the Cooper-pair nature of the charge carriers involved in the Andreev
tunnelling processes inside the gap. Cooper-pairs have twice the charge of a single
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electron and hence the shot noise of Cooper-pair tunnelling events is doubled, too
(see section 7.1.2).

6.5. Reflectometry on a Carbon Nanotube Double Dot
With the help of bottom gates, two QDs in series can be defined along a semicon-
ducting CNT, as shown in Fig. 6.8 (d). Detailed reflection experiments on such a
double dot system with a stub tuner attached to one lead were carried out in our
group by Vishal Ranjan [31]. The studied sample is very similar to the one shown
in Fig. 6.7 (a). The main difference is that the CNT is suspended between the leads,
which is achieved by fork stamping of a CNT on a pre-fabricated lead and bottom
gate structure. In the following, some results from this double dot sample are briefly
discussed. The sample fabrication and the measurements are done by Vishal Ranjan.
The author of this thesis built parts of the measurements setup and contributed to
the development of the stub tuner fabrication recipe.
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Figure 6.13.: (a) Charge stability diagram over a large voltage range of the left gate
(VLG) and right gate (VRG). This colourmap shows the DC current
measured at a bias of 10 mV. (b) Simultaneous measurements of the
DC current as well as the reflection amplitude and phase at resonance
probed with an RF power of -110 dBm. The corresponding gate range
is marked by the rectangle in (a). The arrow points at spurious gate-
tunable lines. Circles mark inter-dot tunnelling lines visible by a phase
shift.

For the start, we look at the charge stability diagram in Fig. 6.13 (a). It shows the
DC current at a bias voltage of 10 mV. The cross-like region of zero current (marked
by orange dashed lines) arises because the bias window is in the bandgap of this
semiconducting CNT in a segment above one of the gates. The high currents in the
upper right region suggest that the leads are n-doped.
Fig. 6.13 (b) concentrates on the p-p double dot regime inside the dashed rectangle

in panel (a). While the left panel shows the DC current, the remaining panels show
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the amplitude (middle) and phase (right) of the reflected signal at the resonance
frequency of the stub tuner, which is close to 3 GHz. The characteristic honeycomb
structure of a double dot, which is introduced in section 6.2.3 [see Fig. 6.6 (b)], is
visible in all measurements. The lines with negative slopes are well visible in all
plots and arise when one dot is resonant with its lead, while charge transfer through
the other dot happens via cotunnelling. But the interesting part is best visible in the
phase plot on the very right. The encircled short lines mark the positions where inter-
dot tunnelling events happen. As stated at the end of section 6.2.3, these transitions
do not lead to a current from one the the other lead, but they cause a change of the
susceptance, to which RF measurements are sensitive.
In the RF plots, some additional gate-tunable spurious lines appear, which are

marked by an arrow. Most probably, they stem from charging and discharging of a
lead state, which does not contribute to a net current, but changes the susceptance,
as well.
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7 Noise Measurements with Stub
Impedance Matching

In this last chapter, we come to the key experimental results of the thesis. Shot noise
emitted by a quantum dot (QD) is measured with the help of a stub tuner. But the
chapter starts with an introduction to noise and different sources of electronic noise.
The second part focuses on noise measurement techniques; the general overview is
followed by a more detailed discussion of our method using a stub tuner. In the end,
results in the single QD regime are presented and analysed.

7.1. Noise Characteristics
Noise in general is the random fluctuation of an observable in time. In the context of
electronics, noise usually denotes stochastic current or voltage fluctuations [81].

t

I(t)

〈I 〉

Figure 7.1.: Example of a current fluctuating in time around its mean 〈I〉.

A typical current signal measured over time is plotted in Fig. 7.1. When talk-
ing about current, one usually means more specifically the mean current 〈I〉. The
temporal current fluctuations around its average value are denoted by

∆I(t) = I(t)− 〈I〉. (7.1)

To characterise noise, the current-current correlator or autocorrelation function is
defined as

C(τ) = 〈∆I(t)∆I(t+ τ)〉, (7.2)
where 〈·〉 denotes an average over time t. The properties of this function are as
follows: At time delay τ = 0, it is identical to the mean current fluctuation amplitude
squared,

C(0) = 〈∆I2(t)〉 > 0. (7.3)
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In the other limit of large time delay, the correlation function diverges to zero:

lim
τ→±∞

C(τ) = 0. (7.4)

That describes the fact that current fluctuations at a certain instant are totally un-
correlated to fluctuations far back in the past (or far in the future).
The Fourier transform of the correlation function is

S̃I(ω) =
∫ ∞
−∞

C(τ)e−iωτ dτ. (7.5)

According to the definition of the Fourier transform, the frequency ω goes from −∞
to ∞. But experimentally, it is not clear at first sight what a negative frequency
means and in most cases, one cannot distinguish positive from negative frequencies.
More on this is found in section 7.1.5. Moreover, in the low-frequency classical limit
(~ω < kBT, eV ), one finds that S̃I(−ω) = S̃I(ω). Therefore, the current noise spectral
density is usually defined as

SI(ω) = S̃I(ω) + S̃I(−ω) = 2 ·
∫ ∞
−∞

C(τ)e−iωτ dτ. (7.6)

The unit of the current noise (spectral density) is [A2/Hz].
Often, the decay of the correlation function is approximately exponential and de-

scribed by
C(τ) = C(0) · e−τ/τc , (7.7)

with τc being the characteristic decay constant. In this case, the spectral density is

SI(ω) = 2 ·
∫ ∞
−∞

C(0)e−τ/τce−iωτ dτ = 4τc〈∆I2(t)〉
1 + (ωτc)2 , (7.8)

according to Eqs. (7.3) and (7.6). Hence, the spectral density at low frequencies
(ω � 1/τc) is constant. Noise with a frequency-independent spectral density is also
called white noise.
There are several physical processes which lead to electronic noise. The two most

important noise sources for our experiments and their characteristics are briefly in-
troduced in the following.

7.1.1. Thermal Noise
One contribution to noise is caused by the thermal motion of charge carriers. It
is called thermal noise or Johnson-Nyquist noise. The sketch in Fig. 7.2 (a) shows a
conductor of conductance G at a finite temperature T . The electron’s thermal motion
leads to a current I− to the left and I+ to the right side. On average, the currents in
both directions are equal and there is no net current. But at some instances, there can
be more electrons moving in one direction than in the other. The resulting current
fluctuations are an equilibrium phenomenon also appearing when no bias is applied.
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Figure 7.2.: (a) Graphics showing a conductor of conductance G in thermal equilib-
rium with its environment of temperature T . The two ends are connected
by an ideal conductor. The electron’s thermal motion causes currents I+

and I− moving in the two directions. (b) Schematic of a tunnel junction,
through which an average current 〈I〉 is flowing. (c) The current through
such a junction consists of a series of random charge pulses.

Thermal noise is inherent to every conductor and arises as soon as both ends of a
conductor are connected.
The formula for the thermal noise current spectral density reads [91]

SI(ω) = 4G~ω ·
( 1
e~ω/kBT − 1

+ 1
2

)
=
{

4kBTG if kBT � ~ω
2~ωG if kBT � ~ω

. (7.9)

In the low-frequency limit, it describes a white noise spectrum. The contribution in
the high-frequency limit stems from zero-point fluctuations, which is further described
in section 7.1.5.

7.1.2. Shot Noise
Shot noise arises from the quantised nature of charge carriers, which are moving in an
uncorrelated, random manner. In contrast to thermal noise, shot noise only appears
when the system is driven out of equilibrium. Shot noise is a phenomenon observed
only in mesoscopic conductors, not in macroscopic ones, which can be thought of
consisting of many independently fluctuating domains. If the number of these noisy
domains is large, the net shot noise cancels to zero.
As an example, we consider a tunnel junction with an average tunnelling current
〈I〉, as depicted in Fig. 7.2 (b). In the case of high tunnel barriers, one can assume
completely uncorrelated tunnelling events. Hence, the time-resolved current consists
of random pulses, as represented in the schematic of Fig. 7.2 (c). Each pulse carries
the charge e. This is described by

I(t) =
∑
k

eδ(t− tk). (7.10)

With the use of Eqs. (7.1) and (7.2), one finds for the autocorrelation function

C(τ) = e〈I〉δ(τ), (7.11)
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assuming charge pulses at completely random times tk. Applying Eq. (7.6), the
resulting current noise spectral density reads

SI = 2e|〈I〉|, (7.12)

which is the formula first obtained by Schottky for current fluctuations in vacuum
tubes [4]. The reason for the factor 2 is the summation of the contributions from
negative and positive frequencies. In this classical case, Schottky noise has a white
spectrum.
The statistics of charge tunnelling is Poissonian and therefore Schottky noise is also

called Poissonian noise. The Schottky value of a tunnel junction is conventionally used
as a reference for any shot noise SI . To this end, the Fano factor F is introduced as
the ratio

F = SI
2e|I| , (7.13)

where |I| is the average current and e the elementary charge. Shot noise with F > 1
is called super-Poissonian and with F < 1 sub-Poissonian.
The scattering theory of Laundauer and Büttiker can be applied to determine the

shot noise in a coherent conductor. We assume N modes connecting the source and
drain leads with transmission probabilities Tk (k = 1, 2, ..., N). When a source-drain
bias V is applied, the shot-noise current spectral density is expressed by [92]

SI = 2e|V |e
2

h

N∑
k=1

Tk(1− Tk). (7.14)

Thus, for a ballistic conductor, for which all Tk = 1, shot noise is suppressed. This
is reasonable because of the absence of randomness in the charge transfer. Every
charge arriving at the source is certainly transmitted to the drain and consequently a
ballistic conductor does not add any fluctuations. In the other limit when all Tk = 0,
the shot noise also vanishes, since there is no current at all. The maximum shot
noise is coming from a channel with Tk = 1/2. This dependence on transmission is
confirmed with shot-noise experiments of quantum point contacts [93, 94]. In the limit
of one low-transmissive channel with transmission probability T � 1, the Schottky
formula of Eq. (7.12) is recovered by using that the current |I| = e2/h · T · |V |.
The generalised formula for the noise of a tunnel junction at a finite temperature

T takes into account thermal and shot noise and reads [95]

SI = 2e|I| coth
(

eV

2kBT

)
. (7.15)

In the limit eV � kBT , one can use the approximation coth(x) ≈ 1/x for x � 1.
What follows is the thermal noise formula in the low-frequency case as stated in
Eq. (7.9). As soon as eV � kBT , the coth-term approaches one and the Schottky
formula of Eq. (7.12) is valid. In summary, thermal noise dominates when eV � kBT
and shot noise dominates in the other case when eV � kBT . This crossover can be
seen in Figs. 7.9 (b)-(d).
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There are several mechanisms which may lead to enhanced or suppressed shot
noise. On the one hand, shot noise is proportional to the effective charge of one
charge carrier. For example, super-Poissonian noise has been reported when Cooper
pairs are involved [5, 96, 97] and sub-Poissonian noise has been observed for composite
fermions in the fractional quantum Hall effect regime [6, 7, 98]. On the other hand,
interactions between the charge carriers, such as the Coulomb interaction or the
Pauli exclusion principle, lead to reduced shot noise, since correlations reduce the
randomness in the charge transfer [1]. In summary, current fluctuations due to shot
noise depend on the kind of charge carriers and the interactions they experience in
the studied system. This points out that shot-noise studies can deliver information
beyond what is accessible by the average current [2].

7.1.3. Shot Noise in Different Wire Regimes
The Fano factor of a wire is a matter of its length relative to the characteristic length
scales of the electron motion. As drawn in Fig. 7.3 (a), there are four regimes [99].
When the wire length L is shorter than the mean free path, it is in the ballistic
regime. This case has already been discussed in connection with Eq. (7.14) derived
by the Landauer-Büttiker formalism. Due to the absence of randomness in charge
transport, here is no shot noise.
In the phase-coherent regime, the wire is longer than the mean free path but still

shorter than the inelastic electron-electron scattering length (le < L < le−e). A phase-
coherent wire exhibits a Fano factor F = 1/3, as predicted theoretically [100–102] and
confirmed experimentally [103]. For a derivation with the Landauer-Büttiker formula
of Eq. (7.14), the phase-coherent wire can be described as consisting of many parallel
channels, whose transmission coefficients are binomially distributed [100].
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Figure 7.3.: (a) Fano factors for different wire lengths L. The characteristic length
scales of the conduction electrons are the mean free path le, the electron-
electron scattering length le−e and the electron-phonon scattering length
le−ph. (b) Sketch of the electron temperature Te along the wire axis x for
a wire in the hot-electron regime. Te is plotted relative to the reservoir
temperature T .
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The hot-electron regime appears when the wire length is between the electron-
electron scattering length le−e and the electron-phonon scattering length le−ph. When
a bias is applied to the wire, the electrons accelerated through the wire loose part
of their kinetic energy via electron-electron scattering, which leads to an increased
electron temperature Te compared to the temperature T of the two reservoirs. Cool-
ing of the wire occurs by diffusion of hot electrons to the reservoirs. The electron
temperature profile along the wire axis x as derived in reference [104] is sketched in
Fig. 7.3 (b). The temperature of this heated electrons increases with bias and so thus
their thermal noise. The resulting Fano factor is F =

√
3/4 in the limit eVbias � kBT

[104–106].
In wires which are longer than the electron-phonon scattering length le−ph, hot

electrons are cooled via phonons and hence the shot noise is reduced until it vanishes
in the macroscopic limit. In this limit, the wire can be considered to consist of many
individually fluctuating domains. When summing up all the shot-noise contributions,
it averages to zero due to the uncorrelated nature of the fluctuations.

7.1.4. Other Noise Sources
Apart from shot noise and thermal noise discussed before, there are two other noise
sources in mesoscopic systems, both appearing in a nonequilibrium situation. The
characteristic of random telegraph noise is a random current switching between dis-
crete states. The origin of these switches is commonly attributed to charging and
discharging of charge traps near the current path.
Flicker or 1/f noise is present in almost all electronic devices. As the name suggests,

its power spectral density is 1/f -dependent. Typically, this noise source dominates
at frequencies below about 10 kHz. There are several studies proposing different
mechanisms for 1/f noise and the origin is still on debate [107]. Due to the great
variability of systems in which these fluctuations occur, no universal mechanism is
found.

7.1.5. Quantum Noise
So far, we have dealt with noise in the classical regime. Only in the context of thermal
noise [Eq. (7.9)], the high-frequency regime was mentioned. In this section, we are
going to take a closer look at the so-called quantum regime, when hf � eV, kBT . In
a quantum-mechanical treatment, the current in Eq. (7.1) is replaced by the current
operator and the square bracket in Eq. (7.2) becomes the quantum statistical average.
Since operators do not commute at different times, the autocorrelation function is now
a complex value. Consequently, the noise spectral density of Eq. (7.5) is different for
negative and positive frequencies: S̃I(−ω) 6= S̃I(ω) [108].
A physical interpretation for the asymmetry of S̃I(ω) in the quantum regime is

given in the review [109] and measurements showing this asymmetry are found in
[110]. The negative part S̃I(−ω) is a measure of the noisy system’s ability to emit
photons to the environment. At zero temperature, the system is in the ground state
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and does not emit any photons and thus S̃I(−ω) = 0. The positive part S̃I(ω) is a
measure of the system’s ability to absorb photons from the environment. This spectral
part does not vanish even at zero temperature. Because of zero-point fluctuations in
the environment, there is always the chance for absorption.
Often, exciting phenomenon are observed when being in the quantum regime. This

is for once not true for noise measurements. Quantum noise is dominated by zero-
point fluctuations [111] and does not yield more informations than conductance.
Therefore, we do not want to work at too high frequencies.

7.2. Noise Detection Techniques
This section gives an overview of the existing measurement schemes used to detect
noise. It will help to put our approach using a stub impedance-matching circuit into
a wider context.

7.2.1. Low-Frequency Cross-Correlation
A straightforward, simple way of measuring noise is sketched in Fig. 7.4 (a). Noise
generated by the device with resistance R can be modelled as a voltage source ∆VR in
series. These voltage fluctuations are amplified and frequency-resolved measurements
of the average squared fluctuations 〈∆V 2〉 can be done using a spectrum analyser. A
disadvantage of this method is that it also measures noise added by the amplifier. This
noise is modelled as a voltage noise source 〈∆V 2

A〉 and a current noise source 〈∆I2
A〉

referred to the input of an ideal noise-free amplifier, as drawn in the figure. Taking
these amplifier noise sources into account, the total voltage fluctuations measured by
the spectrum analyser are

〈∆V 2〉 = g
(
〈∆V 2

R〉+ 〈∆V 2
A〉+R2〈∆I2

A〉
)
, (7.16)

where g is the amplifier’s power gain. Today’s commercial cryogenic HEMT ampli-
fiers have an equivalent noise temperature of at least 4 K or more. This amplifier
contribution is often much larger than the noise signal one is actually interested in.
Recently developed parametric amplifiers [20, 21] reach a much lower noise level of
about 300 mK at f = 7 GHz, which is comparable to the vacuum noise level hf/2kB.
A smart method to get rid of the amplifier noise is the cross-correlation scheme

[112], of which a schematic is shown in Fig. 7.4 (b) and looks similar to a four-terminal
measurements scheme for conductance. It uses two independent amplifiers, which add
uncorrelated noise contributions. The two amplified noise signals are multiplied with
a mixer and then fed into the spectrum analyser. After the mixing, the remaining
averaged signal is

〈∆V1∆V2〉 = g
(
〈∆V 2

R〉+R2〈∆I2
A1〉+R2〈∆I2

A2〉
)
, (7.17)

with ∆V1 and ∆V2 denoting the voltage fluctuations at the output of the two ampli-
fiers. The uncorrelated amplifier voltage fluctuations drop out and only the correlated
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Figure 7.4.: (a) Simple noise measurement setup. Voltage fluctuations from the de-
vice (∆VR) are amplified and recorded with a spectrum analyser, which
itself adds some voltage noise ∆VA and current noise ∆IA. (b) Cross-
correlation scheme with two independent amplifiers. The amplifier volt-
age noise contributions are eliminated in the mixed signal, which is fed
into a spectrum analyser.

device noise remains plus a contribution from the amplifier current noise, which goes
through both amplifiers and is therefore correlated.
The combination of the device resistance R with the wire and filter capacitance

C produces an RC low-pass filter in this kind of circuits. When dealing with high-
resistance samples with resistances in the range of 100 kΩ, the RC-time limit sets
an upper frequency bound of some kilohertz [see Eq. (6.15)]. However, the amplifier
noise power has a 1/f behaviour, as explained in section 7.1.4. Therefore, it would
be desirable to measure at higher frequencies.

7.2.2. Resonant Circuit for Intermediate Frequencies
One way to push up the measurement frequency is to use a resonant circuit [7, 113],
to which impedance-matching circuits belong, too. Fig. 7.5 shows a schematic of
such a noise measurement scheme including an impedance-matching part between the
device and the amplifier. The matching circuit acts as a bandpass filter and provides
a window of high noise transmission around the resonance frequency. Impedance
matching and the cross-correlation technique are combined in reference [114].
Noise detection with impedance matching is also our approach. The stub tuner

as a gigahertz resonant circuit and its transmission properties are introduced in sec-
tion 3.1.7. An alternative with an LC matching circuit is mentioned in section 3.2.
The narrowness of these resonant circuit’s high transmission windows might seem to
be a disadvantage at first sight. But the analysis in section 3.1.8 proves the opposite.
The introduced figure of merit compares the desired noise signal with the unwanted
background noise. In this regard, a resonant circuit is very beneficial, since the picked-
up background noise remains small when integrating over a narrow frequency band,
whereas the transmitted noise signal is large.
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Figure 7.5.: Noise measurements with the help of a resonant impedance-matching
circuit. Voltages fluctuations from the device (∆VR) are fed into the
resonant circuit, amplified and then detected with a spectrum analyser.
The amplifier adds input-referred voltage noise ∆VA and current noise
∆IA.

7.2.3. High-Frequency Schemes Using Rectifying Elements
There are several techniques suited for high-frequency noise detection. Their common
feature is a rectifying element to convert high-frequency radiation to a DC signal.
One possibility is the use of a diode [93], as sketched in Fig. 7.6 (a). For low noise

powers, the diode is a square-law detector, meaning that the DC voltage measured
after the diode is proportional to the square of the voltage fluctuations: VD ∝ 〈∆V 2〉.
In order to reduce the amount of detected amplifier noise, one can apply a lock-in
technique. The device bias is modulated at a low frequency and the rectified voltage
is fed into a lock-in amplifier.
A superconductor-insulator-superconductor (SIS) junction can be used for radia-

tion detection, as well [110, 115, 116]. The quasiparticle density of states of the two
superconducting junction parts are sketched in Fig. 7.6 (b). The noise source is ca-
pacitively coupled to the SIS junction. Radiation on the junction with frequencies
f > (2∆ − eVSIS)/h induce photon-assisted tunnelling events, which are recorded as
a DC current. Here, ∆ is the superconducting gap and VSIS is the junction bias.
The SIS detector is only sensitive to the noise emission spectrum of the source device
[S̃(−ω)] in the sketched situation when eVSIS < 2∆. At a larger bias, the junction is
not noiseless any more, which in turn provides photons to be absorbed by the source
device. These absorption events lead to a reduced tunnelling current across the junc-
tion. In principle, the SIS junction can be used in this configuration as a detector
for the absorption spectrum S̃(ω). But since the current reduction occurs on top of
a large tunnelling current, it is difficult to measure [108].
Also a single quantum dot (QD) can be utilised as a noise detector, when a noise

source is capacitively coupled to a nearby QD [117]. The detection principle can
be understood with the help of Fig. 7.6 (c). The configuration in this energy level
diagram is such that the charge on the dot is fixed in the absence of radiation. But an
impinging photon with a frequency above a certain threshold can excite the electron
from the QD ground state to a lead. If an excited state is in the bias window,
this photo-ionisation event takes the QD out of Coulomb blockade and a transient
sequential tunnelling current is flowing as long as the ground state is not occupied
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Figure 7.6.: (a) Detection scheme with a diode. The voltage fluctuations of the de-
vice ∆VR and the amplifier fluctuations ∆VA and ∆IA are fed into a
diode. The rectified voltage VD is proportional to the noise power. (b)
Superconductor-insulator-superconductor (SIS) junction as a radiation
detector. The quasiparticle density of states (horizontal axis) of both su-
perconductors is sketched. Electromagnetic radiation generates a photon-
assisted quasiparticle tunnelling current for bias voltages VSIS < 2∆/e.
(c) Radiation detection with a single quantum dot (QD). The energy
level diagram illustrates the radiation-induced excitation of an electron
from the QD ground state (GS) to the drain lead. This event gives rise to
a transient sequential tunnelling current via an excited state (ES), which
is in the bias window. (d) Double QD scheme for radiation detection.
The energy level diagram shows an an electron excited from QD1 to QD2
by the absorption of a photon. The electron may leave to the drain,
followed by the loading of QD1 by a source electron. The adjustable
detuning δ enables a frequency-selective detection. (e) Double QD con-
figuration with a reversed bias compared to (d), which is sensitive to the
emission spectrum of a noise source.

again. This noise detection scheme is only sensitive to the emission spectrum of the
noise source, denoted by S̃(−ω).
On the contrary, a double QD represents a complete quantum spectrum analyser,

meaning that it is able to measure separately the absorption and the emission parts
of the noise spectrum [118, 119]. As depicted in Fig. 7.6 (d), the double dot is tuned
to a stable charge configuration. But the irradiation of photons can induce inelastic
tunnelling events: The excited electron on QD2 may leave to the drain lead and a new
electron enters to QD1 from the source. The frequency of absorbed photons is fixed
to f = δ/h since there are two discrete QD energy levels involved. Here, δ denotes
the electrochemical potential difference between the two QD levels. The tunability
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of δ enables a frequency-selective detection. For a bias as drawn in Fig. 7.6 (d), the
double-dot system is sensitive to the emission spectrum S̃(−ω) of the source noise. If
the bias is reversed, as sketched in Fig. 7.6 (e), the detector is made sensitive to the
absorption spectrum S̃(ω) since the QD sends out noise that can be absorbed by the
studied system.

7.2.4. Full Counting Statistics
An interesting, different approach to obtain noise information starts in the time do-
main. In reference [120], a QD is capacitively coupled to a nearby quantum point
contact (QPC). The QD is the studied noise source and the QPC serves as a charge
detector. A change in the number of electrons on the QD modifies the current through
the QPC. An example time trace in a regime with fluctuating charge occupation is
shown in Fig. 7.7 (a). The QPC current exhibits random telegraph noise - random
switching between two or more states due to charging and discharging of the QD.
A measurement bandwidth up to 30− 40 kHz was achieved, which corresponds to a
time resolution in the order of 30 µs.

(a) (b)

N

co
un

ts

time

cu
rr

en
t

Figure 7.7.: Drawings to explain the principle of full counting statistics (not real mea-
surements). (a) Time trace of the current through a charge detector,
which is coupled to a noise source. (b) Histogram for full counting statis-
tics. The time trace is divided in small segments with equal spacings and
the number of events happening in each segment is counted.

The acquired time traces can be analysed by means of full counting statistics. For
this, the time traces are divided into segments with equal lengths ∆T . The number
of switching event in each segment is plotted in a histogram, which may look similar
to Fig. 7.7 (b) and contains interesting information [120, 121]. The mean value of the
histogram 〈N〉 is called in statistics the first central moment. It describes the average
current through the QD 〈I〉 = e〈N〉/∆T . The histogram width is the second central
moment or variance 〈(N − 〈N〉)2〉, which is related to the current fluctuations via
〈∆I2〉 = e2〈(N − 〈N〉)2〉/∆T . Playing this game further, one can derive even higher
central moments from these histograms.
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7.3. Noise Detection with a Stub Tuner
The general idea of measuring noise with the help of a resonant circuit is discussed
in section 7.2.2 and it is mentioned that the resonant circuit we utilise is the stub
tuner. In this section, the properties of such a detection scheme are explained. In
particular, it is discussed how to calibrate the circuit.

7.3.1. Setup Analysis
Our entire high-frequency setup is described in chapter 5. The illustration in Fig. 7.8
focuses on the noise measurement chain. We plan the stub tuner’s fundamental
mode to be around 3 GHz, because it is the centre frequency of the circuit com-
ponents’ bandwidths in our setup (circulator, directional coupler and amplifer). At
this frequency, the 1/f -noise contribution is small (see section 7.1.4). At very high
frequencies, when hf � eVbias, kBT , one enters the regime of quantum noise (see sec-
tion 7.1.5). As mentioned earlier, we want to stay in the classical shot-noise regime.
Regarding the bias voltage, this is fulfilled as soon as Vbias > 15 µV. Assuming a
temperature of about 100 mK, 3 GHz is already close to the quantum regime. In sum-
mary, we assume the QD sample to emit classical white noise under our measurement
conditions.
This white noise signal first passes through the stub tuner. It has a bandpass

behaviour with a centre frequency around the matched value and a conductance-
dependent bandwidth a few megahertz. The stub tuner parameters are known from
reflectometry, as explained in section 6.3.1.
Subsequently, the noise signal is amplified by a low-temperature amplifier and two

room-temperature amplifiers with a total gain g. Section 7.3.2 deals about the cali-
bration of g with the help of a reference sample with well-known noise characteristics.
The first room-temperature amplifier is matched to the low-temperature amplifier in
the sense that its noise is much smaller than the noise of the low-temperature am-
plifier times the gain. Hence the background noise is effectively stemming from the
low-temperature amplifier.
The spectrum analyser detects the noise power dissipated over 50 Ω. We record

the integrated power spectral density over a certain bandwidth, in which the stub
tuner has a high transmission. As found towards the end of section 3.1.8, the optimal
bandwidth for the best signal-to-noise ratio is about the full width at half maximum
(FWHM) of the transmission function [see Eq. (3.29)].
After measuring the noise power arriving at the spectrum analyser, the challenge is

to extract the part emitted by the device of interest. In order to derive a calibration
formula, we look at the measurement chain of Fig. 7.8 in the reversed direction. The
integrated noise power measured with the spectrum analyser is denoted by 〈∆PSSA〉.
As a first step, the background noise 〈∆Pbg〉 added after the stub tuner is subtracted:

〈∆P0〉 = 〈∆PSSA〉 − 〈∆Pbg〉. (7.18)

As discussed later in this section, we take the noise at zero bias as the background

95



7. Noise Measurements with Stub Impedance Matching
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Figure 7.8.: (a) Illustration of the noise detection chain using a stub tuner. The
source’s white noise passes through the stub tuner with a characteris-
tic voltage transmission function |tV |2. Then, the signal is amplified
with low-temperature and room-temperature amplifiers. In the end, the
spectrum analyser measures the power spectral density integrated over
a certain bandwidth of high transmission, indicated here in orange. (b)
Schematic of this measurement scheme.

value with the assumption that the background noise is independent of the device
conductance. This assumption holds for the amplifier voltage noise ∆VA. But the
conversion of the amplifier’s current noise ∆IA to an equivalent voltage noise depends
on the impedance seen at the input looking towards the attached circuit in front of
the amplifier. In our setup, the circulator between the stub tuner and the amplifier
ensures that this impedance is the terminator value of 50 Ω, independent of G.
Next, the noise power dissipated on Z0 = 50 Ω at the network analyser is converted

to voltage fluctuations via
〈∆V 2

0 〉 = Z0 · 〈∆P0〉. (7.19)

Dividing by the amplifier power gain g and the integrated stub transmission function
leads to the voltage noise on the amplifier

SV = 〈∆V 2
0 〉

g ·
∫

BW|tV |2 df , (7.20)

where BW is the integration bandwidth. Finally, the conversion from voltage to
current noise is done by

SI = SV ·G2, (7.21)

with G being the device differential conductance. Combining Eqs. (7.18) - (7.21)
results in the expression

SI = G2Z0 ·
〈∆PSSA〉 − 〈∆P0〉
g ·
∫

BW|tV |2 df , (7.22)
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which converts the integrated noise power on the spectrum analyser to the current
noise spectral density of the device.

7.3.2. Setup Gain Calibration
For the calibration of noise data via Eq. (7.22), it is crucial to know precisely the power
gain g of the setup. To this end, the QD sample with the stub tuner is replaced by
a metal wire resistor in the hot-electron regime with the well-established Fano factor
F =

√
3/4 ≈ 0.43 (see section 7.1.3). In this section, it is explained how we infer from

the noise data of such a wire the setup gain, which is the sum of the three amplifier
gains and the cable losses.
A picture of the studied metal wire is in Fig. 7.9 (a). It is a gold wire of length

L = 50 µm on a silicon substrate. Its width w = 680 nm and thickness of 30 nm
lead to a residual resistance R = 39 Ω at 4.2 K. This is determined after the noise
experiment in a four-terminal measurement. Since we do not observe a resistance
decrease between 10 and 4.2 K any more, we assume that 39 Ω is the wire resistance
at milli-Kelvin temperature, too. It results in a sheet resistance Rs = R·w/L ≈ 0.5 Ω.
The wire is attached to two rather big copper pads of size 300×300 µm2 and thickness
500 nm, acting as heat sinks.
An estimate of the electron-electron scattering length is obtained by Altshuler’s

formula for a quasi one-dimensional wire [99, 122]:

le−e =
[√

2
kB
·
(~
e

)2
· Dw
TRs

]1/3

. (7.23)

A typical value for the diffusion coefficient D of a gold wire is 120 cm2/s [99]. One
ends up with an electron-electron scattering length le−e of about 20 µm at 0.1 K.
The electron-phonon scattering length is estimated via

le−ph = 1.31√
T 3Γ

, (7.24)

where the electron-phonon coupling parameter Γ is found to be about 5 ·109 m−2K−3

for gold wires [123]. Hence, we expect an electron-phonon scattering length le−ph ∼
600 µm. In conclusion, our gold wire is definitely in the hot-electron regime, where
le−e < L < le−ph [see Fig. 7.3 (a)].
The measurement scheme to detect noise of the gold wire is drawn in Fig. 7.9 (a).

A current I is applied to the DC side of the bias tee, whereas noise is measured
via the RF side of the bias tee. The wire resistance of 39 Ω is close to Z0 = 50 Ω,
such that there is a high RF power transmission to the amplifier without impedance
matching. A signal and spectrum analyser (SSA) detects the noise power spectral
density dissipated over Z0 and integrates over a bandwidth BW.
But how to extract the noise generated by the wire from the noise power of the

SSA? According to Eq. (3.21), the mismatch between the wire resistance and Z0 is
taken into account via the transmission coefficient tV = Z0/(Z0 + R). Assuming no
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frequency dependence of the gain within the measurement bandwidth, the formula
to convert from the integrated noise power at the SSA (〈∆PSSA〉) to the shot-noise
current density of the wire (SI) is readily derived from Eq. (7.22) to be

SI = (Z0 +R)2

Z0R2 · 1
g
· 〈∆PSSA〉 − 〈∆P0〉

BW
. (7.25)

For the background noise 〈∆P0〉, the value at zero current is used, where only thermal
noise and amplifier noise is present, but no shot noise.
In order to calibrate the gain which is present for the quantum dot measurements of

section 7.4, we measure the noise power at the same centre frequency f0 = 2.9218 GHz
and with the same bandwidth of 10 MHz (see section 7.4.2). Since the gain g in
Eq. (7.25) is still unknown, the quantity SI · g is plotted in Fig. 7.9 (b) as a function
of the full Schottky noise 2eI. The flat part close to zero current corresponds to the
regime where thermal noise is dominant. At intermediate currents, the shot noise is
increasing linearly with current, as indicated with the red lines. A noise reduction
is visible for the highest currents, where electrons start to get cooled by phonons.
In the linear regime, the shot noise of this wire with hot electrons is expected to
exhibit a Fano factor of

√
3/4. Consequently, the slopes a of the two red lines must

be ±g ·
√

3/4. Or in other words, one can deduce the gain from the slopes via
g[dB] = 10 · log10

(
|a| · 4/

√
3
)
. From the data in the figure, we infer a power gain of

97.9 dB. This is the average from the left and the right side, which both lead to very
similar gains. It is a reasonable value considering a gain of about 35 dB from each of
the three amplifiers and subtracting a few dB loss from the coaxial cables. Another
cross-check is that by using this gain to calibrate the quantum dot data, reasonable
Fano factor values are extracted, as explained in connection with Fig. 7.11.
The measurements in Fig. 7.9 (b) are done at the base temperature of 18 mK. The

noise evolution with increasing temperatures is shown in Fig. 7.9 (c). It shows the
SSA’s raw data of integrated noise power. This time, the bandwidth is 500 MHz
and the centre frequency 3 GHz. The effect of an increasing thermal noise for higher
temperatures gets apparent in two ways. On the one hand, the flattening around zero
current becomes broader and on the other hand the background increases.
To analyse the thermal background in more detail, we can look at Fig. 7.9 (d). It

considers the minima at I = 0 in panel (c), where there is no shot noise. With the help
of Eq. (7.25), SI ·g is calculated without subtracting any background yet (〈∆P0〉 = 0).
Then, the current noise differences relative to the base temperature value at 18 mK,
∆SI · g, are plotted as a function of temperature. The thermal background is only
increasing above 100 mK. We conclude that the electron temperature on the RF line
is around 100 mK. As discussed in section 5.4, we are currently working on setup
improvements to reduce the electron temperature.
At higher temperatures, the thermal noise seems to increase roughly in a linear

manner. A linear fit is shown with red lines. Comparing the slope a of the fit with
the thermal noise formula SI = 4kBT/R [see Eq. (7.9)] yields another way to obtain
the setup gain. We deduce a gain g = aR/(4kB) ≈ 96.6 dB. It is in the same range
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Figure 7.9.: (a) Measurement scheme to calibrate the amplifier gain g. The noise
source is a 50 µm-long gold wire, which is attached to two large copper
pads. The noise power is measured at the RF side of the bias tee. The
signal is amplified and fed into a signal and spectrum analyser (SSA).
At the DC side of the bias tee, a current I is applied. (b) Noise data
of the wire shown in (a) at the base temperature of 18 mK. The spec-
trum analyser recorded the integrated noise power over a bandwidth of
10 MHz around the centre frequency of 2.9218 GHz. The plot shows
SI · g as a function of the full Schottky noise 2eI. From the slopes in the
linear regime (marked with red lines), a power gain g = 97.9 dB can be
extracted. Details on the analysis are in the text. (c) Noise power raw
data for different temperatures. The integration bandwidth is 500 MHz
and the centre frequency 3 GHz. (d) Thermal noise increase with tem-
perature, compared to the base temperature value at 18 mK. The current
noise density differences are extracted from the minima in panel (c). The
thermal noise increase in the linear regime (red line) corresponds to a
setup gain g = 96.6 dB.

than the 97.9 dB extracted before from the shot noise. However, there are not many
data points for this linear fit and therefore the gain extracted from thermal noise is
not very precise. Furthermore, the bandwidths of the two measurements are very
different. In summary, the gain deduced from thermal noise serves as a check if the
temperature increase is in a reasonable range, but the gain obtained from shot noise
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is the accurate value.

7.4. Noise Measurements in the Single Dot Regime
Now, we turn our attention to noise measurements of a single quantum dot (QD)
formed in a carbon nanotube (CNT). Owing to the strong electron confinement in
QDs, interactions play an important role for charge transport through QDs and one
can for instance expect to observe sub-Poissonian shot noise under some circumstances
(see section 7.1.2). Thus, QDs are an interesting playground for noise studies. The
sample used here is already introduced in chapter, namely in section 6.3. Pictures of
the CNT device with an attached stub tuner are shown in Fig. 6.7 and conductance
plots in the single QD regime are presented in Fig. 6.10. The noise measurements are
done in the exact same gate voltage range than for the conductance plots.

7.4.1. Stub Tuner Transmission
Section 6.3.1 deals with the reflection characteristics of the stub tuner on this sample.
Here, the stub tuner parameters from reflection are used to find the transmission
properties of this circuit. The general voltage transmission function of a stub tuner
is discussed in general in section 3.1.7 and thoroughly derived in appendix B.2.1.
Using the parameters obtained from the reflection spectrum in the Coulomb blockade
[Fig. 6.9 (a)], Fig. 7.10 (c) shows the calculated transmission functions for three device
conductances. They can be compared with the optimal curves in Fig. 3.9 (a) for a
lossless circuit at full matching. The conductance G = 0.26 e2/h corresponds to a
resistance of 100 kΩ. While the transmission maximum for this conductance reaches
|tV |2 = 1.2 · 10−4 in the optimal case, our stub tuner has a five times lower maximum
of |tV |2 = 2.2 · 10−5 for the same conductance.
The signal-to-noise ratio (SNR) is a measure of the detection sensitivity. Regarding

noise measurements, the SNR is the ratio of desired noise signal to the background
noise. In section 3.1.8, the figure of merit gSNR was introduced to quantify the
benefit of an impedance-matching circuit for noise detection. It is defined as the
ratio of SNRs with and without matching. The maximum figure of merit achieved
with a lossless stub tuner at full matching is given by Eq. (3.32) and amounts to
gmax

SNR ≈ 400 for a resistance of 100 kΩ. With the parameters of our actual stub tuner
and a detection bandwidth of 10 MHz, Eq. (3.31) yields a ten times lower figure of
merit gSNR ≈ 35 for R = 100 kΩ. Eq. (3.29) suggests a bandwidth slightly larger than
the FWHM for a maximal figure of merit. Considering the transmission functions of
Fig. 7.10 (a), it gets evident that the chosen bandwidth of 10 MHz is too large. This
has two reasons. Firstly, we were not aware at the time of the measurements that the
optimal bandwidth is only the FWHM and secondly, we wanted to make sure that
the bandwidth covers the high-transmission windows for all occurring resistances. If
we had wisely chosen the bandwidth to be the FWHM, we could have increased the
figure of merit for measurements with this stub tuner to gSNR ≈ 80 when R = 100 kΩ.
However, since the FWHM is resistance-dependent and the resistance of typical QD
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devices changes over more than an order of magnitude, one has always to make a
compromise when using a fixed bandwidth.

7.4.2. Noise Calibration
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Figure 7.10.: (c) Conductance-dependent voltage transmission function of the stub
tuner used for the experiments (using the stub tuner characteristic
impedance Z∗0 = 44.8 Ω). The parameters are gained from reflectome-
try, as explained in Fig. 6.9 (a). (b) Noise power raw data as measured
with the spectrum analyser. The integration bandwidth is 10 MHz.
The device is a quantum dot and the x-axis is its bias voltage VSD. (c)
Eq. (7.22) applied to the data in (a) leads to the current noise spectral
density of the quantum dot. The plot corresponds to a vertical cut in
Fig. 7.11 (a) at VRG = 1330 mV.

Section 7.4.3 discusses the complete shot-noise results gained from the QD. But
before, the detection settings and the noise calibration method are exemplified here
on the basis of data measured at a randomly fixed gate voltage of VRG = 1330 mV.
Fig. 7.10 (b) shows the bias dependence of the noise power raw data 〈∆PSSA〉 ob-

tained from the spectrum analyser when integrating within a window of 10 MHz
around the stub tuner resonance. In this frequency window, 1001 points are mea-
sured with a bandwidth of 100 kHz, which takes 6 ms to obtain the integrated power.
This is repeated for 30 times to calculate an average value. The background noise
visible in the flat Coulomb blockade region around zero bias of 〈∆P0〉 ≈ 28.5 µW
is attributed to amplifier noise. The contribution of thermal noise from the QD is
negligibly small because the stub tuner transmission is poor at the low conductance
inside the blockade.
It is derived in section 7.3.1 how to extract the current noise from the measured

noise power. Applying Eq. (7.22) with an amplifier gain of g = 97.9 dB (see sec-
tion 7.3.2) and with the differential conductance values G taken from a preceding
reflection measurement (not plotted), results in the current noise spectral density
plotted in Fig. 7.10 (c). The resemblance of the curves in panels (a) and (b) is
striking considering the seemingly conductance-dependent transformation formula in
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Eq. (7.22). This weak conductance dependence can be easily understood in the case
of a perfectly matched and lossless stub tuner. For this circuit, the transmission
function integral is evaluated in Eq. (3.23) to be

∫
BW|tV |2 df ∝ G2 and hence the G

dependence in Eq. (7.22) cancels out.

7.4.3. Shot-Noise Results
After demonstrating how to deduce current noise originating from the QD with the
example above, let us now look at the full gate map. Fig. 7.11 (a) shows the calibrated
current noise spectral density SI as a function of gate and bias voltage. For each
bias scan, the corresponding noise at zero bias (averaged with four neighbouring
values) is used as the background noise 〈∆P0〉. This way, long-time drifts can be
compensated. Because the applied bias voltages are large compared to the thermal
energy (eVbias � kBT ), the data in this plot is shot noise.
Eq. (7.13) predicts a linear relation between the average current and the shot noise

if the Fano factor stays constant. Indeed, the full Schottky noise 2e|I| [see Eq. (7.12)]
plotted in Fig. 7.11 (b) looks similar to SI at first sight. The DC current I is measured
simultaneously with the noise data. The typical quantity to compare shot noise and
mean current is the Fano factor. However, in the context of quantum dots, the Fano
factor error bars are diverging inside the Coulomb blockade because one divides by
a tiny current. Hence, it is more useful to plot the so-called excess noise, as done in
Fig. 7.11 (c). SEP

I = SI − 2e|I| is the difference between the shot noise and the full
Schottky noise. One can distinguish between super-Poissonian noise, where SEP

I is
positive (red), and sub-Poissonian noise, where it is negative (blue). The effects on
shot noise by three distinct processes are visible and discussed below.
Inside the Coulomb blockade (CB), namely at the corners of the two large diamonds,

there are some small areas where the noise is super-Poissonian. We relate this shot-
noise enhancement to inelastic cotunnelling events. The argument goes as follows:
In the configuration drawn in Fig. 7.12 (a), the current is initially blocked. But a
inelastic cotunnelling process leaves the QD in a state, in which sequential tunnelling
is possible as long as the ground state is not occupied again, as drawn in Fig. 7.12 (b).
In summary, each switching to a conducting state by an inelastic tunnelling event is
followed by a bunch of transferred electrons and thus the current consists of pulses
with an average charge larger than e. This situation is analogous to what one observes
on the street. A red traffic light interrupts the car flow with a slow rate compared to
their speed when the light is green. Since shot noise depends linearly on the charge
unit, it is enhanced in the inelastic cotunnelling regime [124, 125]. Super-Poissonian
noise in this QD regime has already been observed in references [116, 126–128].
Outside the CB, an oscillating shot noise is apparent in Fig. 7.11 (c). More insight

is gained in Fig. 7.11 (d), where the Fano factor along the diagonal dotted line in
Fig. 7.11 (c) is plotted together with the absolute value of the current. The shot-noise
suppression is correlated with steps in the Coulomb staircase. Fano factors F ≈ 1 are
reached at the end of each plateau, as indicated by vertical dashed lines. But after
the onset of a new plateau, when the number of electrons on the dot increases by one,
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Figure 7.11.: (a) Calibrated shot-noise current spectral density SI of a quantum dot
as a function of voltage on the right gate (VRG) and of source-drain
voltage (VSD). (b) Schottky noise 2e|I| and (c) excess Poissonian noise
SEP
I = SI − 2e|I|, where I is the measured averaged current. The

Coulomb blockade diamond contours (dashed lines) are copied from the
conductance plot of Fig. 6.10 (a). (d) Fano factors averaged over a
range of 1.2 mV in VSD (left scale) and absolute value of current (right
scale) along the dotted line in (c) marked with a star. Fano factor
peaks correspond to the onset of current transitions from one to the
next plateau. (e) Fano factors along the horizontal line in panel (c),
which is marked with a square.

the Fano factor is seen to be reduced.
In section 7.1.2, it is shown that a single tunnel junction yields F = 1. Transport

through a QD happens via two tunnel junctions in series. The corresponding Fano
factor depends on the ratio between the two tunnelling rates. In the case of equal
rates for entering via the source and leaving to drain, the Fano factor is reduced to
F = 1/2. This can be understood with the following argument. Tunnelling of an
electron with charge −e into the dot invokes screening at the source and drain side.
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Figure 7.12.: (a) Energy level diagram showing an inelastic cotunnelling event. The
solid line represents the ground state and the dashed line an excited
state. (b) After the process in (a), sequential tunnelling is allowed
and leads to a transient current. (c) Level diagram of three states
contributing to transport. The N -electron ground and excited state
levels (µ(0,0)

N and µ(1,0)
N ) are both within the thermal broadening in the

drain lead (D).

Because of equal tunnelling rates, the screening charge on source is +e/2 and on
drain −e/2 and therefore the charge flow experienced by the outer circuit due to the
tunnelling-in event is −e/2. The same is true when an electron tunnels out to drain.
The observed current consists of charge pulses of charge −e/2 and thus the Fano factor
is F = 0.5. The situation changes if the tunnelling rates are very different. Then,
tunnelling through the weakly coupled junction is immediately followed by tunnelling
through the strongly coupled junction. Thus, the junction with the low rate creates
charge pulses of e, which cause a Fano factor of one like for a single junction.
Transport through a QD system is treated by the so-called orthodox theory. Start-

ing with Fermi’s golden rule, one can calculate the tunnelling rates. In the next step,
the current is obtained from a rate equation. Reference [129] explains that the ob-
servation of a Coulomb staircase with flat plateaus like in Fig. 7.11 (d) is a sign that
the tunnelling resistances Rt of the two junctions are quite different. As explained
before, a large difference between the tunnelling rates leads to F = 1. This is what
we observe at the ends of each plateau.
But in between these maxima, the Fano factor is suppressed despite the difference

in the tunnelling resistances. According to the orthodox theory, the tunnelling rates Γ
are not simply proportional to the tunnelling resistances Rt, but depend on the energy,
too. For a complete description of the system with a QD and the attached bias voltage
source, one has to consider the Gibb’s free energy. It is the QD electrostatic energy
minus the work done by the voltage source. The tunnelling rate derived from Fermi’s
golden rule is [129]

Γ±(∆G±) = 1
e2R±t

· ∆G±

1− e−∆G±/kBT
, (7.26)

where +/− refers to tunnelling on and off the QD and ∆G± denote the corresponding
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gains in free energy. At zero temperature, the rates reduce to

Γ±(∆G±) =

0 if ∆G± ≤ 0
∆G±
e2R±t

if ∆G± > 0 . (7.27)

One can see that a difference between R+
t and R−t , like in our device, can be com-

pensated by an asymmetry in the energy gain and the tunnelling rates can become
equal despite of asymmetric tunnelling resistances. Hence, in this case the whole
device behaves as if it is composed of two identical junctions in series with F = 0.5
in the ideal case. This behaviour of Γ explains the periodic noise suppression seen
in Fig. 7.11 (d) and also reported in references [95, 130, 131]. The above model as-
sumes transport through only one QD state. However, at finite temperature and/or
for larger bias voltages, more than one state is involved, yielding F > 0.5. The noise
suppression therefore tends to decay away at large bias voltages and approaches F = 1
for eVbias � Ec. This is exactly what we see in the data.
It is visible in Fig. 7.11 (d) and more pronouncedly in Fig. 7.11 (e) that the Fano

factor peak values can exceed one. This finding can only be explained with multi-
level models. One scenario which produces a Fano factor larger than one is given
in reference [132]. It considers three QD states. The N -electron ground state level
µ

(0,0)
N and the excited state level µ(1,0)

N are both within the thermal broadening of the
distribution in the drain lead. The state containing N+1 electrons (SN+1) has its level
below the source’s Fermi level. This situation is depicted in Fig. 7.12 (c). Since the
wavefunctions for the two N -electron states may have different spatial distributions,
the transitions from N to N + 1 electrons on the QD may depend on whether it
started in the N -electron excited state SA or in the N -electron ground state SB. Say
transitions between SA and SN+1 happen with a much larger rate than transitions
between SB and SN+1. Then, many transitions between SA and SN+1 will occur
before one transition to SB happens and the charge flow is interrupted for a while.
Like in the case of inelastic cotunnelling, the described situation leads to a bunched
electron transport and consequently to super-Poissonian noise.
Overall, the observed shot-noise features in the single QD regime agree well with

previous experimental studies. We conclude that the presented noise measurement
scheme with stub impedance matching and the applied calibration procedure are well
suited for noise detection of high-resistance devices.
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The goal of this thesis was to develop a gigahertz-frequency conductance and noise
measurement scheme for high-resistance devices. Owing to the large impedance mis-
match between the device with typical resistances up to a megaohm and the standard
characteristic impedance Z0 = 50 Ω of the measurement line, an impedance-matching
circuit is necessary. With such a circuit, one achieves a high RF signal transmission
from the 50 Ω side to the device and at the same time in the reverse direction from
the device towards the 50 Ω detection side. The circuit we use here for impedance
matching is a so-called stub tuner. Its simple planar structure, consisting of copla-
nar transmission lines, makes it easy to fabricate and to model. As discussed in
section 3.1, its behaviour at gigahertz frequencies can be reliably predicted with a
standard circuit model.
Details of the developed fabrication procedure are presented in chapter 4. For

minimised losses in the transmission line we use niobium, which is superconducting
at our measurement temperatures. Another fabrication aspect to consider is that the
impedance transformation should happen as close to the device as possible to reduce
signal loss and parasitic effects between the device and the stub tuner. The mesoscopic
device investigated in this thesis is a quantum dot formed in a carbon nanotube. We
developed a method to fabricate carbon nanotube based devices and a stub tuner on
the same chip. In particular, we found a way to stamp carbon nanotubes from the
growth substrate to the target substrate in a reliable manner.
The stub tuners we use at the moment have no tunable parameter. The stub tuner

formulas in section 3.1 allow to plan the matched resistance and frequency beforehand.
But as shown with the resonator measurements in section 2.4.4, the transmission line
loss scatters considerably and unpredictably. A tunability could be introduced by
attaching a variable impedance to the open stub tuner end, as for example a varactor
diode (variable capacitor) [29] or a SQUID, whose inductance can be changed by
varying the magnetic flux. With such a variable element, one could tune to perfect
impedance matching and adapt to different resistance regimes during the experiment.
In the course of this thesis, we built up an RF measurement setup in a dilution

refrigerator, as described in chapter 5. Although there is room for setup improvements
(on which we are currently working), we could successfully conduct RF measurements
on a quantum dot defined in a carbon nanotube, which is connected to a stub tuner.
On the basis of this sample, we demonstrated the application of stub impedance
matching for two kinds of RF measurements: reflectometry and noise detection.
Chapter 6 deals with the RF reflection properties of the sample. We show that all
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relevant stub tuner parameters can be extracted from the reflectance spectrum around
the resonance frequency when the quantum dot is in Coulomb blockade. Knowing
the stub tuner parameters, the reflection amplitude at the resonance frequency can
be converted to the quantum dot’s differential conductance. Since the reflection
spectrum depends on the complex device impedance, it is also possible to obtain
information about capacitance and inductance changes in the device [31].
While the stub tuner parameters are obtained from reflectance, the gain of the

amplification chain needs to be deduced in another way. We replaced the sample
with a metal wire in the hot-electron regime, where it generates shot noise with a
well-established Fano factor. Section 7.3.2 demonstrates how to deduce the setup
gain from the detected shot noise of such a wire.
The main results are the shot-noise measurements in the quantum dot regime,

which are presented in section 7.4. With the help of stub impedance matching, we
obtained clean noise data in a fast way. The results compare well with earlier studies.
In order to quantify the benefit of impedance matching for noise measurements, we
introduced the figure of merit gSNR, which is the ratio of the SNR with and without
impedance matching. With the stub tuner of the presented sample, a figure of merit
gSNR ≈ 80 is attainable for a resistance of 100 kΩ, despite a rather lossy circuit and
being quite far from full matching. The upper bound for a lossless stub tuner at
matching would be as high as gSNR ≈ 400 for this resistance.
Recently, we started to work on an alternative impedance-matching circuit based

on a planar inductive coil, as briefly mentioned in section 3.2. Its advantage is a much
larger bandwidth compared to a stub tuner. Whereas this provides more signal and
hence allows for faster measurements, there is no effect on the figure of merit because
a larger bandwidth also means picking up more background noise.
The presented measurements can be viewed as proof-of-principle experiments, demon-

strating the potential of stub impedance matching for noise detection of high-resistance
devices. We gained a profound knowledge of the setup and its calibration. It paves
the way for noise studies of unexplored high resistance systems. One example is the
quantum dot with one superconducting lead of section 6.4, which showed distinct
subgap features. Shot-noise studies in this regime could lead to more insight into the
transport mechanisms.
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A Derivations of λ/4-Resonator
Formulas

This section contains the derivations of the formulas for λ/4-resonators stated in
section 2.4.2. Step by step, the quality factors given in Eqs. (2.40) and (2.41), the
input impedance of a resonator, the resonance frequency f0 given in Eq. (2.44) and
the transmission coefficient S21 given in Eq. (2.37) are derived. The basis for these
derivations are the PhD theses of Barends [133] and Mazin [19].

A.1. Quality Factors
The quality factor is defined as

Q = ω · energy stored in resonator
power dissipated = ω

E

Pdiss
. (A.1)

The energy stored in a CTL has a capacitive and an inductive part. The energy
in a capacitor with capacitance C̃ is EC̃ = 1/2C̃V 2. The voltage in the resonator is
of the waveform V (z) = V0 cos(βz), as discussed in section 2.1.2 and illustrated in
Fig. A.1 (b). V0 is the maximum voltage arising at the open end. Integrating over
the CTL length results in the capacitive energy stored

EC =
∫ λ/4

0

1
2C

( 1√
2
V0 cos(βz)

)2
dz = 1

8 ·
λ

4 · CV
2

0 , (A.2)

with the conversion from the wavenumber β to the wavelength λ given in Eq. (2.14).
Note that C is the CTL capacitance per unit length and the root mean square value
1/
√

2V0 takes into account the oscillations in time. Likewise, the energy stored in an
inductor with inductance L̃ is EL̃ = 1/2L̃I2. Again, this energy is integrated over the
CTL length. Using the low-loss approximation of the characteristic impedance given
in Eq. (2.17), the inductively stored energy reads

EL =
∫ λ/4

0

1
2L

(
V (z)
Z0

)2
dz =

∫ λ/4

0

1
2C (V (z))2 dz

= EC.

(A.3)

Also here, L is the CTL inductance per unit length. The CPW capacitance can be
reformulated in the low-loss approximation (section 2.1.3) as follows:

C =
√
LC√
L/C

≈ β

ωZ0
= 2π

λ
· 1
ωZ0

. (A.4)
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Combining the results of Eqs. (A.2), (A.3) and (A.4) leads to the total energy stored
in the resonator

E = EC + EL = 1/4 · λ/4 · CV 2
0 = π

8 ·
V 2

0
ωZ0

. (A.5)

In the absence of any capacitive coupling of the resonator to the environment, the
only loss channel is the damping α, which gives rise to the internal quality factor Qi.
According to Eq. (2.24), the power in a lossy CTL has the form P (z) = P0e

−2αz and
accordingly, the power loss per unit length is

− dP
dz = 2αP0e

−2αz = 2αP. (A.6)

The power P (z) is related to the voltage via P (z) = V 2(z)/Z0. The total dissipated
power is the integral of the above expression along the resonator length:

Pdiss =
∫ λ/4

0
2αV

2(z)
Z0

dz = 2α
Z0

∫ λ/4

0

( 1√
2
V0 cos(βz)

)2
dz

= π

4 ·
α

β

V 2
0
Z0
.

(A.7)

The results of Eqs. (A.5) and (A.7) allow to calculate the internal quality factor as
defined in Eq. (A.1) to be

Qint = β

2α. (A.8)

A coupling with capacitance Cc at the open end to a feedline, as illustrated in
Fig. A.1 (a), opens a second loss channel and gives rise to another quality factor, Qc.
The leakage current through the capacitor is I = V0/Zc = V0 · iωCc. Using the root
mean square current, the dissipated power is

Pdiss =
∣∣∣∣ 1√

2
I

∣∣∣∣2 Z0 = 1
2Z0 (ωCcV0)2 , (A.9)

and one finds with the help of Eqs. (A.1) and (A.9) a coupling quality factor

Qc = 1
8π (Z0fCc)2 . (A.10)

According to the definition in Eq. (A.1), quality factors are added up like resistors
in parallel. The total, loaded quality factor is

1
Ql

= 1
Qi

+ 1
Qc
. (A.11)
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Zin

Zin,cport 1
port 1

Feedline

λ /4-Resonator

port 2
port 2

Z0, α, β

Z 0, 
α,

 β

Cc

z
I

I0

V
V00

λ /4

(a)

(b)

(c)

Zin,c

Figure A.1.: (a) Schematic of the feedline and the capacitively coupled λ/4-resonator
with a shorted end. In an experiment, the feedline transmission from
port 1 to 2, S21, is detected. (b) Voltage and current distributions along
the resonator. (c) Equivalent circuit to (a) to determine Z-parameters.

A.2. Input Impedance
The configuration with a feedline and a capacitively coupled λ/4-resonators is sketch-
ed in Fig. A.1 (a). Eq. (2.23) provides an expression for the input impedance of the
resonator before the capacitor:

Zin = Z0 tanh(γz). (A.12)

Because γ is complex, we use the relation

tanh(x+ i · y) = 1− i · tanh(x) cot(y)
tanh(x)− i · cot(y) . (A.13)

Thus, the input impedance can be written as

Zin = Z0 ·
1− i · tanh(αz) cot(βz)
tanh(αz)− i · cot(βz) . (A.14)

Close to fr, the resonance frequency of the first mode, Zin can be approximated.
With Eq. (2.14) and by introducing the relative frequency ∆f = f−fr, the argument
of the cot-term becomes

βz = 2πz f
vp

= 2πz∆f + fr
vp

. (A.15)

The resonator length is known to be z = λ0/4 = vp/(4fr) [see Eq. (2.14)], and
therefore

βz = π

2

(
1 + ∆f

fr

)
cot(βz) = cot

(
π

2 + π

2 ·
∆f
fr

)
.

(A.16)
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Finally, we use that cot(π/2 + x) = − tan(x) and expand tan(x) ≈ x for x� 1 since
we are interested in frequencies where ∆f/fr � 1, and get an approximate expression
for the cot-term:

cot(βz) = − tan
(
π

2 ·
∆f
fr

)
≈ −π2 ·

∆f
fr
. (A.17)

In terms of the internal quality factor Qi = β/(2α) and with the wavenumber β as
above in Eq. (A.16), the approximation for the tanh-term is found to be

αz = βz

2Qi
= π

4Qi

(
1 + ∆f

fr

)
tanh(αz) = tanh

[
π

4Qi

(
1 + ∆f

fr

)]
≈ π

4Qi

(
1 + ∆f

fr

)
.

(A.18)

The expansion tanh(x) ≈ x used above is valid when α� 1, meaning that 1/Qi � 1.
With the help of these two approximations, the resonator input impedance of

Eq. (A.14) reads

Zin ≈ Z0 ·
4Qi
π − i ·

8Q2
i

π ·
∆f
fr

1 + 4Q2
i

(
∆f
fr

)2 , (A.19)

where the second order terms in the limit ∆f/fr � 1 and Qi � 1 are neglected.
Finally, by adding the series capacitor impedance, the input impedance after the

resonator is

Zin,c = 1
i · 2πfC +Zin = Z0 ·

4Qi
π − i ·

8Q2
i

π ·
∆f
fr
− i ·

√
2Qc
π ·

[
1 + 4Q2

i

(
∆f
fr

)2
]

1 + 4Q2
i

(
∆f
fr

)2 . (A.20)

A.3. Resonance Frequency
The bare resonator frequency in the absence of any coupling to the environment was
defined as fr. Now, we are going to discuss the influence of a capacitive coupling on
the resonance frequency observed from outside. The requirement that the imaginary
part of the impedance Zin,c [Eq. (A.20)] vanishes at resonance results in a quadratic
equation for the relative frequency with the two solutions

∆f0,1
fr

= − 1√
2πQc

±
√

1
2πQc

− 1
4Q2

i
. (A.21)

When neglecting the second term with Q2
i in the denominator, the two possible solu-

tions become
∆f0
fr
≈ −

√
2
πQc

or ∆f1
fr
≈ 0. (A.22)

119



A. Derivations of λ/4-Resonator Formulas

The real parts of Zin,c at those two frequencies are

Re [Zin,c(∆f0)] = 4Z0Qi
π
· 1

1 + 8Q2
i

πQc

� Re [Zin,c(∆f1)] = 4Z0Qi
π

. (A.23)

The second requirement for a resonance is that the real part of the impedance has
a minimum. Thus, the solution ∆f0 is the actually measured resonance frequency.
In other words, the coupling causes the observed resonance frequency to be reduced
compared to the bare resonator frequency fr:

f0 = fr ·
(

1−
√

2
Qcπ

)
. (A.24)

A.4. Transmission Coefficient
In consideration of the resonance frequency shift caused by coupling discussed in
the last section, the relative frequency ∆f is redefined to ∆f = f − f0. Using
this definition, we replace the frequency ratio ∆f/fr ≈ ∆f/f0 −

√
2/(πQc) in the

expression for the input impedance of Eq. (A.20) and obtain

Zin,c = Z0 ·

√
2Qc
π
·

2Qi · ∆f
f0
− i

1 + i · 2Qi · ∆f
f0
− i · 2Qi

√
2

πQc

. (A.25)

One way to connect voltages and currents at different ports are impedance param-
eters or short Z-parameters. The relation of a driving current Ij at port j to the
voltage at port i is given by the parameter Zij , given that all other ports are open.
Formally,

Zij = Vi
Ij

∣∣∣∣∣
Ik=0 for k 6=j

. (A.26)

Fig. A.1 (c) shows the equivalent circuit for the resonator transmission measurements,
which is used to determine the Z-parameters. With Ohm’s law and since V1 = V2 in
any case, one finds that

Z11 = V1
I1

∣∣∣∣
I2=0

= Zin,c and Z12 = V2
I1

∣∣∣∣
I2=0

= Zin,c. (A.27)

Due to the symmetry of the circuit, Z22 = Z11 and Z21 = Z12.
The transformation for the easy to calculate Z-parameters to the experimentally

accessible scattering parameter goes like [10]

S21 = 2Z21Z0
(Z11 + Z0)(Z22 + Z0)− Z12Z21

= 2
2 + Z0

Zin,c

. (A.28)

Combining this with Eq. (A.25), one finds the transmission coefficient minimum

Smin
21 (f = f0) ≈ Qc

Qc +Qi
(A.29)
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and the general transmission coefficient

S21(∆f) ≈
Smin

21 + i · 2Ql
∆f
f0

1 + i · 2Ql
∆f
f0

. (A.30)

Spurious modes in the setup, also if their resonance frequency is quite far away from
the frequency of the actual resonator, make the resonance lineshape asymmetric. This
is called a Fano resonance and is taken into account by introducing the phase factor
eiφ into the transmission coefficient [134]:

S21(∆f) =
Smin

21 + 2eiφ · ∆f
f0

+ i · 2Ql
∆f
f0

1 + 2eiφ · ∆f
f0

+ i · 2Ql
∆f
f0

. (A.31)

For resonances with a bandwidth of a few MHz, it is a good assumption to ap-
proximate the (slightly frequency dependent) background attenuation and gain with
a straight line in the frequency range of interest. Altogether, the amplitude of a
resonator spectrum in dezibel is fitted with the function

|S21(∆f)|2[dB] = b+ s ·∆f + 20 log10

∣∣∣∣∣∣
Smin

21 + 2eiφ · ∆f
f0

+ i · 2Ql
∆f
f0

1 + 2eiφ · ∆f
f0

+ i · 2Ql
∆f
f0

∣∣∣∣∣∣ , (A.32)

where b is the baseline value and s its slope. In the end, there are five fit parameters
used; two for the resonator (Smin

21 and Ql) and three for the setup (b, s and φ).
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B Derivations of Stub Tuner Formulas

The stub tuner as a key circuit of this thesis is introduced in section 3.1. In this
appendix, one finds derivations for the formulas, which appear in the main text. The
first part of the appendix concentrates on the reflection at the low-impedance side.
It is explained how a measured reflection spectrum is fitted and the expression for
the bandwidth stated in Eq. (3.12) is derived. The second part concentrates on the
voltage transmission from the load to the 50 Ω measurement side, which is the topic
of section 3.1.7. First, the general transmission function tV is derived and then, an
approximate expression is calculated.

B.1. Reflection
B.1.1. General Expression
The stub tuner circuit is illustrated in Fig. B.1. According to the formula for a
terminated transmission line in Eq. (2.22), the load impedance is transformed by the
CTL of length D1 to

ZD1 = Z∗0 ·
ZL + Z∗0 tanh(γD1)
Z∗0 + ZL tanh(γD1) , (B.1)

with the propagation constant γ = α + i · β and the wavenumber β = 2πf√εeff/c.
Furthermore, the open-ended CTL of length D2 induces an impedance at the T-
junction of

ZD2 = Z∗0 coth(γD2). (B.2)

Adding these two parallel impedances leads to the input impedance of the stub tuner
seen from the low-impedance side:

Zin = eiφ · ZD1ZD2
ZD1 + ZD2

. (B.3)

In the same way as for λ/4-resonators (see section A.4), the phase factor eiφ accounts
for spurious setup modes, which cause an asymmetric resonance lineshape [134]. We
usually design the CTLs such that their characteristic impedances are similar to the
characteristic impedance of the measurement line, meaning that Z∗0 = Z0.
Now, the complex reflection coefficient can be readily calculated via Eq. (2.20),

Γ = Zin − Z0
Zin + Z0

. (B.4)
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B. Derivations of Stub Tuner Formulas

In the case of impedance matching, Zin is equal to Z0 and therefore the reflection
coefficient vanishes. Minimising Γ to find the matching parameters can be done ana-
lytically for a lossless stub tuner (see section 3.1.1), but has to be done numerically
in case of a finite loss α. For instance, one can use the NMinimize function of Math-
ematica.
Similar to the λ/4-resonator spectrum of section A.4, the reflection amplitude spec-

trum can be fitted with the function

|Γ(f)|2[dB] = b+ s · (f − f0) + 20 log10 |Γ| , (B.5)

when measured in dezibel. The setup properties are taken into account by a linear
background reflection described by b + s · (f − f0), with b being the background
attenuation and s its slope. The frequency reference point f0 is in principle an
arbitrary frequency. We normally choose it to be the resonance frequency. The
number of fit parameters sums up to seven, four for the stub tuner contribution (loss
α, load R and the two lengths D1 and D2) and three for the background contribution
(b, s and φ). Formulas for the two CTL parameters, the dielectric constant εeff and
the characteristic impedance Z0, are given in section (2.3.1) or can be obtained from
simulations.
If the stub tuner has two open ends, as it is the case in the stub tuner characterisa-

tion experiments presented in chapter 3.1.5 or when the load is a quantum dot in the
Coulomb blockade regime (section 6.3.1), the impedance from the segment of length
D1 [Eq. (B.1)] simplifies to

ZD1 = Z∗0 coth(γD1), (B.6)
and one fit parameter, R, drops out. Note that fitting the amplitude of an open stub
tuner is not enough to find a unique solution. This is further discussed in section 3.1.4.

ZL

D1

D2

Z0

Z0
*, γ

ZD2

ZD1ZinΓ

Z0
*, γ

Figure B.1.: Schematic of the stub tuner (on a yellow background) with the line
impedance Z0 and the load impedance ZL attached. Coplanar trans-
mission lines are represented by the orange parts.

B.1.2. Lossless Stub Tuner with Large Load Resistance
Here, an approximate expression for the reflection coefficient Γ is derived in the case
of a lossless stub tuner with a load resistance R� Z0. It captures well the situation

123



B. Derivations of Stub Tuner Formulas

in our experiments, for which we use low-loss superconducting CTLs with α� 1 and
measure high resistance devices with resistances up to a megaohm.
The impedance of the terminated CTL segment given in Eq. (B.1) simplifies to

ZD1 = Z0 ·
R+ i · Z0 tan(βD1)
Z0 + i ·R tanh(βD1) , (B.7)

under the assumptions that α = 0, Z∗0 = Z0 and that the device impedance ZL = R
is real. Moreover, the impedance of the open end after the distance D2 becomes

ZD2 = −i · Z0 cot(βD2). (B.8)

Plugging the results of Eqs. (B.7) and (B.8) into Eq. (B.3) and neglecting the asym-
metry factor leads to the stub tuner input impedance

Zin = Zo ·
R cot(βD1) cot(βD2) + i · Z0 cot(βD2)

Z0 cot(βD1) cot(βD2) + i ·R cot(βD1) + i ·R cot(βD2)− Z0
. (B.9)

The arguments in the cot-terms can be rewritten in terms of the relative frequency
∆f = f − f0 to

βDi =
2πf√εeff

c
Di =

2πf0
√
εeff

c
Di +

2π∆f√εeff
c

Di, (B.10)

where Di with i = 1, 2 are the CTL lengths. By using f0 = c/(λ0
√
εeff) and writing

Di = λ0/4 + ∆Di, the argument reads

βDi = π

2 + π

2 ·
∆Di

λ0/4
+

2π∆f√εeff
c

· λ0
4 + 2π∆f∆Di

c
. (B.11)

As visible in Fig. 3.3 (a), the two stub lengths Di approach λ0/4 for large device
resistances and therefore ∆Di � 1 in the limit R� Z0. In addition, we are interested
in frequencies close to resonance, where ∆f is small, such that the last term in
Eq. (B.11) can be neglected and

βDi ≈
π

2 + π

2

(∆Di

λ0/4
+ ∆f

f0

)
. (B.12)

With this, the cot-terms can be expanded as follows:

cot(βDi) ≈ cot
[
π

2 + π

2

(∆Di

λ0/4
+ ∆f

f0

)]
= − tan

[
π

2

(∆Di

λ0/4
+ ∆f

f0

)]
≈ −π2

(∆Di

λ0/4
+ ∆f

f0

)
,

(B.13)

by using the expansion tan(x) ≈ x for small x.
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B. Derivations of Stub Tuner Formulas

An expression for the lengths ∆Di is found by applying the matching condition,
which requires that Zin = Z0. Equating the real and imaginary parts of Zin given in
Eq. (B.9) results in the two equations

Real part: Z0
R

[cot(β0D1) cot(β0D2)− 1] = cot(β0D1) cot(β0D2)

Imaginary part: R

Z0
[cot(β0D1) + cot(β0D2)] = cot(β0D2).

(B.14)

Here, β0 = 2π/λ0 is the wavenumber at the resonance frequency. By solving for
cot(β0D1) and cot(β0D2) in the limit R

Z0
>> 1, one sees that at matching

cot(β=D1) ≈ − cot(β0D2) ≈

√
Z0
R
. (B.15)

Comparing this with Eq. (B.13) at matching (∆f = 0) gives

cot(β0Di) ≈ −
π

2
∆Di

λ0/4
≈ ±

√
Z0
R
. (B.16)

Or in other words

Di ≈
λ0
4 ·

1∓ 2
π

√
Z0
R

 , (B.17)

which is in agreement with the solutions derived in the main text [Eqs. (3.8) and
(3.9)] when using that for large x =

√
R/Z0, arctan(x) can be expanded in first order

as
arctan(x) = π

2 − arctan
(1
x

)
≈ π

2 −
1
x
. (B.18)

By solving Eq. (B.16) for ∆Di and plugging the result into Eq. (B.13), the cot-terms
given in Eq. (B.13) can be written as

cot(βDi) ≈ ±

√
Z0
R
− π

2
∆f
f0
. (B.19)

In the following, we use the expression with the plus sign for D1 and the minus sign
for D2, corresponding to the solution with D1 < D2.
Plugging the approximation of Eq. (B.19) into the stub tuner input impedance of

Eq. (B.9), one ends up with

Zin ≈ Z0 ·

(
π
2
)2 (∆f

f0

)2
− iπ2

Z0
R

∆f
f0
− Z0

R − i
Z0
R

√
Z0
R

Z0
R

(
π
2
)2 (∆f

f0

)2
− iπ∆f

f0
− Z0

R −
(
Z0
R

)2

≈ Z0 ·

(
π
2
)2 (∆f

f0

)2
− Z0

R − i
π
2
Z0
R

∆f
f0

Z0
R

(
π
2
)2 (∆f

f0

)2
− Z0

R − iπ
∆f
f0

,

(B.20)
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where in the second line the last terms in the numerator and denominator are dropped.
Eventually, it is possible to give an approximate expression for the reflection coef-

ficient Γ around the resonance:

Γ = Zin − Z0
Zin + Z0

≈

(
π
2
)2 (∆f

f0

)2 (
1− Z0

R

)
+ iπ2

∆f
f0

(
2− Z0

R

)
(
π
2
)2 (∆f

f0

)2 (
1 + Z0

R

)
− 2Z0

R − i
π
2

∆f
f0

(
2 + Z0

R

)
≈

(
π
2
)2 (∆f

f0

)2
+ iπ∆f

f0(
π
2
)2 (∆f

f0

)2
− 2Z0

R − iπ
∆f
f0

,

(B.21)

where again the limit Z0/R� 1 is applied in the last line.
The resonance bandwidth is defined as the full width at half maximum (FWHM) of

the power spectrum |Γ|2. The substitution y =
(
π
2

∆f
f0

)2
applied to Eq. (B.21) leads

to
Γ =

y + i · 2√y
y − 2Z0

R − i · 2
√
y

|Γ|2 = y2 + 4y(
y − 2Z0

R

)2
+ 4y

.
(B.22)

Setting |Γ|2 = 1
2 and solving for y gives

y1/2 = −2± 2

√
1 +

(
Z0
R

)2
. (B.23)

According to the definition, y has to be positive. In addition, the square root can be
expanded as

√
1 + u ≈ 1 + 1

2u for small u, which results in

y1/2 =
(
π

2 ·
∆f1/2
f0

)2

≈
(
Z0
R

)2
. (B.24)

In this framework, ∆f1/2 is the half width at half maximum and the FWHM is the
double of it. In summary, one obtains the reflection bandwidth (FWHM) for a lossless
stub tuner

∆fFWHM = f0 ·
4
π
· Z0
R
, (B.25)

in the case of large R� Z0. Consequently, the load quality factor reads

QL = f0
∆fFWHM

= π

4 ·
R

Z0
. (B.26)
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B.2. Transmission
This section refers to the discussion of the stub tuner transmission for the high-
impedance device side to the low-impedance measurement side found in section 3.1.7.
In particular, the derivation for the wave coefficients of the CTLs stated in Eq. (3.16)
is shown and the approximation of the transmission function leading to Eq. (3.19) is
explained.

B.2.1. Voltage Coefficients

RL

Z0 V1(D1)V1(0)

I1(0)

I1(D1) I2(D1) I2(D1+D2)

x
0 D1 D1+D2

Z0
*, γ Z0

*, γ

VR

ΓL

Figure B.2.: Schematic of the stub tuner on a yellow background with an attached
load resistance R and measurement line resistance Z0. The two CTL
segments are illustrated in orange. Voltages and currents at different
places are indicated in blue.

A schematic of the examined stub tuner circuit is shown in Fig. B.2. As a result of
the telegraph equation (see section 2.1.1), the voltages and current in the left CTL
segment take on the waveform from Eqs. (2.8) and (2.12):

V (x)1 = V +
1 e−γx + V −1 eγx

I(x)1 = V +
1
Z∗0

e−γx − V −1
Z∗0

eγx.
(B.27)

The coefficients labelled with a plus (minus) correspond to right-moving (left-moving)
waves, respectively. Likewise, the voltages and currents in the right, open-ended CTL
are

V2(x) = V +
2 e−γx + V −2 eγx

I2(x) = V +
2
Z∗0

e−γx − V −2
Z∗0

eγx.
(B.28)

The four voltage coefficients V +
1 , V −2 , V +

2 and V −2 are fixed by four boundary condi-
tions. First, we require that the current at the open end vanishes:

I2(D1 +D2) = 0. (B.29)

The voltage on the loaded end is set by Ohm’s law to

V1(0) = VR −RI1(0). (B.30)
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Furthermore, the voltage has to be continuous at the connection of the two arms:

V1(D1) = V2(D1). (B.31)

At last, Kirchhoff’s current law implies that at the junction between the two arms

I1(D1) = I2(D1) + V1(D1)
Z0

. (B.32)

What remains is a lengthy calculation with the resulting voltage coefficients (when
Z∗0 = Z0)

V +
1 = VR

R+ Z0
· Z0 · e2γD1 · [1 + 2 · coth(γD2)]
R− Z0 + (R+ Z0) · e2γD1 · [1 + 2 · coth(γD2)]

V −1 = VRZ0
Z0 −R− (R+ Z0) · e2γD1 · [1 + 2 · coth(γD2)]

V +
2 = VRZ0e

γ(2D1+D2)

(R+ Z0)e2γD1 [sinh(γD2) + 2 cosh(γD2)] + (R− Z0) sinh(γD2)

V −2 = VRZ0e
−γD2

(R+ Z0)e2γD1 [sinh(γD2) + 2 cosh(γD2)] + (R− Z0) sinh(γD2) .

(B.33)

These coefficients directly lead to the voltage transmission function stated in Eq. (3.16):

tV (f) = V (D1)
VR

= 2Z0
R+ Z0

· eγD1 coth(γD2)
ΓL + e2γD1 · [1 + 2 coth(γD2)] , (B.34)

where ΓL = (R− Z0)/(R+ Z0) is the reflection coefficient before the stub tuner.

B.2.2. Lossless Stub Tuner with Large Load Resistance
An approximation of the transmission function tV of Eq. (B.34) for a lossless stub
tuner in the limit R� Z0 and ∆f � f0 is achieved in the same way as before for the
reflection coefficient (see section B.1.2). Here, the relative frequency ∆f = f − f0,
with f0 being the resonance frequency.
The propagation constant appearing in Eq. (B.34) is in general γ = α + i · β. For

a lossless stub tuner (α = 0), one can use that coth(ix) = −i · cot(x). According to
Eq. (B.19), the resulting cot-term can be approximated as

cot(βD2) ≈ ±

√
Z0
R
− π

2 ·
∆f
f0
, (B.35)

As seen in Eqs. (3.8) and (3.9), there are two kinds of solutions for the stub tuner
lengths. The plus (minus) signs correspond to the solution with D1 < D2 (D1 > D2),
respectively. Moreover, inserting ∆D1 from Eq. (B.16) into Eq. (B.12) tell us that

βD1 ≈
π

2 ±

√
Z0
R

+ π

2 ·
∆f
f0
. (B.36)
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2.95 3 3.05
0

2

4

6

8

10

12

f (GHz)
|t V

|  
∙1

0 
-3

  f0 = 3 GHz
εeff = 6
 R = RL = 100 kΩ

 

D1 < D2
D1 > D2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

f (GHz)

ar
g(

t V
)  

(r
ad

)

2.95 3 3.05

Figure B.3.: Large load resistance approximation of the transmission spectrum of a
lossless stub tuner for a load of R = 100 kΩ. The circuit is matched to
100 kΩ at 3 GHz. The blue (green) curve correspond to the solutions
with the stub tuner length D1 longer (shorter) than D2, respectively. (a)
Amplitude and (b) phase.

This allows to expand the exponentials as follows:

ei·βD1 ≈ i

ei·2βD1 ≈ −1 ·

1 + i · π∆f
f0
± i · 2

√
Z0
R
− 1

2 ·

π∆f
f0
± 2

√
Z0
R

2
 . (B.37)

By inserting Eqs. (B.35) and (B.37) into Eq. (B.34) and neglecting the highest order
terms, the transmission function simplifies to

tV (∆f) ≈ 2Z0
R
·

π
2 ·

∆f
f0
∓
√

Z0
R

±4Z0
R + i · 2π∆f

f0

. (B.38)

Note that still, the upper (lower) signs are valid in the case D1 < D2 (D1 > D2),
respectively. As illustrated in Fig. B.3 (a), the amplitude of the transmission spectrum
is slightly asymmetric and a sign change mirrors the amplitude with respect to f0.
Fig. B.3 (b) shows that the phase change gets reversed by a change of sign.
The amplitude squared value of the transmission function can immediately be de-

rived from Eq. (B.38) as being

|tV (∆f)|2 ≈ Z0
4R ·

1

1 +
(
π
2 ·

R
Z0
· ∆f
f0

)2 , (B.39)

without the highest order terms in the numerator.
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C Fabrication Recipes

To complete the fabrication chapter 4, the interested reader finds here detailed, step-
by-step descriptions of the fabrication recipies developed and used during the PhD.
As mentioned at the end of section 4.2.2, two different fabrication orders are applied:
either CNTs are stamped and contacted first and the stub tuner is added afterwards,
or the stub tuner is prepared first and the last step is to stamp and contact CNTs.

CNT stamping
Substrate • Si with 170 nm thermal oxide on top
Patterning • E-beam lithography with PMMA/HSQ bilayer
pillars - Spin coat PMMA (thickness 1 µm)

- Bake at 180 ◦C for 10 min.
- Spin coat HSQ (6000 rpm, 60 s)
- Bake at 90 ◦C for 5 min.
- HSQ is a negative e-beam resist
- Acceleration voltage 20 kV, aperture 120 µm
- Area dose 200 µC/cm2

• Developing
- 25 s in TMAH (25 % solution)
- Stop in water and then IPA, blow-dry with N2

PMMA removal • Plasma etching in Oxford reactive ion etching machine (RIE)
- Parameters: O2 16 sccm, 250 mTorr, 100 W, time 10 min.

SiO2 etching • Wet-etching with buffered HF (5 %)
- Time 7 min., etch rate ∼ 35 nm/min, (also removes HSQ)

Si etching • Plasma etching in Oxford RIE
- Parameters: SF6 13 sccm, O2 5 sccm, 75 mTorr, 100 W
- Time 5 min., resulting pillar height ∼ 4 µm

Wafer cleaving • Cleave wafer to have one pillar area per piece
• Sonicate thoroughly to remove any particles on the surface

Catalyst solution • Recipe from Jörg Furrer [40]
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- 30 mg of Al2O2, 93 mg of Fe(NO3)3−9H2O and 27 mg of
MoO2Cl2, dissolved in 60 ml IPA

- High-power sonication in cell disrupter, at least 1 h
sonication time

- Spin coat one drop of catalyst on the stamps with 4000 rpm
for 30 s and repeat this 5 times to get a high CNT density

CVD growth • Heat furnace to 950 ◦C under Ar flow (1500 sccm) and
H2 flow (500 sccm)
• Growth: replace Ar by CH4 (1000 sccm) for 10 min.
• Cooldown under Ar and H2 flow again until T < 320◦C

CNT stamping • Mount target substrate in mask aligner (Süss MicroTec)
• Glue stamp substrate on a glass plate with a drop of PMMA
• Align the two substrates with the optical microscope to be
on top of each other
• Press them together until "WEC"=Ok, then move the stage
5 additional turns up

Bottom Gates Covered with Silicon Nitride
Substrate • Undoped Si (ρ > 5000 Ωcm) with 170 nm of thermal oxide

on top
Patterning gates • E-beam lithography with PMMA (thickness 300 nm)

- Acceleration voltage 20 kV
- Aperture 10 µm/120 µm for small/big markers

- Area dose 240 µC/cm2, line dose 1200 pC/cm2

• Developing
- 60 s in MIBK/IPA (1:3), stop in IPA, blow-dry with N2

Evaporation • In Sharon e-beam evaporator
• 5 nm Ti and 30 nm Au

Lift-off • In aceton (can be heated up to 50 ◦C to speed up)
• Sonicate in aceton and IPA for cleaning

Si3N4 deposition • Plasma enhanced CVD (PECVD), done at PSI,
thickness 50 nm

Si3N4 etching • E-beam lithography with PMMA (thickness 500 nm)
- Acceleration voltage 20 kV
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- Area dose 200 µC/cm2, aperture 10 µm
• Developing
- 60 s in MIBK/IPA (1:3), stop in IPA, blow-dry with N2

• Plasma etching in Oxford RIE
- Parameters: CHF3 25 sccm, O2 4 sccm, 50 mTorr, 50 W
- Time 2 min. 30 s, Si3N4 etch rate ∼ 30 nm/min

Stub tuners and resonators
Covering • E-beam lithography with PMMA/HSQ bilayer
CNT area - Spin coat PMMA (thickness 600 nm)

- Bake at 180 ◦C for 10 min.
- Spin coat HSQ (6000 rpm, 60 s)
- Bake at 90 ◦C for 5 min.
- HSQ is a negative e-beam resist
- Acceleration voltage 20 kV, aperture 120 µm
- Area dose 200 µC/cm2

• Developing
- 25 s in TMAH (25 % solution)
- Stop in water and then IPA, blow-dry with N2

• Remove PMMA in the RIE with an O2 plasma
- Parameters: O2 16 sccm, 250 mTorr, 100 W, 9 min.

Nb sputtering • AJA magnetron sputtering machine
- Parameters: Ar 40 sccm, 4 mTorr, 160 W
- Stage rotation on in case the sample is large
- Thickness 100− 150 nm

Stub tuners and resonators are either patterned by e-beam or UV lithography
E-beam • Resist PMMA, thickness 600 nm
lithography - Acceleration voltage 20 kV, aperture 60 µm

- Area dose 130 µC/cm2

• Developing
- 60 s in MIBK/IPA (1:3), stop in IPA, blow-dry with N2

UV lithography • Resist AZ 1512 HS
- Spin coating with 6000 rpm for 45 s
- Baking at 100 ◦C for 60 s
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• UV exposure in mask aligner (Süss MicroTec)
- Wavelength 365 nm (channel 1), time 1.2 s

- Power 260 W, intensity 32 mW/cm2

• Developing
- 17 s in MIF 726, stop in water for 30 s, blow-dry

Nb etching • Plasma etching in inductively coupled plasma (ICP) machine
- Parameters: Ar 25 sccm, Cl2 40 sccm, 1 Pa, ICP power
100 W, RF power 125 W

- Time 50 s, Nb etch rate ∼ 4 nm/s
The contact line from the stub tuner to the device is either done before or after
Nb sputtering. If done before with Pd or Au, there is an ohmic contact right away.
If the stub tuner has to be contacted afterwards, a plasma etching is required to
remove some oxide on the Nb surface, as described below:
Contacts on Nb • E-beam lithography with PMMA (thickness 500 nm)

• Oxide etching and metal deposition in the e-beam evaporator
(Sharon)
- Ar plasma etching for 30 s, recipe number 2
- Pd deposition: 50 (80) nm are enough to contact
100 (150) nm-heigh Nb

Contacting CNTs (and at the same time also the bottom gates)
Patterning • E-beam lithography with ZEP 520A, diluted with anisole

to achieve a thickness of 300 nm
- Spin coating: speed 4000 rpm, time 40 s
- Baking at 180 ◦C for 3 min.
• E-beam writing with 10 µm aperture
- For large trapezoidal undercut (important for lift-off of
thermally or e-beam evaporated materials, in our case
Pd, Ti, Au and Pb):

Acceleration voltage 10 kV, area dose 34 µC/cm2

- For vertical resist profile (important for sputtered materials,
in our case Ti and Nb):

Acceleration voltage 20 kV, area dose 68 µC/cm2
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• Developing
- 60 s in pentylacetate and 10 s in MIBK/IPA (9:1)
- Stop in IPA (for 20 s), blow-dry with N2

In the following, there are explanations for the different metals and layered metal
systems we used to contact CNTs:
Palladium • Thermal evaporation in the BesTec machine

- Chamber cooled to -180 ◦C, sample head cooled to -30 ◦C
- Source at 1510 ◦C
- Evaporation rate ∼ 0.1 Å/s, thickness ∼ 40 nm

Titanium/gold • E-beam evaporation in the Sharon machine

- First 10 nm of Ti, rate 0.5− 1 Å/s

- Then Au with a rate ∼ 1 Å/s, thickness 30− 60 nm
Titanium/ • Sputtering in the AJA machine
niobium - Parameters for Ti: Ar 35 sccm, 5 mTorr, 20 W,

time 18 min. → 4.3 nm
- Parameters for Nb: Ar 40 sccm, 4 mTorr, 160 W,
→ thickness ∼ 60 nm

Palladium/lead/ • E-beam evaporation in the Balzers machine

indium - Pd: at a head temperature < −40◦C, rate 0.3 Å/s,
thickness 4.5 nm

- Pb: at a head temperature < −90◦C, high rate 1.5−1.8 Å/s,
thickness 110 nm

- In: at a head temperature < −90◦C, rate 0.6− 0.8 Å/s,
thickness 20 nm

Lift-off • The same procedure applies for all materials apart from Pb,
for which everything has to be done at room temperature
and accordingly for a longer time, owing to the low melting
point of lead and indium.
- 15 min. in NMP at 70 ◦C
- Blow surface with a syringe to remove metal residues
- 30 min. in acetone at 50 ◦C (to remove NMP)
- Rinse with IPA and blow-dry with N2
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D List of Setup Components

As a supplementary to chapter 5, the following table lists all components of the
cryogenic measurement setup and the used instruments in a rather random order.
An illustrative sketch is given in Fig. 5.2, showing where the different components are
placed.

Brand and part number Specifications
Cryostat Oxford Triton 200 cryo- Base temperature 20 mK

free dilution refrigerator
Magnet Oxford 3D vector magnet Maximum field strength in

- x-direction: 1 T
- y-direction: 1 T
- z-direction: 6 T

Directional coupler Fairview microwave Frequency range 1− 4 GHz
MC 2104-20

Bias tee Mini-Circuits Original frequency range
ZFBT-6GW+ 0.1− 6 GHz, capacitance

lowered to 22 pF
Circulator QuinStar CTD0304KC Frequency range

2.75− 3.25 GHz
Low-pass filter on the Mini-Circuits VLFX-80 Pass-band DC - 80 MHz
DC side of the bias tee
Low-temperature Low Noise Factory Frequency range 1−
amplifier LNF-LNC1_12A 12 GHz, gain ∼ 35 dB
First room- Miteq Frequency range 1−
temperature amplifier AMF-3F-01000400-08-10P 4 GHz, gain ∼ 35 dB
Second room- Miteq NSP1000-NVG Frequency range 0.1−
temperature amplifier 10 GHz, gain ∼ 35 dB
Pi-filters in Tusonix 4201-001LF Pass-band DC - 10 MHz
break-out box
DC wires Constantan loom 24× 2 wires (twisted pairs)
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D. List of Setup Components

Coaxial cable UT85 Centre and outer conductors
down to MC plate stainless steel, operating

frequency < 18 GHz
Coaxial cable from UT85 Centre and outer conductors
MC plate to puck copper, operating

frequency < 18 GHz
Coaxial cable Huber+Suhner Operating frequency
inside puck EZ_47_TP_M17 < 100 GHz
Sample holder PCB Designed with Design- Substrate: Rogers RO4003C

Spark PCB, ordered metals: Cu 40− 43 µm,
from Probst Hightech Ni 3− 6 µm, Au 50-100 nm

PCB mount SMP Rosenberger Material brass (gold plated),
connectors 19K101-270L5 male
PCB mount DC Omnetics A42046-001 25 pins, male
connectors (MNPO-25-DD-C-
(Nano-connector) ETH-M)

Measurement instruments
Vector network R&S ZNB8 Frequency range
analyser 0.1− 8.5 GHz
Signal and R&S FSW8 Frequency range
spectrum analyser 2 Hz− 8 GHz
Digital multimeter Agilent 34410A For DC measurements

I/V-converter SP 938 Feedback resistance 107 or

108 Ω, home-made by the
electronics workshop

Voltage DAC SP 927 8 channel voltage source,
home-made by the
electronics workshop
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