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Introduction

Isaac Newton believed that light consists of what he called corpuscles. These small
and heavy particles are emitted ballistically from shining objects and thereby explain
straight light trajectories and reflections. His opponent was the dutch physicist Chris-
tiaan Huygens, who stated that light is best described as a wave that propagates in a
medium, the aether. This theory in turn described the phenomena of refraction and
diffraction in a better way. At first, Newton’s theory was more popular mainly due to
the excellent reputation of its author. Only the experiments of Young, who measured
interference patterns e. g. behind a double-slit structure, disproved Newton. The
pattern that Young observed was best described as a superposition of two circular
waves, that interfere positively or negatively. In the early twentieth century it was
found that the concepts of Newton and Huygens were both correct to some degree.
Light is a relativistic particle and a wave propagating in vacuum.

Apparently, the nature of light caused a long and intense debate which repeated
when the electron was discovered in the turn of the twentieth century by Wiechert
and Thomson as the particle that carries charge and, if mobile, transports electrical
current in a conductor. The wave nature of electrons was proven in interference ex-
periments as well in the 1930s by Davisson and Germer with free electrons in vacuum.
However, such experiments are way more challenging in a conductor. Since electrons
are massive and charged, they easily interact with their environment. Most promi-
nent are interactions with lattice vibrations (i. e., phonons), crystalline defects and
uncontrolled electrostatic potentials that typically originate from impurities in the
proximity of the conductor. To observe a wave-like behavior, the conductor needs to
be a defect-free material in a clean environment and measured at low temperatures,
where electron-phonon scattering is reduced. Under such conditions, the propaga-
tion of an electronic wavefunction is described by the time-dependent Schrodinger
equation. The mathematical similarity to Maxwell’s wave-equation leads to a vast
amount of phenomena that can be analogously observed in quantum-mechanical and
in optical systems.

These phenomena are joined in the field of electron optics [1], which has evolved
in three waves. First, in 1927, Bush could focus free electrons in vacuum using a
magnetic lense [2]. This has triggered the development of complex electron-optical
systems of which the scanning electron microscope (SEM) [3] is the most famous. In
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a second wave [4], classical ballistic transport has been realized in metals [5, 6] and
later, quantum ballistic transport in high-mobility two-dimensional electron gases
(2DEG) [7-10], triggering the concept of mimicking optical systems in condensed
matter physics. And finally, with the advent of graphene [11], the idea of electron
optics got a new twist [12, 13].

The two experiments that triggered the field of condensed-matter electron optics
are the quantum point contact (QPC) and the magnetic focusing. Point contacts
were realized first in metals [5] and then in 2DEGs [7] where the conductance ex-
hibits plateaus separated by 2e?/h. Already the first explanations [4,14] stressed the
analogy to optics: The confinement potential acts as a multi-mode waveguide where
the transverse modes are quantized. The number of modes is tuned by the electron
density n in the channel, which is related to the wavelength A by n = 27/A\2. If A
is smaller than the width of the QPC, the transmission probability is one, otherwise
zero. In the optical analogue, monochromatic light of frequency v and polarized in
z-direction (E, = E, = B, = 0) is sent to a metallic screen that has a long slit along
z-direction. The wave equation for this problem is similar to the Schrédinger equation
of a 2DEG (with A — Ap) if the QPC has boundaries with infinite potential walls.
The same transmission probability is obtained in both systems for equal distribution
of the impinging energy (optical) or particle flux (QPC) [4].

There are two very distinct ways to realize a lense in a two-dimensional conductor.
On the one hand, having a QPC as a point source and another one as a detector,
the electronic wavefunction could be focused with a biconcave lens [15]. This lense
was formed electrostatically by gates that locally tune the wavelength and thereby
engineer the refraction properties. On the other hand, by applying a perpendicular
magnetic field, focusing is also possible. If electrons are injected at a QPC under
different angles and bent by the Lorentz force, the trajectories (called "skipping or-
bits") are reflected in a specular way from the walls which leads to the formation of
a cusp structure. Here, the walls, defined by depleted regions of the 2DEG, act as
mirrors whereas the magnetic field can be seen as a lens, with an optical aberration
causing the cusp structure [4]. A condition that needs to be met is that the walls or
the mirror are reflective in a specular and non-diffusive way. This was only achieved
in 2DEGs where A is typically much larger than the roughness of the boundary.

Another class of optical experiments deals with interference effects. Generally,
the wave nature of any physical entity is demonstrated by measuring an interference
pattern. We distinguish two types of interferometers: two-path and multi-pass in-
terferometers. Examples for the former are the Michelson and the Mach-Zehnder
types, which are both widely used in optical experiments. In 2DEGs, two-path inter-
ferometers have been realized in double slit experiments [16-19] or in an electronic
realization of the Mach-Zehnder interferometer [20]. The latter is operated in high
magnetic fields where QPCs act as semi-transparent mirrors or beam splitters and
Quantum Hall edge states as electron beams. In contrast, the Fabry-Pérot (FP) inter-
ferometer is of the multi-pass type. In optics, an FP interferometer is an element that
consists of a transparent glass plate with two partially reflective surfaces on opposite
sides. It can therefore be viewed as a cavity. Light within the cavity is bouncing back
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and forth between the mirrors, but at each reflection a fraction of light is coupled
out. The superposition of all outgoing waves gives rise to an intensity modulation
(the interference pattern) that depends on the wavelength of the light and the dis-
tance between the mirrors. In solid-state physics, a two-dimensional conducting sheet
between two electrodes can realize an electronic FP interferometer [21].

Such electron-optics experiments can be realized in graphene as well. There are,
however, two very special aspects about this two-dimensional crystal regarding its
suitability for electron optics. First, its low-energy electronic excitations are described
by massless Dirac fermions that have a linear dispersion relation similar to photons
[11,22]. The velocity vp of the charge carriers in this material is very high and
constant, i.e. vp = ¢/300, where c is the speed of light. Second, it is possible to form
gapless p-n interfaces in graphene. These interfaces are formed by combining regions
of electron (n) and hole (p) doping. The transmission probability depends only on
the angle of incidence and can be tuned from zero to one, making it an attractive
and novel tool for electron-optics. Taking advantage of this “optics-like” electron
dynamics, generic optical elements like lenses, beam splitters and wave guides have
been proposed for electrons in engineered ballistic graphene [12,13]. These proposals
require ballistic transport which has become achievable in graphene recently.

This thesis is centered on the experimental observation of electron-optics phenom-
ena in graphene. In Chapter 2, graphene is introduced and the ability to form p-n
junctions, with particular regard to electron optics experiments, is discussed.

Since ballistic transport is crucial for this subject, the question “when is graphene
clean?” is posed in Chapter 3, where different characterization methods are com-
pared and linked to devices of this thesis. The experimental part begins with a
description of the fabrication methods in Chapter 4, which is ‘spiced’ with infor-
mation about complex device structures, superconducting contacts and the use of
CVD-grown graphene.

Chapter 5 describes an interference experiment over a distance of 2 ym, where
we used p-n junctions to tune and manipulate ballistic Fabry-Pérot resonances. The
peculiar angular dependence of the transmission allows to filter out large propagation
angles. Thus, the p-n interface can be used to form coherent planar waves, i.e. it acts
in this case similar to an optical polarization filter. This filtering effect is crucial for
the high visibility of Fabry-Pérot resonances we achieved in p-n and p-n-p devices.

A perpendicular magnetic can be viewed as a lense which bends and focuses elec-
trons. Along a p-n interface, this leads to trajectories that curve back and forth.
Such trajectories are called snake states and they give rise to magneto-conductance
oscillations. In terms of optics, these oscillations occur since the focal point of the
magnetic lense can be either on the left- or on the right side of the p-n cavity. We
demonstrate the observation of snake states in Chapter 6.

Furthermore, the p-n interface can be viewed as a mirror that is reflective or semi-
transparent, depending on the angle of incidence. By using such mirrors it is possible
to create channels for electrons that are described in a similar way to optical waveg-
uides. However, the refraction can be tuned dynamically and p-n interfaces can be
exploited to create additional confinement. We use this to guide electrons in an elec-



1. Introduction

trostatic channel in Chapter 7 where we observe signatures of quasi 1-dimensional
transport. The thesis is complemented in Chapter 8 with unpublished results on
a device that allows to explore the properties of a tilted p-n interface that acts as a
beam-splitter.



Optics with electrons
in Graphene

In this chapter, the basic working principles of graphene-based electron-optic elements
will be explained. After some introductory words on graphene, effects of interfaces
having different charge carrier densities are discussed. For this purpose, the negative
index of refraction at an electron-hole (p-n) interface and the phenomena of Klein-
tunneling and Klein collimation are introduced. Afterwards it is explained how p-
n cavities lead to complex Fabry-Pérot patterns. Furthermore, the tight-binding
simulation techniques used throughout this work by our collaborators from theory
are discussed. This theory chapter follows partly References [23,24].

2.1. Properties of graphene

2.1.1. The bandstructure of graphene

The graphene honeycomb lattice has two atoms in the unit cell which form the two
sublattices A and B. The unit cell is sketched in Figure 2.1a and it is spanned by the
two lattice vectors a3 and ag. Transport is described in a tight-binding formalism,
where electrons hop from one lattice site to another. Next-nearest neighbor hopping
will lead to a correction of the band structure at high energies and is often neglected.
The nearest-neighbor vectors are:

() e () () e

Here, a = 1.42 A is the inter-atom distance. The tight-binding Hamiltonion, which
describes hopping from one to another atom with the creation or annihilation opera-
tors 1(R) and o (R), is:

H=—%Y ¢'(R){$(R+d1) + (R +dz) + (R +ds)} + h.c, (2:2)
R
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Figure 2.1.: a, In graphene, carbon atoms are arranged in a honey-comb lattice.
The unit cell (red) contains two atoms. b, Band-structure of graphene,
adapted from [25]. ¢, At low energies and in the vicinity of the K, K’
points, charge carriers are described by the linear dispersion E = hvpk.

where the on-site energy is set to zero. The operators can be written in momentum
space. For example, the operator that annihilates an electron on sublattice B with
momentum k is:

1 ikR
CBk = e"“P(R 4+ d3), (2.3)
N
where N is the number of lattice points. The Hamiltonian then simplifies to

H = —70271{02 kCBk + h.c. with 7 =1+ elkar | oikaz (2.4)
k

It is now very convenient to write the sublattice index as a vector, i.e. cqx = (1,0)
and cgx = (0,1). The Hamiltonian takes the form

H= —702< 0k ) (2.5)
k

% O

with the eigenvalues
E = £70||. (2.6)

This function is plotted in Figure 2.1b. Graphene has two bands which touch at six
points in the Brillouin zone, the so called Dirac points. Therefore, graphene is called
a zero-bandgap semiconductor. In undoped graphene, the Fermi level is at the Dirac
point and can be shifted by changing the on-site energy (i.e. the diagonal terms in
Equation 2.6). Only two of the six touching points are not equivalent and they are
referred to as the K and K’ valley.

In graphene, charge carriers with small quasi-momentum £k, i. e. in the vicinity
of the K and K’ points, have a linear energy dispersion (see Figure 2.1c¢). In the
conduction and valence band, the energy F(k) as a function of wavevector k is given
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by E.(k) = hvpk and E, (k) = —hvpk, respectively, where k = |k| and vp is the Fermi
velocity; see Figure 2.1c. As a consequence, their velocity vp = 3vypa/(2kh) = ¢/300
(first derivative of E(k)) is constant.

The low-energy Hamiltonian describing the linear dispersion relation is obtained
by linearizing Equation 2.6 around the K and K’- points:

N 0 thy —iky \ | to,
H =~ hvp ( ey + ik, 0 ) = hwrpok with o = ( . ) . (2.7)

The +-sign accounts for the K and K’ point respectively. Since they are at the
opposite corner of the Brillouin zone, the sign of k. is positive or negative respectively.
The Hamiltonian in real space, with a chemical potential £, reads:

H=1E, + hwpoV, (2.8)

which is a Dirac equation.

The linear dispersion relation yields an electron density n given by n = sgn(E)k? /.
Compared to other two-dimensional electron-gases with parabolic dispersion relation
(such as GaAs), the density of states D(E) depends on the energy, i.e.

2F

DB = Tz

(2.9)

where spin and valley degeneracy are included. Note that D(F) vanishes at the Dirac
point.

2.1.2. Pseudospin and Berry-phase

Since the unit cell of the graphene crystal contains two atoms, the charge carriers
have an additional degree of freedom, called pseudospin. It describes the orbital
wavefunction of the two sublattices and is described as a spin 1/2 at low energies
where the dispersion relation is linear.

Equation 2.7 can be rewritten using k, + ik, = kpe?® with 6 = arctan(k,/k;) the

angle of propagation:
_ 0 +kpeTi?
H = ( ikpeiie 0 ) (210)

which has the normalized eigenvectors |k4) in the conduction and |[k—) in the valence

band: o2 02
1 et? 1 et?
|k+) = 2 ( | oEi0)2 ) k=)= 2 < _tit)2 ) ) (2.11)

where the +-sign accounts for the solution around the K or K’ valley again. In a
more compact way, the eigenvector |s) with the parameter s = 1 for electrons and
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bonding

Figure 2.2.: Dirac cones in the valence (blue) and the conduction band (red) at low
energies with the propagation direction (black) at different energies in
the K and K’ valley and the corresponding pseudospin vector s, point-
ing parallel to k for the bonding and anti-parallel for the anti-bonding
orbitals.

s = —1 for holes reads:
1 e:Fz'H/Z
|s) = 72\ setio)2 | (2.12)
The vector in Equation 2.12 is in the pseudospin space. Similar to a real spin, it can

be viewed as the result of a spin-1/2 rotation operator R(f) acting on the initial state
|so) which points along the y-direction:

oFib/
|s) = R(0)]so) = ( :Fo 2 ei?m ) ( Zg ) (2.13)

If |k) is rotated by 27, R(27) = €™ which means that a phase of 7 is added to the
wavefunction. In other words: If the origin in k-space (here K) is encircled, a phase
of 7 is picked up by the charge carrier. This phase is called the Berry phase.

The pseudospin points in propagation direction in the K-valley. This can be as-
certained by considering that the helicity operator, which projects the spin onto the
direction of momentum, is defined as:

h= Lok
= 5ok (2.14)
which is proportional to H (Equation 2.7) such that the eigenvectors are also eigen-
states of h. For s=1 the pseudospin is parallel and for s=-1 anti-parallel to k and
one speaks of right-handed Dirac fermions and left-handed Dirac anti-fermions re-
spectively. At the other edge of the Brillouin-zone (i.e. at the K’ point), the helicity
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is inverted. Figure 2.2 summarizes this.

As a consequence, backscattering, i.e. the process which flips k — —k, is suppressed
within the same valley. Consider the electron, marked with a black dot in Figure 2.2.
A backscattering process within the same valley would invert the helicity, which is
not allowed since helicity is a conserved quantity at low energies. Backscattering with
conserved helicity would involve an electron of the opposite valley and would require
a large momentum therefore. Such backscattering is only possible if the potential in
real space changes abruptly at the atomic level, e.g. at the edge of a graphene flake,
at atomic defects or at very small wrinkles.

2.1.3. Half-integer quantum Hall effect

The Hall effect [26] is observed in a geometry where the current I, flows along the
x axis and a perpendicular magnetic field B, is applied. Due to the Lorentz force,
charge carriers are deflected in y direction which causes a voltage drop V} between
upper and lower boundary of the sample. The measured resistivity, calculated from

the equation of motion in steady state mo = —ev x B — eE —m/Ttv =0, is:
1 WeT
o= 0 ( e ) , (2.15)

with e. g. pzy = Vy /Iy, m the effective mass of the charge carrier, 7 the inelastic
scattering time in the Drude model and pg = ne?7/m the resistivity at B, = 0. Since
the cyclotron frequency is w. = eB/m, ps, is constant with increasing B,, whereas
Py increases linearly.

In a high-mobility 2-dimensional electron gas (2DEG) at low temperatures, pg.
drops to zero, whereas p,, = h/(e’v) with v = 1,2,3,... becomes quantized [27].
This is the case if B, is large enough for electrons to complete orbits within the mean
free path. The energy levels En = hwc(N +1/2) are called Landau levels (LL), where
N is an integer. The filling factor v , responsible for the conductance plateaus, is
given by the density n of charge carriers per flux quantum: v = n/(eB/h).

In graphene, solving the Dirac equation in a perpendicular magnetic field yields
the LL energies:

Eyn = tvpV2ehB - N. (2.16)

Due to the square-root dependence on B, there is a large spacing between the first
two LLs which leads to the observation of the QHE at room temperature [28]. The
Hall conductivity takes the form

4e?

Oay = —— (N +1/2). (2.17)

The factor of 4 in this formula is due to spin and valley degeneracy, whereas the shift
of 1/2 is due to the Berry phase picked up by closed orbits.
The quantum Hall effect is usually measured in a six-terminal device, a so-called
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Hall-bar. For this thesis, we measured only two-terminal Hall conductances. This
leads to a mixing of the 0., and 0,, components, but the plateaus can be still easily
identified if the aspect ratio of the device W/L ~ 1 [29,30].

2.2. Graphene p-n junctions

Graphene p-n junctions are described by two regions with different potential V', one
with negative energy compared to the charge-neutrality point, and one with positive
energy. Such p-n junctions can be formed artificially by electrostatic gating, but they
are also present at low densities where electron-hole puddles dominate the transport
properties [31]. For electron optics, two properties of such junctions are important:
The negative refraction and the angular dependence of transmission. Therefore, we
first introduce Snell’s law in unipolar (n-n or p-p) and bipolar (p-n or n-p) graphene
and then describe Klein tunneling. The transmission properties are altered in the case
of smooth p-n interfaces which are important regarding the experimental setup. After
describing the conductivity of a p-n junction we explain how Fabry-Pérot resonances
in p-n cavities can be observed in transport experiments.

2.2.1. Snell’s law in Graphene

In graphene, the local Fermi energy takes the role of the refractive index. This simply
follows from the condition that the parallel momentum k£, at an interface has to be
conserved. The refraction at the interface is described by Snell’s law in graphene:

E, -sin(6)) = E; - sin(6;) (2.18)

This is illustrated in Figure 2.3 for a unipolar n-n’ and a bipolar n-p interface. In
Figure 2.3a, the Fermi-energy on the left (1) side is larger than on the right (r) side,
leading to a larger k-circle at the Fermi energy. Since the k, component has to be
conserved, this situation will lead to a refraction towards the interface. The angle for
total internal reflection is simply given by 6, = arcsin(E)/E;) = arcsin(k;/k;), and is
obtained for ky; > |k, |.

The situation for a p-n interface as sketched in Figure 2.3b is more interesting.
Again, k, needs to be conserved and therefore the angle of the back-reflected trajec-
tory 0] = 6;. Since the transmitted electron needs to have a positive group velocity

v in the x direction and since v is anti-parallel to k, it follows that k;,; = —k; . for a
symmetric p-n junction (i. e. |nj| = [p;|). In summary:
kyi=kyr = k;’l and ky) = —ky, = —k:;J (2.19)

From Equation 2.18, the index of refraction, defined as sin(6;)/sin(6), is negative in
a graphene p-n junction. This allows to focus charge carriers from an injector to a
detector point by using a straight interface as shown in Figure 2.3c. This Veselago

10
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Figure 2.3.: a, Ilustration of Snell’s law in graphene for a unipolar n-n’ junction.
An electron with angle of incidence 6, will be transmitted under angle
6, due to conservation of parallel momentum ky. b, At a p-n interface,
the incident electron can be reflected under angle 6] or transmitted un-
der angle #,. Again, the parallel momentum and the energy need to be
conserved. ¢, Due to the negative index of refraction at a p-n interface,
electrons can be focused from one point to another with a straight lense,
the Veselago lense. d, The focal point becomes blurry for asymmetric
doping, here |n| < |p|.

lense was described first by Cheianov et. al. for graphene [12]. For an antisymmetric
junction with |nj| < |py|, the focal point becomes blurry and a caustic pattern forms
as sketched in Figure 2.3d. Apparently, the Veselago lense requires rather sharp p-n
interfaces such that trajectories with large angles are transmitted as well and can be
focused. Otherwise, the transport between injector and detector will be dominated
by the 6 = 0 trajectories which are always transmitted.

2.2.2. Klein tunneling and Klein collimation

The Klein paradox was discovered by Oskar Klein who calculated the transmission ¢
at a barrier V (z) for relativistic particles in 1929 [32]. He found that ¢ does not decay
with distance, contradicting non-relativistic quantum mechanics where the transmis-
sion at a potential barrier of height V' is exponentially decaying i.e. |t|?> ~ e™**. The
reason for Klein’s paradoxical finding is that the transmitted particles propagate as
anti-particles as it was discovered later [33]. In addition, the result [t|? ~ 1 obtained
by Klein is valid only for a sharp potential step as it has been clarified by Sauter [34].
He found an exponentially decaying transmission, if the potential V' (z) is gradually
changing over a distance d larger than the Compton wavelength A. = h/mec.

11
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s e V(0% 75 75
A
t1 0.5 0

Figure 2.4.: a, A p-n-p junction is formed by a potential profile V(x) which is pos-
itive (+V/2) on one side and negative (-V/2) on the other side of the
interface with respect to the charge neutrality point. The pseudospin
sp is conserved if the charge carrier is transmitted, but would need to
be flipped in the case of reflection. b-c, Transmission ¢ as a function of
incidence angle 6 at a single p-n interface. The Klein-tunneling case is
t(0) =1.

In graphene it is possible to form regions of electron (n) and hole doping (p) by
using electrostatic gates [35]. Due to the gapless dispersion relation, the interface
between these regions is not insulating making it possible to observe the Klein paradox
in graphene. The Klein paradox is experimentally realized in a p-n-p junction, as
shown in Figure 2.4a, where the transmission would exponentially decay in the middle
region for non-relativistic carriers. If an electron with momentum k = k, crosses the
interface, backscattering (k, — —k;) is forbidden as explained before. On the other
hand, due to the symmetry of the potential, the parallel momentum k, is conserved.
It follows that the transmission ¢ for perpendicular incidence, § = 0, is [306]

t(6 =0)> = 1. (2.20)

This is known as Klein tunneling. During the process, the pseudospin sy is con-
served, since it is parallel to k in the conduction- and anti-parallel in the valence
band, as depicted in Figure 2.4a. An indirect experimental proof of Klein tunneling
has been given by Young et. al. [37] by studying the transmission of a phase-coherent
p-n-p interface in a magnetic field. The authors applied a weak B field such that
the origin in k-space was encircled and the Berry phase was picked up. By studying
the Fabry-Pérot interference (Chapter 2.2.5), they observed a phase shift of 7 at a
critical field and could conclude that the transmission at the p-n interface was largest
for small angles.

Now we consider the angular transmission at a single p-n interface in the case of a
symmetric and sharp potential. For oblique incidence, ¢ decreases and backscattering
becomes possible. The angle dependence of the transmission, obtained by matching
the real-space wavefunctions right and left of the p-n interface, is given by [38]:

1t(0)] = cos®(0). (2.21)

For electrons impinging on the interface at 45°, transmission and reflection probability
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2. Optics with electrons in Graphene

are both 50%, as shown in Figure 2.4b-c for a single p-n interface.

2.2.3. Smooth versus sharp p-n interface

b t(©) (o

Iy

-1/2

/2

0
0

Figure 2.5.: a, Potential profile of an ideal smooth p-n interface. Within a length of d,
the potential is gradually changing from n to p. b, Due to the additional
electric field, trajectories reaching the p-n interface under an angle € bend
away from the interface. They come closest to the interface at a distance
. Therefore, their transmission probability depends exponentially on
the injection angle. ¢, Transmission probability ¢(6,kpd/7) of an ideal
smooth p-n interface.

In reality, the experimentally available p-n interfaces are not sharp, but change
gradually from p- to n on a lengthscale d. If d is the length over which the carrier
density varies and kp the Fermi wavevector far away from the interface, the junction
is assumed to be smooth if kpd > 1 and sharp in the opposite limit. The simplest
case of such a profile reads:

-V/2  x<0
Vix) = Fr 0<z<d (2.22)
V/2 x>d

where £V/2 is the Fermi energy in the left (right) bulk and F' = V/d = hkg/d the
electric field created by the gradually changing potential. The potential is sketched
in Figure 2.5a. We now yield an exponentially decaying transmission for 8 > 0:

[£(6)] = e~ mhedsin®0 (2.23)

This function is shown in Figure 2.5b, where the transmission |¢| as a function of 6
and the dimensionless parameter kpd/m is plotted. Here, kp refers to the bulk part.
We find e. g. that 50% transmission for A = 100 nm is achieved for 6 ~ 7°.

The exponential dependence of ¢ on the angle of incidence can be understood by
taking into account that trajectories entering the smooth region obliquely, gradually
turn away from the interface due to the additional electric field F'. This is sketched
in Figure 2.5¢ where the electron trajectory with incidence angle 6 comes closest
to the interface at the turning point I = vpp,/F [38]. Now it has an exponential
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2. Optics with electrons in Graphene

tunneling probability to reach the other side. The exponential dependence on the
angle is similar to the exponential dependence that Sauter [34] has found for massive
relativistic particles. His solution is similar to Equation 2.23 for vp — ¢, Ap — A¢
and sin(0) — m, where m is the mass of the (free) particle. In graphene it is therefore
possible to study the Klein (¢t = 1) and Sauter situation by looking at different angles
of incidence 6.

a 1

> 05

0 30 60 20 0 625
0(°) X (nm)

Figure 2.6.: Angle-resolved transmission function (blue curves) ¢(6) across a realistic
p-n junction at carrier densities (nin, now) = (10, —10) x 101%cm=2 in
a and (N, Nout) = (2, —10) x 101%em~2 in ¢, taking into account the
smooth junction profiles V(z) obtained from electrostatic calculations
of a suspended graphene device and sketched (blue curves) in b and d,
respectively. Gray curves in a and c are ¢(f) when the smooth V (z)’s are
replaced with ideally abrupt profiles as sketched (gray steps) in b and d,

where Viy/out = —8€0(Nin jout)PVF /T Min fout| i the band offset applied
on the incoming/outgoing lead (x < Onm and x > 625 nm).

The potential profile for a realistic smooth p-n interface is defined by electrostatic
gating. This causes a non-linear potential profile, unlike the one given in Equation
2.22. The angle-dependent transmission probability will differ from Equation 2.23
for such a profile. In addition, Equation 2.23 is only valid for a symmetric potential.
We therefore model the transmission probability of a realistic p-n junction created
by electrostatic gates (similar to the device shown in Chapter 7) using tight-binding
theory as described in Section 2.3. The realistic potential V(z) is obtained from
electrostatic simulations which are provided throughout this thesis by our collaborator
Ming-Hao Liu from the University of Regensburg.

The results are plotted in Figure 2.6, where the red curves correspond to a smooth
potential step and the gray ones to a sharp one, which was calculated to check con-
sistency with Equation 2.21. The ¢() curves shown in Figures 2.6a and 2.6¢ ac-
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2. Optics with electrons in Graphene

count for symmetric and asymmetric p-n junctions, respectively, and are obtained
in the same way as Reference 39. In the symmetric case of Figure 2.6a,b with
Nin = —Nout = 10 em™2, the transmission curve for the abrupt case corresponds
to the well-known expression [38], ¢(f) = cos?(#), which drops to one half at +45°,
while for the smooth case of our device ¢ drops to one half at about £14°. In the asym-
metric case of Figure 2.6¢,d with |nin| < |nout|, the peak of ¢(6) is slightly broadened
since the wavelength in the left cavity is larger.

Due to the strong suppression of large angles, smooth p-n interfaces act as rather
efficient angular-filters or collimators. These collimators can be used to create planar
waves in graphene, but they also enhance the visibility of Fabry-Pérot oscillations
and make guiding of electrons in a waveguide possible, as it will be discussed later.

2.2.4. Conductivity of a pn-junction

c (e?/h)
N
T

0
k.d

Figure 2.7.: a, Conductivity per unit width of an ideal, smooth p-n interface. b,
Proposal for an efficient field-effect transistor using p-n interfaces [40].

The transmission of a sharp and smooth p-n junction has been given in Equations
2.21 and 2.23. The conductance per unit width is found by averaging the transmission

over the angles:
4e? [T df 4e? kp
- = Zk 9)?2 = = 2.24
Gon = | g hecos(0)” =S5 (2.24)
In contrast, the transmission at the smooth interface exponentially depends on k.
The conductance per unit width ¢ is then [38]:

4e? [T dO oo 2e2 [k
Y= — ke —7kpd-sin(0) ~ 22 M 2.95
I =7 ) on FC h \ d (2.25)

This is valid for a wide junction where scattering at the edge of graphene can be
neglected. In Figure 2.7a, the conductivity is plotted as a function of the dimensionless
parameter kpd. In a real device, o does not drop to zero for kpd — 0. For electrons
reaching the p-n interface under zero incidence angle (¢(0) = 1), transport through
evanescent modes between the contacting electrodes is possible. This is explained in
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2. Optics with electrons in Graphene

more detail in Chapter 3.2.1. A possibility to lower the conductivity minimum of
such a realistic device using p-n interfaces has been discussed in Reference [40]. It
was proposed to create a series of tilted p-n-p junctions, as shown in Figure 2.7b.
The first p-n interface transmits, especially if it is smooth, only trajectories close to
zero incidence. These trajectories will be reflected by the second, tilted n-p interface.
Such a design could be used as an efficient graphene field-effect transistor.

2.2.5. Fabry-Pérot cavity

e ——— b

/2 -1/2 /2

Figure 2.8.: a, Sketch of an idealized graphene-based Fabry-Pérot resonator. b, In-
tensity plot of the transmission T-cos(#) as a function of the dimensionless
parameter kpL/m and angle of incidence 6 for a finesse F' = 10 and c,
F =1. d, Normalized conductance G/(G) — 1 through an ideal graphene
cavity as a function of kpL/7 for F' =1 in purple and F' = 10 in blue.

An optical Fabry-Pérot resonator consists of two partially reflective mirrors that
form a cavity. The electromagnetic waves interfere constructively or destructively
inside the cavity, depending on their wavelength A\ = 27 /kp and the cavity size L.
By changing one of the two parameters, the intensity of the light coupled out of the
cavity is modulating. In solid state physics, a corresponding electronic interference
pattern can be measured e.g. in a 2DEG with partially reflective contacts.

In a ballistic graphene cavity, as sketched in Figure 2.8a, the phase difference
between two successive outgoing rays is A¢ = 2kpL cos(f). Summing over all partial
outgoings waves, one obtains for the transmission probability:

1
7o) = 1+ Fsin?(A¢/2)’

(2.26)

where F' = 4|r1||ra|/|t1|*|t2|* with |r12| and [t12] the reflection and transmission
amplitudes at the two interfaces. F' is a measure of the quality factor and known
as finesse. The finesse of an FP interferometer determines the visibility of the in-
terference pattern, i. e. the difference in T between constructive and destructive
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interference relative to the mean transmission probability. The visibility is very close
to unity if F' > 1, and it is small and given by F' in the opposite limit. Equation 2.26
is plotted in Figure 2.8b which shows a 2D plot of T'(f) cosf as a function of 6 and
the dimensionless parameter kpL/m with finesse F' = 10, and F' = 1 in Figure 2.8c.
Since the electric measurement of the two-terminal conductance cannot distinguish
the direction of the waves within the cavity, one has to integrate over the angles to
deduce the expected conductance. The normalized dimensionless conductance

1 rm/2
GHG)—1= [ T cos(0)a8 1 (2.27)

is shown in Figure 2.8d as a function of the dimensionless parameter kL /7 for F' = 10
and F' = 1. (G) is the mean value or the background conductance of the plotted
range. For both cases, resonances appear equidistantly whenever kpL is a multiple
of m, indicating that the conductance peaks are mainly due to electrons at small
incidence angles. The low finesse cavity has a much higher background conductance
since t o are larger, but the visibility is lower. The visibility is defined as:

AG
—, (2.28)
(G)

with AG = Gnax — Gmin, the difference between oscillation peak and dip. For F =1
the visibility is roughly 20% but for F' = 10 it reaches close to 100% at low kp.
Therefore, the visibility measures the quality of the Fabry-Pérot etalon.

2.2.6. Fabry-Pérot cavity created by p-n interfaces

In the case of an FP cavity created by p-n interfaces, the reflection and transmission
amplitudes at the two interfaces are angle dependent. In the case of sharp p-n in-
terfaces (kpd < 1 with d the width of the interface), the transmission probability is
t|> = cos? @ (Equation 2.21). This leads to a finesse F' = 4(1 — cos?#)/cos* 6. Fig-
ure 2.9a shows a 2D plot of the transmission through such a FP cavity as a function
of 6 and the dimensionless parameter kpL /7. For a smooth interface kpd > 1, the
transmission probability is [t|? = e~ ™FF dsin®0 a5 given in Equation 2.23. Figure 2.9b
shows the same kind of plot as Figure 2.9a for a smooth interface with d = 300 nm.
The visibility is roughly 20% for the smooth interface and only 0.2% (for kpL/m < 4)
for the sharp one, as given in Figure 2.9c. In other words: The quality of the Fabry
Pérot interferometer can be drastically enhanced by using smooth p-n interfaces that
efficiently filter out large angles.

2.3. Theoretical modeling and simulation

In a real device, the local charge carrier density is tuned by control- or gate-electrodes.
To model an experimental setup, it is therefore required to link the spatial charge
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Figure 2.9.: a, 2D color plot of T'(kp L /7, 0) cos 6 for an FP cavity created between two
sharp p-n interfaces. b, Same as a for an FP cavity created between two
smooth interfaces with d = 0.5- L ¢, Normalized conductance G/(G) — 1
as a function of the dimensionless parameter kpL /7 for a sharp and a
smooth junction. While the conductance oscillates roughly 10% around
the mean value for the smooth junction, the oscillation amplitude is only
of order 0.1% for the sharp interface (for kpL/m > 4).

carrier density to a voltage applied to a gate electrode. In addition, effects of the
contact electrodes and the quantum capacitance of graphene need to be taken into
account.

2.3.1. A simple capacitance model

In a most simplistic picture, the charge carrier density n can be obtained from a
parallel-plate capacitance model. Let us assume that we apply a voltage V to an
electrode placed at a distance d = 600 nm from a graphene flake. The voltage between
two conducting, infinite parallel plates is given by the electric field E' = en/e times
d, where € = €,.€p is the permittivity. In vacuum, € = ¢y and it follows that

CV €0
n=——=_0 (2.29)
This simple model is often used to estimate the mobility in the case of uniform gating,
but it is not suited to calculate density profiles caused by local gates, and it does not
take into account effects of contact doping or quantum capacitance in graphene.

In addition to the classical capacitance C calculated above for the infinite parallel
plate capacitor, the quantum capacitance Cq becomes important in graphene [41].
Thus, it is taken into account that applying a voltage to the metallic side of the
capacitor will change the electrochemical potential in graphene. By inducing N elec-
trons in graphene, the chemical potential will change by Ay = N/p, where p(E) is

the density of states. This will cause an additional voltage between electrode and
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graphene, AV = Ap/e = N/ep = Q/e?p, and therefore:

4E

COq = pe? with p= ———.
Q= pe WP 27 (hvg)?

(2.30)

The density n in graphene by applying a voltage V' to a gate is therefore given by
n=(C+Cq)-V/e. (2.31)

In order to calculate more complex device geometries, the profile of n(z) is com-
puted by a finite-element-based electrostatic simulator with the quantum correction
accounted for through the quantum capacitance model [42], which allows to treat
electric, chemical, and contact-induced doping in a unified manner. The detailed
methods used by our collaborators are described in the Appendix A.1.

In the devices on LOR described throughout this thesis, we typically apply voltages
below 30 V. Due to the large distance between gates and graphene (400 — 600 nm),
we are always working at low energies, F < 40meV, or densities n < 10" cm™2.

The densities at the edge of a graphene flake can be a factor of 2 larger than in
the bulk if the gate electrode is larger than the graphene, i.e. if there are additional
field-lines from the part of the gate electrode that is not below the graphene flake.
This is discussed in more detail in Appendix A.2.

2.3.2. Contact Doping

There is an additional voltage V. arising from the experimentally applied source-drain
voltage and the charge transfer from the contact to graphene due to the difference
of their work functions. As the measurements are usually performed at low AC-
voltages, we may attribute V. solely to the charge transfer. Since we usually use
palladium (Pd) as a contact material, we can compare our results to previous first-
principles studies which expect ideal Pd(111) contacts to dope graphene as n-type
and may cause a shift of its Fermi level about AEr ~ 0.45 eV, which corresponds to
a potential on the palladium contact to be V., ~ 1.19 V [43,44]. In the experiments
in this thesis, however, neither the palladium contact is ideally grown along (111),
nor is the graphene/palladium interface clean. Hence, the charge transfer is greatly
reduced and the values that correspond to the measured data are typically V. <« 1.19
V. The doping induced by the contacts is usually p-type and of order V, ~ 1072V
or n ~ 7-10"%cm™2. The saturation of the field-effect traces between 20 — 30V, as
it is typically seen in our suspended LOR devices with Pd contacts, is caused by the
contact resistance, i.e. the number of available modes provided by the contacting
interface is limited.

2.3.3. Scalable Tight Binding Model for Graphene

Here, the simulation method used by our collaborator Ming-Hao Liu from the univer-
sity in Regensburg is briefly explained, following the argumentation of Reference [45],
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Figure 2.10.: Schematic of a sheet of a real graphene and b scaled graphene and the
low-energy band structures. c, Band structure consistency check using
an armchair graphene nanoribbon with a width of 200 nm. Here, genuine
graphene with sy = 1 is compared to scaled graphene with sy = 4,
corresponding to chain numbers N, = 800 and N, = 200 respectively.
d, Same comparison for an additional perpendicular magnetic field of
B=5T.

where also the figures have been adapted from.

Transport properties of real graphene can be modeled using “artificial graphene”,
which is a honey-comb lattice with scaled bond length a and a reduced hopping energy
t, as depicted in Figure 2.10a-b. This scaling is valid as long as the band structure in
the relevant energy range remains unchanged. Tight-binding transport is described
with the Hamiltonion of Equation 2.7. The linear dispersion E(k) = thup|k| is
written in terms of the tight-binding parameters as ty &~ 2.8¢eV and a ~ 0.142nm

Eo(k‘) = gtoaok' (2.32)

for real graphene. To keep the band structure unchanged while scaling up the bond
length by a factor sy, the hopping energy has to be changed accordingly:
a=sypag, t=1to/sy. (2.33)

This is valid if the band structure is linear, which is true as long as the wavelength is
much larger than the lattice spacing: Ag > a which implies
3tom
S —, 2.34

T 234
with Fnax the maximal energy of interest. For the low carrier densities in suspended
graphene with n < 102 cm ™2, this allows for a very large scaling range with s << 264.
In a magnetic field, the magnetic length I = \/h/eB, must remain larger than a

20



2. Optics with electrons in Graphene

which leads to the second restriction:

l 180
8f<<£%

ap VBz'

An example is given in Figures 2.10c+d for a 200 nm wide armchair nanoribbon
with sy = 1 and sy = 4, where the genuine and the scaled nanoribbon are very
consistent in the given energy range at B, =0T and B, =5T.

(2.35)

Figure 2.11.: a Experimental data of two-terminal conductance of a suspended
graphene flake of size 2 x 2 um as a function of gate voltage Vo, and
magnetic field up to 1 T. The lowest quantized plateaus are labeled by
the filling factors v = 42, 4£6,+10. b Comparison of the experimental
data at low field with the theory data for sy = 50

This scaling model has been applied to capture the Fabry-Pérot maps in Chapters
6 and 7 and the magnetic field behavior in Chapter 6. In Figure 2.11, we compare
experimental and theoretical quantum Hall data of a sample of size 2 x 2 um. The
Landau fan diagrams of experiment and theory in Figure 2.11b are rather consistent.
For the calculation, s; = 50 and a low Anderson-type disorder potential with strength
Uqgis = 3meV is used.

The great advantage of the scaling technique is that it allows to compute real-
sized graphene devices while keeping the computation time affordable. Taking the
illustrated sample, the computation time is At ~ 2.4s on a single Intel Core i7 CPU
for sy = 100 and about a month for sy = 1.
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3 When is graphene

clean?

The wave-nature of electrons becomes visible only if scattering is sufficiently reduced.
In order to realize electron-optic experiments, extremely clean materials are required
therefore. In graphene, such quality has been achieved in several recent experiments,
like transverse magnetic focusing [46,47], the observation of superlattice effects [48],
the complex ground-state structure of bilayer graphene [49,50] and the observation
of the fractional quantum Hall effect [51,52]. In this context, “very clean” means,
that the transport is ballistic over the corresponding length-scale. For the electron-
optical phenomena discussed in Chapter 2, this requires ballistic transport between
the contact electrodes i.e. on pm-length-scales. Once such quality is achieved, two
related questions become important: “what are the cleanest devices we can possibly
make” and “what is the best way to compare devices that are fabricated differently
or that are designed in a very different way?” In this chapter, we try to address these
questions.

3.1. What limits device quality?

Scattering in graphene can be caused by extrinsic or intrinsic sources. It is known
from early SEM studies, that exfoliated graphene has very few crystalline defects [53].
While such defects can be of importance for CVD-grown graphene they are negligible
if exfoliated graphene is used for fabrication [54]. As the most important factor
limiting device performance, charged impurities in the substrate or on top of the
graphene layer were identified [31,55,56]. At low densities, these impurities cause
electron-hole puddles which are responsible for charge-carrier scattering.

The community has developed two distinct pathways to circumvent these problems.
Nowadays, a large part of the graphene community is using stacks of graphene /hexagonal
boron nitride (h-BN) [54,57-62] to obtain high-mobility devices. Due to the encap-
sulation of the graphene layer between crystalline h-BN layers, which have a very low
amount of charged impurities, scattering is reduced to the extend that ballistic trans-
port over pm-length-scales becomes feasible. Alternatively, extrinsic fluctuations can
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be reduced drastically by suspension and in-situ current annealing of graphene [63,64].
Due to the very high temperatures during annealing, residual dopants evaporate.
Several recent experiments show that the quality of freely suspended devices fab-
ricated either by under-etching graphene on SiOg [63] or obtained by the method
first proposed by Tombros et. al. [65] is equivalent or even higher than for graphene
encapsulated in h-BN [66,67].

The limitations of device performance are of different origin for suspended and for
encapsulated graphene. The encapsulated structures tend to have bubbles at the
graphene-h-BN interface. Even though the amount of bubbles can be drastically
reduced by optimizing the transfer technique [68], it appears to be extremely difficult
to get completely rid of them. In addition, impurities, once encapsulated, cannot
be removed anymore. Furthermore, recent studies suggest that the quality of these
devices is ultimately limited by strain fluctuations due to wrinkles [69, 70]. However,
if h-BN and graphene are aligned with high precision [71], Moirée super-lattice effects
are present [48,72] which can be exploited, among other possibilities, to study the
fractal spectrum of Hofstadter’s butterfly [73,74] or creating valley-Hall currents [75].

The problems are of different origin in suspended graphene devices. Since current-
annealing is done in situ as a very last fabrication step, no special care during fabrica-
tion is needed. But suspended devices often suffer from very non-uniform cleanliness.
While ballistic transport might be possible in some regions, others remain highly
doped. The non-uniformity of cleaning is due to local variations of heat dissipation
during current annealing since the contacts act as heat sinks. As a consequence, re-
gions close to the leads often remain dirty. For the two-terminal devices presented in
Chapter 5 and 6, there was no evidence of remaining residues close to the contacts.
But non-uniformity of cleanliness is of importance for the four-terminal devices in
this thesis (Chapter 7 and 8).

At higher temperatures, flexural phonons [76] limit the mobility of suspended
graphene. Even though electron-phonon scattering is expected to be weak in graphene
since the phonon frequencies are very large [77], the out-of plane vibrations occur at
low-enough frequencies. The phonons cause ripples at which elastic scattering oc-
curs [78]. The resisitvity due to flexural phonons rises with 72, since, for symmetry
reasons, always two phonons are involved in scattering. Even though electron-phonon
scattering is not the limiting factor at temperatures below 10K, it restricts the mo-
bility to few 10’000 cm?V~!s~! at room temperature. Straining graphene by only
0.1% is predicted to yield a dramatic improvement of room-temperature mobility of
suspended samples.

Finally, suspended devices are more delicate to handle than encapsulated ones. The
complexity of contacting structures and the size of the suspended region are limited by
the mechanical stability of graphene. For this reason many research groups fabricate
encapsulated devices nowadays.
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3.2. Characterization methods

3.2.1. Conductance of a ballistic graphene wire

— Experiment
— Theory
= TB calculation

Figure 3.1.: a, Model to calculate the two-terminal resistance of a flake with width W
and length L. The leads are shaded blue. Adapted from Reference [79].
b, The energy E, in the central part of the flake is tuned by applying a
voltage V; on a capacitively coupled gate. The lead energy E,, > E, is
large and remains unchanged by the Vj. ¢, Calculated T'(¢) for W = L
using Equation 3.1. d, Conductivity o as a function of aspect ratio W/L
for a smooth edge (solid curves) and metallic armchair edge (data points
from numerical calculation), adapted from Reference [79]). e, Compar-
ison of o(kpW) for experiment (purple), analytical theory (blue) and
tight-binding calculation (blue dashed). The experimental data is taken
from Chapter 6. For the tight-binding calculation a contact resistance
R. = 1.45k ) has been taken into account.

A way to test the quality of the device is by comparing measurements to theo-
retical expectations for ballistic graphene. The conductance of a graphene wire was
calculated by Tworzydlo et. al in the context of describing its Fano factor [79]. There
are two kinds of boundary conditions that need to be set. First, the contacting leads
consist of highly doped graphene. These regions (shaded blue in Figure 3.1a-b) are
not tuned by a gate voltage due to the large screening effect of the metallic contacts.
The transmission between left and right lead T is then calculated in the framework
of Klein tunneling, assuming a large potential Fy, > E; in the leads and a finite,
gate-tunable F; in the middle part. The minimum conductivity is therefore limited
by reflections in the contact region, at least if the width W is clearly larger than the
length L of the measured graphene wire. If this is not the case, the transmission

24



3. When is graphene clean?

will depend on the second boundary condition, i. e. how the upper and lower edge
in the middle region are modeled. This can be easily understood since, close to the
Dirac point, the electronic wavelength becomes larger than the sample width and the
transport through these evanescent modes is extremely sensitive to the type of edges
involved.

The transmission for an infinite amount of modes in the leads assuming smooth
edges (i. e. edges of infinite mass that do not mix the pseudospin) is [79]:

2k?2

T(ky) =
(ky) 2k2 + k2 (1 — cos(2k, L))’

(3.1)

where k2 = |/k% — k2. |T| is plotted in Figure 3.1c as a function of incidence
angle 0, with L = 1. At the Dirac point, there is still a finite transmission through
evanescent modes for kpL < 1. At higher kr, constructive or destructive interferences
lead to resonant peaks and dips depending on the angle of incidence. This Fabry-Pérot
pattern has been discussed in Section 2.2.5.
The conductance is given by summing over the m modes in the lead, G = 2¢2/h3"T,.
m

For a wide junction W/L > 2, the summation over the transverse modes can be re-
placed by the integral
= A dkyT'(ky), (3.2)
The conductivity ¢ = GL/W is plotted in Figure 3.1d as a function of the aspect
ratio W/L. Here, the circles are calculated using equation 3.1, whereas the black
line corresponds to the numerically calculated transmission for an armchair wire.
Apparently the two solutions match for W/L > 2, i. e. the conductivity does not
depend on the boundary conditions for the upper and lower edge anymore. The
dependence of o on Ej is given as the blue curve of Figure 3.1e for an aspect ratio of
1.2. The minimum conductivity in graphene for W/L > 2 is:

4e?
Omin = H7 (33)

In diffusive samples, the observed minimum conductance missed the factor of m,
which was attributed to the presence of e-h puddles [80,81]. Figure 3.le reveals
however, that Equation 3.3 is almost met in our devices. In the figure we compare
the conductivity given by Equation 3.2 to an experimental curve (from Chapter 6).
But, even though the minimum conductance is close to 4e?/hm, the curves deviate
rather strongly for larger kr. One explanation might be that the transport is not
ballistic. Impurity scattering would drastically lower the mobility, which would reduce
the slope. However, the ballistic tight-binding calculation (bl ue dashed line in Figure
3.1e) which is calculated based on the geometry of the device, exhibits a similar slope
as the experiment if a contact resistance of R. = 1.45k() is taken into account.! As

!The tight-binding data is not symmetric and does not reach the same minimum as the experiment
due to limited resolution
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3. When is graphene clean?

a consequence, the main difference between the experiment and analytical theory is
due to deviations in the boundaray conditions. First, the potential at the contact
electrodes is not infinite but finite in the real device. Second, W/L =~ 1 in the
experiment and therefore the edge potential becomes important.

Apparently, the above equations are not well suited to characterize and compare
device quality, because Equation 3.2 strongly depends on the boundary condition and
the value of Equation 3.3 can also be obtained if the current in the device is flowing
through a resistor in series and/or in parallel to the cleaned region. Such a resistance
could be the contact resistance (R in series), it could be due to p-n junctions in series
or due to paths through highly doped graphene caused by non-uniform cleaning (R
in parallel).

3.2.2. p-n interfaces
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Figure 3.2.: a, Comparison of theoretical (Chapter 2.2.4) and experimental (Chap-
ter 6) conductivity as a function of krd, where d is the smoothness of the
junction (here, d = 1 um). b, Fabry-Pérot oscillations of a p-n-p device,
where G/(G) — 1 corresponds to the conductance oscillations around a
mean value (G) as in Chapter 2.2.5. The experimental curve is taken
from Chapter 5.7.

Using p-n interfaces, a much better comparison between analytical theory and ex-
periment is possible, since the boundary condition which dominates the problem, i. e.
the p-n interface, is well defined in contrast to the poorly controlled and characterized
boundary conditions given by the edge of graphene or by metallic contacts.

First, we compare the analytical formula for the conductivity of a smooth p-n
junction (Equation 2.25 and Figure 2.7a) to the measured conductivity of the device
mentioned above (Chapter 6) in the p-n regime. These two curves are plotted in
Figure 3.2a without using any fit parameters. The difference at low kprd is due to
coupling of evanescent waves between two contacts in the real device, which yields the
minimum conductivity close to 4e?/hr discussed above (Chapter 3.2.1). Otherwise,
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3. When is graphene clean?

the curves match well given the simplicity of the analytical model. This clearly indi-
cates that the transport in this smooth p-n junction (where the region of smoothness
is d = 1 pm long) is described by ballistic trajectories.

Moreover, conductance oscillations visible on the experimental curve of Figure 3.2a
are signatures of Fabry-Pérot interferences over the full length of graphene, i. e. the
electrons are bouncing back and forth between contacts and do not scatter in-between.
These oscilllations, which are described in more detail in Chapter 5, yield the best
prove for ballistic transport over large flake areas. Here, we compare Fabry-Pérot
oscillations in the middle region of a p-n-p device to analytical results. In Figure 3.2b,
G/(G) — 1, corresponding to the conductance oscillations around a mean value (G)
as in Chapter 2.2.5, is plotted as a function of kgpL/m. The experimental curve is
taken from Chapter 5.7. For larger values of krpL /7, the periodicity of experimental
and theoretical calculations matches, whereas a deviation for lower values is observed.
This is due to a changing cavity length L at low gate voltages as e. g. the simulations in
Appendix A.1 reveal. The oscillation amplitude is close to the theoretically expected
value of ~ 10%.

a b 4 d
-
Figure 3.3.: Comparison of different characterization methods. a, The dark blue re-
gion of graphene is clean and the light gray region is highly doped. If
the conductance between the two contacts is measured and the clean-
liness of graphene is characterized only by how strong the Dirac dip is
and how close to zero gate voltage it occurs, it will appear to be clean.
b, However, no regular Fabry-Pérot pattern can occur. c, The situa-
tion is even worse in the situation of a clean region in the middle and a
strongly varying potential outside. The additional scatterers (black dots)
will completely destroy any regular Fabry-Pérot pattern, however, a high
resistance at zero gate voltage can still be observed. d, By using local
gates, information about the local cleanliness can be extracted, i. e. in

the depicted situation, a regular Fabry-Pérot pattern can be observed in
the right cavity but not in the left one.

In fact, the Fabry-Pérot measurements shown in Chapter 5 yield an excellent proof
for ballistic transport over large flake areas. In the case of suspended graphene,
polymer residues tend to accumulate close to the metallic contacts, leading to large
puddles as shown in Figure 3.3. Such large-scale puddles also may exist in the case
of graphene that is encapsulated between hBN. There, the puddles mostly originate
from bubbles between graphene and hBN, and those bubbles are very difficult to
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3. When is graphene clean?

avoid in the fabrication process. In both cases, it is usual that clean and dirty regions
coexist.

We suppose that there is a clean region in the middle of graphene (blue area in
Figure 3.3a) and a highly doped region outside (light gray). Even though large areas
of the graphene flake are not clean, one will observe a Dirac-point at zero gate voltage.
This Dirac point can be deep and steep, since the middle region will dominate the
resistance at low voltages. One would therefore conclude that graphene is very clean
and has a high mobility. Yet, the Fabry-Pérot interference pattern originating from
oscillations as sketched in Figure 3.3b will be irregular. The situation is even worse
if one assumes large potential variations in the outer regions. They will not affect
the position of the Dirac point, nor its depth. But if we regard these fluctuations
as scattering centers (black dots in Figure 3.3c), they will completely destroy any
regular Fabry-Pérot pattern.

By studying the interference patterns tuned by local gates, additional information
can be obtained. E. g. the situation sketched in Figure 3.3d will reveal a regular inter-
ference pattern in the right cavity, but an irregular pattern in the left one. Therefore,
one gains local information about the cleanliness. This is a particular importance for
multi-terminal devices, where different annealing paths can be chosen.

3.2.3. Commonly used numbers
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Figure 3.4.: a, Mobility calculated from field-effect measurement (Equation 3.4) for
the sample of Chapter 6. b, R(V;) for small magnetic fields shows the on-
set of SAH oscillations at 10 mT, corresponding to p ~ 1-10% cm?V~1s71,

and fully developed quantum Hall plateaus at 40 mT. ¢, The saturation

density for the same sample n4q is extracted in a log-log plot of G(n).

Nsqt is of order 6, ~ 5- 108 cm~2 for both the electron and the hole side.

Finally, we compare the quality of the above mentioned device from Chapter 6 to
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3. When is graphene clean?

numbers that are typically given throughout the literature for device characterization.
However, these numbers again strongly depend on device geometry and measurement
setup, since scattering at the graphene edges and the contacts become important at
low densities, when the Fermi wavelength is comparable to the geometric dimensions.
Due to the very different fabrication methods and the geometrical constraints, it is
difficult to really compare the device quality.

Most commonly, the mobility p extracted from the field-effect o(n) curves

_ ldo

p= (3.4)

edn’

is used for comparison. Typical values are p ~ 3 - 103cm?V~—1s7! on SiOy [25],
p=5-10%ecm?V~1s~! for encapsulated graphene [54,82] and pu ~ 1-10%cm?V 157!
for suspended devices [83]. The devices in this thesis exhibit field-effect mobilities
in the order of y = 2 — 7-10° cm?V~!s~! if extracted with the above equation. In
Figure 3.4a, the mobility for the device of Chapter 6 is given, having a maximum of
p=4.7-10°cm?V~1,

A more reliable way to extract p was outlined by Mayorov et.al. [84] by looking at
the magnetic field B, at which Shubnikov-de Haas (SdH) oscillations first appear. SdH
oscillations occur once the small-angle scattering time 7, times the cyclotron frequency
we is 1, i. e. oscillations become visible once cyclotron orbits can be completed before
scattering occurs [85]. Therefore, the mobility can be extracted by:

pBg = wery =1 (3.5)

The above formula is obtained by the Drude model for o = eny = ne?r/(hkp/vr)
and the cyclotron frequency in graphene w. = eB/(hkp/vr). As shown in Figure 3.4
the SAH oscillations are slightly visible at 5 mT and certainly visible at 10 mT which
yields a mobility of p &~ 1-10%cm?V~—1s~! for the latter case. A flat Quantum Hall
plateau can be seen already at 30 mT. In this thesis, B, is in the order of 10 mT
for all devices. Such high mobility is in agreement with the observation of a regular
Fabry-Pérot pattern as it is present in the devices described in Chapters 5, 6 and 7,
but, for geometrical reasons, not in the bilayer-device in Chapter 8.

Alternatively, one can extract the amount of residual dopants én from the width
of the Dirac peak, which is of order d,, ~ 5-10'° ecm~2 on SiOs [86], §,, ~ 5-10% cm 2
on h-BN and §,, ~ 5- 108 cm~2 for the cleanest suspended devices [84]. As shown in
Figure 3.4a, where o(n) is given in a log-log plot, the residual doping of one of the
samples in this thesis (Chapter 6) is with &, ~ 5-10% cm~2 among the best devices
reported so far. This sets an energy scale of 3 meV, which means that above only
30K, the width of the Dirac peak is given by thermal smearing only. In conclusion, the
devices we obtain by the method described in the following chapter, are sufficiently
clean to observe electron-optical phenomena. Whereas the value for y calculated with
Equation 3.4 is strongly limited by scattering at the boundaries, the observation of a
regular Fabry-Pérot pattern, the very low saturation density and the quick onset of
SdH oscillations reveal, that our graphene is among the cleanest reported so far.
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Fabrication

In this chapter we report on our experience in fabricating freely suspended graphene
samples. In a first step, the key elements of the method are discussed and the modi-
fications to the original process, which led us to the production of ultra-high quality
devices with an excellent yield, are highlighted. We show the possibility to imple-
ment local bottom and top gates for these suspended devices. We further discuss the
feasibility of the method to fabricate more complex graphene structures like multi-
terminal samples or devices with superconducting electrodes. Finally, we analyze the
mechanical stability of different suspended structures by using CVD graphene. The
methods presented here have been partially published in Reference [87]. Compared
to our publication, we extend the information on current annealing and graphene ex-
foliation and add the sections on superconducting contacts and mechanical stability.

4.1. Suspending Graphene

Figure 4.1.: Fabrication of suspended graphene following the method introduced by
Tombros et al. [65]. The SiOs is colored blue, LOR is shown in green. The
final image shows suspended graphene attached to free-standing contacts.

The main idea of the fabrication method proposed by Tombros and coworkers
[65,88] is to use a layer of lift-off resist (LOR)! as a sacrificial layer to realize freely
suspended graphene devices. Figure 4.1 summarizes this method, and detailed step-
by-step recipes can be found in the Appendix B. We start the fabrication by depositing

'LOR 5A, MicroChem Corp.
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4. Fabrication

a set of numbered markers by standard UV-lithography on a heavily doped Si/SiOq
wafer. The markers, spaced 200 pm apart from each other, serve for orientation and
alignment during the process. Afterwards, we spin-coat LOR on the wafer.

Subsequently graphene is exfoliated from natural graphite with Nitto tape” directly
onto the LOR surface. The yield of large-area single-layer graphene flakes can be
improved by modifying the exfoliation procedure. For this purpose, the Nitto-tape
which is already covered with flakes, is put into a freezer, while the LOR-covered
wafer is treated in a UV-Ozone plasma for 2-3 minutes. Within very short time, the
tape is taken out of the freezer and pressed onto the UV-Ozone treated device. This
yields large graphene flakes on Polymer substrates such as LOR and PMMA in a
reproducible fashion. For exfoliation on SiO9, we could not see an improvement of
flake size.

No particular care is required for the identification of graphene by optical contrast
on the wafer /resist stack, since we use dark-field and Nomarski differential interference
contrast (NDIC) microscopy to locate single-layer graphene flakes. NDIC microscopy
separates the source light into two orthogonally polarized parts, which are recom-
bined after reflection on the device. The contrast given by the interference of the
two polarized parts reveals the edges of the graphene flakes extremely well [89]. In
addition, the microscope is equipped with a camera system, which allows digital con-
trast enhancement of the live microscope image, providing an easy determination of
the number of graphene layers. Without the live contrast enhancement, the graphene
flakes are barely visible due to the additional layer of polymer between graphene and
SiOs.

Once a suitable graphene flake has been spotted, the contacting structures are
realized by e-beam lithography with a 500nm thick 950K PMMA layer at 20 keV
electron acceleration voltage with a dose of 200 C/cm?. For convenience, we design
our structures in Adobe Illustrator. Details are given in Appendix B.1. Structures
are written in Raith Elphy Plus using an auto-alignment procedure, where we align
the design with the actual device using predefined markers. As for Tombros et. al.,
PMMA development is done with xylene at room temperature. After development,
50 nm of palladium is thermally evaporated in a UHV chamber with the device cooled
to -30°C. Lift-off is done with xylene at 80°C, and the sample is rinsed with hexane.
We note here that micro-bonding of these samples is difficult, since the wedge tool
of the bonder breaks through the bonding pads on the LOR. This problem can be
resolved by removing the LOR at the bonding pad position before contact fabrication.
To this end we write a step-like structure into the LOR to provide a smooth increase
in height for the Pd-wires, and develop this structure in ethyl-lactate for 2 minutes.
The steps are written by exposing subsequent areas with decreasing dose (Appendix
B.5.2).

To suspend graphene, LOR is exposed using e-beam lithography at 20 keV with a
dose of 1100 uC/cm?. Due to back-reflected electrons, the 600nm thick LOR-layer
is even exposed below the contacts. Finally, after development of LOR with ethyl-

2SPV 224P, Nitto Europe NV
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lactate for 2 minutes and rinsing in hexane, both graphene and metallic contacts
are suspended. This is different from the original method where the contacts remain
supported by LOR pillars. An scanning electron microscope (SEM) picture of a device
with supported and suspended contacts is given in Figure 4.2a and b respectively. We
will show that what we call “full suspension” is crucial for efficient current annealing.

Compared to Tombros and coworkers, we reduced the thickness of the LOR from
1.15 pm to 600 nm in order to increase the back-gate efficiency, i. e. to access higher
charge carrier densities. Even with this reduced thickness, suspension remains pos-
sible and we found that we can further reduce the LOR thickness to < 400 nm if we
rinse the sample in warm Hexane after development. This is possible due to the low
viscosity of hexane, which is 0.3 mPa - s at 25°C and only 0.19mPa - s at 75°C, com-
pared to the room-temperature viscosity of water (1 mPa - s), ethanol (1.1 mPa - s) or
isopropanol (2.1 mPa - s).

4.2. Current annealing
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Figure 4.2.: a, Scanning electron micrograph (SEM) of a suspended graphene device,
where the LOR below the contact has not been removed (highlighted
with a white arrow). b, SEM image of a device where also the electrodes
are free-standing. c¢, Typical current annealing resistance-voltage traces
for the first and, d, last annealing step. e Field-effect of graphene before
current annealing (purple), and after the last annealing step (blue).

We performed electronic transport experiments either in a “He cryostat with a
variable temperature insert at low gas pressures <1 mbar, or in a dilution refrigera-
tor, or in a *He cryostat, depending on the base temperature needed. The current
annealing was preformed at 4 K, where the process is better controlled compared to
room temperature. Figure 4.2c and d shows current annealing curves for a “fully
suspended” device. During annealing, the applied voltage is ramped to a maximum
value and back to zero, while the resistance of the flake is recorded. This is done by
measuring the voltage drop over a pre-resistor Rpr.. Depending on whether R is

32



4. Fabrication

smaller or larger than the sample resistance Rg, the setup is more voltage- or more
current-biased. The dissipated power is P = U?/R in the voltage-biased case and
P = I? . R in the current-biased situation, respectively. Since we expect that Ry
increases when graphene becomes clean, a voltage-biased setup (i. e., Rpre < Rs) is
more favorable. Like this, run-away loops can be avoided, i. e. in the current biased
setup, increased Ry would lead to increased power which would result in a positive
feedback.

Before annealing, the graphene device displays only a very small field effect as
shown by the purple curve in Figure 4.2e, thus indicating strong doping by resist
residues from LOR and PMMA. The first annealing curve, shown in Figure 4.2c,
displays no hysteresis; the graphene quality remains similar and shows weak gate de-
pendence. The maximum voltage applied during the ramp cycle is slowly increased,
and if a resistance difference between the increasing and the decreasing voltage sweep
is found, the gate dependence is recorded. The curve in Figure 4.2d shows the last an-
nealing step of the same graphene device, where a huge jump in the device resistance
is observed at high voltages. The gate dependence measured after this step is shown
in blue in Figure 4.2e and displays a sharp conductance minimum corresponding to
the charge neutrality point. The current densities of ~350 pA/pum needed to clean
suspended devices are smaller than values reported for devices with supported con-
tacts [63,65]. During annealing, graphene heats up, but the contacts remain colder
such that residues condensate. When the contacts are also suspended, their cooling
power is reduced. This ensures that graphene becomes uniformly clean.

After current annealing, graphene is characterized by measuring the conductance as
a function of applied gate voltage, as explained in Chapter 3. The “full-suspension”
fabrication allows obtaining ultra-clean graphene devices with a current annealing
yield close to 100% for two-terminal devices. These devices are at the state of the art
concerning residual doping and ballistic behavior.

4.3. Implementation of bottom gates

For electron-optic experiments, it is essential to be able to tune the charge carrier
density locally. This has already been done on supported samples both with bottom
and top gates [90-93]. Concerning suspended graphene, implementation of local top
and bottom gates remains challenging, even if some realizations are present in the
community [94-96].

One possibility to realize local gating is to pre-pattern bottom gates before spin-
coating the LOR, as shown in Figure 4.3a. The challenge is now to deposit the desired
graphene flake on top of these gates. To do so, we chose a dry transfer technique [54]:
graphene is exfoliated onto a separate wafer of Si/SiO9 with a stack of PVA /PMMA of
50nm/300 nm. Once again, optical localization of single-layer graphene flakes is done
by NDIC microscopy, and no specific resist thickness is needed for this. Afterwards,
the wafer is placed on the surface of de-ionized water where the PVA layer slowly
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Figure 4.3.: Fabrication of gated structures, where the final images in each row are
the false colored SEM images of the finished devices. The scalebar corre-
sponds to 1 um, the bottom and top gates are colored yellow and orange,
respectively, the contacts gray and graphene light-blue. a, Fabrication
of suspended devices with bottom gate structures. b-d, Fabrication of
top gates. b, The top gates are separated from graphene with a thin
layer of MgO. ¢, An additional layer of hBN is transferred onto graphene
on which the gates are patterned. d, The graphene is covered with an
additional layer of LOR, which is used to suspend the gates.
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dissolves. The floating PMMA layer (with the graphene flake on top) is carefully
fished out with a glass slide containing a metallic rim (which will support the PMMA
layer) and a hole on the glass slide, where the water can flow out [54]. We call this
tool “volcano”.

If the stack is treated with UVO in order to increase the graphene flake size and
quality, the process needs to be modified. First, we replace PVA by Dextrane, since
PVA is hardening in UVO and cannot be dissolved in water anymore. Second, the
PMMA thickness is increased to 500 — 600 nm in order to avoid cracking of the layer
during the transfer process.

Figure 4.4.: Optimization of the PMMA “fishing” technique a, Before we built an
adequate tool, we used to manually capture the PMMA /graphene layer,
floating on the water, with a glass slide. The glass plate with the metallic
rim (diameter 3 mm) is called "volcano". b, We currently use a tool where
the PMMA skin is fixed between two clamps that can be moved on top
of the volcano. Then we pump water out of the bath until the PMMA is
attached to the volcano. ¢, CAD image of the bath and the clamps. The
tool is made out of teflon.

We optimized the transfer to the volcano by using a tool that facilitates the po-
sitioning of the PMMA layer. In Figure 4.4a the non-optimized “fishing”-process is
shown, where the glass-plate with the volcano (diameter 3 mm) is moved by hand
below the floating PMMA layer and then raised. It is very challenging to place the
chosen graphene flake in the middle of the volcano. To improve the yield we designed
a tool with which we can fix the position of the glass-slide, clamp the PMMA layer
and move it on top of the volcano, as shown in Figure 4.4b. The graphene flake can
then be accurately aligned to the middle of the volcano by using a stereomicroscope.
Once aligned, water is pumped out from the bath with a pipette. If the PMMA layer
is attached to the metallic rim, the clamps are removed and the glass slide can be
taken out of the bath. The tools (a CAD picture is shown in Figure 4.4c) are made
from teflon. We require a hydrophobic material to avoid that the PMMA attaches to
the clamps.

After leaving the PMMA layer to dry overnight, the glass slide is transferred to a
modified MJB3 mask aligner or to a transfer stage (as described in Reference [97]) to
realize the alignment between the graphene flake and the pre-designed bottom gates
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coated with LOR (second sketch of Figure 4.3a). The chip with the bottom gates
is heated to 95°C to avoid any water on the LOR surface and to ease detaching of
PMMA from the volcano. Once PMMA is released from the glass slide, the stack is
heated to 150 °C. Once graphene is transferred, PMMA is removed in hot xylene and
the sample is finished following the previously described method. The last sketches in
Figure 4.3a show the finished devices and a false-colored scanning electron micrograph
of graphene with local bottomgates.

4.4. Top gates

Alternatively, the carrier density in graphene can be locally tuned by top gates.
However, their realization is not straightforward. The most natural way is to grow a
dielectric between graphene and the gate electrodes. For this purpose we evaporated
5-10nm of MgO onto graphene. The design and a false colored SEM image of such a
device are shown in Figure 4.3b, where the top-gate is colored orange. We managed to
current-anneal the device, with a Dirac point visible in G(Vgate) similar to Figure 4.2c.
However, we found that the yield of current annealing is decreased, because the middle
top gate acts as a heat sink. Moreover, the top gates seem to introduce noise, possibly
because of trap states in MgO.

Instead of using an evaporated oxide as dielectric, a layered material, e. g. hexago-
nal boron nitride (h-BN), can act as a spacer. It was shown already that h-BN can be
used for top gates in substrate supported samples and that stable gating can be real-
ized [98]. Therefore, we transferred h-BN flakes on top of the contacts of an already
suspended device (Figure 4.3c) and fabricated the top gates on h-BN. A false-colored
SEM image of a device is displayed in Figure 4.3c where the boron-nitride flake cov-
ering the whole structure is colored light blue. We found, however, that the yield
of current annealing, similarly to the oxide-defined top gates, decreased significantly.
The encapsulation inhibited evaporation of contaminants from graphene and hBN
acted as a heat sink during annealing. Although we managed to clean some of the
devices, the decrease of the yield suggested looking for a different technique.

The problems of the previous two approaches can be circumvented if the top gates
are also suspended above graphene. To this end, after the fabrication of metallic
contacts on graphene, another layer of LOR resist (thickness 500-600 nm) is spin-
coated onto the device, as shown in Figure 4.3d. This technique was mainly developed
by Clevin Handschin at the University of Basel. Between the two layers of LOR, a
thin (80 nm) layer of PMMA is added. Without this protection layer the contacts can
be deformed during spin-coating of the second LOR layer. Top gates are designed
by e-beam lithograph. Finally, the whole device (containing graphene, contacts to
graphene and the top gates) is suspended by exposing the suspension mask with
a dose of 1100 uC/cm? and development in ethyl-lactate. An SEM micrograph in
Figure 4.3d shows such a device after fabrication, with the top gates displayed in
orange. If the gates cover a substantial part of the graphene flake, the suspension
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cannot be done in the final lithography step. In this case, the suspension mask is
exposed before the fabrication of the top gates, but not developed. To finalize the
device, after the lift-off of the top gates, the device is suspended by developing the
suspension mask in ethyl-lactate.

The versatility of the fabrication method allows the combination of top and bottom
gates to realize complex gated structures. For example, a local perpendicular electrical
field to the graphene flake, created by local bottom and top gates, can be used to
exploit the different ground states of ultra-clean bilayer graphene [49,50].

4.5. Multi-terminal devices

Figure 4.5.: False-colored SEM images of more complicated structures. The scale bar
corresponds to 1pm. a, Multi-terminal device with side contacts and
bottom gates. b, Suspended Aharonov-Bohm ring, defined by plasma
etching. ¢, Multi-terminal device with “finger-shaped” electrodes and
bottom gates.

To emphasize the versatility of this fabrication method, we present more complex
and interesting multi-terminal devices. Figure 4.5a shows an SEM micrograph of a
suspended graphene flake with side contacts and pre-defined bottom gates, which is
designed to explore the effect of electron guiding by a gate-defined potential [99]. We
found that these devices can survive current annealing between the major contacts
and graphene can be cleaned also around the side contacts. Figure 4.5b presents
an SEM micrograph of a suspended graphene flake, where a hole has been realized
prior to suspension by oxygen plasma etching to realize a suspended Aharonov-Bohm
ring. This reveals that graphene can be pre-shaped before suspension without the
apparent collapse of the flake. However, the yield of successful current annealing is
substantially decreasing. Figure 4.5¢ shows another multi terminal device where we
have defined six contacts (1-6) to graphene, four contacts at the edge, and “finger-
shaped” injectors in the middle of the flake. The injectors (2,5) are separated from
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graphene by an aluminum oxide layer and only touch graphene in a small region. The
structure is complemented with a bottom gate, shown in yellow. These structures
allow to conduct electron-optics experiments in ultra-clean, ballistic graphene. We
discuss measurements of such multi-terminal-devices in Chapter 7 and 8.

4.6. Superconducting Contacts

For the devices we have shown so far, we used palladium as a contacting material.
The combination of superconducting (S) contacts with graphene (G) [100] is more
difficult, however highly desirable. From the viewpoint of electron optics, ballistic SG
interfaces offer completely new possibilities. For instance, an SG interface can exhibit
retro- or specular reflection [101], depending on how close to the Dirac point the de-
vice is being operated. Using the magnetic field as a lense, electron and hole states
along the SG interface emerge [102, 103] that resemble the snake states discussed
in Chapter 6. Furthermore, the superconductor can act as a source for entangled
electrons. By using the tools of electron optics (waveguides, lenses, mirrors, collima-
tors), the interference of those entangled electrons might be studied. The entangled
Cooper pairs, however, have to be split beforehand. The most successful geometry
uses Coulomb blockade to achieve this [104] which yielded a splitting efficiency of
up to 90% in carbon nanotubes [105]. Cooper-pair splitting using Coulomb blockade
has been also achieved in graphene recently [106,107]. Other proposals try to use
a p-n interface to split Cooper pairs [108], the requirements on residual doping and
uniformity close to the contacts are, however, out of reach.

Recent results reported on the successful realization of ballistic SGS junctions us-
ing encapsulated graphene by showing that the critical current follows a Fabry-Pérot
oscillation pattern [109-111]. In the scope of this thesis, several attempts were made
to combine ballistic suspended graphene with complex gating structures and super-
conducting (S) contacts. Figure 4.6 summarizes these efforts.

We deposit 40—50 nm aluminum (Al) with a 5 nm thin contacting layer of palladium
as S contact. We use Al mainly for fabrication reasons: Since it can be evaporated
thermally, the LOR substrate is not exposed to an electron beam during the evapo-
ration process, in contrast to sputter-deposition. Three distinct device architectures
are explored. First, we fabricate Pd/Al contacts only, yielding junctions with two S
contacts and local Au bottom gates, as shown in the schematics of Figure 4.6al and
the SEM image of Figure 4.6a2. By in-situ current annealing at 4 K through the S
contacts, a rather narrow Dirac dip is obtained for several junctions. This is shown
in Figure 4.6a3, where the conductivity ¢ as a function of gate voltage shows a dip
around 0V. For large gate voltages, o saturates at around 2.7 e?/h only, which cor-
responds to a comparably high contact resistance of R, =~ 9k(). In Figure 4.6a4, the
resistance as a function of source-drain current Igp at B = 10mT and B = 70mT,
is given at a temperature of 60 mK. At 10mT, two features that resemble a critical
current seen at ~ 0.9 mA and ~ 0.1 mA. This shows on one hand, that the supercon-
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Figure 4.6.:

Three distinct geometries combining S contacts with suspended, locally
tunable graphene. al, Three-dimensional design of a suspended graphene
device tuned by local gates (gold) and contacted with Al (light blue). a2,
SEM micrograph after current annealing. a3, ¢ as a function of both
gates Vg = Viefy + Viignt- a4, R(Isp) at small magnetic fields. b1, Design
and b2, SEM image of a hybrid device with Pd (gray) and Al (light
blue) contacts. b3, Field effect G(V;). b4, By tuning the left and right
gate voltage independently, the device can be in the unipolar or bipolar
(blue shaded) region. Tuning with Vjign (blue curve) shows almost no
change in G, whereas the formation of the p-n junction can be clearly
seen on the yellow curve where Vi is tuned. cl, Design of the third
architecture where the middle S electrode is split into two side contacts.
c2, GG as a function of source drain voltage Vsp measured between the
S and the normal (N) Pd contact reveals a soft gap that disappears at
B = 60mT (T = 50mK). ¢3, G(V;). c4, By tuning the two bottom
gates individually, the formation of a p-n junction is possible.
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ductors are coupled to graphene. On the other hand, the Al contacts are partially
molten during the process of current annealing, as given in the inset of Figure 4.6al,
which was recorded after the last transport measurement. Therefore, one of the two
or even both gap-like features could originate from weakly coupled S-islands in the
Al contact itself. For many devices, in fact, we lost the contact to the Al strip during
the process of current annealing.

Apparently, it is problematic to perform current annealing through Al contacts,
which have a bulk melting point of ~ 660 K only. As an improvement, we therefore
fabricate three-terminal devices with Pd and Pd/Al contacts, as sketched in Figure
4.6bl. The corresponding SEM micrograph is shown in Figure 4.6b2. Several at-
tempts to clean such junctions by passing current from one Pd contact (gray) to the
other while the Al contact (light blue) is floating, yielded a field effect behavior as the
one shown in 4.6b3. Even though the minimum conductance is rather high, a rela-
tively narrow Dirac dip is observed close to zero gate voltage. For this measurement,
both gates, i. e. the one tuning the left cavity (between the left Pd and the Al contact)
and the one tuning the right cavity, are coupled together. All of the devices with this
geometry show very non-uniform cleanliness, i. e. one of the cavities is clean and the
other remains disordered. This can be seen in Figure 4.6b4. If the gate voltage of
the left cavity is fixed at Viegg = —10V and Vijgps is increased from —5 — 10V, G is
changing only very little (blue curve). On the other hand, by tuning Vieg and fixing
Viight the conductance is decreasing in the n-n-region and oscillates in the n-p region
(yellow curve). This observation leads to the conclusion, that in the left device, a
Fabry-Pérot cavity can be formed (for more details see Chapter 5), whereas the right
cavity remains disordered after current annealing. Further current-annealing steps,
eventually also through the Al contact, did not improve the quality of the device.

Last, the middle S contact is split into two side contacts (Figure 4.6c1) to allow
more uniform cleaning. Even though the S contact is rather resistive after current
annealing, a soft gap is visible at 50 mK and 0T and disappears at 60 mT as visible
in the Ggn(Visq) graph of Figure 4.6¢2. Ggn is measured between one of the S and
an N contact. The field effect measured between the two N contacts (Figure 4.6¢3)
shows a strong depletion of carriers around 0V, indicating very clean graphene. In
this device, the formation of a Fabry-Pérot cavity is possible with both the left and
the right bottom gate, as revealed in Figure 4.6c4, where a reduction of conductance
and an oscillating pattern occurs in the p-n region (blue shaded). We conclude that
it is possible to combine suspended, ballistic graphene with local gate structures
and superconducting contacts. Unfortunately, further measurements in these devices
were inconclusive. More work is needed to perform electron-optical experiments with
superconducting contacts.

40



4. Fabrication

Figure 4.7.: Typical problems occurring to suspended graphene flakes: a, breaking,
b, rolling up and ¢, cracking. Scale bar: 200 nm.

4.7. Device stability

A one-atom thick suspended layer is delicate to handle. Often, devices collapse after
suspension or they break apart as the flake shown in Figure 4.7a. In many cases,
graphene rolls up during the process of current annealing (Figure 4.7b), or cracks
form (Figure 4.7c).Therefore, an important part of this work was to find conditions for
mechanically stable devices and reproducible current annealing. Using CVD graphene
turned out to be helpful for this purpose, since large areas can be pattern with test
structures. The CVD graphene used here was grown and transferred by Kishan
Thodkar from the University of Basel.

We exploited the stability of various designs , as shown in Figure 4.8. Graphene
was shaped using an oxygen plasma in a reactive ion etcher (details are given in Ap-
pendix B.6). Two-terminal samples are presented in Figure 4.8a where the suspended
graphene flake is colored blue. Due to the exposure to UV light during the etching
process, deep trenches are seen in the LOR where the etching mask was defined. For
the design of the structure, it has to be taken into account that the LOR in the parts
exposed during the etching process will be developed. The stability of two-terminal
quadratic samples depends on their length L and width W. We therefore created a
pattern with various suspended junctions, having L and W ranging from 1 — 4 um.
The array shown in Figure 4.8b is repeated 12 times. Figure 4.8a gives a tilted view
on one of the arrays in Figure 4.8b, where all the junctions remain suspended. We
can therefore find the probability P for a junction of given L and W to collapse.
Results are shown in Figure 4.8c, where it becomes apparent that P mainly depends
on L. For L = 4 um, almost all junctions collapse, whereas the stability is high for
L < 3 pym. Wide junctions seem to be slightly more stable.

The stability of long junctions can be increased by attaching additional contacts.
For instance, the distance between the two contacts crossing graphene in Figure 4.8d
is 3 pm, but none of the designed structures collapsed (72 devices). This is true as
long as the width w of the side contacts is large enough, i. e. w > 500 nm. Adding
multiple terminals in different geometries, as it is e. g. done in Figure 4.8e-f, provides
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additional stability, such that structures as long as 80 um can be suspended (Figure
4.8g).

Figure 4.8.: Tests for mechanical stability after suspension of CVD graphene. a-b, An
array of square devices with varying width W and length L and in c, the
corresponding probability P that the graphene collapses after suspension.
In d-f we show that devices get stabilized by adding contacts and can be
suspended over up to 80 um (g).

The mechanical stability after suspension is a requirement for successful current
annealing, however additional complications start to become important. A systematic
study of successful current annealing is extremely involving. We can therefore discuss
only our experience with few distinct structures. For squared devices, the width
becomes important. Whereas narrow junctions tend to roll up easily, very wide
junctions (> 4 pm) get extremely hot during annealing, such that we even observed
melting of the Pd contacts in several cases (the melting temperature of Pd is =~
1550°C). Ideal dimensions are L = 2um and W = 2 — 3 uym. For multi-terminal
devices, the cooling-effect of the contacts needs to be considered. Residual dopants
tend to accumulate close to these contacts. However, in the middle of the samples
such devices can be cleaned with a very high yield. Additionally, we noticed that
bi- and few-layer graphene is more stable during current annealing and yields higher
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success rates. Furthermore, etched devices are less stable than devices where the
original shape of the exfoliated graphene flake is preserved.

4.8. Conclusion

In conclusion, we have shown that the method based on LOR can be supplemented
with local gating to realize complex structures. As the contacts are also suspended,
cleaning of the graphene flake with current annealing can be performed with a high
yield, and ultra-high mobilities can be obtained. Graphene can be supplemented with
bottom and top-gates to form p-n junctions, which are the building blocks of more
complex designs. Further abilities of the technique, such as side contacts and pre-
shaping of the flake were shown. We discussed the implementation of superconducting
contacts and finalized the chapter with information on mechanical stability.
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Ballistic interferences
in suspended graphene

In this chapter and Reference [67], we report on the characterization of ballistic
suspended graphene p-n junctions. By local electrostatic gating, resonant cavities can
be defined, leading to complex Fabry-Pérot (FP) interference patterns in the unipolar
and the bipolar regime. The amplitude of the observed conductance oscillations
accounts for quantum interference of electrons that propagate ballistically over long
distances exceeding 1 yum. We also demonstrate that the visibility of the interference
pattern is enhanced by Klein collimation at the p-n interface [36,37]. In addition to
our publication [67], we demonstrate Fabry-Pérot oscillations in a p-n-p device that
exhibit a visibility close to theoretically expected maximum and we discuss related
studies that were published after our work.

5.1. Gate map of two Fabry-Pérot cavities

We focus on a graphene FP cavity that consists of two segments: left and right.
We assume that in both segments the carrier density and its sign (n and p) can be
controlled independently by two gate voltages Viery and Viigne with identical efficiency.
Figure 5.1 shows in a schematic 2D conductance map the expected FP interference
pattern as a function of Vier; and Viigne. This map has four quadrants corresponding
to the four polarity configurations [92,93,112,113]. If the left and right segments have
the same polarity (n-n or p-p), the cavity is in the unipolar regime. In contrast, in
the case of opposite polarities (n-p or p-n), the cavity is in the bipolar regime. In the
unipolar regime only interferences of electrons bouncing back and forth between the
two outer contacts are expected (lower left and upper right panel in Figure 5.1).The
corresponding beating pattern evolves along Viefy = Vijgnt and is indicated by the
purple lines in the central panel of Figure 5.1. In the bipolar case, assuming a semi-
transparent p-n interface between the segments, the junction can be considered as
two cavities in series, each controlled by its respective gate. Resonances in the left
(right) cavity depend only on Vieg (Viight) and are represented by green (blue) lines.
Another distinct set of resonances in the bipolar regime can arise from charge carriers

44



5. Ballistic interferences in suspended graphene

+V

g N . pep———

Vleft

Vleft Vright left Vright

<
=) P
<

right

Figure 5.1.: Schematic representation of all possible resonance conditions (central
panel) in a FP resonator that consists of two segments of equal size (left
and right panels). The carrier density and carrier type (n or p) in both
segments can be tuned independently by Vier; and Vijgni. FP resonances
may occur due to reflection at the outer contacts or at an internal n-p (p-
n) interface between the two segments. The possible resonant conditions
are indicated by color-coded lines for the respective cases in the middle
part.

that tunnel through the central p-n interface in the middle and bounce back and
forth between the outer contacts. The corresponding pattern should evolve along
the condition kief; & Kright- In terms of gate voltages this condition corresponds to
Viett = —Viignt as indicated in Figure 5.1 by the orange lines.

5.2. Device architecture

To realize experimentally such a tunable FP cavity, devices were prepared by combin-
ing a mechanical transfer process [54] with a hydrofluoric acid-free suspension method
proposed by Tombros et al. [65]. A complete description of the fabrication process
is given in Chapter 4. Figure 5.2b shows a colored optical image of several junctions
realized within the same graphene flake indicated by white dashed lines. An SEM
micrograph of three p-n junctions is presented in Figure 5.2c. A voltage applied on
the bottom gate (Viigns, yellow electrodes in Figure 5.2b-c) will tune the charge carrier
density on the right side of a junction, while a voltage applied on the back gate (Vief)
will act on the left side. The device was measured in a *He cryostat at a temperature
of T'= 1.5 K. Differential conductance, G = dI/dV was measured by standard lock-in
techniques with a voltage bias of 100 uV at 77 Hz. Series and contact resistances
were not subtracted from the data.
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Figure 5.2.: a, Three dimensional illustration of the device architecture. The bottom-
gate is in gold and ohmic contacts in gray. The LOR resist appears in
light green. b, Optical picture of several p-n junctions. Scale bar, 5 pm
¢, Scanning-electron microscopy image of three graphene p-n junctions
next to each other. Bottom gates are shown in yellow and contacts in
gray. Scale bar: 1.2 pym.

5.3. Electronic transport characteristics

Figure 5.3 shows the main experimental result of this chapter. In part a, the differen-
tial conductance between the two contacts as a function of Vyigny and Viegs is presented
for a junction of length L = 1.2 pym and width W = 3.2 um. As expected, this 2D
plot reveals four regions indicated by the labels p-p, n-n, n-p and p-n correspond-
ing to different carrier types in the two sides of the sample. The borders between
the unipolar and bipolar regions coincide with the charge neutrality point of the left
and right graphene segments (indicated by blue and green arrows respectively). The
border lines between the different regions are not perpendicular to each other for
two reasons. First, both the back gate and the bottom gate are at a distance to
the graphene sheet that is comparable to the length of the device. This leads to a
cross coupling between the two gates i.e., the right gate also affects the left graphene
segment and vice versa. Second, the back gate (left gate) is below the bottom gates
and therefore strongly screened, leading to a much weaker gate coupling from the
back gate to the graphene than from the bottom gate.

A slice through the 2D conductance plot along the white dashed line is shown in
Figure 5.3b as a function of carrier density n which we estimated from a parallel
plate capacitor model. A positive sign refers to the n-region and a negative sign
likewise to the p-region. A change in gate-voltage of 1V along the white dashed line
induces a change in density of n ~ 9 -10° cm™2. The graph exhibits a remarkably
sharp conductance dip, corresponding to the charge neutrality in the entire graphene
sheet. The fact that this dip also occurs close to zero gate-voltage reflects the high
quality of the graphene sample. The conductance saturation and the asymmetry at
high carrier density suggest an n-type doping of the graphene below the palladium
contacts [114,115]. With Equation 3.4 we estimated a mobility of u ~ 150-10% cm?/Vs
at n = 4-10° cm™2. The junction reaches a minimal conductivity of omi, =~ 262 /h
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Figure 5.3.: a, Two terminal differential conductance G = dI/dV as a function of
Viight and Viegg at T' = 1.5 K, demonstrating independent control of car-
rier type and density in the left and the right side of the graphene sheet.
Labels in each of the four conduction regimes indicate the carrier type. b,
Conductance as a function of charge carrier density n along the dashed
white line of (a). ¢, Zoom into the transconductance map presented,
in (d), around the charge neutrality point. d, Transconductance ob-
tained from the numerical derivative with respect to Viigns of (a) em-
phasizing conductance oscillations. Color-coded lines link the observed
conductance oscillations with the FP interference pattern expected from
the simple picture of Figure 5.1: light blue lines in the unipolar regime,
green and blue lines for interferences on either side of the graphene in the
bipolar case and orange lines for full length interference in the bipolar
regime.

close to the ballistic limit of 4e?/7h [79] indicating a weakly disordered graphene
sheet [64,84].

5.4. Signatures of quantum interferences

The most striking features in the conductance map are, however, the oscillation pat-
terns visible in both the unipolar and bipolar configuration. To emphasize these
features, the transconductance dG/dViight, numerically calculated from the data in
Figure 5.3a, is presented in Figure 5.3d. The different interference patterns expected
from the simple picture of Figure 5.1 are well revealed in this map. In the unipolar
case, one global interference pattern is visible (highlighted in a small region by light-
blue lines) corresponding to FP interferences of electron waves that bounce back and
forth between the outer metallic contacts. In the data the density separation equals
An = 10'° cm~2 between constructive interference peaks at around n = 10 cm™2.
Based on the equation n = sgn(E)k?/7 and the resonance condition AkLcqyity = T
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we derive the relation An = 2v/mn/Lcayity. This yields an effective cavity length
Leavity = 1.1 pm in good agreement with the geometrical length L = 1.2 ym of the
junction. In the bipolar regime at high doping two clear oscillation patterns are visi-
ble. One pattern is mainly tuned by Ve, indicating that resonances arise from the
cavity created at the right side of the p-n interface. This pattern is highlighted by
blue lines in Figure 5.3d. The other pattern marked by green lines is predominantly
tuned by West, indicating that it originates from the cavity formed at the left side
of the p-n interface. The area in the transconductance map marked by the dotted
square is enlarged in Figure 5.3c. It shows yet another oscillation pattern (orange
lines) which follows gates values such that nies = —nyigne. With an interference pe-
riod An ~ 3-10% cm™2 at n = 10'° cm™2 the cavity length is Leavity =~ 1.2 pm. We
conclude that these oscillations must arise from quantum interference over the full
device length, i.e. charge carriers that tunnel through the p-n interface, changing
their character from n to p and back.

We emphasize at this point that there is no evidence of disorder in the transcon-
ductance plot of Figure 5.3d. All patterns are regular and can be ascribed to distinct
FP cavities, some of which extend in length over the whole device. The occurrence
of FP interference patterns implies that the phase-coherence length exceeds twice the
system size. Random disorder would generate further interference patterns, but these
are never regular. The fact, that we can deduce from the interference pattern effective
cavity-lengths from contact to contact, and that we do not see any irregular features,
are strong signs for ballistic coherent transport over distances exceeding 2 pm.

5.5. Simulation and comparison with
experiment

To confirm the ballistic origin of the observed interference patterns, the charge trans-
port through the graphene device is simulated in the phase-coherent ballistic regime
using the actual geometrical parameters of the device. The computed conductance
is shown in Figure 5.4d, which presents a purely ballistic tight-binding transport
simulation using a real-space Green’s function method within the Landauer-Biittiker
formulation [116] combined with the quantum capacitance model for carrier density
computation [42]. Since no dephasing or energy averaging has been incorporated, the
obtained conductance modulations show the maximal possible visibility for this device
geometry. In contrast to the method presented in Chapter 2.3 the two-dimensional
graphene flake was reconstructed using the Bloch theorem on a nanoribbon. The
correspondence between theory and experiment is remarkably good and supports the
picture of ballistic motion drawn from experiment.

As pointed out before, we do see all the expected FP resonance patterns due to the
formation of distinct cavities having different doping and different types of mirrors.
However, the strength of the oscillation pattern (the visibility, as defined in Equation
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Figure 5.4.: a, Schematic view of charge carrier configuration at the unipolar point
(Vieft, Vrignt) = (—15,—10)V indicated by a blue square in (d). b,
Calculated charge carrier profile at this point, and ¢, associated sim-
ulated transmission function wversus incident angle 6. d, 2D conduc-
tance map obtained by tight-binding simulation as a function of Vg
and Vijgnt. €-g, Same as a,b,c but for parameters at the bipolar point
(Viefs, Vright) = (—15,2)V indicated by a green square in d.

2.28) varies in different regions. This is linked to the reflection properties of our
mirrors, determining the cavity finesse. Cavities can be created either by sharp or
smooth unipolar or bipolar potential steps which have been compared in Chapter
2.2.3.

Suppression of backscattering due to pseudospin conservation implies that effec-
tively all unipolar potential steps are highly transmissive for almost every incident
angle [117] (only electrons with incident angles close to m/2 have an appreciable
backscattering probability). Cavities created by unipolar interfaces have consequently
a small finesse and will display small visibilities.

We turn now to the reflection properties of a p-n junction. We assume that the
carrier densities on both sides are of opposite sign but equal in magnitude and that
kr denotes the wavevector in the homogeneous region outside the junction. In the
case of a sharp p-n interface with kpd < 1 the transmission probability is given by
T(0) = cos®(#) [38] as shown in Chapter 2.2.2. The corresponding cavities have a
small finesse for electron waves over a large range of incident angles around § = 0 and
will therefore have a small visibility (see Chapter 2.2.6). The situation is different for a
smooth p-n junction. Since the charge carrier density evolves smoothly through zero,
essentially all electron trajectories are adiabatically refracted off the interface (total
reflection) except for the normal one, which can Klein-tunnel through the junction [36,
38]. The transmission probability through such a smooth p-n junction is given by
the expression T(f) = exp(—mkrdsin? ) (Equation 2.23) which also predicts perfect
transmission at normal incidence. Similar to the sharp interface one could expect the
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visibility of the interference pattern to be small. However, Klein tunneling does not
only yield full transmission at normal incidence but also leads to a strong collimation
in transmission. Therefore, almost all trajectories that are incident under a small
angle (6 # 0) are exponentially suppressed and do not add to the total conductance.
This suppression of the background current increases the overall visibility. Although
the finesse vanishes for § = 0 the contribution from small angles (with § # 0) yield a
higher visibility than for unipolar or sharp bipolar cavities.

5.6. Visibility of the interference

Based on the preceding discussion, we now compare the observed visibilities for two
particular cases in a) the unipolar and b) bipolar regime at gate voltages (Vies, Viight) =
(—15,—10)V and (—15,2)V, respectively. These two points are marked in Figure 5.4d
by light-blue and green squares. For both cases, the reflection properties at the con-
tacts are important parameters and need to be known. The full comparison of the
simulation with the experiment reveals that the contacts dope graphene as n-type.
In addition to this doping the simulation includes a small mass term in the contacted
region [118]. For the unipolar case, the simulation yields the charge carrier density
profile plotted in Figure 5.4b. In this configuration the interior of the FP cavity is
p-type with mirrors created by the p-n interfaces close to the Pd contacts. The latter
can be considered to be relatively sharp due to the rapid decay of the contact-induced
screening potential [44]. Consequently, these interfaces are almost transparent and
give rise to low finesse for the FP interferences as found in the experimental and the
numerical conductance map with respective average visibilities of 0.5% and 2%.

In the bipolar case the simulation yields the carrier density profile plotted in Fig-
ure 5.4f. It presents an extremely smooth p-n interface created electrostatically in the
middle of the graphene sheet. The two cavities created on the right and left side will
present a much higher finesse than in the unipolar configuration which consistently
leads to higher visibilities in both the experimental and numerical conductance maps.
The average visibility for the experiment is around 5%, whereas the simulation yields
20%. The calculated angle dependent transmission probabilities for both regimes are
plotted in Figures 5.4c and g respectively, which clearly demonstrate that the visibil-
ity difference between the unipolar and bipolar regime is a direct consequence of the
exponential collimation of Klein tunneling [36,38,117].

5.7. Increased finesse in a p-n-p cavity

The finesse of the cavity is further increased in a structure that exhibits two smooth
p-n interfaces. This is realized in a p-n-p geometry, where the electrons in the middle
cavity will oscillate between two smooth interfaces. We fabricated such a device
using two sets of bottomgates that can be tuned independently. In Figure 5.5a its
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Figure 5.5.: a, 3-dimensional design of a device featuring a p-n-p junction. The
middle gate and the two outer gates can be tuned independently. b,
Fabry-Pérot color-scale map where the conductance as a function of inner
(Vinner) and outer (Vouter) gate voltage is shown. The strongest oscilla-
tions are parallel to the inner gate. They are sketched in c. d, A slice
taken in b showing the strong oscillations in the middle part. These are
replotted in e as a function of kpL/m yielding a visibility close to the
analytically expected 20% and a periodicity of kpL/7 for larger values
of k. The first oscillations do not follow the periodicity since the cavity
size L is changing drastically there.

architecture is shown in a three-dimensional image. The bottomgates are 600 nm
wide and 600 nm spaced. The graphene flake is suspended over 3 pm.

With current-annealing we could achieve an extraordinary clean material, as can
be seen in Figure 5.5b. The interferences that occur in the unipolar regime are due to
electron trajectories bouncing between the contacts, showing 3 pm ballistic transport.
In the conductance map the lines parallel to the Dirac-point of the inner region are
much more pronounced than the lines parallel to the outer Dirac-point. This already
reveals that the Fabry-Pérot etalon formed in the inner cavity (Figure 5.5) has a higher
finesse than the outer cavity. Indeed the visibility we could measure in this device
exceeds the numbers measured in the p-n geometry by far. In Figure 5.5d we show a
slice along the black dashed line in the conductance map. This data is divided by its
background conductance (G) and plotted as a function of kpL/m in Figure 5.5e. The
experimental data is compared to values obtained from the analytical Equation 2.26.
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Despite the simplicity of the model, the experimental data matches the theory well (as
it has been stressed also in Chapter 3.2.2). We therefore demonstrate that scattering
and transmission at our smooth p-n junctions is close to ideal. The discrepancy at
small kp L /7 originate from the fact, that the cavity size is strongly changing at small
gate voltages, which is not taken into account in the analytical formula. It has to
be noted that the visibility of the interference is with 20%, best to our knowledge,
the highest reported so far for graphene p-n cavities. Due to Klein tunneling, a large
background current (80% of the conductance) persists, but this current is strongly
collimated. Since reflection and transmission at the interface are close to ideal we
can a conclude also, that our smooth p-n junction acts as very efficient angular filter
(compare to e. g. Figure 2.9).

5.8. Related studies

Since the release of the herein discussed findings [67], related results have been pub-
lished. At the same time and in a similar geometry, Grushina et. al. [66] demonstrated
tunable Fabry-Pérot oscillations in p-n junctions. As an additional information, tem-
perature dependence of the Fabry-Pérot oscillations revealed, that the oscillation
pattern washes at T' = 40K or 3.5meV. This energy scale is in agreement with the
particle in a box picture. The visibility and collimation were, however, not in the
focus of Reference [66].

Later, longitudinal and transverse interference patterns have been revealed by
Fourier analysis technique and shot noise detection in Reference [119]. The mea-
surements were performed on a suspended graphene device with large aspect ratio
W/L = 4, and the p-n junction was created by the contact doping solely.

Fabry Pérot oscillations have been observed in encapsulated bilayer graphene by
Varlet et. al. [120]. It was revealed that in gapped bilayer graphene, the Berry phase
can be tuned, and can, in principle, take any value between 0 and 2w. One could
expect that high finesse cavities can be created with bilayer graphene due to the sup-
pression of the zero incidence angle (anti-Klein tunneling). The demonstrated oscil-
lations however occured at larger displacement fields where a gap in bilayer graphene
is opened and the transmission for zero incidence is no longer zero. The observed
visibility in this case is of the order of 1%. It has to be taken into account however,
that the topgate in this device was much closer to the graphene, leading to a much
sharper p-n interface. In our experiments on bilayer graphene, even in very clean de-
vices, we were never able to observe any Fabry-Pérot oscillations for the low densities
and displacement fields achievable in our devices.

By studying a trilayer graphene (TLG) Fabry-Pérot interfercometer, a large visi-
bility (20%) was demonstrated in a certain regime [121]. The Bernal-stacked TLG
exhibits single- and bilayer ’flavor’ which can be addressed by out-of plane electric
fields. The conductance oscillations were achieved in an interflavor regime where the
leads exhibit monolayer-like holes and the cavitiy bilayer-like electrons.
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5. Ballistic interferences in suspended graphene

A standing wave pattern in a circular p-n junction has been demonstrated re-
cently [122] and named after the acoustic phenomena of whispering gallery modes.
The p-n potential in this case was created by an STM tip. Furthermore, ballistic
interference patterns where studied in high-quality encapsulated graphene, contacted
with superconducting electrodes of MoRe [109], Nb [110] or Al [111] demonstrating
oscillating supercurrents with large mean free paths.

5.9. Conclusion

In conclusion, we have fabricated and characterized clean suspended graphene that
allowed the formation of p-n junctions. Fabry-Pérot type conductance oscillation
patterns visible in both unipolar and bipolar regimes point to an extremely long mean
free path and phase-coherence length > 2 um accessible in these devices. Moreover we
have shown that the visibility difference between the unipolar and the bipolar regime
is due to Klein collimation occurring at a smooth p-n interface in graphene. The
visibility could be enhanced from 1% between two sharp interfaces to 5% by adding
one smooth interface and to above 20% for two smooth interfaces. This last value is
close to ideal, demonstrating thereby that reflection and transmission at such a p-n
interface are well controlled and that the interface can be used as a collimator.
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Snake Trajectories in
Ultraclean Graphene
p-n Junctions

Snake states are trajectories of charge carriers curving back and forth along an inter-
face. There are two types of snake states, formed by either inverting the magnetic
field direction or the charge carrier type at an interface. Whereas the former has
been demonstrated in GaAs-AlGaAs heterostructures, the latter has become con-
ceivable only with the advance of ballistic graphene where a gapless p-n interface
governed by Klein tunneling can be formed. Such snake states were hidden in previ-
ous experiments due to limited sample quality. Our extremely clean devices however
allow the observation of these states. In this Chapter and Reference [123] we dis-
cuss magneto-conductance oscillations due to snake states in a ballistic suspended
graphene p-n-junction which occur already at a very small magnetic field of 20 mT.
We will show that the visibility of 30% is enabled by Klein collimation. Our finding is
firmly supported by quantum transport simulations. We demonstrate the high tun-
ability of the device and operate it in different magnetic field regimes. In Section 6.6
we go beyond Reference [123] and analyze a resonance pattern that is formed by sta-
ble trajectories bouncing off the boundaries of a p-n cavity in weak magnetic field.
Such cavity resonances obey the Bohr-Sommerfeld quantization rule and resemble
scar-states.

6.1. Evolution of electron trajectories in
magnetic field

A magnetic field fundamentally modifies the transport properties of an electronic
conductor by acting on its charge carriers via the Lorenz force. The most prominent
magnetotransport effect is the quantum Hall effect in a two-dimensional electron gas
(2DEG). A strong perpendicular magnetic field forces the charge carriers into one-
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6. Snake Trajectories in Ultraclean Graphene p-n Junctions

dimensional conduction channels that flow along the edges of a sample. At moderate
magnetic fields however electron trajectories can be understood in a quasiclassical
picture where the Lorenz force bends charge carriers into cyclotron orbits. At the
boundary of a conductor charge carriers are not localized and can propagate via
so-called skipping orbits. Magnetic focusing experiments [10,46] represent a direct
proof of the skipping orbit picture. In such experiments an increase of conductance is
observed if the distance between two contacts is an integer multiple of the diameter
of a cyclotron orbit. One condition for the observation of such trajectories is ballistic
transport over the relevant device dimensions. This has limited the observation of
skipping orbits to the cleanest available semiconductor samples.

=
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Figure 6.1.: Evolution of electron states in increasing magnetic field and
design of a graphene p-n junction. a, A two-terminal graphene de-
vice consisting of a hole (blue) and an electron (red) cavity is sketched.
By applying a weak field, the electron trajectories in the p- and n-cavities
bend, leading to dispersing Fabry-Pérot resonances. b, The field is in-
creased until the cyclotron orbit becomes comparable to the cavity size,
where resonant scar states can occur. c, The field is further increased
and transport is still described by quasiclassical cyclotron orbits. Snake
states along the p-n interface form. d, Finally, quantum Hall edge states
propagate in opposite direction in the p- and n-region at higher fields. e,
3D design of the measured device. The SiOg substrate is colored in blue
and the bottom-gates in gold. The contacts, supported by the lift-off
resist LOR (green) are colored in gray. f, Scanning electron microscope
image of a device similar to the measured sample. The graphene is col-
ored in blue and the bottom-gates in gold. The scale bar corresponds to
1 pm.

The possiblity to form gap-less p-n interfaces (Chapter 2.2) in ballistic graphene
(Chapters 3 and 5) gives rise to new quasi-classical trajectories in magnetic field: The
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6. Snake Trajectories in Ultraclean Graphene p-n Junctions

snake states. If electrons that propagate via skipping orbits encounter a p-n interface,
they turn into snake states. These states consist of alternating half circles with
opposite chirality and they transport current along the interface. Similar snake states
have first been realized in GaAs/AlGaAs 2DEGs by defining regions of alternating
magnetic field direction [124]. These states share the condition of commensurability
(similar to the above described magnetic focusing experiments) with p-n snake states
but they do not propagate along a single and tunable interface. Snake states in
graphene p-n junctions were claimed to have been observed in disordered substrate
supported samples [125] but the experiment lacked of direct evidence for snaking
trajectories.

In Figure 6.1a-d we illustrate schematically how trajectories under increasing per-
pendicular magnetic field evolve in such a device. Figure 6.1a describes the low-field
situation where transport is still dominated by Fabry-Pérot oscillations with slightly
bent trajectories [37]. As the field is increased, resonant scar states (Figure 6.1b)
may occur, as observed in semiconductor quantum dots [126]. At higher fields (Fig-
ure 6.1c), snake states at the p-n interface govern the electronic properties. Finally
(Figure 6.1d), the system enters the quantum Hall regime [11,127] where transport
is dominated by edge states and Landau level mixing at the p-n interface can oc-
cur [93,128]. Even though this Chapter is focusing on snake states, we will discuss
the phenomenology of the mentioned magnetic field regimes. By doing so we present
an integral picture of graphene p-n physics in magnetic field.

6.2. Device Characterization

Figure 6.1e shows the design of the measured device and Figure 6.1f a scanning
electron microscope picture of a similar sample. In a suspended 2 x 2 ym graphene
sheet a p-n junction is formed by applying different voltages on the left (Veg) and
right (Viignt) bottom-gates, resulting in different charge carrier concentrations njef
and nyignt. The device and its fabrication is similar to the previously discussed sample.

In the following we characterize the measured device in the zero, low- and high-field
regimes. Figure 6.2a shows a two-dimensional color map of the electrical conductance
G(Vright, Viett). As soon as a p-n interface is formed, G is lowered drastically. Regular
Fabry-Pérot resonances in the left /right cavity are visible as oscillations perpendicular
to the zero density line in the left /right cavity (horizontal/vertical white dashed line
in Figure 6.2a, indicating ballistic transport [66,67]. We extract the cavity length
L used in Figure 6.2d-e from the spacing An between resonant Fabry-Pérot peaks
in the bipolar situation An = 2,/7n/L and obtain L ~ 0.8 um which is consistent
with the designed cavity. The inset in Figure 6.2a is a slice along the pp-nn diagonal
(blue dashed). In Chapter 3, we estimated the mobility to be p = %g—z ~ 470 - 103
em?V~1s™! and the residual doping 6, = 5-10% cm™2.

In Figure 5.1b we show cuts along the pp-nn diagonal at different magnetic fields
B and obtain quantum Hall plateaus at G = Gy - v, where v = 2,6, 10, ... is the
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6. Snake Trajectories in Ultraclean Graphene p-n Junctions

B=200mT

Figure 6.2.: Device characterization in the Fabry-Pérot and in the quantum
Hall regime. a, Two-terminal conductance as a function of left and
right gate voltage shows regular Fabry-Pérot oscillations at zero magnetic
field. The inset reveals the narrow Dirac dip along the pp-nn diagonal
(blue dashed line) from which a mobility of p =~ 470 - 103 em?V~1s7!
is deduced. b, Cuts along the same diagonal at different magnetic field
strengths exhibit the expected quantum Hall plateaus at 2,6,10¢?/h.
The G = 2e?/h plateau is already visible at 60 mT. ¢, The color plot as a
function of Viegy and Vijgne at 200 mT shows quantum Hall plateaus in the
unipolar region. d, The numerical derivative dG/dV (in arbitrary unit) is
recorded as a function of gate voltage V and B displaying the dispersion
of the Fabry-Pérot oscillations. V is the magnitude of gate voltage in the
situation of antisymmetric charge densities niety = —Nright (red dashed
line in a. i. e. the np-pn diagonal). The white dashed curve indicates
the line along which the cyclotron radius R, is equal to the cavity length
L = 0.8 pm, the region R, < L is darkened and will be discussed in the
main text. e, The measured pattern is reproduced by a tight-binding
quantum transport calculation based on the designed geometry of the
measured device. The small inset shows a resonant electron trajectory at
low magnetic field. Constructive interference occurs if the phase along
this trajectory is an integer of 2w, leading to the numerical solution of
the yellow lines.
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6. Snake Trajectories in Ultraclean Graphene p-n Junctions

filling factor [11,127] and Gy = e2/h is the conductance quantum. We subtracted
a contact resistance of 1.2 k). Even at fields as low as 60 mT, the v = 2 plateau
is visible. The colorscale map in Figure 6.2c taken at 200 mT shows that plateaus
develop in the unipolar region with conductance values given by the lowest number
of edge modes in the left or right cavity, i. e.. G = G- min(Vright, Yeft) = 2,6, 10 e?/h.
This observation compares well to experiments of Reference [93], even though we
apply only 0.2 T instead of 4 T. In the bipolar region the conductance stays well
below 2 €2/h. In the case of Reference [93], higher Landau levels mix, leading to
fractional conductance values in the bipolar situation. Due to the smoothness of the
p-n interface in our case, edge states with higher filling factors do not come close
enough to the p-n interface to mix, therefore we observe G' < 2 €% /h.

In a further step we study the dispersion of the Fabry-Pérot interference pattern
in low magnetic field [37]. Figure 6.2d shows the numerical derivative dG/dV as
a function of B and V, where V represents the magnitude of gate voltage in the
situation of antisymmetric charge density (red dashed line in Figure 5.1a, i. e. the n-
p-p-n diagonal). In this configuration the device consists of two Fabry-Pérot cavities of
equal length L ~ 0.8 pm. The darkened region where the cyclotron radius R, < L will
be discussed later. In Figure 5.1e a tight-binding transport calculation is shown which
reproduces the measured interference pattern very well (for details see Reference [45]).
We highlight the quality of the measured graphene and the ability of the simulation
to capture the complex oscillation pattern of this micron-sized system in magnetic
field.

The dispersion of the Fabry-Pérot oscillations can be described by bent electron
trajectories such as the one sketched in the inset of Figure 6.2e [37,67]. The yellow
lines are numerically obtained from solving the resonance condition A® = 2j7, arising
from the path difference between the directly transmitted and twice reflected trajec-
tories within the p cavity as sketched in the inset of Figure 6.2e, which is found to be
the major interference contribution. For such a simplified model the phase difference
is given by A® = (I)WKB+(I)AB+(I)Berry+q)07 where Owikp = \/k%v — (63[1/277,)2 2L is
the kinetic WKB-phase,! ®ap = 6A - eB/h is the Aharanov-Bohm phase” due to the
flux enclosed by the bent orbit segments, ®perry = —7(1— e~ B/BZ ) is the Berry phase,
and ¢ = 7 is a constant phase due to reflections off the two p-n junction interfaces of
the p cavity (smooth at middle and sharper at the contact side). Here at the critical
field B,, closed loops become dominant in transport, such that the Berry-Phase is
picked up.? The contours sketched in Fig. 2e correspond to j = 1,2,--- ,8.

'"We calculate kr as the numerical average of /7|n(x,y = 0)| within the p cavity. The cavity size
L is numerically determined and is about half of the flake length L/2 = 840 nm.

2The loop area is given by 64 = R2(¢ — sin ¢) with ¢ = 2arcsin(L/2R.), and R, = hkr/eB.

3The form of the Berry phase follows from the consideration of [129] with the critical field estimated
by B. = (2hkr/eL)y/1 — T, where the critical transmission value T, is a parameter close to one
and does not significantly influence the shape of the contours; 7. = 0.95 is chosen.
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Figure 6.3.: Parabolic-like conductance oscillations as a signature of snake

states. a, Charge carrier trajectory (white) along a sharp p-n junction
in perpendicular magnetic field starting at the gray cross, where R, is
the cyclotron radius and n(z) is the electron density. b, At lower p- and
n-density R, is reduced. In contrast to a, the trajectory results in current
flow towards the right contact. ¢, Curves of constant R, as a function of n
and B. The continuous lines are given by the condition that the cyclotron
diameter 2R, is commensurate with the sample width W = 2 um. Snake
states occur between the green dashed 2R, = W and the red dashed
R. = I line. The black dashed line indicates up to which field transport
is dominated by bent Fabry-Pérot patterns (dark gray area). In the red
area scar states can occur. Below the red dashed line R, is smaller than
the magnetic length [ g and Landau-levels start to dominate the transport
(light gray area). d, Conductance as a function of antisymmetric gate
tuning V and magnetic field is shown in the lower panel, and its derivative
dG/dB (in arbitrary unit) in the upper panel. Striking lines of high and
low conductance with a parabolic like B-dependence can be observed. e,
In a smooth p-n junction (here: linear n(x)) the cyclotron orbits become
elongated along the y-direction due to the additional electric field caused
by the density gradient. f, dG(Viight, Vietr)/dV at 120 mT. The blue
dashed lines in d and f are equivalent. The inset shows lines of constant
electric field E; at the p-n interface as a function of Vijgnt, Vier; taken
from electrostatic simulations.
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6.3. Measurement of snake states

We now discuss the regime where snake states emerge. In Figure 6.3a a snake state at
a sharp p-n junction is sketched. Consider a charge carrier trajectory starting at the
gray cross with momentum k in —z direction. Due to the magnetic field the trajectory
is bent towards the p-n interface within the cyclotron diameter 2R, = 2hk/eB =
2hy/n7/eB. If the trajectory hits the p-n interface, the hole will be transmitted to
the n side with high probability due to Klein tunneling [38]. At the upper edge of the
sample, the snake trajectory scatters at the left side, resulting in a current towards
the left contact. At lower n, R. is reduced. As sketched in Figure 6.3b, the snake
trajectory scatters to the right at the upper edge, resulting in a net current towards
the right contact. With this mechanism one expects conductance oscillations that
depend on B and n, and constant conductance along curves where R, is constant. In
Figure 6.3c we display calculated functions n(B) for constant R.. Snake states occur
once the cyclotron diameter 2R, is smaller than the sample width W (green dashed
curve) and can be described by quasiclassical trajectories as long as R, is larger than
the magnetic length i = \/h/eB (red dashed line). In the regime W > 2R. > Ip
additional parabolic lines show the condition for which the number of oscillations
in the snake pattern is fixed and commensurate with W, i. e.. m 2R, = W with
m=1,23,....

In Figure 6.3d we show the measured conductance G(B,V) (bottom) and its nu-
merical derivative dG/dB (top). The measurement exhibits strong oscillations that
follow parabola-like curves. We notice that the oscillations occur on a background of
strongly decreasing conductance from G ~ 6 €2/h to G < 2 €%/h. The steep decrease
indicates that the transport becomes dominated by the low density region close to
the p-n interface and this happens when 2R, < W.

In a real p-n interface the density does not sharply jump from the p to the n
side but evolves smoothly. An electron trajectory in such a smooth p-n interface is
sketched in Figure 5.2e. Here the density gradient leads to an electric field E, and
its interplay with the perpendicular magnetic field results in the so-called ExB drift
(here along y), leading to elongated cyclotron orbits. The condition Ry = const. can
be studied in the measurement of Figure 6.3f where we show dG(Viight, Viett)/ dV at
B =120 mT. The measured interference pattern follows curves of constant E, at the
p-n interface (obtained from electrostatic simulations) as shown in the inset.

6.4. Detailed analysis

So far we have seen that the oscillation pattern occurs in the regime where snake
states are expected (i. e.. 2R. < W) and that the oscillations are related to transport
along the p-n interface. We now present a quantitative comparison between exper-
iment and theory. Figure 6.4a shows a quantum transport simulation of G(B, V)
and dG(B,V)/dV based on a scalable tight-binding model [45] that fully takes into
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account the device geometry. The simulation compares very well to the measurement
shown in Figure 5.2d. The parabola-like patterns are reproduced and a similarly
steep decrease of conductance is obtained. In Figure 6.4b a slice following the white
dashed line in Figure 6.4a is shown. The visibility AG/G of the oscillations reaches
30% in theory and experiment and is enabled by the strong Klein collimation at the
smooth p-n-interface.

02 B=90mT, V=-4.8V B=90mT, V=-4.4v B=90mT, V=-4.04V

B (T
Figure 6.4.: Tight-binding transport calculation reproducing the experi-
mental results and local current density profiles revealing the
snake states. a, Tight-binding calculation of conductance G(B, V) (bot-
tom) and its numerical derivative dG/dB (top, in arbitrary unit). The
parabola-like lines seen in experiment are well captured. b, G(V) along
the white dashed line in a at B = 90 mT. (¢, Calculated xz-component
of the local current density distribution, j,, for electrons injected from
the left contact with a small DC-offset at B = 90 mT and V = —4.8
V (black dashed circle in b). The complex resonance pattern in the
left cavity consists of “bubbling” trajectories that do not contribute to
conductance. At the p-n interface (dashed line) an alternating current
pointing to left (red) and right (blue) is observed. d-g, Current density
profiles at different V corresponding to the circles in b. As a guide to the
eye, a snaking trajectory following j, is added. From one conductance
maximum to the next (i. e.. ¢ to g) one snake period is added. The snake
state in e and f corresponds to a conductance minimum and c,d,g to a
maximum.

Next we apply the Keldysh-Green’s function method to extract local current density

profiles (see Appendix A.2) at high and low conductance along this line. In Figure 5.3¢
we show the z-component of the current density j,, taken at V' = —4.8 V (black
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dashed circle in Figure 5.3b). The current is injected from the left contact using
a small DC offset. In the left cavity a complex resonance pattern appears, given
by so-called "bubbling" trajectories [130] which are reflected before reaching the p-n
interface and do not contribute to current between the contacts. The pattern relevant
for transport is located at the p-n interface (dashed line). We observe that j, changes
sign along the p-n-interface and that the blue and red regions penetrate the dashed
line, indicating that transport is dominated by Klein-collimated snake trajectories.
As a guide to the eye we added a curve in Figures 6.4d-g that follows the snake state.
This is done for different V' values for which G is maximal /minimal at a fixed magnetic
field of 90 mT (colored circles in Figure 6.4b). In Figure 6.4d for example, the current
density profile corresponds to a conductance maximum where the current points to
the right at the upper edge of the p-n interface. One period is added by changing
V from one maximum to the next. More current density profiles evolving with V at
fixed B = 90mT are shown in Supplementary Movie 1 of Reference [123]. By tracing
along one of the parabolic-like patterns, the current density profile of the snake state
stays constant (an example is given in Supplementary Movie 2 of Reference [123]).

The conductance oscillates as a function of the ratio W/2R,;, the exact snake period
corresponding to 4R, is, however, difficult to determine using quasiclassical trajec-
tories, since current is injected from many points under various angles resulting in a
complex cusp structure similar to what was predicted in References [131-134]. The
excellent agreement between measurement and calculated conductance for which we
could determine local current density profiles clearly indicates that the oscillations
result from snake state trajectories.

To summarize, we investigated magneto-conductance of a ballistic graphene p-n-
junction in the different magnetic field regimes. We have observed resonance patterns
occurring in the intermediate quasi-classical regime in experiment and theory which
result from the formation of snake states at the p-n interface. Among many other
possibilities these states can be used to guide electrons on predefined paths with a
high efficiency even at very low magnetic fields. This could be used to guide electrons
away from sample edges to suppress uncontrolled momentum or spin-scattering. The
directional scattering at the sample boundaries could be used to implement multi-
terminal switches [133,135]. Furthermore, the similarity between Andreev reflection
and Klein tunneling is stressed in theory [136] leading to a correspondence of snake
states and Andreev edge states which are of theoretical [102] and experimental [137]
interest. Our work points out that snake states are highly tunable, occur at low fields
and that ballistic graphene p-n-junctions in magnetic field reveal novel and intriguing
phenomena.

6.5. Related studies

At the same time as the here presented work about snake states was published [123],
ballistic snake states have been revealed in hBN encapsulated graphene in Refer-
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ence [138]. The therein presented data was recorded at much higher fields (B > 1T)
and carrier densities, which allowed the observation of snake states in a more dis-
ordered device (u = 40,000cm?V~!s71) on a longer scale. Additional temperature
dependence could show that the conductance oscillations are stable up to 120K sup-
porting that they are due to snake states rather than quantum interferences. In
contrast, we supported our claims by tight-binding simulations, which are possible
for the lower energy and B-field only in our case. The p-n interface has to be con-
sidered as a sharp in the case of Reference [138] since R. is much larger than the
smoothness of the p-n junctions, at least for the first few oscillations. For this rea-
son, the magneto-conductance oscillations follow parabolic lines in their case since
the cyclotron orbits are not elongated. For the same reason, the visibility of the in-
terferences is much lower, i. e.. AG/G ~ 1% compared to AG/G ~ 30% in our case.
This is on one hand due to the fact that the sharp p-n interface is rougher, washing
out the conductance oscillations. On the other hand, the smooth p-n interface in
our geometry provides strong filtering, enhancing the visibility by angular selection
(similar to Chapter 5). In terms of electron-optics, we combine an array of lenses
and filters along the p-n interface. The p-n collimators (or filters) correct for the
imperfections of the magnetic lense.

Parabolic magneto-conductance oscillations have been further observed in p-n-p
junctions in the high-magnetic field regime B > 2T [139]. They were attributed to a
Aharanov-Bohm like interference of edge states that travel on the left and right side
of a p-n interface.

6.6. Conductance fluctuations related to
Quantum Scars

We will now discuss a resonance pattern observed in the p-n cavity at weak magnetic
field that has not been in focus of our publication [123]. Since we find that the
pattern follows the Bohr-Sommerfeld quantization and that the corresponding closed
loops are bouncing at the edges of the cavity we will discuss the possible relation to
Quantum Scar states. These scar states have been discoverd in 1979 by McDonald and
Kaufman who studied trajectories of a free particle moving in two dimensions with
stadium-shaped boundaries [140]. They discovered that the eigenstates are highly
concentrated on few orbits which are classically instable. Such orbits form due to
quantum interference and are called scar states [141]. They obey a Bohr-Sommerfeld
quantization rule [142], i. e. the accumulated phase is A® /27w = % $p-dq = N, where
N is an integer. In perpendicular magnetic field, p = hk + eA, and for an orbit of
length L and area S, the interference condition is:

k-L B-S
N="
o + oo

(6.1)
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where ¢¢ is the magnetic flux quantum.

Experimental manifestations of scarred states were reported in microwave cavi-
ties [143,144] and in resonant tunneling diodes in large tilted magnetic fields [145,146].
Furthermore, in ballistic 2DEGs the stadium-shaped geometry was rebuilt. Scar
states were identified by contacting the stadium with QPCs and measuring conduc-
tance fluctuations as a function of a weak perpendicular magnetic field [147]. With
the rise of graphene, the question whether scar states would be also present in systems
described by the Dirac rather than the Schrédinger equation was posed. By modeling
a stadium shaped graphene quantum dot, scars could be identified [148,149]. As a
novel feature of graphene scars, their linear dependence on energy and the existence
of chiral scars [150] was discussed. Chiral scars are due to electrons bouncing an
odd number of times at the boundaries. They have to travel twice the trajectory to
acquire a phase of 2w, whereas even scars travel only once.

Quantum interferences in graphene quantum dots in the presence of magnetic field
have been discussed in Reference [151]. The dependence of interferences on magnetic
field and energy and the transition from regular to irregular patterns in Reference [151]
is very comparable to measurements that we present in the following. In Figure 6.5a,
dG/dV (B, V) is shown for low magnetic fields, and in Figure 6.5b, the corresponding
tight-binding calculation is revealed.® Large parts of this rich interference pattern
have been already adressed, i. e.. the parabolic structure due to snake states and the
Fabry-Pérot pattern at low fields. Here we focus on the intermediate regime.

In Figure 6.5¢ we show the oscillation amplitude AG(B) at =6V and observe
a transition from an irregular to a regular interference pattern at around 100mT.
However, in contrast to Reference [151], the regular pattern is caused by the formation
of snake states rather than the presence of only one LL in the system. We can see
a regular pattern in our device even in the presence of many LLs due to the strong
angular selection at the p-n interface. Even though a complex resonance pattern
might be present in the cavities, only few trajectories are transmissive.

The irregular pattern in Figure 6.5¢ is caused by the coexistence different of inter-
fering trajectories in the cavity. By looking at the grayscale of Figure 6.5a-b, their
distinct behavior to gain additional insight. We have already explored the Fabry-
Pérot pattern in weak magnetic field, however two additional sets of interferences can
be identified. On the one hand, there are parabola-like structure, indicated with red
arrows. The parabola-like behavior is a sign that the states are commensurate with
a cavity dimension. They are therefore not due to trajectories forming closed loops
since their transmission is influenced by the cyclotron radius only, similar to the snake
states discussed above.

Very striking are the features that we indicate by yellow lines. Similar patterns
are visible in the simulations of Reference [151]. The yellow lines are calculated
using the interference condition 6.1 for a line length L = 6.4 ym and enclosed area
S = 0.24pum?. S and L have been identified by the periodicity of the oscillations

4Experimental and theoretical data was recorded for positive B only. It has been mirrored numeri-
cally around zero B to ease the understanding.
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Figure 6.5.: Measurement of scar states. a, Two sets of resonances are indicated
in this bipolar dG/dV (V, B) measurement: Negatively dispersing states
with yellow lines (calculated with Equation 6.1) and parabolic-like lines
with red arrows. b, These resonances are reproduced in the corresponding
tight-binding simulation. ¢, Oscillation amplitude AG(B) at V = —6V
and, offset by 0.4¢?/h, at V =6V. A transition from chaotic to regular
oscillations (due to snake states) is observed. d, Cut in a perpendicular
to the yellow lines and plotted as a function of kpL/2m. A cavity length
of L = 3.2 um is observed. e, From the same oscillation pattern plotted
as a function of B - S/¢y an area of S = 0.24 um? is extracted. f, The
dG /dV (Vieg, Viight) grayscale map at B = 50mT shows that the tightly
spaced resonances, labeled with yellow lines, are tuned by either the left
or the right gate, i. e.. they are parallel to the dirac point in the left
(right) cavity.
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in kp and in B, both of which are very regular as revealed in Figure 6.5d and e.
From their occurrence in a gate-gate map dG/ dV(‘/]eft, Viight) we conclude that these
resonances occur in either the left or the right cavity, since they are tuned by the two
gates independently. The resonances are marked with yellow lines in Figure 6.5f.

.« b e d
a J == jyIu ¢ - Jy=—= - ]In e

B=20mT, V=6V =20mT, V=6V B=20mT, V=4V B=20mT, V=4V

Figure 6.6.: Current density simulations. a, Local current density simulation at
B = 20mT, V = 6V for current injected at the white cross, showing
current flowing in x-direction and in b the corresponding current in y-
direction. c, In contrast to a, current is injected along the L contact.
Nodes are observed both in j, and in j, in d. e, Numerically calculated
quasiclassical trajectory forming a closed loop with S = 0.24 ym and
L = 6 um?. The density is smoothly changing from p to n in the gray
area, the dashed line shows the p-n interface.

Scar states are typically studied regarding the spatial distribution of a given wave-
function. In Reference [148] for example, the electron concentration in a stadium
shaped graphene reveals a nodal pattern. The scars are identified by connecting the
spots of highest electron concentration with straight lines. Naturally, the number of
nodes N along such a path is given by the interference condition in Equation 6.1. We
have already used the local current density distribution to characterize snake states.
Here we can use the same tool to visualize the interfering states, therefore j, and j,
in the regime of the yellow interference pattern are shown in Figure 6.6. In Figure
6.6a-b current is injected at the white cross only, whereas in ¢ and d injection is from
the left contact. There is a complex and elongated nodal pattern building up in the
left cavity. The nodes are indicative for scarred trajectories, i. e.. along closed loops,
such nodes appear.

In order to extract possible loops, we calculated quasi-classical trajectories for the
corresponding densities and magnetic fields, one of which we show in Figure 6.6e.
To model the smoothness of the junction, the density is linearly changing from n
to p in the gray area. The area and length of the shown trajectory is of the right
order, i. e. L = 6pum and S = 0.24 um?, it forms a closed loop and it could be
sufficiently transmissive, since it comes close enough to the p-n interface. There are
apparently a multitude of closed trajectories possible, most of which however are not
seen in the transmission from left to right contact since they bounce only in the left
cavity without transmitting. The extracted long L and small S indicates that the
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corresponding trajectories bounce at all boundaries and encircle areas both clock-
and counterclockwise, such as the trajectory we presented. Such intersecting loops
are dominant in this region where R, is still large but small enough such that direct
trajectories from the contact to the p-n interface are non-transmissive. In contrast
to the Fabry-Pérot resonances, which bend “upwards” in the (V, B)-map (Figure
6.5a-b), the here discussed resonances bend “downwards” since the magnetic flux is
encircled in the opposite direction. This is due to bouncing off all four boundaries in
the latter case, which becomes dominant if B is sufficiently large. As an additional
indication we observed that if the injecting contact is non-reflective in the simulation
the resonances disappear.

To conclude this part, we have observed single-cavity resonances in weak magnetic
field that follow the Bohr-Sommerfeld quantization and we have extracted an area
and a length for these patterns. Despite the fact that it is difficult to identify the right
trajectory we show here that trajectories fulfilling the requirements (with respect to
L, S, closed loop, sufficiently transmissive) exist and that such trajectories form a
nodal pattern as seen in Figure 6.6a-d. The discussion about the underlying classical
dynamics (chaotic, integrable, mixed) is beyond the scope of this thesis. However the
observation of this cavity-bound state in weak magnetic field as well as the detection
mechanism using the p-n interface is novel. We use the strong angular selection of
the smooth p-n interface to select few trajectories that can be seen in transport from
left to right contact.
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Guiding of Electrons in
a Few Mode Ballistic
Graphene Channel

In this chapter and in Reference [152] we demonstrate control of graphenes’ charge
carriers by an electron-optical element: a waveguide, in which the transmissivity is
tuned by the wavelength. The reflection, refraction and transmission behavior of
graphene’s massless charge carriers in a spatially varying potential is analogous to
the propagation of an electromagnetic wave in media with varying refractive index.
Optical fibers (OFs) consist of materials that are assembled in a way that the refractive
index in the light-carrying core is larger than the refractive index in the coating.
Similar conditions can be achieved in graphene using local gates. The possibility
to form electronic waveguides in graphene has attracted a lot of theoretical interest
[13, 136, 153-158]. However, experiments were performed only in rather diffusive
samples [99], making the comparison to optics difficult. In addition, a graphene
waveguide is expected to show a distinct behavior once a p-n interface is involved.
Due to the additional confinement of such an interface it is possible to transport one
or few modes in a waveguide. In optics, single mode fibers are used for long distant
communication since they are not limited by modal dispersion. In a similar way
single or few-mode electron-optic fibers can be beneficial for quantum information
communication.

So far, confinement of charge carriers has been mainly achieved with hard-wall
potentials, as provided by the edges in graphene-nanoribbons [159-163] or the induced
gap in bilayer graphene [94,164]. Whereas the former suffers from irregular edges, the
latter is performed in gapped bilayer graphene which does not host the relativistic
Dirac particles. Even though electrons were successfully guided in the bulk of single-
layer graphene by making use of snake states (Chapter 6 and [123,125, 138]) their
transport properties is significantly altered by the involved perpendicular magnetic
field. It is a different and very challenging task to confine graphene charge carriers
in an electrostatic waveguide [156, 158]. In this chapter we report on the formation
of a narrow tunable ballistic electrostatic channel in graphene, that can be operated
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as an optical fiber. By depleting the channel, a reduction of mode number and
steps in the conductance are observed, until the channel is completely emptied. The
measurements are supported by tight-binding transport calculations including the full
electrostatics of the sample.

7.1. Basic considerations
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Figure 7.1.: Guiding mechanisms related to densities in n;, and outside nqyt
of an electrostatic channel. a, Possible design of a guiding channel
where the gray areas are electrical contacts. If the electron density inside
a channel is larger than outside ny, > nout, electron trajectories reaching
the interface under an angle 6;, larger than the angle of total internal
reflection 6. stay in the channel, similar to an optical fiber (OF). b,
The different guiding mechanisms are sketched depending on n;, and
Nout- In the red shaded triangles OF guiding is present. The shading
visualizes ¢ (Nin, Nout). The hatched quadrants indicate the regions of
p-n guiding and the blue steps correspond to different mode number M
in the channel. ¢, The formation of a p-n junction helps to keep charge
carriers in the channel; loss is due to trajectories with (almost) zero angle
of incidence. d, Sketch of a band diagram in the channel for the situation,
when the first mode (M = 1) is populated. The small value for ky will
lead to leakage as sketched in e. f, By increasing the Fermi-energy Fjiy,
the second mode becomes available and ky of the first mode is increased.
The first mode can be guided in the channel, as illustrated in g. h, Due to
this mechanism, the expected conductance plateaus will be smoothened
and shifted with respect to M compared to the situation of a hard-wall
channel (dashed line). They are still expected to occur at values of 4¢2/h.

As introduced in Chapter 2.2.1, the Fermi energy Ep in graphene takes the role
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of the refractive index. By changing this energy using local gates, a waveguide can
be formed. This guiding principle and a possible geometry is shown in Figure 7.1a.
With Snell’s law Eji, - sin(6in) = FEout - sin(fout), the critical angle for total internal
reflection is simply given by 6, = arcsin(Foy/Ein) = arcsin(y/|nout|/|nin|). For small
density ratios |nout|/|nin|, the resulting small 6, will keep electron trajectories very
efficiently in the channel. In Figure 7.1b we plot 6. as a function of the densities
in- and outside of a channel. Negative densities correspond to hole-like, positive to
electron-like transport. The resulting red shaded triangles correspond to the region
where OF guiding is possible.

In addition to this OF guiding, charge carriers in graphene can also propagate in
a channel that has interfaces at which the polarity of the charge carrier is inverted.
Such a channel can be formed by tuning the channel region to electron-like (n) and
the outer region to hole-like (p) doping, or wice versa as indicated by the hatched
quadrants in Figure 7.1b [125]. Since at a p-n interface the density is zero, it is
naturally reflective. If the transition from p- to n-doping is gradual, the low-density
region is increased in size leading to an even more reflective interface. In other words,
a smooth p-n interface can guide electrons more efficiently than a sharp one. Losses
out of a p-n channel are in both cases mostly caused by trajectories perpendicular to
the interface that are transmitted with probability one as sketched in Figure 7.1c.

At low densities ni,, the wavelength in the channel is such that \/2 becomes larger
than the channel width W. This situation of a depleted channel is sketched in the
dark blue region in Figure 7.1b. By increasing nj,, the local Fermi-energy FEj, in-
creases such that the first mode M = 1 in the channel can be populated, as shown
in the sketch of the band-diagram in Figure 7.1d. Yet, due to the low value of the
wavevector k, in propagation direction x, the angle of incidence at the p-n interface
is close to perpendicular and the mode will leak out of the channel (Figure 7.1e)
and cannot be observed in transport along the channel. Nevertheless, by increasing
FEi, ky increases and the angle of incidence towards the p-n interface becomes larger.
A corresponding band-diagram is sketched in Figure 7.1f, where already the second
mode (M = 2) is available. In this situation, the first mode can be guided and the
second mode leaks out of the channel since the Fermi-energy crosses this band at low
kx. Compared to a channel where the outer regions are forbidden for electrons, the
expected conductance plateaus for transport along the channel will be smoothened
due to the above discussed mechanism. We still expect conductance steps at 4e?/h,
as sketched in Figure 7.1h. A more detailed analysis of the band structure is given in
Section 7.6.2.
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Figure 7.2.: Realization of a guiding channel in a suspended graphene de-
vice. a, 3-dimensional design of the device. Tuning the density in the
channel (ni,) with the bottomgate (gold) and the density outside of the
channel (ngyu) with the backgate (blue), the electrons can be guided
between the source (S) and the collector (C) contacts. The losses are
recorded at side drain contacts D1 and D2. b, False-colored SEM image
of the measured device; scale-bar: 1 ym.

7.2. Design and characterization of the
device

We realized an electrostatic channel in a four-terminal suspended graphene device. A
3-dimensional design is shown in Figure 7.2a. By applying a voltage to the backgate
(blue) and bottomgate (gold), the density can be tuned locally to guide electrons
between the source (S) and collector (C) contact. The guiding losses can be measured
at the side drain contacts (D1, D2). A scanning electron micrograph of the measured
device is given in Figure 7.2b. The graphene flake is roughly 4 x 2 ym? in size. The
fabrication is given in Chapter 4. Graphene is cleaned by in-situ current annealing
between the D1 and D2 contact.

As a first characterization the conductance Gpips between D1 and D2 is measured
while the S and C contacts are floating. We correct for the capacitive cross talk
between backgate and bottomgate voltage and plot the data as a function of channel
densities n;, and neyut. The conversion from voltage to density is given by the gating
efficiency which we extracted from the electrostatic simulation (for details, see Ap-
pendix A.4). In the colorscale-map of Figure 7.3a, the conductance drops drastically
once a p-n junction is formed (i. e. the blue regions). Figure 7.3b shows the field
effect along uniform doping which reveals a pronounced Dirac point. The very sharp
transition from the unipolar to the bipolar region occurs within ni, ~ 10° cm™2.
This demonstrates the very high quality of the graphene. In addition, the regular
Fabry-Pérot pattern (marked with arrows and sketched in the inset of Figure 7.3a)
indicates ballistic transport in the channel [66,67].
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Figure 7.3.:

Experimental results: Fabry-Pérot interferences across the
channel and guiding efficiency along the channel. a, Two-terminal
conductance Gpip2 between D1 and D2 as a function of the densities njy
and noy (S and C are floating). The resonances marked with black
arrows are due to Fabry-Pérot interferences in the channel as sketched
in the inset. b, Field-effect as a function of uniform doping (cut along
white arrow in a). c¢, Guiding efficiency Isc/Iiot as a function of niy,
and noy. Here, an AC voltage is applied to the S contact and cur-
rent is measured simultaneously at C and D1, D2. d, Cut in c at fixed
Nin = 6-101%cm™2. The guiding efficiency increases drastically in the
OF regime and is highest when p-n and OF guiding coexist. e, The
cut in ¢ around ngy = 6 - 10'° cm™2 reveals steps in the guiding effi-
ciency that are due to mode filling of the channel. Shown is an averaged
curve of noyy = 5...7 - 101 cm™2. The steps are seen in the 2D plot in
c and are marked there with gray vertical arrows. f, A similar cut at
Nout = —4... — 6 - 1019 cm ™2 reveals steps also for inverted polarity.
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7.3. Measurement of Guiding efficiency

We now discuss the guiding efficiency measurement (Figure 7.3c). An AC voltage
is applied to the S contact and current is measured at C, D1 and D2 using an IV-
converter and a Lock-In detector on each terminal. The guiding efficiency v = Isc/ ot
is then given by the current Igc measured at C divided by the total current I, =
Isp1+Ispo + Isc. It is important to notice that v includes the injection efficiency into
the channel which is limiting the overall maximum efficiency to 42% in this device.
In this complex geometry it is not possible to discriminate the losses of the channel
itself from losses due to poor coupling of the charge carriers into the channel. The
colorscale map 7 (nin, Nout) shows high guiding efficiency in the expected regions: A
large v is observed in the OF triangles, and the efficiency is even increased once a p-n
junction is formed. This is best seen by taking a cut at ny, = 6 - 10! cm™=2 shown in
Figure 7.3d and indicated by a red arrow in Figure 7.3c. Charge carriers cannot be
guided for ngyut > nin, and for uniform doping (neyt = nin) roughly 29% of the charge
carriers reach the C contact. In the OF regime, the efficiency increases drastically and
reaches its maximum if the outer region is depleted, i. e. ngyt &~ 0. The formation of a
p-n interface leads to an increased « compared to the regime where only OF guiding
is present. Even though OF and p-n guiding mechanisms have been discussed for
a diffusive sample in Reference [125] here we demonstrate their occurrence in the
expected regions in a density-density map of a ballistic sample.

The lowest efficiency in the colorscale map (Figure 7.3c) is observed in the empty-
channel region (dark blue). A step-wise increase of v starting from the depleted
channel towards larger n;, is seen in the colorscale map. By taking cuts around ngyt =
6-10'°cm ™2 plateaus corresponding to a change in mode number M become apparent
(Figure 7.3e). For this cut we averaged the curves between ngy = 5...7 - 1010 cm—2
to wash out features that are changing with nqy. More details on these features are
given later in the manuscript. The plateaus are also present at the opposite polarity,
i. e. an n-doped channel and a p-doped outer region. They can be seen for example
in cuts around noy; = —5 - 101 cm™2 in Figure 7.3f.

7.4. Tight binding simualtion

For a comprehensive understanding, we compare the experiment to transport calcu-
lations based on an ideal electrostatic model obtained by finite-element simulations
following the gating and graphene flake geometry of our device. Using the scalable
tight-binding model for graphene [45], the full 4 x 2 um? flake with realistic on-site
energy profiles V(z,y) from the electrostatics can be considered (Appendix A.2).
The main features of the guiding efficiency map can be reproduced by applying the
real-space Green’s function method to compute the conductance (Section 2.3.3). The
results of the simulations are shown in Figure 7.4a. The main features of the mea-
surement are well captured: There is a high guiding efficiency in the OF triangles
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Figure 7.4.: Simulated guiding efficiency and local current density profiles
based on tight-binding model. a, Calculated guiding efficiency fol-
lowing the same definition as the experiment, v = Isc/liot, using 3-
dimensional electrostatics given by the geometry of the device. Sequen-
tial mode filling of the channel is indicated by gray dashed lines. Black
arrows mark a resonance pattern involving the inner cavity formed by
the narrow channel and an outer cavity given by one outer contact D1,
D2 and the channel. b, Local current density distribution for a small
applied voltage on the source contact S. The densities are tuned to the
optical fiber regime. The red dashed line shows the angle of total internal
reflection. ¢, In the p-n regime, the electrons are kept inside the channel
very efficiently and complex resonance patterns are observed. Close to
the S contact, current is lost towards D1 and D2 due to Klein tunneling.
d, Local current distribution for the first mode. e, At vanishing ni,, the
channel can be emptied, i. e., the local current density is zero inside the
channel.
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which is even increased in the p-n-p-regime. We see a very low efficiency at low ni,
where the channel is empty.

The emerging modes confined in the channel are observed along lines indicated by
gray dashed arrows in Figure 7.4a. Additional resonances (indicated by black arrows)
in the p-n-p regions appear and will be referred to as two-cavity resonances. They
are related to states spatially extending over both the inner channel and the cavity
regions confined by D1 and D2. They are therefore influenced by both ny, and ngyt
and are roughly parallel to the anti-diagonal in the density map.

From the simulations we further extract the space-resolved local current density
J = Jye,; + Jyey in the different guiding situations by applying a small DC voltage
difference between the S and C contact with D1 and D2 grounded. In Figure 7.4b we
plot J(z,y) = [J2(z,y) + J3 (x, 1)]'/? in the optical fiber regime (|nin| > |[nous|). Most
current propagates in a channel towards the right contact. The loss (i. e. current
towards D1 or D2) is given by trajectories injected at S that reach the interface
close to normal incidence. For the given densities we obtain 6. = 52° and we sketch a
corresponding dashed line in the Figure. By the formation of a p-n-interface this loss is
reduced drastically as shown in Figure 7.4c. Outside the channel, the current is almost
completely suppressed. Only close to the injector contact a loss current is observed,
corresponding to trajectories aligned perpendicular to the channel border. For smooth
p-n-junctions, this is exactly what is expected [38] due to strong Klein collimation.
Inside the p-n channel, a complex interference pattern forms. By reducing the density
in the channel only the first mode is filled (Figure 7.4d) and as a consequence the
complex interference pattern of Figure 7.4c disappears. Even though the channel
appears to be lossless, the injection into the single-mode channel is rather inefficient,
i. e. there is a number of modes outside the channel that can be populated. For
this reason the current density in the outer cavity does not disappear completely. By
further reducing ni,, the channel can be emptied completely, as it becomes apparent
in Figure 7.4e.

7.5. Conductance steps due to mode filling

We now show in Figure 7.5a-c the conductance between source and collector in the
interesting region of biploar doping where the channel is close to full depletion and
plateaus in the conductance can be expected due to quantized filling. In Figure 7.5a
and b several curves Gsc(ni,) are given for values of ngyy = 5...7 - 101° em™2. They
are offset from the red curve by multiples of ny, = 0.4 - 10'® em™2. The plateaus due
to mode-filling are indicated by dashed lines and we mark the additional two-cavity
resonances by the black arrows. A similar structure is observed for opposite polarity
(Figure 7.5b).

Although Fabry-Pérot resonances and mode filling occur on the similar length and
energy scale they can be distinguished by their different gate behaviour. The observed
pattern is reproduced clearly in the tight binding simulation for Ggc(nin) shown in
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Figure 7.5.: Discrete change of the number of modes in experimental and
theoretical conductance data. a, Steps corresponding to mode-filling
are seen in the experimental Ggc(ni,) data at fixed 1oy = 5...7-10%cm=2.
The curves are offset from the red line by niy, = 0.4 - 10'°%cm=2. Mode
filling (see Figure 7.1h) occurs along the dashed lines and an additional
two-cavity resonance pattern is indicated by the black arrows. b, A com-
parable pattern, yet less clear, is observed for inverted polarity. c, The
calculated Ggc(nin) curves reveal the plateaus, indicated by black dashed
lines, and the two-cavity resonance pattern (black arrows). d, Local band
offset V(y) (orange curve) in the middle of the channel x = 0. Blue curve:
corresponding local current density J(z = 0,y). Top panel: J(z,y) for
x close to 0. For the given density profile the channel could carry one
single mode M = 1, which however is leaking out drastically such that
almost no current is transported. The plots d-g are taken at the density
marked by a star in ¢ but are representative for the respective conduc-
tance regimes marked by colors in the outer two curves in c. e, As the
channel gets deeper and wider, the first mode can be transported in the
channel. f,g, The second and third mode appear when |n;,| increases fur-
ther. h,i, A model explaining the occurrence of the conductance plateaus
at 2.2, 2.6 and 2.9¢2/h in a. Regions that are doped by absorbates are
colored in light blue. The channel resistance R, is then not only given by
1/(N -4e%/h) but modified by a transmission probability ¢ into and out of
the channel. Additionally, current can flow from S to C through the outer
cavities, which is modeled by a parallel resistor I?;,. The measured resis-
tance between S and C is then given by R = (1/(t*- N - 4e?/h) + R,,) L.
The loss resistance from S to D, Rj, is modified by a contact resistance
in series R.. If we calculate Ggo = 1/Ren at now = 5 - 10"%m=2 for
R, = 13.4kQ) and t = 0.32 the plateaus occur at 0, 4, 8 and 12¢2/h.
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Figure 7.5¢c. Again the flat plateaus are marked with dashed lines and the dispersing
resonances are indicated by arrows. Comparing to Figure 7.4a we confirm that the
resonances indicated by the black arrows correspond to the above mentioned two-
cavity resonances whereas the plateaus indicated by horizontal dashed lines are due
to an increase of the channel mode-number. These plateaus occur at roughly 4, 8
and 12 e%/h here. Compared to the two-cavity resonances they do not disappear if
the side contacts (D1 and D2) are transparent, as we will discuss in Section 7.6.1.
The number of modes M in the middle of the channel (z = 0) can be read off from
the number of peaks in J(x = 0,y) in Figures 7.5d-g, where the potential landscape
V(z = 0,y) from the electrostatics is also shown. On top, the J(z,y) profiles for
x close to 0 are given. The positions where the profiles were imaged are labeled
with stars in Figure 7.5¢, and their shape is representative for the whole respective
conductance range marked by colored lines in Figure 7.5¢c. The V(x = 0,y) profiles
reveal that the density is gradually changing from n outside to p inside of the channel.
The smoothness in the potential landscape is due to the large distance of ~ 400 nm
between the graphene and gate electrodes. The channel formed by the potential in
Figure 7.5d can transport only one mode, but since k, is small and since the channel
is very leaky for small angles as explained in Figure 7.1d-e., only a vanishing current
is observed in the middle. By increasing the voltage on the inner gate, the minimum
in the potential profile V(z = 0,y) decreases and the channel grows wider such that
electrons gain momentum in z-direction and the first mode can be transported along
the waveguide (Figure 7.5e). By further increasing the inner gate voltage, the second
mode, M = 2 (Figure 7.5f), and third mode, M = 3 (Figure 7.5g), also become
available for charge transport along the channel.

Having confirmed the origin of the non-dispersing features in the experiment we
now compare the conductance values. In the experiment, the plateaus do not occur
at G5 = N -4e?/h (with N = 0,1,2,...) but rather at Gs¢ = 1.9, 2.2, 2.6 and
2.9¢?/h in Figure 7.5a. A simple model, depicted in Figure 7.5h-i, explains this
deviation by taking into account non-uniform cleanliness of the graphene. In Figure
7.5h regions that are presumably doped by absorbents on the surface are shaded
with light-blue color. Such a distribution of dopants is likely to occur after current
annealing since the contacts act as heat sinks and therefore attract residual absorbents
when graphene is hot [49]. In a simple resistor network (Figure 7.5i) we therefore
model an additional resistor R, due to trajectoires from S to C that do not penetrate
the channel, in parallel to the channel resistance R.,. In addition, the injection into
the channel and the detection at the collector will be modified by a transmission
probability ¢ which is the transmission from the contact into and out of the channel.
Therefore, R, = 1/(t?- N -4e?/h) and the measured resistance between S and C will
be R = (1/Ren + 1/Rp)~! = 1/Gsc. For the Gsc(nin) curve at ngyt = 5 - 1019 cm =2
plateaus at Ggo = 0, 4, 8 and 12 e?/h are obtained for R, = 13.4kQ and ¢t = 0.32. By
subtracting a contact resistance R, = 2.9k} from the loss conductance Gspip2, we
find guiding efficiencies v = G/ (Gse + Ggpipa) of 26%,41% and 51% for the first,
second and third plateau. R. is extracted for high, unipolar densities in the Gspips
map (shown in the Appendix A.4). The values compare well to the simulation (Figure
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Figure 7.6.: The two-cavity resonances disappear once the outer leads D1
and D2 are transparent. a, A similar plot as shown in the main text
(Figure 5c) showing calculated conductance Ggc. The plateaus due to
mode-filling occur along the dashed grid lines, the two-cavity resonances
are marked with black arrows. b, Potential profiles V(z = 0,y) as used
in the main text (upper) and idealized such that reflections at the outer
D1 and D2 contacts are suppressed (lower). ¢, For an idealized profile
the two-cavity resonances do not occur anymore. The plateaus for mode-
filling are seen for a 3 um (orange) and a 500 nm (blue) long channel.

7.4a) where 28%), 39% and 46% are obtained.

Apparently the main limitation in the experiment is the injection and detection
efficiency, which is parametrized in ¢. In the simulation we find t = 0.96 by applying
the same resistor model which is a factor of 3 larger than in the experiment, where
t = 0.32 is found Improvements would focus on creating excellent contact to the
graphene. This would, on one hand, increase ¢ both at the source and collector
contact. On the other hand, a reduction of R}, could be expected since the D1, D2
contacts would be less reflective, i. e. trajectories from S that get reflected at D1
and enter C could be suppressed. A strategy to increase ¢ by shaping the graphene
is discussed in the Section 7.6.3.

In the simulation, however, t is large meaning that the ideal channel very efficiently
transports modes once k, is sufficiently large. This efficient guiding is only possible
due to the smooth p-n interface in our device [156] which is very reflective for larger
angles of incidence 6. For comparison, a sharp p-n interface transmits trajectories
with @ = 45° with 50% probability [38] such that the mode sketched in Figure 7.1g
could not be guided. For our smooth interface, on the other hand, 50% transmission
is obtained for only 6 =~ 20°, and at 45° the transmission is close to zero. These values
are taken for (nin, nout) = (5, —10) - 10! em 2. For details see Figure 2.6 in Chapter
2.2.3.
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7.6. Additional information

7.6.1. Two-cavity resonances

The two-cavity resonances, which we mark with black arrows in Figures 7.4a-b and
Figure 7.6a are due to resonances that are tuned by both densities niy, and ngyt.
For these resonances, reflections at the side contacts D1 and D2 are required. By
modifying the potential profile as shown in Figure 7.6b and simulating transparent
(non-reflective) leads, the two-cavity resonances on the Ggc curves indeed disappear
(Figure 7.6¢). The position where they appear in the realistic device simulation are
marked with black arrows. The shoulders close to 4,8 and 12e%/h remain clearly
visible. In this idealized simulation, the source and collector contacts are set to be
pum apart similar to the real device (orange curve). Additionally we also show a test
where the S and C contacts are 500 nm apart (blue curve).

7.6.2. Bandstructures
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Figure 7.7.: Calculated band structures for translational invariance along
x. a-b, Band structures F(ky) when the first mode appears in transport
(a) and for two modes (b). ¢, The corresponding positions are labeled on
the calculated ~y(nin, nout) map. d, The maximum angles of incidence to
the p-n interface are sketched for the two different modes.

In Figure 7.1f we sketched a simplified band structure for the modes in order to
illustrate the leakage of the guided modes with short k;. A more evolved picture is
presented in Figure 7.7a-b, where we show band structures E(k,) calculated by taking
a unit cell laterally cut (along y) from the simulated graphene lattice at around = = 0.
The flake is oriented such that the armchair edge is parallel to the p-n interface.
The band structures are given for different densities ni,, noyt and the corresponding
position is labeled in the guiding efficiency map, shown in Figure 7.7c. The band
structures mainly consist of two Dirac cones. The one for hole-like transport at the
Fermi energy corresponds to the outer cavities. Since ney is changing only little from
Figure 7.7a-c, this part of the band-structure remains unchanged. Due to the rather
high density, there is a large number of modes available. More interesting are the
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modes that appear in the inner cavity, corresponding to electron-like transport. In
Figure 7.7a we overlay curves that lead to the simplified picture shown in 7.1f by
neglecting the fine-structure at low k,. We would expect to observe two modes in
transport along the channel for Figure 7.7a due to the orange and the blue branch.
However, by calculating k, = \/k? — k2 for k = \/nixm = 0.022 nm~' we obtain
an angle of incidence of 60° for the blue and only 25° for the orange mode (Figure
7.7d). Comparing to the numbers given in Figure 2.6 for transmission at a smooth
p-n interface it becomes apparent why in transport along the channel only one of the
modes is seen: the smaller angle of incidence for the second (orange) mode leads to
leakage out of the channel, whereas the first (blue) mode can be guided efficiently.

7.6.3. Measurements on further devices

In an effort to reduce the injection losses of the channel we also fabricated samples that
were etched at the sides, such as the one shown in Figure 7.8a. Here the injection into
the channel is better defined, but unfortunately after current annealing, the device is
not uniformly clean. In the Fabry-Pérot map Gpips (Figure 7.8b), the outer region
exhibits a much stronger depletion of carrier densities (lower conductance) at the
Dirac point, i. e. the lowest conductance is found at V,y = 0.

Compared to the discussed in Figures 7.3-7.5, the one shown here exhibits a slightly
higher absolute guiding efficiency of 49% compared to 42% before (Figure 7.8¢c). This
is due to the optimized injection into the channel. The relative increase from the
unipolar value of 27% to 49% in the p-n-guiding regime is with 81% much higher
than the 50% relative increase in the older sample. The device was destructed by
further attempts of current annealing. On the other hand, the OF guiding is much
weaker than for the device shown before. In addition, steps due to mode filling can
not be clearly observed in this device. This is also due to a different geometry: In this
case, the channel was formed by three bottomgate electrodes instead of one electrode
and a global backgate. The designed channel width was with 600 nm much larger than
before, which further complicates the observation of single mode-filling. We conclude
that, even though the device was in the channel region not as clean as the device
shown in Figure 7.2, the injection properties were improved due to the optimized
design.

The measured guiding efficiency of a third device is shown in Figure 7.8d. For geo-
metrical reasons, this device exhibits less crosstalk between the gates, i. e. the white
dashed lines are less tilted in this case. Even though the overall guiding efficiency is
slightly lower, OF guiding and steps in the conductance Gsc (Vi) are visible. The
features appear to be similar to the mode filling steps described before, i. e. almost
equally spaced plateaus and additional resonances. With dashed lines we indicate
features that are probably due to mode filling, and with arrows we mark what might
be the two-cavity resonances. The plateaus are however less constant with increas-
ing Vout- In order to distinguish mode filling from coherent two-cavity resonances,
detailed comparison to a modified theoretical model would be required.
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Figure 7.8.: New measurement of electron guiding. a, Scanning electron
micrograph of an etched guiding device. b The Fabry-Pérot map
Gp1p2(Vin, Vout) shows a low conductance in the outer region of the de-
vice. ¢ Map of guiding efficiency Isc/Iiot. The non-guiding value in the
unipolar regime is around 27%, in the optical-fibre-guiding regime (e.g.
at Vin, = 15V and Vi = 2V) the efficiency climbs to 32% and in the
pn regime (Vi, = 15V and Vo = —2V) it increases by 22% to 49%.
d, Guiding efficiency map of a third device with less crosstalk between
the gates. The guiding efficiency is comparable to the former devices.
OF guiding is clearly visible in this case. e, Steps as a function channel
density appear in the conductance Ggc(Vip).
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7.7. Conclusion

In conclusion, we have realized electrostatically defined electron waveguides in ballistic
graphene with an aspect ratio >10 using a global and a channel gate. Typical channel
parameters are ~ 300nm in width and 2.7 um in length. The wavelengths of the
charge carriers in- and outside of the channel can be tuned by the gates independently.
Using this tunability, we can distinguish and control the regions of optical fiber- and
p-n guiding. We observe an increased guiding efficiency if the two mechanisms coexist.
Using p-n guiding, clear steps in the channel conductance appear whenever the mode
number changes by one. All experimental results are supported by self-consistent
theoretical simulations which also reveal that a smooth p-n interface and a sufficiently
large momentum ky along the channel is required to transport single modes. The
simulation provides also a powerful guide for future device improvements. It shows,
for example, that by using an even smoother p-n interface to confine the electrons
in the channel, modes could be guided for ky < ky. In current devices the coupling
from the injector contact to the channel and similarly from the channel to the detector
contact is far from ideal. The injector and collector efficiencies of currently ~ 35%
can be increased either by using a p-n interface as a collimator or by etching the
graphene flake. With such improvements guiding efficiencies > 80%, as demonstrated
by the theory, are in reach. This then allows to explore one-dimensional transport
in graphene without the need to etch nanoribbons. The difficulty of the required
precise control over the sample edges at the atomic level in nanoribbons can then be
circumvented. An electrostatically confined one-dimensional channel within the bulk
of graphene could even be oriented intentionally into any preferred crystallographic
direction allowing to study the symmetry of the one-dimensional bands. A high
degree of confinement can further be used for fast switches with a potential visibility
in excess of 80%.
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Gate tuneable
beamsplitter

Semi-transparent mirrors are an important building block of interference
experiments. Graphene offers the unique possibility to mimick such opti-
cal systems once transport is ballistic. Especially the gapless p-n interface
is of interest for the realization of a semi-transparent mirror. In this chap-
ter we report on the fabrication and measurement of a ballistic, partially
transparent mirror in ungapped bilayer graphene. We show that the mir-
ror is tuned by two bottomgates and that we have the possibility to move
the mirror by up to 1 um. In addition, we discuss further requirements for
the realization of electron-optic graphene multi-path interfereometers.

Semi-transparent mirrors act as beam splitters in optical experiments.They are
important building blocks for many interference experiments, be it in a Fabry-Pérot
etalon or in a two-path setup as realized in the Mach-Zehnder experiment where the
position of the mirrors is varied. In two-dimensional electron gases (2DEGs) it is a
challenge to construct such mirrors for the charge carriers. One successful realization
of a beam splitter is using quantum point contacts that partially transmit quantum
Hall edge states. The Mach-Zehnder experiment could be reconstructed like this [20]
involving however strong magnetic fields that alter the transport properties of the
2DEG.

Graphene offers the unique possibility to mimic such optical systems once transport
is ballistic. By using p-n interfaces Fabry-Pérot interferometers have been demon-
strated in single-layer [37,66,67], gapped bilayer [120], and trilayer graphene [121].
Moreover, the observation of electron guiding, snake states [123,138] or ballistic su-
percurrents [109—-111] highlighted the possibilities of ballistic graphene p-n junctions.

P-n interfaces formed in graphene can be reflective, transparent or semi-transparent
depending on the angle of incidence of the charge carriers and the shape of the po-
tential that forms the interface. For smooth p-n junctions trajectories close to zero
incidence angle are transmitted as a result of Klein tunneling, and electrons arriving
under large incidence are reflected. This suggests that by using a tilted p-n interface,
where the Klein-tunneling trajectories are not dominating, a partially transparent
mirror can be achieved. In fact, measurements on short and tilted p-n interfaces
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Figure 8.1.: a-b, Three-dimensional design and schematic representation of the mir-
ror device. The Pd-contacts are gray, the bottomgates golden and the
LOR pillars are colored green. The tilted bottomgate structure allows to
form an oblique p-n interface. Electrons injected at the L contact will
be either reflected towards T or transmitted towards the R or B contact.
The efficiency of the mirror can be calculated by the measured currents
at B, R and T. ¢, Optical image of an area covered with bottomgate
structures. The turquoise parts are few-layer graphene on top of LOR.
d, Scanning electron micrograph with a zoom-in window. Graphene is
colored turquoise here, and the LOR resist is gray and semi-transparent.

on SiOj revealed an increase in two-terminal resistance by the use of a tilted inter-
face [165,166].

In this Chapter we present the measurement of a semi-transparent mirror, using a
bottomgate structure tilted with respect to the current flow direction. The presented
four-terminal device allows to measure reflectance and transmission of the mirror
in a ballistic, ungapped bilayer sample. We show, that in the unipolar regime, the
measured currents can be understood within a simple geometrical picture, whereas
in the bipolar junction a partially reflective mirror is formed. We demonstrate that
the transport in weak magnetic fields can be substantially altered upon moving the
position of the mirror by up to 1 pm.

8.1. Design and Device preparation

In order to measure the reflectance of a bilayer p-n interface we designed a four-
terminal sample as shown schematically in Figure 8.1a. Bilayer graphene is expected
to give a more reflective interface [36,39]. For the use as a beam splitter it is important
however to operate with gapless bilayer. On one hand we measured at high enough
temperature (1.5 K) such that the spontaneous gap does not lead to zero conductance
[49,167], on the other hand the electric field present in our sample is far too low to
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observe the induced gap [96,168]. The contacts and gates are labeled in the schematic
top-view of Figure 8.1b. Using the two bottomgates Vit and Vyp a tilted p-n interface
can be formed and the reflectance of the mirror can be tuned. It is measured by
injecting current at the left (L) contact and recording the reflected signal at the top
(T) and the transmitted at the right (R) and bottom (B) contact by standard Lock-In
technique.

We fabricate [65,87] such samples by patterning large areas with a tilted bottomgate
structure on top of an undoped Si substrate. After spin-coating lift-off resist (LOR),
graphene is transferred on top of the gate array (see Chapter 4). Due to the large
patterned area, no special care needs to be taken during alignment. In Figure 8.1c
an optical image of such a bottomgate array after LOR and graphene deposition is
shown. The bottomgate array is tuned by three voltages, allowing to influence two
interfaces for each device independently - a non-tilted interface close to the L contact
and the tilted mirror interface. However, since the first interface is very close to
the L contact for the measured sample, we did not see a change in the transport
characteristics using this gate. For simplicity we therefore connect this gate to the
first tilted gate and refer to it as Vir in the following. The turquoise parts in the
Figure 8.1c are few-layer graphene flakes (> 3 layers). Thinner flakes are not or only
barley visible in the optical microscope after transfer, but their position is known from
images recorded before. A scanning-electron micrograph after suspension is given in
Figure 8.1d.

The design presented here offers few advantages. The U-shaped side contacts (T
and B) are mechanically stable, i.e. they can be suspended over at least 3 um using
80 nm of Pd. Since 70% of the perimeter of the etched graphene is attached to contacts
and the longest suspended part is < 1.5 um this device is stabilized during current
annealing and the risk of tearing the graphene is drastically reduced. And finally, the
large distance between bottomgate and graphene allows to tune the position of the
mirror by 1 um as we will reveal later.

8.2. Reflectance of the mirror

For characterization after current annealing we measure the conductance across the
device, i.e. from L to R (Grr) and from T to B (Gg), as a function of unipolar gate
tuning, i.e. Vi = Vrp. These field effect measurements are shown in Figure 8.2a to
reveal the residual doping ng after current annealing. The field effect traces flatten in
the range of ng ~ 1...2 - 10 cm~?2 for the electron (turquoise) and hole (blue dashed)
doping in both directions across the device, proving the high quality of the measured
device.

We now discuss the reflectance of the mirror. In Figure 8.2b the conductance
Grr(Vir, Vrp) is given. Apparently, upon the formation of a p-n interface, the current
reaching the top contact is increased (red pn and np region) compared to the unipolar
pp or nn situation (blue). For the transmitted charge carriers reaching the R and
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Figure 8.2.: a, The conductances Gpgr and Gpr across the device as a function of
unipolar gating (Vir = Vrp) in a log-log plot reveal residual doping of
np ~ 1...2:10° em 2 for the electron (turquoise) and hole-side (dashed). b,
G1r measured between L and T contact, as a function of the mirror gates
VLT and Vip showing an increased conductance in the bipolar regime. c,
In contrast, the conductance from the L to the R and B contact is higher
in the unipolar regime. d, The reflectance of the mirror v = Iy, p/ ot is
increased from 40% in the unipolar to above 60% in the bipolar regime.

B contact (GLr+rs(ViT, VRB)) the opposite is observed: The conductance is lowered
when the p-n interface is present compared to the unipolar case (Figure 8.2¢). Finally,
the reflectance of the mirror is given by v = Iy /Iior with Lot = Irr+ ILr + I3 which
is plotted in Figure 8.2d. For uniform (nn or pp) gating roughly 7o := (6 V,6 V) =
40% of the current reaches the T contact. Upon the formation of a p-n interface, v
increases to 60%.

We further investigate the reflection properties of the pn interface by recording
the reflected conductances for different injector contacts. The reflectance in different
measurement configurations (explained in Fig. 8.3b) is shown in Figure 8.3a, where
curves of v(Vip, Vs = 6V) are plotted. The blue curve corresponds to a cut in
the colorscale plot of Figure 8.2d. For the blue dashed curve, current is injected at
the T contact and v is given by Itr/(Itr, + It + Itr). In a corresponding way
the (dashed) turquoise line corresponds to injection at the R (B) contact. As before,
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o is the reference reflectance, without having an interface present. The obtained
reflectances are roughly consistent with a simple geometric consideration, sketched
in the schematics of Figure 8.3b. Ballistic charge carriers, injected from the middle
of the L contact, reach the T contact under a solid angle of @ and the R and B
contacts under 3. The ratio 7 ,r = a/(o + 3) = 0.35 is roughly consistent with
the measured v = 0.41. This holds also for the ratio of current reaching the
R or B contact, i.e. g = 0.34 and yorr = 0.26 and similarly 75,5 = 0.31
and o1, = 0.33. Furthermore, the ratios for different measuring configurations are
Yorr, = 0.31 and yo 1L = 0.33, ygrp = 0.41 and yrp = 0.48,7) g = 0.41 and
70,Br = 0.47. Deviations are due to the strong simplification of the model, contact
doping and varying contact resistance.
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Figure 8.3.: a, v(Vir) at Vgg = 6 V for different device configurations. The dark blue
curve for instance corresponds to a cut in the 41 colorscale plot of Figure
8.2d. b, Different measurement configurations. The injector contact
is colored blue. c, Absolute increase of reflectance (v — 79)/~0, where
Yo = Y((6,6) V) is a geometrical factor. d, Similar plot for Vgg =1 V.

In Figure 8.3c, the relative increase of reflectance (y—-p) /70 for Vg = 6 V is shown.
The highest value is reached by injecting at the L contact. The device is designed for
this configuration since direct trajectories from L to T or B are minimized compared
to the other configurations. The highest values of reflectance can be found close to the
CNP as can be seen in Fig. 8.2b and in Fig. 8.3d, which shows the relative increase of
the reflectance for Vg = 1 V. This is the result of short-cut currents flowing at the
edges, which become prominent at low densities. First, the electric field at the sample
edge is larger, leading to higher doping at the edges, since the bottomgate structure
extends much further than the flake. Second, residual dopants tend to accumulate
close to the contacts after current annealing [169], also leading to currents that remain
unaffected by the formation of a p-n interface. And third, the doping of the contacts
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becomes more significant. These effects lead to larger relative currents at the edges
compared to the bulk, mostly pronounced at low densities. The effect of these edge
currents are prominent for currents flowing from L to T and L to T, whereas it is
reduced for currents from L to R, which results in the increase seen in Figure 8.3d.
Even if these currents could be drastically reduced, an efficiency of 100% cannot be
achieved in our device, since electrons under a wide range of angles reach the (bilayer)
p-n interface. This is the result of extended contact size, and a lack of collimation. Out
of the trajectories reaching the interface, some always have finite transmission [36], i. e.
trajectories with small, but non-zero incidence. At zero incidence the transmission
is zero (anti-Klein tunneling), under larger angles, however, transmission becomes
finite, but the smoothness of the junction leads to an exponential suppression [38].

8.3. Bent trajectories in magnetic field

By applying a perpendicular magnetic field B, the amount of electrons reaching the T
contact (injected from L) can be increased using magnetic focussing. This is seen in
Figure 8.4a and b, where we show the conductance increase with respect to zero field
measurement, i.e. Gpp(50mT)—Grr(0T) and Grr(100 mT) — G (0 T) respectively.

The structure of the maps are explained using the sketches in Figure 8.4c. In the
case of unipolar nn doping, Gy rises by =~ 1e?/h since the electrons are deflected
towards the T contact due to the Lorentz force (1). The cyclotron diameter is with
1.4 pm at Vi = Vgp = 6V in the range of the geometrical dimensions (the distance
between L and T is 1.1 um), implying that we are in situation of magnetic focusing
[9,46]. A clear focusing signal is however not expected due to the large size of the
contacts. The increase is most pronounced at small gate voltages, where the cyclotron
radius is smallest. The additional current at the T contact is not influenced if an n-p
interface is formed by lowering Vgrp, as sketched in Figure 8.4c (2). For this reason,
the conductance increases by the same amount in regions (1) and (2), as seen in
the grayscale 8.4a. However, if Vi is decreased, the cyclotron motion changes sign
once the polarity of charge carriers is inverted (3). In this pp region, the holes are
deflected towards the B contact, leading to a decreased conductance measured at
T. This decrease persists in the p-n region (4) for large |Vir| and low |Vgp|. But
surprisingly, the conductance is enhanced in the opposite case (5), i.e. low |Vi | and
large |Vgp|.

The structure in the p-n region can be understood by considering two effects. First,
once a p-n interface is present, current flows along this interface. In the case of single
layer graphene, charge carriers are guided along snaking trajectories [123, 138] as
described in Chapter 6. Despite the absence of Klein tunneling also in (ungapped)
bilayer graphene, a current along the p-n interface builds up. The second effect
takes into account the large graphene to bottomgate distance (600 nm) that allows to
change the position Ap, of the p-n interface drastically by the gates. In Figure
8.4d, the position of the p-n interface for symmetric gating is drawn as a black
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a, Increase of the mirrored signal in magnetic field of 50 mT: Gy (B =
50mT') - Gur(B = 0T). The plot shows a strong asymmetry as a function
of V. This asymmetry is due to the enhanced (Vir > 0) or reduced
(Vir < 0) conductance measured at the T contact as a result of bent
trajectories in B field. The upper left quadrant is split into an enhanced
and a reduced part along a diagonal line. b, Similar plot showing the
difference of Gyt at 100mT an 0T. c, The sketches explain the ob-
served pattern. In region (1), current is bent towards T leading to an
enhanced conductance Grr. This enhancement remains unchanged upon
the formation of an n-p interface for the same polarity in the LT region
(2). However if this polarity is inverted (3), trajectories bend towards
B reducing the current at T. As long as the interface is close to B (4)
nothing changes, however by increasing Vi;r/Vgrp the conductance at T is
enhanced since current can flow along the interface (5). d, Geometry of
the device showing the relative position of the p-n interface for different
Apn values. e, Colorscale map from electrostatic simulations, revealing
that A,y depends on the ratio of Vip/Vrg. Our device offers a high tun-
ing range (£500nm) due to the large distance between bottomgate and
graphene.
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dashed line. By lowering the density in the LT cavity (i.e. by lowering |Vir|) the
interface can be shifted up to 500 nm towards the T contact (red line). On the other
hand, by decreasing |Vip|, the interface is shifted towards the B contact by a similar
amount (blue line). A colorscale map revealing Ay, (Vir, Vip) is given in Figure 8.4e.
The white region marks the transition between (4) and (5) in Figures 8.4a,b and
corresponds to Ap, = —150nm. The corresponding position of the p-n interface is
sketched as a white dashed line in Figure 8.4d, showing that for the corresponding
gating ratio |Vgp|/|Vir| the interface crosses the B contact. For larger |Vgg|/|Virl,
the p-n interface is negligible for the injected current in L, as sketched in Figure 8.4¢
(4), explaining the similarity to region (3). However, the interface transports charge
carriers in direction of the T contact in the opposite case (5), leading to an increased
Grr at 50mT and 100 mT.

8.4. Discussion and Conclusion

The herein discussed device presents the realization of a semi-transparent graphene
mirror with movable position. This device can be the fundamental building block of
a Michelson-Morley or a Mach-Zehnder interferometer.

a b

M

Figure 8.5.: a, In a Michelson-Morley interferometer, light is emitted from a source
(S) and collimated (C) before reaching a beam splitter (BS). The two
resulting paths are reflected from the mirrors (M) and an interference
pattern will be measured at the detectors at Dy and Dy. The realization
in graphene uses a p-n interface as a collimator and a second p-n interface
as beam-splitter. ¢, The Mach-Zehnder requires tilted mirrors and two
beam splitters. Here we use a p-n-p interface as beam-splitter. The
mirrors (M) can be either the edge of graphene or contacts.

We present a possible realization of a Michelson-Morley interferometer in single
layer graphene in Figure 8.5a, where the source is denoted by S, the collimator by
C, the beam splitter by BS, the mirrors by M and the detectors by D1. Note that,
due to the negative refraction, the position of D and M are exchanged compared
to the optical experiment. The most important modification to the here presented
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beamsplitter is the collimator interface. The strong collimation offered by smooth
p-n interfaces [38] can be harvested to create a plane-wave in graphene (denoted as
C in Figure 8.5b). The second, tilted p-n interface in Fig. 8.5 acts as a beam splitter
and can be tuned by the gates ideally such that 50% transmission is achieved.

The reflective mirrors (M) of the optical system can be replaced either by edges
of the graphene flake, (reflective) contacts or additional p-n interfaces. The reflec-
tion at the graphene edges is mostly specular rather than diffusive, as it has been
demonstrated by magnetic focusing experiments [46,47]. The acquired phase in the
left (right) cavity can be changed by the density in the left (right) cavity. As shown
before, suspended samples allow to change the position of the p-n interface drasti-
cally. Therefore the interference can be tuned both by changing the wavelength and
the path-length (not independently), leading to a distinct interference patterns in the
Gsp(Va1, Vaz)) map.

Alternatively a Mach-Zehnder-like experiment could be realized in graphene as
sketched in Figure 8.5b. This design would be more suited for hBN encapsulated
devices, where sharp p-n interfaces can be formed. Here, the beam splitter would
be based on a p-n-p junction, which can be tuned with the gate voltages to 50%
transmission. The mirrors can be fabricated similarly to the Michelson-Morley inter-
ferometer and an interference pattern will be observed at D and Dy depending on
the phase acquired along the path.

The ideas shown above demonstrate, that the herein presented device is the first
building block of multi-pass interferometers in graphene.

91



Conclusion

The vast possibilities graphene offers as a platform for electron optics has been the
subject of this thesis. One of the basic requirements allowing to perform electron
optics experiments, is ballistic transport. For this reason, we compared several char-
acterization methods in Chapter 3 which allow to demonstrate that the devices fab-
ricated and measured in the scope of this thesis are among the cleanest reported so
far.

This achievement has been made possible by adapting a fabrication technique pro-
posed in Reference [65] and discussed in Chapter 4 and Reference [87]. High quality
is achieved by in-situ current annealing of suspended graphene, passing currents of
~ 350 uA/pum. A key improvement, allowing to achieve ballistic transport in pm-
sized devices, lies in the removal of the LOR resist below the palladium contacts.
We further demonstrated a modification of the fabrication process to implement local
gates. This has been achieved by depositing graphene with a dry-transfer technique.
The versatility of the method was demonstrated by creating complex multi-terminal
devices, the inclusion of superconducting contacts and the use of CVD graphene.

In Chapter 5 and Reference [67], we reported on the creation of a pum-sized Fabry-
Pérot interferometer. Constructive or destructive interference in the electrostatically
defined p-n cavities was obtained by changing local gate voltages. We observed that
the strong collimation effect provided by our extremely smooth p-n interfaces is re-
sponsible for the visibility of the interference pattern. This aspect is stressed by
tight-binding transport simulations which showed an excellent agreement to the mea-
sured data, with which we could claim the absence of any disorder pattern causing
density fluctuations (in the order of 10° cm~2). In addition to the data presented in
Reference [67], we analyzed the interference pattern of a p-n-p device in this thesis
and showed that visibility can be gained by using two smooth interfaces. The ex-
perimentally observed visibility reaches values of 20%, similar to values predicted by
analytical considerations. To our knowledge, this is probably the best interferometer
achievable in graphene using parallel p-n interfaces, since Klein tunneling leads to a
large background conductance. We proposed to harvest this Klein-tunneling back-
ground conductance for the creation of plane waves, or, in optical terms, to use the
p-n interface as a collimator.

The transparency of the p-n interface is of importance for the formation of snake
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states as we revealed in Chapter 6 and Reference [123]. At small (20mT) perpen-
dicular magentic fields, charge carriers form trajectories that bend towards a p-n
interface, (Klein-)tunnel to the other side where they are deflected again towards
the interface. Such snake-state trajectories can be described in the quasi-classical
skipping orbit picture, requiring, however, cleanest possible devices. We reported
on magneto-conductance oscillations that we could trace back to snake states by
using tight-binding calculations. The similarity to electron-hole states at graphene-
superconductor interfaces is a surprising connection to our former work [137]. Making
the connection to electron optics, we stated that the magnetic field acts as a lense
which focuses electrons to the left or right side of the p-n interface and thereby leads
to the observed magneto-conductance oscillations. The p-n junction on the other
hand acts as an angular filter in the same experiment. This combination presents a
unique tool for controlled focusing and guiding experiments.

As an alternative approach to guide charge carriers in a controlled way, we presented
an electrostatic few-mode channel in Chapter 7. We demonstrated that we could
transport ballistic charge carriers by adjusting the refractive index inside and outside
the channel as for an optical fiber. When trying to guide single modes, however, we
were facing a difficulty that engineers of optical fibers had to overcome as well. First,
particles need to be injected under flat angles and, second, the loss in the channel
needs to be decreased by increasing the angle of total internal reflection. Whereas the
injection remains a problem, we could make use of the strong collimation provided
by a smooth p-n interface allowing to guide much steeper angles in the channel.
By a careful comparison with tight-binding simulations we could demonstrate the
successful transport of single modes in a 2.2 um long channel.

Finally, we added another piece to the electron-optics toolbox by demonstrating in
Chapter 8 that a p-n interface can be used as a mirror. By analyzing magentic field
data, we showed that the position of the mirror can be adjusted by 1pm or 1/3 of
the sample size. Such mirrors could be used for complex interference experiments as
represented by the Michelson-Morley setup. We stressed that the presented device
requires only slight modification bringing a graphene Michelson-Morley experiment
to the close future. Such an experiment would demonstrate a new level of control over
graphene’s quasi-relativistic particles, making it possible to harvest its advantages for
ultrafast electronics and quantum computation.
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Simulation methods

A.1. 2-dimensional Carrier density

simulation
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Figure A.1.: ¢, Calculated transconductance map obtained from the numerical deriva-
tive dG(Viignt, Vieft)/dViight- The scale of the colorbar is in units of €?/h
per volt. b, An illustrating example of the simulated carrier density
profile n(x) subject to different gate voltages, and ¢, the corresponding
on-site potential profile V' (z). The flat tails in b and ¢ correspond to the
contacted region (the leads), while the smooth profiles within |z| < 605
nm to the suspended graphene (the scattering region). The green arrow
shown in a indicates the bottom gate voltage sweep considered in b and

C.

The profile of n(z) is computed by a finite-element-based electrostatic simula-
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tor with the quantum correction accounted for through the quantum capacitance
model [42], which allows to treat electric, chemical, and contact-induced doping in a
unified manner. The simulator used throught this thesis by the theory collaborators
first computes the self-partial capacitances Creontact (%), CReontact (), Cright(), and
Clett () for the left contact, right contact, bottom gate, and the back gate, respec-
tively. The carrier density is given by [42]

no(x
n(z) = ne(@) + sgfnc()no(x) (1 -~ it 2‘n25x3‘> + sen(no)y/2nq(z) ol
(A1)
where the first term is the classical contribution
C contac C contac C'e Cri
ne(x) = no + Leont t(x)Vc—i— i ; t(x)Vc-l- lf;(x)vleft—i-m(m)vrighm (A.2)

and the rest two terms are the quantum correction that requires

s

nq(z) = B} (

hUF)2 (CLcontact (-T) + CRcontact (x) + Clcft(fz) + Cright(x)>2 (A3)
e e e e e

in addition to the classical contribution nc and the chemical doping ng. In Equations
(A.2) and (A.3), Vies and Viigne are respectively the voltages applied on the back gate
and the bottom gate and V, is the “voltage” on the contacts.

As an example, the carrier density profile n(z) given by Equations (A.1)—(A.3)
with the self-partial capacitances computed using the MATLAB pdetool simulator,
which is a partial differential equation solver based on the finite element method, is
shown in Figure A.1b with different curves corresponding to the bottom gate voltage
sweep indicated by the green arrow shown in Figure A.la. The corresponding on-site
potential profile V' (z) is shown in Figure A.lc and is then included in the Hamiltonian
(A.5) to run the transport calculations.

A.2. 3-dimensional Carrier density
simulation

For the devices in Chapters 6, 7 and 8 we calculated the two dimensional carrier
density n(z,y). For this purpose, the finite-element simulator FEniCS [170] together
with the mesh generator GMSH [171] are adopted to compute the self-partial capac-
itances [42] of the individual metal contacts and bottom gates, which are functions
of two-dimensional coordinates (z,y). The classical contribution to the total carrier
density n(z,y) is given by the linear combination of the capacitively coupled gate volt-
ages and contact doping mainly arising from the charge transfer between the metal
contacts and the graphene sheet. Some examples showing n(x,y) profiles are given
in Figure A.2 for the devices in the main thesis. The density close to the graphene
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Figure A.2.: 3-dimensional carrier density simulation for different devices. a, n(x,y)
for the p-n device, as calculated in the snake-state chapter (Chapter
6) for unipolar and b, bipolar gating. ¢, Carrier density for an etched
guiding device (Chapter 7) again for unipolar and d, bipolar gating. e,
For the mirror device (Chapter 8), the p-n interface is moving drastically
in the case of asymmetric gate voltages (f).

edge is consistently at least a factor of 2 higher than the bulk density.

A.3. Simulation of two-terminal graphene
devices

=

Electronic transport through the suspended p-n graphene device of Chapter 5 is
calculated using a real-space Green’s function method within the Landauer-Biittiker
formulation at zero temperature, based on a Bloch-theorem-assisted tight-binding
model devised particularly for studying quasi-one-dimensional bulk graphene [116].
The Landauer two-terminal conductance G is computed in two steps. First, the
dimensionless single-mode conductance g, which ranges between 0 and 2 due to the
spinless tight-binding Hamiltonian with the valley degeneracy taken into account, is
computed following the same method and parameters described in [116], except that a
phenomenological mass term is considered in the lead self-energy in order to introduce
a moderate reflection between the suspended and the contacted region even in the
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unipolar regime. The mass term is described in the tight-binding model Hamiltonian
as y UmTic;rci, where the operator cj (c;) creates (annihilates) an electron at site 4,
and 7; = +1 (—1) for the A (B) sublattice.! The strength of U,,, corresponding to
one half of the gap opened, is set to be one-third of the energy spacing between the
Fermi level and the Dirac point throughout the calculations.

Second, the number of modes M and the contact resistance R. are considered to
generalize the single-mode conductance g to the full conductance,

2¢? 1 R, \ 7!
=—(— . A4
G h <M-g + h/262> (A4)

We use M = W/n/m for ideal bulk graphene with n = |n(z)| the absolute carrier
density averaged over the whole scattering region and the width of the graphene
sample W = 3.2 um according to the SEM measurement. The contact resistance is
deduced from the experimental quantum Hall data to be R, = 1.27 kQ = 0.05h /€.
Thus Eq. (A.4) does not contain free parameters, and the main task in the simulation
process is to compute the single-mode conductance g, which decisively depends on
the on-site potential energy V(z) included in the tight-binding Hamiltonian of the
scattering region,

H=Y"V(x;)cle; + Ho, (A.5)

where Hj describes ideal bulk graphene (see [116]) and x; is the x coordinate of the
site <.

A.4. Voltage to density mapping in
Chapter 7

The detailed device geometry as they were used for the simulations are shown in
FigureA.3a and b. The measurement setup for the guiding efficiency is explained in
the Chapter 7: An AC voltage is applied to the source (S) contact and an AC current
is simultaneously measured at the collector (C) and the side drain contacts (D1 and
D2). In Figure A.3c we show the measured conductance between the S and C contact
Gsc = Ic/Vs and in Figure A.3d the conductance Gspip2 = (Ip1 + Ipz2)/Vs between
the source and side drain contacts. The guiding efficiency in Figure A.3e is then given
by v = Isc/(Isp1 + Isp2 + Isc) = Gsc/(Gsc + Gspipe2)-

Apparently the Vo scale for v and for the Fabry-Pérot map Gpips (Figure A.3f)
is shifted to high voltages. Whereas the global Dirac point is very close to Vi, = 0V,
it occurs at roughly Vi, = 30V for the outer gate. The small shift in V;, and the

"The on-site energy term will be described by Y, [Um + V(xz1)]clei for the left lead and > oilUm +
V(xr)]ele; for the right lead, where V(z1) and V (xr) are the on-site energy at the left-most and
right-most site in the scattering region, respectively.
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Figure A.3.: Original data and density mapping. a-b, 3D and top-view of the
measured device with its dimensions used also for the simulations. ¢, The
measured guiding conductance Ggc between left and right contact, d,
and the simultaneously measured loss Gspip2 between S and D1 and D2
contact. e, The guiding efficiency  is calculated from these two maps,
i.e. v = Gsc/(Gsc + Gspipe). f, The Fabry-Pérot map is measured in a
different configuration. g, The simulated guiding efficiency and the sim-
ulated Fabry-Pérot pattern h show the same crosstalk between the inner
and outer gate. The voltage scale for the outer voltage Vi differs from
the experimental data, but not the Vi, scale. This is due to a problem
with the backgate, i.e. the experimental V, scale is not trustworthy. i,
The density mapping is done according to calculated density profiles as
shown in this Figure. j, The GDlDQ(V}n, Vz)ut) to Gpip2 (nin,nout) map-
ping shears the data since the capacitive crosstalk is corrected. k,l, The
comparison of the Fabry-Pérot oscillation period between experiment
and theory reveals a successful voltage to density mapping. Plotted are
the oscillations as a function of n;, in k and as a function of n, in 1 along
the directions marked with arrows in j. The curves where normalized
after subtraction of the background conductance.
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regular Fabry-Pérot pattern clearly demonstrate that the shift in V. is not due to
doping of the graphene but rather due to experimental problems with the backgate,
that also lead to gate-jumps in the Fabry-Pérot map (Figure A.3f). The backgate
was connected with a silver-paint and this connection might have become bad at
low temperatures, leading to charging of the gates and to instabilities. We therefore
discard the V,,¢-scale since the values are apparently not trustworthy, while keeping
the Vi,-scale.

By comparing to the simulated guiding efficiency (Figure A.3g) and Fabry-Pérot
map (Figure A.3h) the correct density values for the experimental data can be ex-
tracted. This is possible since there are no free fitting parameters in the model and all
geometrical parameters which do influence the capacitive crosstalk between the gates
are fixed. In addition, the Vj, voltage scale can be compared. Both experimental and
theoretical data are mapped from (Vin, Vout) t0 (nin, nout) by using the local density
profiles n(x = 0,y) (Figure A.3i). The maximal absolute density in the channel nj,
and of the maximal absolute density in the outer region ng. are obtained for all
voltages (Vin, Vout). Such a mapping is done for the theoretical Fabry-Pérot map in
Figure A.3j which is not shown in the 7. The data are sheared since the capacitive
crosstalk between backgate and bottomgate is corrected.

The spacing of the Fabry-Pérot resonances represents a good control for the voltage
to density mapping. Since the potential is smooth and the cavity size is changing with
applied gate voltage, the experimental Fabry-Pérot resonances are best compared to
the oscillations obtained in the tight-binding simulation, as it is done in Figure A.3k
for the density in the channel and in Figure A.3l for ngut. As the periodicity of the
measured and calculated oscillation is matching rather well, we conclude that the
density is properly mapped. The density of two resonance maxima n; and n;y; are
spaced \/nii1 — \/n; = /7/W, where W is the width of the channel. This can be
obtained using the interference condition kpW = N7 with N an integer. From the
two first maxima in Figure A.3k (experimental or theoretical) a cavity size of 730 nm
is obtained, which corresponds well to the cavity size obtained from electrostatic
simulations (see Figure A.3i).
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and Recipes

B.1. Design in Adobe lllustrator

Figure B.1.: a, After deposition of graphene on top of LOR, an optical picture is
taken and the contrast is enhanced. b, This picture is aligned in Adobe
Ilustrator with an optical image of the same flake, recorded after exfo-
liation and before transfer. ¢, The image in a is also aligned with the
bottomgate structure and afterwards the contacts (purple) and suspen-
sion mask (darkened) is designed.

After deposition of graphene, pictures are taken in the optical microscope (using
contrast enhancement) and aligned in Adobe Illustrator CS5 (AI) with respect to
predefined markers and with respect to an optical image of the graphene flake recorded
before the transfer process, as shown in Figure B.2. After this, the structure is
designed and exported as .dxf file.

We write our structures on a Zeiss Leo Supra 35 scanning electron microscope
(SEM) with a Raith lithography system. The corresponding software is Raith Elphy
Plus (v6). The export from Al as .dxf file and import to Elphy is successful if few
rules are followed. They are summarized in Figure B.2: First, as shown in Figure
B.2a, curved elements or splines need to be converted into polygons with straight
lines. This is done in AT by first adding sufficient anchor points to the path (>Object
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Figure B.2.: a, Curved structures (splines) need to be converted into polygons with
straight lines. b, Structures with holes need to be cut apart. ¢, Grouped
structures or compound paths need to be ungrouped.

>Path >Add Anchor Points, repeat if required) and then creating straight lines by
the command >Object >Path >Simplify, then select “Straight Lines”.

Second (Figure B.2b), structures with holes (appearing as <Compound Path>
in the AI “Layers” panel) cannot be read by Elphy. We solve this by cutting the
structures into half by drawing a very thin rectangle on top and using the "Minus
Front" command from the Pathfinder panel.

Finally the “Layers” panel needs to be checked. All groups, compound paths or
sublayers need to be ungrouped (>right click on path >Ungroup) for successful ex-
porting as .dxf.

B.2. Wafer Characteristics

Wafers used in chapter 5 and 7.

o Susbstrate material Si

e Dopant p, boron

o Resistivity 0.003 - 0.005 2m

o Capping layer 300 nm silicon oxide

Walfers used in chapter 6.

o Susbstrate material Si
e Dopant undoped
e Capping layer 300 nm silicon oxide
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B.3. Preparation of transfer wafers for
graphene exfoliation

Clean wafer and get rid of water residues

1. Sonicate in acetone for 10 min

2. Sonicate in IPA, rinse and blow dry

3. UV/ozone treatment for 10 min (Model 42-220, Jelight Company, USA)
4. Baking on hotplate: 5’ at 180°C

Spin-coating the dextrane layer must yield a uniform film

1. Spin-coat dextrane (10%w/v): 4000 rpm, 407, yields 250 nm

2. Hotplate 1’30” at 150°C

3. Spin-coat PMMA 950K (60% w/v in chlorobenzene): 4000 rpm, 407, yields
600 nm

4. Baking on hotplate: 1’30” at 150°C

B.4. Graphene exfoliation

The exfoliation recipe yields large-area flakes on LOR or PMMA surfaces but not on
SiOs, PVA or PPC.

. Put a very shiny graphite flake (from "NGS naturgraphit") on blue scotch tape
. Exfoliate roughly 7 times until the flake is covered with shiny graphite

. Cover the tape with another piece of tape

. Put the sandwiched graphene to a freezer

=W N

The PMMA /Dextrane wafer is prepared in the UVO. The duration of UVO expo-
sure is crucial, but not well controlled. If the sample is for too short time in the UVO,
its effect is minimal, if it is for too long in the UVO, it will break apart when the
dextrane is dissolved. UVO duration time must be adjusted every time. The ideal
time is the shortest time when imprints of the tape become visible in the PMMA
layer.

1. Let the UVO warm up: after 10’ the plasma seems stable

2. Put the PMMA /Dextrane wafer 1-2’ to the UVO

3. Immediately after, get the tape from the freezer take the layers apart and put
them on the wafer in the UVO

4. Press the tape with the red tweezer cover to the sample and remove it
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Figure B.3.: a, Bottomgate structure, covered with MgO and LOR where the bonding
pads are developed b, SEM image of the steps in the bonding pads,
covered with Pd.

B.5. Fabrication of LOR Base structure

B.5.1. Bottomgate structure

1.

o

Spin-coating 500 nm (4000 rpm, 40”) of PMMA (950K dissolved in Chloroben-
zene) on a clean wafer
Hardening 3’ on a hotplate at 180°C
Exposure Parameters: Acceleration voltage 20kV, Working distance 17 mm,
Aperture: 10um for small structures (250um writefield) and 120um for large
structures (2 mm writefield). The dose-factors are set in the Elphy file.
Dose: 200pC/cm? for normal structures
Dose: 150pC/cm? for bottomgate pattern with gate distance of 600 nm
Dose: 1254C/cm? for bottomgate pattern with gate distance of 300 nm
Development: 2’ in Xylene, wash off with Hexane
E-beam evaporation: 5 nm Ti, 40 nm Au
Lift-off: 5-15" in 80°C Xylene, wash off with Hexane

The Au bottomgates need to be protected in order to avoid gate leakage.

-

Spin-coating of 500 nm PMMA, hardening 3’ at 180°C

Expose inner bottomgate structure (bonding pads need to remain covered with
PMMA). Dose: 160 uC/cm?

Development: 2’ in Xylene, wash off with Hexane

E-beam evaporation: 100 nm MgO

Lift-off: 5-15” in 80°C Xylene, wash off with Hexane
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B.5.2. LOR coating and bonding pads
After deposition of LOR, the bonding pads with a “stair”-structure need to be devel-

oped
1.

2.
3.

Spin-coating of 600 nm of LOR 5A (2200 rpm, 457)

Hardening 15’ at 200°C

Exposure of bonding pads. The bonding pad is exposed with a dose of 600 C/cm?
and a stepwise decrease (steps of 40 uC/cm?) along the direction where the con-
necting wires are expected to be

. Development: 2’ in Ethyl-lactate, washing thoroughly in 80°C xylene using a

syringe, wash off with Hexane

B.6. Graphene Transfer, deposition of

contacts and etching

The Dextrane/PMMA /Graphene wafers are floating on water. The dextrane dis-
solves, leaving a PMMA /Graphene layer on the water. Using the tools described in
Chapter 4 this layer is put on the volcano, with the flake of question in the middle
of the volcano. Afterwards, the PMMA /Graphene is drying for several hours on the
volcano. Then the flake is aligned with the bottomgate structure and deposited. The
transfer stage should not be heated above 100°C before the flake in question is in
contact with the LOR wafer, otherwise it rolls up. After it is in contact, we heat to
150 °C and remove the volcano.
Pd contacts are written as a next step:

U W

Spin-coating of 500 nm PMMA, hardening 3’ at 180°C
Expose Pd structure. Dose: 180 uC/cm?

Development: 2’-4’ in Xylene, wash off with Hexane
Thermal evaporation: 60 nm of Pd

Lift-off: 5-15’ in 80°C Xylene, wash off with Hexane

Then the etching mask is written

1.

2
3.
4

5.

Spin-coating of 500 nm PMMA, hardening 3’ at 180°C

. Expose etching structure. Dose: 180 C/cm?

Development: 4’ in Xylene, wash off with Hexane

. Reactive Ion etching: Oy plasma, 16 sccm flow, 25 mTorr background pressure,

Power 30W, duration 1’. Cleaning of the RIE chamber beforehand by an Ar/Oq
plasma might be necessary.
Remove PMMA: 4 in 80°C Xylene, wash off with Hexane

Finally the graphene is suspended

1.
2.

Expose suspension structure. Dose: 1100 uC/ cm?
Development: 2’ in Ethyl-lactate, 4’ warm Hexane, blow-dry with Ng
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