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1
Introduction

Okay, I still get nervous with it.
And therefore, some of the younger students...

You know how it always is, every new idea,
it takes a generation or two until it becomes obvious
that there’s no real problem.

It has not yet become obvious to me
that there’s no real problem.

I cannot define the real problem,
therefore I suspect there’s no real problem,
but I’m not sure there’s no real problem.

So that’s why I like to investigate things.

Richard P. Feynman, [1]

Decision making can be hard work, mainly because of the anticipation of
possible consequences. Quantum mechanics allows the tiny objects which
build up our world to be be indecisive: particles may be delocalized, oc-
cupy several energy states simultaneously or posses a unidirectional mag-
netic moment that points in two directions at the same time. However, this
schizophrenic indecisiveness, known as quantum superposition, has conse-
quences, too; predictable consequences that are observable in experiments
(e.g. as interference patterns that appear on a screen). Despite the pre-
dictive success of quantum mechanics, the counterintuitive behaviour of
its objects is a hard pill to swallow and there is a native temptation to
view quantum superpositions merely as mathematical constructs, instead of
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1. Introduction

something that occurs for real in nature. In other words, quantum mechan-
ics correctly predicts measurement outcomes, but does it also provide an
adequate description of the physical reality? The answer to this question is
well hidden by another feature of quantum mechanics, named the wavefunc-
tion collapse. Any attempt to observe the superposition itself, instead of its
consequences, will force the quantum object into a decision and destroy the
signature of the indecisiveness.

In 1935 Albert Einstein, Boris Podolsky and Nathan Rosen (EPR) set
up a famous gedankenexperiment, aiming to lift the epistemic curtain that
hides the true nature of quantum superposition states [2]. Instead of just
one particle, they considered two particles in a common superposition state.
According to the rules of quantum mechanics a measurement on one of the
particles instantaneously forces both particles into a decision, thus deter-
mining the state of the second particle. One says, the two particles are
entangled. But what if the entangled particles are spatially separated from
each other? EPR felt that the laws of special relativity would be broken.
Special relativity seems to demand that any action on, say, particle A, can
affect particle B only after a finite time has passed. Thus, if the predictions
of quantum mechanics are correct – and in this respect EPR seemed to have
no doubts –, it follows that the state of particle B was unambiguously de-
termined already before the measurement on particle A was performed. In
this case, the description of the particle by a superposition state reflects our
lack of knowledge about the particle, rather than an inherent uncertainty
of the particle’s properties. Accordingly, EPR expressed their hope that
quantum mechanics may emerge from some deeper theory. A theory that
contains no such elements as the schizophrenic indecisiveness of quantum
objects; a theory that allows a straightforward connection to the elements
of an objective reality.

However, the EPR paper could not convince the community of quantum
physicists. Many researchers took a viewpoint that is nicely summarized in
a wording by Pascual Jourdan [3]: ”Observations not only disturb what has
to be measured, they produce it (...).” So why couldn’t the EPR argument
persuade this group of people? EPR assumed that a measurement at point
A can not ”in any way” disturb instantaneously a physical system at point
B [2]. But this criterion is too harsh when applied to quantum mechan-
ics. Quantum mechanics allows a physical quantity at B to instantaneously
acquire a definite value by virtue of a measurement at A. After a famous
Einstein quote, this non-local element of quantum mechanics is often nick-
named the spooky action at a distance (”spukhafte Fernwirkungen”). As an
advocate of Jourdan’s viewpoint one can turn the table: because the spooky
actions at a distance do merely act on the elements of quantum theory, and
not on the elements of an objective reality, they do not violate the laws of
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special relativity.

Shortly after the publication of EPR’s work Niels Bohr wrote a reply
where he stated that EPR’s assumption of no action at a distance can not
be applied to quantum mechanics [4]. However, Bohr’s point was not to
disproof EPR’s belief in the existence of a measurement independent reality.
His point was to reveal it as a belief that can not be backed up empirically.
The opposite view, as expressed by Jourdan, has to be treated as a belief
in the same manner. Bohr clarifies [4]: ”(...) there can be no question
of any unambiguous interpretation of the symbols of quantum mechanics
other than that embodied in the well-known rules which allow to predict
the results (...) [of a given experiment]”. Thus, we are back at our starting
point. The fact that we can only observe the consequences of quantum
mechanics demands abstinence with respect to statements about the true
nature of quantum superpositions.

Bell’s inequality. Bohr drew a clear line between questions that can be
answered by a physics experiment and questions that must be discussed in
a philosophical debate. Nevertheless, the story has a third chapter. In 1964
John S. Bell published a modification of EPR’s thought experiment that
allows to cross this line [5]. Bell also considered pairwise entangled particles
that are separated in space. But he treated the more general case where
the measurements on both particles are performed along two non-collinear
measurement bases. The measurement outcome, which consists of two long
columns of random numbers, is plugged into a correlation function. This
correlation function is a bit nested, but to follow its construction step-by-
step is no big effort. The crux is, one can calculate this correlation function
also for a whole class of theories, so-called hidden variable theories that are
local and deterministic. Of course one can not obtain a specific expectation
value without even knowing the concrete form of the respective theory, but
one obtains an upper bound for the possible values of the correlation func-
tion. As it turns out, the quantum mechanical expectation value lies above
this threshold. Thus, all the discomfort EPR had with quantum mechanics
boils down to the question if one number is larger than another.

What does it all mean? One feature of the Bell test is, that it is suffi-
ciently abstract to shrug of almost any attempt to develop an intuition for
it. If Bell’s inequality is violated in a thoroughly conducted experiment, it
means there can’t be any deterministic theory that is based on local hidden
variables. One can fairly assume that EPR had exactly this type of theory
in mind when they developed their gedankenexperiment. Ironically, it is an
adaptation of their own experiment that allows to falsify the hypothetical
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1. Introduction

existence of such a theory.
Of course, there was an enormous effort to carry out the thought exper-

iment in an actual laboratory. In the early 1980s Alain Aspect and co-
workers succeeded to violate Bell’s inequality with polarization-entangled
photon pairs [6]. Later experiments also violated Bell’s inequality with
massive beryllium ions [7] and in a solid-state environment with supercon-
ducting Josephson phase qubits [8]. Experiments with photons became very
well developed (entangled photons have, for example, been sent from the
Canary Island of La Palma to a telescope in Tenerife [9]). However, a Bell
test with individual electrons, the fundamental particles of electronics, is
still missing. Moreover, researchers found potential applications for entan-
gled particles in quantum cryptography [10], in quantum teleportation [11]
and in quantum computing [12, 13], where entanglement is the fuel that
speeds up algorithms [14].

What has it to do with this thesis?

The initial motivation for this PhD project was to build an electronic de-
vice that converts an incoming electrical current into a continuous stream of
pairwise entangled electrons. This device is called a Cooper pair splitter and
its basic idea is to exploit the pairwise entanglement that naturally occurs in
the ground state of a conventional superconductor. Such an on-chip source
of entanglement can potentially be used to perform a Bell test with the
spins of individual electrons, or it could play a key role in a future quantum
processor, where it could be used to synchronize the quantum circuits or to
teleport a qubit across the chip. Not that I believe a Bell test with elec-
trons would convince a hard-boiled sceptic of the impossibility to describe
nature by a local hidden variable theory, or at least ease somebodies dis-
comfort with quantum mechanics. My pessimistic temper also has serious
doubts that such a device will be implemented in some practical applica-
tion sometime soon. My motivation was to become a quantum engineer.
Somebody who creates and manipulates these strange superposition states
on purpose, instead of worrying about their true ontological nature. In the
end, all measurements in modern laboratories are converted into electrical
signals. Hence, there is a special appeal to directly use individual electrons
in an electronic circuit as quantum objects to play with.

In practice, of course, it turns out rather challenging to control and ma-
nipulate electrons (and Cooper pairs) to the degree that we would like to.
The thing is that every advantage also poses a disadvantage, eventually. In
principle it is rather simple to control electrons. Unlike photons they carry
a charge and therefore they react to electric fields. At the same time, this
makes electrons very sensitive to all kind of disorder and inhomogeneities
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that are usually present in solid-state materials. We chose to guide the elec-
trons through carbon nanotubes (CNTs). CNTs are a very unique material:
tiny cylinders, about ∼ 0.5− 3 nm in diameter and up to several tens of mi-
crometers long, that are entirely made of carbon atoms ordered in a very
simple hexagonal structure. From a CNT one can easily form a quantum dot
(QD), the key element of all devices in this thesis. One can impose tunnel
barriers, which define a QD, simply by the patterning of metal electrodes
on the CNT. The electrodes at the same time act as source-drain contacts,
which allows to couple QDs to superconductors – an endeavour that is much
more challenging in other material systems. The drawback of this simplicity
is that it is very hard to gain control over these tunnel barriers. This list of
advantages and disadvantages could surely be continued, but we leave it to
the amiable reader to add some more items...

The thesis is structured as follows. In Chapter 2 we introduce the basics
of CNT based QDs and in Chapter 3 we discuss some of the phenomena
that can occur when superconducting electrodes are connected to a QD.
In Chapter 4 we explain how the devices are fabricated and introduce the
measurement set-up. Chapter 5 is dedicated to approaches to improve the
device quality. In this chapter we also present some measurement results
from which we judge the quality of the devices. The main results of this
thesis are contained in Chapter 6 and Chapter 7. In Chapter 6 we demon-
strate Cooper pair splitting (CPS) in a CNT with near ideal efficiency. In
Chapter 7 we discuss a device with a very similar geometry, but the device
is operated in a coupling regime that is not suitable for high CPS efficien-
cies. Instead this distinct coupling regime allows to observe Andreev bound
states (ABSs) and probe them by local and non-local conductance measure-
ments. An ABS is a special type of energy level that emerges from the
superconducting proximity effect. The ABS can be viewed as a state which
entangles a QD with a superconductor: the system is in a superposition of
a state where a Cooper pair occupies the QD and a state where this Cooper
pair is in the superconductor. Of course this configuration allows not to sep-
arate the entangled objects. Nevertheless, the physics we encounter is quite
beautiful and closely related to the concepts of entanglement and superpo-
sition. Chapter 8 briefly summarizes the results and provides an outlook.
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2
Carbon nanotube quantum dots

Quantum dots (QDs) are quasi zero dimensional electronic elements: solid
state systems that are shrunk so small that quantum mechanics allows only
certain standing wave solutions for the wave function of an electron (or a
hole) confined inside. Consequently QDs posses a discrete energy spectrum
that gave them their nickname artificial atoms [15]. However, in contrast
to real atoms QDs can be connected easily to source and drain electrodes,
as well as to electrostatic gates that control the dot potential. In such a
transistor-like geometry the energy spectrum of the QD can be probed by
charge transport measurements at low temperatures (typically ∼ 10 mK to
∼ 10 K).

QDs can be realized in many different material systems, e.g. two di-
mensional electron gases in semiconductor heterostructures, semiconducting
nanowires, self-assembled systems, graphene or carbon nanotubes (CNTs).
Many QD properties can be regarded as universal, while some others de-
pend on the host material. A prime example for a universal QD property
is Coulomb blockade: any QD can be seen as a small capacitive island that
requires a charging energy e2/C for the addition of one electron. On the
other hand, shell filling effects or spin orbit interactions are determined by
the physics in the host material.

The topic of this thesis are low temperature transport experiments carried
out with CNT QDs. This chapter gives a brief introduction into this field.
We first discuss CNTs and their electronic structure (Sec. 2.1). In Sec. 2.2
we turn to the contact formation between metals and CNTs. Section 2.3 is
devoted to CNTS QDs.
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2. Carbon nanotube quantum dots

2.1. Electronic structure of carbon nanotubes

2.1.1. Different forms of carbon

Carbon is a particular versatile material. Its atoms have four electrons in
their outer shells which are able to bond to either two, three or four other
atoms. The flexibility of the valence electrons also results in a wealth of
carbon allotropes. Besides the two main crystallographic configurations –
diamond and graphite – more exotic forms of carbon were discovered, the
most prominent ones being graphene, carbon nanotubes and C60 bucky-balls
(Fig. 2.1).

Figure 2.1.: Different forms of carbon: Although diamond and graphite are both com-
posed from carbon they have very different properties due to the different crystal lat-
tices. that result from have very different properties adapted from [16, 17].

Although these materials consist all of carbon, their properties, emerge
from the underlying atomic lattice and differ strongly. Diamond, for ex-
ample, is extremely hard and a large band gap insulator. Responsible for
these properties is the diamond lattice, in which all four valence electrons
are involved in the formation of strong σ-bonds with a rather localized
electron wavefunctions. Graphite, in contrast, is a very soft material with
an electrical conductivity comparable to that of some metals. In graphite
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2.1. Electronic structure of carbon nanotubes

each carbon atom forms only three σ-bonds that lie within one plane. This
sp2 hybridization results in a layered structure were each C atom leaves
one residual π-electron in the pz orbital (Fig. 2.1). Electrical conductiv-
ity emerges from the overlapping orbitals of weakly localized π-electrons
and the weak binding between different layers accounts for the softness of
graphite (a property frequently used when writing with a pen on a paper).

When a single layer of graphite is sufficiently isolated from its environment
– be it in the laboratory or just in a thought experiment – it is referred to as
graphene. The history of graphene started in 1947, when P.R. Wallace used
the theoretical concept as an approximation to calculate the electronic band
structure of graphite [18]. A CNT can be thought of as a single graphene
sheet rolled up into a seamless cylinder. C60 bucky-balls are their spherical
analogues.

2.1.2. From graphene to CNTs

The concept of graphene is the natural starting point when one strives to
understand the electronic structure of CNTs [19] (or C60 bucky-balls [20]).
The angle between two σ-bonds in the graphene sheet is 120◦, leading to
the characteristic hexagonal honeycomb lattice, shown in Fig. 2.2(a). The
graphene unit cell contains two atoms (A and B) and the primitive vectors
a1 and a2 span the lattice. The first Brillouin zone and the reciprocal lattice
vectors b1 and b2, defined by aibj = 2πδij , are shown in Fig. 2.2(b). The
band structure of graphene can be calculated by applying the tight binding
method to the overlapping wavefunctions of neighbouring π-electrons [18,
21]. Figure 2.2(c) shows the result of this calculation, which we use as
a starting point of our discussion. The conduction and the valence band
touch at the 6 corners of the Brillouin zone, labelled K and K’, making
graphene a semi-metal with zero density of states at the Fermi level. Close
to the touching points the bands have the shapes of cones and the dispersion
relation can be written as

E(k) = ±~vF|k|, (2.1)

where k is measured from the K (K’) point at the center of the respective
cone and E is measured with respect to the Fermi energy. vF is the Fermi
velocity, which is about 8.2 × 105 m/s [22]. Due to their linear dispersion,
which mimics the behaviour of relativistic photons, the cones are often called
Dirac cones. Only one third of each Dirac cone lies within the the first
Brillouin zone: we can consider two complete cones, one at K and one at
K’, instead of six partial cones. These two irreducible cones add a new
degree of freedom called valley or iso-spin: the wavevector k can be defined
in the K or the K’ valley. The two states with wavevectors k + K′ and
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2. Carbon nanotube quantum dots
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Figure 2.2.: (a) The hexagonal lattice of graphene in real space. The primitive lattice
vectors a1 and a2 span the unit cell which contains two atoms labelled A and B. (b)
The first Brillouin zone for the graphene lattice. The vectors b1 and b2 point to the
reciprocal lattice points. The reciprocal lattice vectors also connect the three corners
labelled K and the three corners labelled K’. Therefore only two of the six corners
are distinguishable. (c) Band structure of graphene calculated from a standard tight
binding model (see e.g. [18, 19, 21]). The low-energy properties of graphene and CNTs
can sufficiently be understood by considering two Dirac cones around the points K and
K’.

k + K are inequivalent but energetically degenerate. Here K (K′) denotes
the vector pointing from Γ to K (K’).

To calculate the band structure of a CNT one rolls a graphene sheet into
a seamless cylinder by imposing additional periodic boundary conditions
on the electron wavefunction. In this so-called zone folding approximation
the momentum component along the CNT, k‖, remains unaffected, while
the component in circumferential direction, k⊥, becomes quantized and can
only change in steps given by

∆k⊥πd = 2π, (2.2)

where d is the tube diameter. This condition cuts 1-dimensional subbands
out of the Dirac cones:

El(k‖) = ±~vF

√
(k‖)2 + (kl⊥)2. (2.3)

Here l ∈ Z labels the respective subband with the quantized momentum
component kl⊥ = k0

⊥ + l∆k⊥. The tiny diameters of the nanotubes pushes

10



2.1. Electronic structure of carbon nanotubes

E
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Figure 2.3.: (a) The quantization of the wavevector k⊥ cuts slices out of the Dirac
cones. When such a slice contains the tip of the cone, where conduction and valence
band meet, the CNT is metallic (upper panel), otherwise the CNT is semiconducting
(lower panel). (b) 1-dimensional band structure of CNTs. Shown is the lowest 1D
subband for the metallic and semiconducting case. (c) Density of states per unit cell
for a metallic (5,5) and a semiconducting (4,2) CNT from [23]. The peaks are van Hove
singularities when the energies where a higher 1D subband becomes available.

the excitation energy of these subbands to the eV range. Already at room
temperature only the lowest 1D subband (l = 0) is populated.

Metallic and semiconducting CNTs

It turns out that there are two types of CNTs: those where the lowest 1D
subband cuts through the tip of the Dirac cone, k0

⊥ = 0, and those where
the cut misses the tip of the cone and the circumferential wavevector retains
a finite value, k0

⊥ 6= 0, even for l = 0. The CNTs with k0
⊥ = 0 are classified

as metallic, whereas those with k0
⊥ 6= 0 are semiconductors with a band gap

Eg = 2~vF k0
⊥. Figure 2.3 illustrates the two cases.

To understand the origin of these two different types we have to be more
explicit in the formulation of the periodic boundary conditions. By mul-
tiplying the lattice vectors with integer numbers m and n a chiral vector
C = na1 + ma2 can by defined [Fig. 2.4(a)]. The chiral vector describes
the direction along which the CNT is rolled up, i.e. |C| = πd. The indices
m and n uniquely determine the structure of a CNT. Figure 2.4(b) shows
three examples: tubes with n = m are called armchair (C–C bonds lie par-
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2. Carbon nanotube quantum dots

allel to C), those with n = 0 or m = 0 are called zigzag (C–C bonds lie
perpendicular to C), all other cases are denoted chiral.

The chiral vector can be conveniently used to express the periodic bound-
ary conditions for the electron wavefunction:

ψ(r + C) = eiC(k+K)ψ(r) = ψ(r). (2.4)

The scalar product C ·K can only become zero if (n−m) = 3p, where p is a
integer number [19]. This condition is graphically illustrated in Fig. 2.4(a),
where it holds for all chiral vectors that connect two atoms with the same
color. If C ·K can become zero, then k0

⊥ = 0 is also a solution to the bound-
ary conditions and the tube is metallic. Those chiral vectors in FIg. 2.4(a)
that map two atoms with different colors onto each other imply (n−m) 6= 3p.
In this case the wavefunction at the K point acquires a phase difference ± 2π

3

between the points r and r + C. The momentum vector has to be displaced
by k0

⊥ from the K point to fulfil the boundary conditions and the CNT
becomes semiconducting. The displacement from the K point is given by
πdk0

⊥ = ± 2π
3

(the sign depends on the values of n and m). This condi-
tion implies that the energy gap of a semiconducting CNT, which can be
calculated from Eq.(2.3), is inversely proportional to the tube diameter:

Eg = 2 · ~vFk
0
⊥ =

4~vF

3d
≈ 0.7 eV

d[nm]
. (2.5)

An early triumph in CNT research was the experimental confirmation of
the connection between CNT chirality and electronic structure by means of
scanning tunnelling microscopy (STM). Wilder, et al. [25] could extract the
chiral indices of CNTs from STM images and correlate it with the density
of states, also measured by STM. Later on, transport measurements on
insulating substrates showed that also nominally metallic CNTs have small
energy gaps with a magnitude of ∼ 10− 100 meV [26, 27]. These additional
gaps are often attributed to mechanical perturbations, e.g. due to strain,
twists or curvature, which will displace k0

⊥ from the Dirac point [19]. In a
simple non-interacting picture one would expect that it is possible to realign
k0
⊥ with the K point by applying a magnetic field parallel to the CNT (the

electrons acquire an additional Aharonov-Bohm phase which adds to the
phase C ·K and shifts the position of the cuts kl⊥ [19]). However, Deshpande
et al. [27] found that this non-interacting picture fails and it is not possible
to close the small energy gaps by applying parallel B fields. Instead the
authors propose that a Mott insulating state forms around half filling in
nominally metallic tubes.
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Figure 2.4.: (a) The structure of CNTs is classified by the chiral vector C =
na1 + ma2. The color coding of the A atoms visualizes the condition n − m = 3p
(where n,m and p are integer numbers) for metallic CNTs. Chiral vectors connect two
atoms with the same colors wrap the graphene into a metallic CNT (1/3 of all cases).
Chiral vectors that connect two atoms with different colors produce semiconducting
CNTs (2/3 of all cases). The same argument can be made for the B atoms. Adapted
from reference [24]. (b) Examples of the different CNT structures. Image from reference
[23].

Mean free path

The mean free path in CNTs can be up to ∼ 10µm for metallic CNTs and
up to several µm for semiconducting CNTs [24]. These long mean free path
are also rooted in the 1-dimensionality of the CNT: since electrons can only
scatter backward or forward the scattering probability is lower than in 3D
where scattering in all directions is allowed [23]. The measurements in this
thesis were performed at low temperatures and on rather short devices (∼
300 nm). These conditions allow to treat the CNTs as ballistic conductors.

2.2. Metallic contacts to Carbon nanotubes

To use CNTs as building blocks in electronic devices the CNTs have to be
connected to source and drain contacts. The ”traditional” way to contact a
CNT uses a lithographically patterned resist mask through which a metal-
lic film is deposited onto the CNT by physical vapour deposition (usually
evaporation or sputtering). For a fully transparent metal-CNT interface a
contact resistance of h/4e2, corresponding to the four conductance chan-
nels provided by spin and valley degeneracy, is expected. However, real
devices often exhibit two-terminal resistances above this ideal value due to
the formation of tunnel barriers at the metal-CNT interface. For transport
experiments at low temperatures these contact barriers prove very useful:

13



2. Carbon nanotube quantum dots

they confine the charge carriers along the CNT segment between two con-
tacts, enabling the fabrication of quantum dots simply by the patterning of
source and drain electrodes. At the same time, these naturally formed tun-
nel barriers are also a major obstacle for the fabrication of more advanced
quantum electronic devices: they provide too little control over contact re-
sistance.

Unfortunately, a thorough understanding of the metal-CNT contact has
not evolved yet [23]. In the following we discuss some of the factors which
are believed to determine the contact resistance. Section 2.2.1 focuses on
Schottky barriers, which can form at the interface between a metal and a
semiconducting CNT. In Sec. 2.2.2 we discuss the influence of the chemical
bonding between CNT and metal. In Sec. 2.2.3 we briefly comment on the
contact formation to metallic CNTs. Another crucial factor, the cleanliness
of the metal-CNT interface which is certainly a prerequisite for a ”good”
contact, is discussed in Sec. 4.2 among the device fabrication.

2.2.1. Schottky barriers

The Schottky-Mott rule for barrier heights

When a metal is placed in contact with a semiconductor electrons flow
across the interface to balance the mismatch between the different Fermi
levels of both materials. This process is associated with an electric field
across the metal-semiconductor interface and builds up a surface charge
at the interface. The high carrier density in the metal allows to screen
electric fields on typical length scales below one Ångstrom. Hence, the field
penetration into the metal might be neglected. In contrast, the considerably
lower carrier density in semiconductors will allow the electric field to enter:
In the region close to the interface positive charges accumulate, given that
metal work function φm is larger than Evac − EF of the semiconductor, as
shown in Fig. 2.5(a). This charge layer at the interface bends the energy
bands of the semiconductor, constituting a so-called Schottky barrier for the
injection of electrons and holes [Fig. 2.5(b)]. The barrier hight φSB is given
by the Schottky-Mott rule [28]. For electron injection the Schottky-Mott
rule states

φSBe = φm − χ, (2.6)

where χ is the electron affinity of the semiconductor, i.e. the energy differ-
ence between the bottom of the conduction band and vacuum level. The
corresponding barrier hight for holes is given by

φSBh = I − φm, (2.7)
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Figure 2.5.: (a) Energy band diagram of a metal and a weakly n-doped semiconduc-
tor. The different distances between Fermi level, EF, and vacuum level, Evac, cause a
potential drop across the vacuum gap. (b) When contact is made the Fermi levels phys-
ically equilibrate. The energy levels are bent until the vacuum levels of both materials
match. In the depicted case Schottky barriers for electrons and holes are formed. (c,d)
For φm < χ a Ohmic contact to the conduction band forms. The black area indicates
free electrons at the interface.
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2. Carbon nanotube quantum dots

where I = χ + Eg is the ionisation potential of the semiconductor which
corresponds to the energy gain when a vacuum electron is added to the top
of the valence band.

When the Fermi level of the metal lies in the band gap of the semicon-
ductor a Schottky barrier for the injection of electrons and holes is formed,
i.e. φSBe > 0 and φSBh > 0 as depicted in Fig. 2.5(b). The case φm < χ
is illustrated in Fig. 2.5(c). The Fermi level of the metal lies above the
conduction band and φSBe becomes negative. The conduction band is bent
below the Fermi edge of the metal. Free electrons enter a thin layer at
the semiconductor surface and provide an Ohmic contact to the conduction
band [Fig. 2.5(d)]. However, the interface electrons locally fill the empty
states in the valence band. Consequently there is a large Schottky barrier
for the injection of holes. For metals with a work function larger than ion-
isation potential of the semiconductor the argument is inverted, resulting
in a p-type behaviour with Ohmic contact to the valence band and a large
barrier to the conduction band.

For conventional semiconductors the Schottky-Mott rule usually fails [28].
The barrier height depends much weaker on the metal work function than
expected and a considerable barrier is formed even if φm < χ or I < φm.
The deviations from the Schottky-Mott rule are commonly explained by
chargeable defects at the semiconductor surface which pin the Fermi level
of the metal inside the band gap [28]. For 1-dimensional semiconductors,
such as a CNTs, electrostatic models predict that Fermi level pinning plays
only a minor role in the contact formation [29, 30] and that the Schottky-
Mott rule should apply.

Schottky barriers in CNTs

In the absence of chemical doping the Fermi level of the CNT lies in the
middle of the band gap and the barrier heights are given by

φSBe = φm − (φCNT − Eg/2) (2.8)

and

φSBh = (φCNT + Eg/2)− φm, (2.9)

where φCNT and Eg denote the work function and the band gap of the
CNT. φCNT was measured by photoemission spectroscopy [31] and derived
from scanning Kelvin probe measurements [32]. It lies in the range φCNT ≈
4.7 − 4.8 eV, which is about 0.1 − 0.2 eV larger than the work function
of Graphite. The band gaps of semiconducting CNTs vary with the tube
diameter, Eg ∝ 1/d, and are statistically distributed with typical values
between 0.4 and 2.0 eV [25, 33]. However, smaller values Eg ≈ 0.1−0.3 meV
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2.2. Metallic contacts to Carbon nanotubes

have also been reported [34], implying a continuous crossover from the gap
size of semiconducting CNTs with large diameter to quasi-metallic tubes
with small diameters, for which typical energy gaps from 10 to 100 meV
were found [27].

Numerous publications support the validity of the Schottky-Mott picture
for metal-CNT contacts. In 2002 an IBM group proposed that CNT de-
vices operate as unconventional Schottky barrier FETs whenever there is
a substantial Schottky barrier at the contact [35]. The switching of the
transistor primarily occurs because the electric field tunes the width of the
Schottky barrier until tunnelling through the barrier sets in. This mecha-
nism, which differs from conventional FETs where the switching is tuned
by the channel conductance and not by the contact resistance, allowed to
explain many experimental findings, such as the differences between n and
p-channel conductances. In 2003 the group of Hongjie Dai succeeded to
fabricate near-ideal CNT FETs with Ohmic contact to the p-channel by
using palladium (φPd ≈ 5.1 eV) as contact material [36]. In 2005 the same
group established rhodium (φRh ≈ 5.0 eV) as alternative material for p-
type Ohmic contacts [37]. The fabrication of CNT transistors with Ohmic
contacts to the n-channel remained a challenge for some more years. In
2007 the group of Lian-Mao Peng succeeded with scandium (φSc ≈ 3.3 eV)
as contact material [38]. Shortly afterwards the same group found that the
much cheaper material yttrium also forms Ohmic contacts to the conduction
band [39].
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Figure 2.6.: Work functions of selected metals [36, 38–40]. The dashed line corre-
sponds to the CNT work function. The green corridor exemplifies the band gap of a
CNT with Eg = 0.5 eV.

Figure 2.6 lists the tabulated work functions of selected metals and com-
pares them to the CNT work function. The green corridor corresponds to
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2. Carbon nanotube quantum dots

the band gap of a tube with Eg = 0.5 eV, which is a realistic value for CNT
with large diameter. According to the Schottky-Mott rule all metals with
work functions that lie either above or below the band gap should make
Ohmic contact to the CNT.

This is unfortunately not the case. Platinum, for example, has a signifi-
cantly higher work function than palladium, but makes only very poor elec-
trical contact to CNTs [36]. Aluminium should make a nice n-type contact,
but the on-currents of aluminium contacted CNT transistors are on aver-
age about two orders of magnitude lower than the on-currents of palladium
devices [33]. According to its work function titanium should form n-type
contacts. But in practice Ti contacts often yield ambipolar characteristics
[see Fig. 5.5(a)] or even p-type doping [34]. Therefore, the Schottky-Mott
rule can’t be the only factor that determines the contact resistance.

The deviations from a simple Schottky-Mott behaviour might be at-
tributed to deviations between the tabulated work functions and the real
work functions, at least to some extend. In the fabrication process the
metal work functions can be modified, e.g. due to adsorption [32] or by ox-
idation from water residues on the substrate. The latter mechanism might
be especially important for many of the highly reactive metals which could
potentially make n-type contacts (Ti, Al, etc.). However, chemical dop-
ing and the underlying mechanisms remain a controversially debated issue:
most authors explain the device sensitivity to environmental changes by
modifications of the metal work function [32, 35, 36, 41], but Chen and
Fuhrer challenge this view and claim that in some cases doping of the CNT
is the relevant mechanism [42]. Non-controversial is the experimental fact
that CNT transistors are sensitive to the ambient environment, which some-
times even results in a change from p-type to n-type behaviour as the device
is brought from air into vacuum [41]. However, in many cases (e.g. Pt or Al)
the discrepancies between the Schottky-Mott picture and the experimental
reality is so large that they can hardly be explained by chemical doping.

2.2.2. Character of the chemical bonding

Metals with very similar work functions yield CNT devices with very differ-
ent contact resistances. This fact, which we briefly discussed above, moti-
vated a number of first principle studies that go beyond simple electrostatics
[43–47]. These studies use density functional theory to calculate the charge
distribution at the metal-CNT contact on a microscopic scale. The compu-
tationally demanding calculations highlight the importance of the metal’s
wetting properties and of the electronic hybridization between the metal
and the CNT.

Vitale et al. showed that Al forms only few bonds to the cylindrical CNT
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2.2. Metallic contacts to Carbon nanotubes

surface, while Pd atoms arrange themselves in a way that maximizes the
number of possible bonds, resulting in a uniform wetting of the CNT [45].
Similar results were obtained in Ref. [44], where a simulated Au contact
barely formed bonds to the CNT, whereas Pd formed many bonds. Vitale
et al. also investigated the contact formation to the open end of a CNT
cylinder. In this case they found that Al binds well to the CNT. The
abruptly terminated CNT provides dangling bonds to which Al can bind
and a continuous metal cap was formed in the simulation. This suggests
that some metals (e.g. Al and Rh) need dangling bonds or other high-energy
defects to bind to the CNT, while other metals (e.g. Pd and Ti) are able to
bind to the pristine CNT surface. The nucleation of Rh at defect sites was
experimentally observed by transmission electron microscopy in one of the
few experimental attempts to study contact formation to CNTs [48]. The
authors also found that the introduction of additional defects by an oxygen
plasma lead to smaller Rh clusters and a more uniform coating of the CNT.

Vitale et al. showed that not only the number of bonds, but also their
chemical character is crucial for the contact properties [45]: The Pd–C–C
angle is about 90◦. Hence the Pd atoms do not perturb the sp2 configuration
of the CNT. In C atoms in sp2 configuration can still provide delocalized π-
electrons, which are responsible for the electrical conductivity of the CNT.
In contrast, the formed Al bonds have an Al–C–C angle of ∼ 110◦, which is
not compatible with a pure sp2 configuration. The involved C atom rehy-
bridizes into sp3, implying the formation of a σ-like bond which is strongly
localized and acts as potential barrier rather than contributing to the elec-
trical conductivity.

Some results also suggest that CNT sections covered by Pd or Ti become
severely distorted in their spatial and electronic structure [43, 46, 47]. Inter-
estingly these models predict that the CNT bandgap becomes filled below
the metal contact, turning the CNT locally from a semiconductor into a
metal. In this picture the contact resistance of CNT devices is determined
by Schottky-barriers that form between a metallic and a semiconducting seg-
ment of the CNT. However, this view seems to contradict the experimental
results by Franklin and Chen [49], who report that the contact resistances
of Pd-contacted CNT transistors scale with the contact area according to
the simple relation

2Rcontact =
h

4e2
+

2%

Lcd
. (2.10)

where Lc is the length of the metal contact and d is the diameter of the
CNT and % is the contact resistivity in addition to the quantum resistance,
which the authors extract from fits to be 346 kΩ nm2. These results indicate
that the charge carriers propagate at least several tens of nanometers under
the metal contact.
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2. Carbon nanotube quantum dots

2.2.3. Contact to metallic CNTs

A large part of the literature on metal-CNT contacts is motivated by the
potential of CNT FETs to replace Si based transistor technology. As a
consequence the contact formation to metallic CNTs received only little
interest.

In general metals that form good contacts to semiconducting CNTs, e.g.
Pd and Rh, also form good contacts to metallic CNTs [37, 50]. Interestingly
metallic devices often exhibit a good gate tunability of the contact resistance
(see e.g. reference [50]). For semiconducting CNTs such a gate dependence
of the contact resistance is naturally explained by variations of the Schottky
barrier width. For metallic CNTs such a natural explanation is missing. An
even more surprising fact was discovered by Kim et al. [37]: the contact
resistances of devices with rhodium contacts show a similar diameter depen-
dence for semiconducting and for metallic CNTs. Again Schottky barriers
provide a natural explanation, φSB depends on Eg which scales with 1/d,
that only applies for semiconducting CNTs.

One may interpret these surprising similarities in one of the following
ways. Either the small band gaps in nominally metallic tubes give rise
to Schottky-like physics, or the contact resistance is mostly governed by
the microscopic details of the chemical bonding which does not depend on
the metallic or semiconducting flavour of the tube. Finally, in some cases
semiconducting CNTs with a large chemical doping might be misinterpreted
as metallic CNTs.1

2.3. Carbon nanotube quantum dots

2.3.1. Discrete energy spectrum

The electron wave function in a CNT is already confined in two dimensions
and the electrons can only move along the tube. The momentum component
around the CNT is quantized and can only change in steps ∆k⊥πdCNT = 2π.
Contacts that are patterned onto the CNT introduce additional potential
barriers. At low temperature the thermal energy does not suffice to over-
come these barriers and electrons need to tunnel through them to enter
or leave the CNT. When the tunnel resistance of these barriers becomes
comparable to the quantum resistance, Rt & h/e2, the enclosed CNT seg-
ment becomes strongly isolated and forms a QD. The CNT segment can
be approximated as a 1-dimensional particle-in-a-box problem, where the

1In Fig. 5.5(a) we show a device where the CNT band gap is centred around a backgate
voltage of VBG = −18 V. When only the transport characteristics are studied such
devices can easily be misinterpreted as metallic CNTs due to the limitation of the
accessible backgate range.
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2.3. Carbon nanotube quantum dots

longitudinal wave vector has to fulfil the boundary conditions of standing
wave solutions

k‖ =
nπ

L
n = {1, 2, 3, ...}, (2.11)

with L being the length of the respective CNT segment [Fig. 2.7(a)]. The
electron momenta are now quantized in all 3 dimensions, giving rise to a
discrete energy spectrum. Each level can be filled with up to 4 electrons due
to spin and valley degeneracy. The spacing between the levels of a metallic
CNT is given by Eq.(2.3) and reads

δE = ~vF
π

L
, (2.12)

which also holds for semiconducting CNTs far away from the band gap. Typ-
ical devices, like the one shown in Fig. 2.7(b), are a few hundred nanometers
long and obey a level spacing on the meV scale. Hence, the quantum nature
of such devices starts to play a role already at temperatures below ∼ 10 K.
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Figure 2.7.: Different illustrations of a CNT QD. (a) Source and drain contacts define
potential barriers which allow only certain standing wave solutions separated by the
quantum mechanical level spacing δE. (b) Scanning electron micrograph of a contacted
CNT on SiO2 substrate. (c) Capacitance model of a QD. The highly doped substrate
serves as backgate (BG) with capacitance CG. Source (S) and drain (D) obey tunnel
couplings ΓS and ΓD in addition to their capacitive couplings CS and CD

2.3.2. Coulomb blockade and single electron tunnelling

So far our discussion has neglected the Coulomb interactions between elec-
trons. The effects of Coulomb interactions can be easily included in the
framework of the Constant interaction model (CIM), which ascribes a sin-
gle constant capacitance C to the dot. The CIM further assumes that
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2. Carbon nanotube quantum dots

the quantum mechanical excitation spectrum remains unaffected by the
electron-electron interactions. Despite its conceptual simplicity the CIM
proved to be a very successful approximation. Here we follow the discus-
sion of the CIM given in reference [51] with some modifications specific to
CNT QDs. In a typical set-up, shown in Fig. 2.7(c), the dot capacitance
is the sum the capacitances between the QD and source, drain and gate,
C = CS +CD +CG. One can of course extended the model by adding more
capacitances, e.g. from additional gates or from surrounding dielectrics.
The total energy of a QD with N electrons can then be written as

Etot(N) =
(−|e|(N −N0) + CSVS + CDVD + CGVG)2

2C

+

N∑
n=1

En,

(2.13)

where VS, VD and VG are the source, drain and gate voltages and N0 is the
number of dot electrons when all voltages are zero. The first term is simply
the electrostatic energy of a capacitor. CGVG can be interpreted as a gate
induced charge that allows to shift the dot potential. While the number
of electrons on the dot has to change in discrete steps, the gate induced
charge can be changed continuously. The terms CSVS and CDVD consider
that source and drain contacts also gate the QD. The last term in Eq.(2.13)
is the sum over the occupied quantum mechanical energy levels.

The electrochemical potential of the dot, which is the energy required to
add one electron to the dot, is defined as

µ(N) = Etot(N)− Etot(N − 1)

∝ N e2

C
− |e|
C

∑
i
CiVi + EN .

(2.14)

This equation describes a ”ladder” of electrochemical potential levels illus-
trated in Fig. 2.8(a,b). The electrochemical potential levels are also referred
to as QD resonances. They should not be confused with the energy levels
of the QD (each electrochemical potential level describes the difference be-
tween two energy levels). In Fig. 2.8(a) the µ(N + 1) level is positioned
above the lead potentials, µS = µD. Hence the lead electrons have not
enough energy to enter the energy level E(N + 1). At the same time the
picture assumes that µ(N) < µS = µD. This means there are no empty
states in the Fermi leads to let the QD relax to E(N − 1). The QD is in
Coulomb blockade with a fixed number of electrons.

To add or remove electrons from the QD one can tune the gate voltage.
The complete ”ladder” of electrochemical potential levels shifts linearly with
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Figure 2.8.: (a) Energy diagram of a QD in Coulomb blockade. (b) Energy diagram of
QD at resonance. (c) Schematic gate dependence of the differential conductance across
a CNT QD with fourfold degenerate energy spectrum.

the gate voltage according to α∆VG, where α = −|e|CG
C

is the respective
gate efficiency factor also named lever-arm. By increasing VG the µ(N + 1)
level can be pushed below the lead potentials and one electron is added to the
QD. Figure 2.8(b) shows the situation where the µ(N+1)-level is just passing
the lead potentials and all three levels are aligned, µ(N + 1) = µS = µD.
When a small thermal broadening of the Fermi leads is assumed there will
evidently by electrons with just enough energy to enter E(N + 1), as well
as empty states to let the QD relax back to E(N). The QD fluctuates
between E(N + 1) and E(N). Already a very small voltage across the
device, VSD = VS − VD, directs this fluctuations into a current which is
carried by electrons that are transferred one-by-one through the QD. When
the differential conductance, G = ∂I/∂VSD, is measured as a function of
VG one observes a peak for the gate voltages where the QD is resonant
[Fig. 2.8(c)]. The spacing between two such Coulomb peaks is given by the
addition energy

Eadd = µ(N + 1)− µ(N) =
e2

C
+ δE, (2.15)

consisting of an electrostatic part, called charging energy U = e2/C, and
the quantum mechanical level spacing δE defined in Eq.(2.12). The series of
Coulomb peaks directly reflects the fourfold degenerate energy spectrum of
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CNTs. The first electron that enters a new CNT shell requires an addition
energy U + δE, while the next three electrons must only pay the charging
energy U .

Above we assumed that thermal broadening of Fermi leads plays a dom-
inant role in providing transport electrons. However, the Coulomb peaks
have also an intrinsic broadening due to their finite lifetime, i.e. on a short
time scale Heisenbergs uncertainty principle allows that electrons with a
slightly off-resonant energy enter and leave the QD. The intrinsic lineshape
of a QD resonance was calculated by Beenakker [52]:

G(∆ε) = Gmax
Γ

∆ε2 + Γ2/4
, (2.16)

where ∆ε ∝ α∆VG is the detuning from the position of the QD resonance,
Γ = ΓS + ΓD is a constant that accounts for the coupling to the source, ΓS,
and the coupling to the drain, ΓD, and Gmax = 4 ΓS+ΓD

ΓSΓD
gives the maximum

of conductance of the Coulomb peak in a fourfold degenerate CNT. The
intrinsic lineshape of the QD resonances can only be observed in the regime
kBT � Γ, where the Fermi distribution in the leads is sufficiently narrow.
If this is fulfilled the full width at half maximum (FWHM) of the Coulomb
peaks directly reflects the intrinsic lifetime broadening, which is equivalent
to the coupling constant Γ, while the height of the Coulomb peaks can be
used to extract the asymmetry between ΓS and ΓD.

2.3.3. Coulomb diamonds

Coulomb blockade can not only be lifted by gate tuning, but also by the ap-
plication of an appropriate bias voltage, as illustrated in Fig. 2.9(a-c). Each
QD resonance that lies within the bias window constitutes a conductance
channel. By measuring the differential conductance as a function of VSD

and VG one obtains a so-called charge stability diagram. When a QD res-
onance enters or leaves the bias window the conductance changes abruptly
and a peak in differential conductance is measured. The differential conduc-
tance is usually encoded as color and the charge stability diagrams show a
pattern of diamonds. In Fig. 2.9(d) these diamonds are drawn as red lines
imposed on a color scale plot from a measurement of a CNT QD at 4.2 K.
Inside the Coulomb diamonds the electron number is fixed and sequential
tunnelling is blocked. Outside the diamonds at least one QD resonance lies
in the bias window and the blockade is lifted. Along the diamond edges
a QD resonance remains aligned with either µD [lines with negative slope
s− = ∆VSD

∆VG
in Fig. 2.9(d)] or µS [lines with positive slope s+ = ∆VSD

∆VG
in

Fig. 2.9(d)]. The two slopes can easily be calculated. Usually the drain
contact is kept at kept at ground, µD = 0. In this case the gate voltage
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Figure 2.9.: (a-c) Energy diagrams of a QD at finite bias. (d) Charge stability diagram,
G(VG, VSD), of a fourfold degenerate CNT QD measured at 4.2 K. The red lines trace
the edges of Coulomb diamonds.

∆VG has to compensate the drag of QD resonance via the source capaci-
tance, 0 = CG

C
∆VG + CS

C
∆VSD, which gives the slope s− = −CG

CS
. For the

positive slope the QD resonance remains not fixed at µD but follows µS, i.e.
∆VSD = CG

C
∆VG + CS

C
∆VSD, which gives a slope s+ = CG

C−CS
. At the top of

the diamond both lines cross and the source drain voltage VSD corresponds
to the spacing between two QD resonances [Fig. 2.9(b)]. This provides a
direct measurement of the addition energy, which can be used to extract
the gate efficiency factor α. When a clear shell filling pattern is observable
one can separate the charging energy U , which is 3.8 meV in Fig. 2.9(d),
from the level spacing, which is 3.8 meV in the same figure. Furthermore
the gate efficiency factor α and the two slopes s+ and s− allow to calculate
the capacitances CS, CG and C.

2.3.4. Co-tunnelling and excited states

All QD states we considered so far have been ground states, i.e. the dot
electrons could not relax into a lower lying QD state. When the necessary
energy δE is provided the N th electron may be excited into the EN+1-level
and after some time decay back into EN. In the following we denote ground
state and the first excited state of the QD with N electrons as GS(N) and

25



2. Carbon nanotube quantum dots

ES(N). In Fig. 2.10(b) we plot the ground state energies and in addition the
energy of the ES(N) state. Transition between the states are drawn as color-
coded arrows. The length of the arrow corresponds to the hight chemical
potential level in Fig. 2.10(c-f). When an excited state falls into the bias
window [Fig. 2.10(c,f) a new conductance channel becomes available. The
onset of the aditional conductance channel gives rise to the dotted lines in
the stability diagram in Fig. 2.10(a). These lines run parallel to the diamond
edges and terminate when the bias drops below |e|VSD < δE. To understand
the latter we consider the situation in Fig. 2.10(e). The ES(N)↔GS(N+1)
lies within the bias window and is energetically allowed. But once the QD
relaxes from ES(N) to GS(N) Coulomb blockade is restored and the current
is blocked.
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Figure 2.10.: (a) Schematic of a stability diagram that also contains sequential trans-
port through excited states (dotted lines), elastic co-tunnelling current (light grey re-
gion) and inelastic co-tunnelling current (dark gray region). (b) Schematic of the energy
spectrum. The arrows are colour coded and correspond to the transitions in (a) and
to the chemical potential levels in (c-f), where we illustrate the following processes:
(c) Sequential tunnelling through GS(N) and ES(N). (d) Inelastic co-tunnelling. (e)
Elastic co-tunnelling. (f) Sequential tunnelling through GS(N + 1) and ES(N).

So far we argued that current flow can only occur via sequential tunnelling
where the QD fluctuates between states with N and N + 1 electrons. How-
ever, when higher order tunnelling processes are considered this statement
is not true anymore. Again the Heisenberg uncertainty principle provides

26



2.3. Carbon nanotube quantum dots

us with a tolerance margin. In Fig. 2.10(e) we illustrate a second-order pro-
cess known as elastic co-tunnelling. One electron enters the QD from the
source and within the uncertainty time τ ≈ ~/U a second electron leaves the
QD to the drain. The corresponding current turns out to be proportional
to the bias voltage, IEC ∝ |e|VSD

ΓSΓD
U2 [53] and thus the differential con-

ductance due to elastic co-tunnelling is constant. When the source-drain
voltage overcomes the level spacing δE also inelastic co-tunnelling events
start to contribute. These inelastic co-tunnelling events leave the QD in an
ES. To first approximation the onset of inelastic co-tunnelling yields a step
in ∂I/∂VSD [54]. This step corresponds to the boarder between the light
gey and dark grey regions in Fig. 2.10(a).
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3
Quantum dots coupled to superconductors

When a quantum dot (QD) is coupled to a superconducting electrode (S)
two very distinct phenomena clash: superconductivity arises from the col-
lective behaviour of a large number of electrons, while QDs usually act as
turnstiles that let electrons pass only one-by-one. In a superconductor the
electrons feel a net attractive interaction that binds them into pairs, while a
QD confines electrons in such a small region that the electrons strongly repel
each other. The basic physics of QD-S hybrid systems is therefore governed
by a competition between attraction and repulsion. This interplay can even
be spiced with additional effects, such as Kondo correlations or spin-orbit
interactions. Thus, QDs coupled to S-contacts became a fundamental model
system that allows to study a large variety of phenomena. Prominent ex-
amples are the Josephson effect [55] and the formation of so-called bound
states (e.g. Andreev bound states [56], Yu-Shiba-Rusinov bound states [57]
and Majorana bound states [58, 59]). On the other hand, the QD-S unit
can be viewed as the basic building block of novel quantum electronic de-
vices: supercurrent transistors [60], nano-SQUIDS [56, 61, 62] and Cooper
pair splitters [63–66] have already been realized and researchers constantly
propose new device ideas (see e.g. Refs. [67–69]).

The diversity of phenomena and device possibilities are overwhelming.
Here we focus on two aspects out of this vast spectrum. In Sec. 3.2 we dis-
cuss Cooper pair splitters. Those devices have the prospect to act as contin-
uous on-chip sources to generate spatially separated spin-entangled electron
pairs. Section 3.3 focuses on Andreev bound states. A new type of energy
level that can appear at energies inside the superconducting gap. Since the
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3. Quantum dots coupled to superconductors

recent observation in CNT QDs [56] Andreev bound states received a lot
of interest [70–73]. They play a key role for the superconducting proximity
effect in mesoscopic systems [74]. But first we give a brief introduction to
superconductivity.

3.1. Superconductivity

In this section we briefly discuss the electronic properties of superconduc-
tors. For a more detailed introduction the reader is referred to the literature,
e.g. Refs. [75, 76] whose presentations we will partially follow.

3.1.1. Basic phenomena

The hallmark feature of superconductivity was first observed in 1911 by
Kamerlingh Onnes [77]: the electrical resistance of certain materials – e.g.
mercury and lead, but also aluminium or niobium – vanishes when the
temperature drops below a critical value Tc. Experiments with persistent
currents in superconducting rings provide the most sensitive probe of this
ideal conductivity. Below Tc the resistance can drop by at least 14 orders of
magnitude, suggesting that the resistance literally vanishes, i.e. R = 0 [76].
A second key feature, namely perfect diamagnetism in the superconduct-
ing state, was discovered in 1933 by Meissner and Ochsenfeld [78]. Perfect
diamagnetism implies that magnetic fields will be expelled from the metal
when the superconducting state is entered. A consequence of the perfect
diamagnetism is the existence of a critical magnetic field, Bc, for which su-
perconductivity breaks down due to the energy cost to keep the magnetic
field out of the bulk. More precisely, the external field leads to an increase
of the Gibbs energy of the superconductor according to dGS = −VMdB,
where V is the Volume, M = −B/µ0 is the magnetization of a perfect
diamagnet and dB is magnetic field change. In the normal state the mag-
netic susceptibility is much smaller and the Gibbs energy has only a weak
B field dependence. Therefore there must be a critical field for which the
Gibbs energy of the superconducting state rises above that of the normal
state, GS(Bc, T ) = GN(Bc, T ) ≈ GN(0, T ). At this point the superconduc-
tor is quenched into the normal state – a behaviour we will frequently use
to perform control experiments in the normal conducting state.

3.1.2. Cooper pairs

The microscopic explanation of superconductivity was given by Bardeen,
Cooper and Schrieffer and is now known as the BCS theory [79]. One pillar
of this theory is a fundamental theorem that was worked out by Cooper [80]:
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3.1. Superconductivity

in the presence of a Fermi sea any net attraction between two electrons, no
matter how small it is, can bind the electrons together into a so-called
Cooper pair (given that the temperature is low enough). For the ordinary
two-body problem in 3D it is well known that the attractive forces must
exceed a finite threshold value to create a bound state. The background of
the Fermi sea makes a crucial difference because Cooper pairs are composite
particles of two fermions and thus obey Bose statistics. When two electrons
in the vicinity of Fermi surface pair up, the Pauli exclusion principle no
longer applies. Metaphorically speaking the Cooper pair cross the Fermi
surface and dive into the Fermi sea. Thus the energy gain upon creation of
a bound state is much larger than for two free particles in vacuum.

It was further shown by Cooper that the binding energy of the electron
pair is a very sensitive function of the total momentum, K = k1 + k2, where
k1 and k2 are the wavevectors of the two electrons. The binding energy is
maximal for K = 0 and decays very rapidly otherwise, i.e. the two electrons
of a Cooper pair have opposite momenta, k1 = −k2. To understand this
important result we have to consider the physical origin of the attractive
interaction, which is mediated by the ion lattice. In a classical picture one
might envision an electron that moves across the solid and thereby attracts
the positively charged ion cores. The electron deforms the ion lattice, drag-
ging a cloud of positive polarization behind which in turn attracts other
electrons. In a quantum mechanical language one ascribes the the attrac-
tive interaction to the exchange of virtual phonons. After two electrons
exchange a virtual phonon with wavevector q their initial wavevectors are
changed to k′1 = k1 + q and k′2 = k2 − q, conversing the total momentum
K = k1 + k2 = k′1 + k′2. The energy transfer of this mechanism is limited
by the available phonon energies, which are cut-off at the Debye frequency
ωD. We assume very low temperatures so that all electron states with en-
ergies below the Fermi energy are occupied. Hence the phonon mediated
interactions are restricted to a very narrow energy range between EF and
EF + ~ωD. In the reciprocal space this corresponds to a narrow shell with a
thickness δk = (mωD/~kF) around the Fermi sphere. Figure 3.1 illustrates
why the probability for phonon exchange is only significant for electrons
that fulfil K = 0. For K = 0 the complete δk shell is accessible, while for
K 6= 0 momentum conservation restricts the allowed scattering states to the
small area where both shells intersect.

Knowing that the two electrons of a Cooper pair have opposite momenta
(k,−k) suggests that Cooper pairs can be described by an orbital wave-
function of the form

ψ(r1, r2) =

kF+δk∑
k=kF

gke
ik·r1e−ik·r2 , (3.1)
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Figure 3.1.: Illustration of the momentum conservation for the exchange of a vir-
tual phonon. The blue circles represent the allowed magnitude of the initial and final
wavevector ranging from kF to kF + δk. (a) For K 6= 0 the only the small area where
the two circles intersect fulfil momentum conservation. (b) For K = 0 the two circles
lie on top of each other and the number of scattering events that fulfil momentum con-
servation is maximal. The argument is even more convincing when expanded to the 3D
case, where the circles are replaced by spherical shells.

which can be expanded either in terms of sin(k · (r1 − r2)) or cos(k · (r1 − r2))
functions. The cosine ensures a larger probability amplitude for the elec-
trons to be near each other, which seems favourable in the presence of
attractive interactions. Indeed conventional superconductors obey a sym-
metric orbital wavefunction. To restore the antisymmetry of the total wave-
function we have to multiply the orbital part of the wavefuntion with a spin
singlet,

|S〉 =
1√
2

(|↑↓〉 − |↓↑〉) , (3.2)

where we have switched to the Dirac notation. The symbol (k ↑,−k ↓) is
often used to describe a Cooper pair. However, it is important to remember
that the spins of the two electrons are in a superposition state: if one could
measure the spin of the electrons along a given axis the spin of one electron
will point up and the spin of the other electron will point down, but the
spin directions of the individual electrons remain undetermined until the
first spin projection measurement performed, fixing the spin direction of
both electrons. In other words: the two individual spins of a Cooper pair
are maximally entangled, while the total spin is zero.

3.1.3. The energy gap

Cooper considered for his argument only one bound pair on the background
of the Fermi sea. But at the same time his argument implies that the Fermi
sea becomes unstable in the presence of attractive interactions: electrons
keep condensing into pairs until an equilibrium state is reached which differs
so strongly from the Fermi sea that Cooper’s argument becomes inapplica-
ble. A description of this state could in principle be given by extending
the two-electron wavefunction from Eq. (3.1) to N electrons. However, for
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3.1. Superconductivity

all practical purposes such a description is useless, because one would have

to determine hopelessly many probability amplitudes (∼ 10(1020) for real-
istic situations [75]). The breakthrough of BCS was that they managed
to find better representation of this wavefunction and thereby made the
ground state accessible to a mathematical treatment. Still, the math of the
BCS theory is rather complicated and we omit the derivation of the results
presented in the following.

0 1 2 3

−4

−3

−2

−1

0

1

2

3

4

E

EF

∆

DS(E)/DN(0)

−4 −2 0 2 4
0

1

2

3

4

5

El
ec
tro

ns

E
∆

Holes

η
∆

(a) (b)

∆

Figure 3.2.: (a) Quasiparticle excitation energy (solid line) in comparison with the
electron energy in the normal state (dashed line) as a function of η, the kinetic energy
of free electrons. The quasiparticle spectrum has an electron-like and a hole-like part.
(b) Normalized density of states of the quasipartices as a function of energy plotted in
a band diagram fashion.

The most important finding of the BCS theory is that excitations from the
ground state require a minimum energy of 2∆. The quantity ∆ is referred
to as the superconductor’s energy gap. The factor of 2 stems from the fact,
that elementary excitations correspond to the breaking of one pair into two
unpaired charge carriers. We know from above that the background state
must differ strongly from the Fermi sea. The unpaired charges that live
in this new background state are called quasiparticles to distinguish them
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from free electrons. The dispersion relations for these quasiparticles can be
written as

E(k) =
√
η(k)2 + ∆2, (3.3)

where η(k) = ~2k2/2m − EF is the kinetic energy of a free electron with
respect to the Fermi energy. This dispersion relation has an electron-like
branch (η > 0) and a hole-like branch (η < 0). In Fig. 3.2(a) we compare
the energy of the quasiparticles to that of free electrons. For quasiparticles
with large kinetic energies η � ∆ (η � Delta) the the behaviour of free
electrons (free holes) is restored. For small kinetic energies the behaviour
of quasiparticles strongly deviates from that of free electrons, because the
quasiparticles must obey a minimum energy of ∆. The energy gap separates
the Cooper pair condensate from the quasiparticle excitations, as becomes
even clearer when we equate the quasiparticle DOS according toDS(E)dE =
DN(η)dη:

DS(E) = DN(η)
dη

dE
=

DN(η) E√
E2−∆2

(E > ∆)

0 (E < ∆)
(3.4)

Usually one is interested in an environment of a few meV around the Fermi
energy, where one can crudely approximate DN(η) ≈ DN(0). In Fig. 3.2(b)
we plot the quasiparticle DOS normalized to DN(0). The existence of
electron-like and hole-like quasiparticles suggests to plot the DOS in anal-
ogy to the band diagrams used in the theory of semiconductors. For large
energies, E � ∆, the behaviour in the normal state is resembled again. As
the energy approaches ∆ the DS(E) starts to grow and even diverges for
E → ∆. For E < ∆ the DOS is zero, meaning that there are no quasiparticle
states but only Cooper pairs.

The quasiparticle DOS can be probed by tunnelling spectroscopy, which is
a conceptually simple and elegant method. Let us consider a NIS sandwich,
i.e. a normal conductor and a superconductor that are separated by a thin
insulating tunnel barrier. The current from N to S can be written as

IN→S = A

∫
|t|2DN(E + eV )f(E + eV ) ·DS(E)[1− f(E)] dE, (3.5)

where DN(E + eV )f(E + eV ) gives the number of electrons in N and
DS(E)[1− f(E)] gives the number of empty states in S. The tunnel barrier
is characterized by the matrix element |t|2, V is the voltage drop across
the barrier and A is a proportionality constant. After equating the current
in the reversed direction, IS→N, and subtracting the two contributions one
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obtains:

I = IN→S − IS→N

= A|t|2
∫
DN(E + eV )DS(E)[f(E + eV )− f(E)] dE.

(3.6)

From this expression we calculate the differential conductance ∂I/∂V . In
the limit T → 0 the derivative of the Fermi function is given by the Dirac
delta function δ(E + eV ). The evaluation of the integral becomes trivial,

G =
∂I

∂V
= A|t|2DN(0)DS(E = eV ), (3.7)

and we see that the differential conductance across the NIS tunnel junction
is directly proportional to the quasiparticle DOS at E = eV . A more in-
teresting system is obtained when the insulating layer is replaced by a QD.
Such N-QD-S junctions are the basic building blocks of the devices which are
investigated in the main chapters of this thesis. Being characterized by two
tunnel barriers and the QD spectrum, such N-QD-S junctions can already
become rather hard to handle theoretically. Nonetheless, there are regions
of the parameter space for which the devices can be understood quite intu-
itively. A particular simple example is a QD deep in Coulomb blockade. The
differential conductance, G(VSD), in the normal state is given by the elastic
co-tunnelling background, which is approximately independent of VSD. In
the superconducting state the co-tunnelling conductance is multiplied with
DS(E = eVSD) and the QD acts as tunnel probe for the quasiparticle DOS
(see e.g. Fig. 6.9).

Finite temperatures lead to a smearing of DS(E) and to a reduction of
∆. Thermally created quasiparticles occupy otherwise empty states. These
states are no longer accessible for Cooper pairs. Less phonons can be ex-
changed and the gap decreases. The temperature evolution of the gap can
be approximated as

∆(T ) ≈ ∆(0)

(
1− T

Tc

)1/2

, (3.8)

and the gap size at zero temperature can be related to the critical temper-
ature via

∆(0) ≈ 1.74kBTc. (3.9)

The latter equation involves some assumptions about the coupling constant
that characterizes the phonon exchange and for some (strongly coupled)
materials there are deviations from the given value.
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Another important quantity which is related to the energy gap is the BCS
coherence length

ξ0 =
~vF

π∆
. (3.10)

Except for the additional factor π the same result is obtained by consider-
ing the position uncertainty δx ≈ 1/δk that that results from the energy
uncertainty ∆, according to δk ≈ dk

dη

∣∣
kF
δE. Thus the coherence length can

be interpreted as the spatial extent of a Cooper pair. Typical values for
ξ0 range from a few tens to a few hundred nanometers. This means the
the Cooper pairs strongly overlap in the condensate. It also explains why
the attractive phonon interaction can be larger than the Coulomb repulsion
between the electrons: Coulomb interactions are typically screened on a
length scale of ∼Å.

We finish this section with a brief comment and the relation between the
energy gap and the vanishing of the electrical resistance. In a normal con-
ductor the resistance is caused by scattering from defects and phonons. In a
superconductor the current is carried by the common motion Cooper pairs,
characterized by an additional wavevector δK, and a scattering event re-
quires that a Cooper pair is broken (otherwise the momentum of all Cooper
pairs would have to change, requiring an energy way larger than 2∆). Thus
elastic scattering can be excluded right away, but also inelastic pair break-
ing events do not necessarily lead to a DC resistance. For R = 0 there are
no electric field gradients in the sample. The quasiparticles are not accel-
erated but remain at their position until they re-condense to Cooper pairs.
However, in the presence of AC fields, flux traps, etc. also superconductors
exhibit finite resistances.

3.1.4. Proximity effect and Andreev reflections

A good estimation of the size of a Cooper pair is given by considering the
position uncertainty that corresponds to the energy uncertainty ∆. It is
intuitively clear that the Cooper pair density can not abruptly drop to zero,
but rather decays smoothly over lengthscales on the order of the coherence
length. A striking consequence of this behaviour is the superconducting
proximity effect: Cooper pairs will leak into non-superconducting materials
if these are placed in electrical contact with a superconductor. This leads
to the occurrence of superconducting-like properties in the proximitized ob-
jects. This macroscopic view of the proximity effect can be described within
the framework of the of the Ginzburg-Landau theory, where a macroscopic
wavefunktion, ψ(r) =

√
N (r)eiΦ(r), is assigned to the common ground state

of the Cooper pairs and N (r) is the Cooper pair density at the position r.
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However, the proximity effect can also be described in a microscopic lan-
guage.
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Figure 3.3.: Illustration of normal reflection and Andreev reflection of an electron at
an NS interface. (a) and (c) give a real space representation while in (b) and (d) we
draw energy-space diagrams.

On a microscopic level the proximity effect is carried by a process known
as Andreev reflection. Andreev reflections occur at interfaces between nor-
mal metals (N) and superconductors (S). Let us consider an electron with
sub-gap energy, |E| < ∆, that impinges on a fully transparent NS interface.
This situation is depicted in Fig. 3.3(a,b). The electron can not simply enter
S since its energy is not sufficient to create a quasiparticle. At the same time
the superconductor can not simply reflect the electron: a normal reflection
of an electron, illustrated in Fig. 3.3(c), inverts the momentum component
perpendicular to the interface, p⊥ → −p⊥. This requires a momentum
transfer of 2p⊥. Without a sufficient potential barrier, e.g. due to a thin
insulating layer between S and N, there is nothing which could take up the
momentum of the electron, which is on the order of kF. The superconductor
constitutes a potential barrier with a maximal height ∆ and the maximal
momentum that the superconductor can exert on the electron may be cal-
culated as δk =

(
dk
dE

)
kF
δE = 1

~vF
∆ which is orders of magnitude smaller

than kF. An electron impinging on the superconductor is the unstoppable
force hitting the unmovable object [81]. The way out of this dilemma is a
simple second order process. The electron with E and |k, ↑〉 pairs up with
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a partner electron at −E and |−k, ↓〉 to enter S by creation of a Cooper
pair.1 The second electron leaves a hole in N. This hole is associated with
a positive energy E and |k, ↑〉. Since the hole has a negative mass its ve-
locity vector points in the opposite direction of its momentum vector: the
hole travels backwards on the path of the incident electron, a phenomenon
known as retro-reflection. The time reversed process of Fig. 3.3(a,b) is the
retro-reflection of a hole as an electron. This latter process corresponds to
the leaking of a Cooper pair into N.

Considering that there is no attractive interaction between electrons in a
normal conductor it may seem adventurous to apply the term ”Cooper pair”
to any electron pair that is located in N. The crucial point is the coherence
of the Andreev process which allows the two electrons to maintain their
phase relation, at least for a certain time. As long as the two electrons
maintain the ”right” phase and energy relations in N they might just re-
enter the pair condensate in S. On a microscopic level the proximity effect
results from a combination of the mechanism of Andreev reflections and the
phase coherence in N [82]. A nice illustration of this collaboration between
Andreev reflection and phase coherence is provided by the Josephson effect:
a dissipationless current can flow across an SNS junction, justifying the idea
of Cooper pairs leaking into N, and the magnitude of this Josephson current
critically depends on the phase difference of the macroscopic wavefunctions
in the two S layers, indicating the phase coherence of the process.

3.1.5. Crossed Andreev reflection and elastic co-tunnelling

Above we discussed Andreev reflection as a phase coherent process that
converts an electron pair (k ↑,−k ↓) into a Cooper pair (or vice versa) and
governs the sub-gap transport of NS interfaces. Since the Cooper pairs have
a spatial extent on the order of the coherence length ξ0 it is possible that
a hole entering S at a position x is retro-reflected as electron at a different
position x + L with L < ξ0. In multi-terminal geometries this can lead
to cross conductance channelse.g. between two normal leads, N1 and N2,
which are connected at a small distance to the same S, as illustrated in
Fig. 3.4. In a matrix notation these cross conductances correspond to the
off-diagonal terms in (

I1
I2

)
=

(
G11 G12

G21 G22

)(
U1

U2

)
, (3.11)

1Note that the condition k2 = −k1 only holds approximately. Due to the different
energies of the two electrons the magnitude of the wave vectors differ by 2E

~vF
, which

is usually negligible small.
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Figure 3.4.: Illustration of the non-local generalizations of Andreev reflection and nor-
mal reflection for a three-terminal device. (a) Crossed Andreev reflection in real-space
and (b) as energy-space diagram. (c) Elastic co-tunnelling in real-space and (b) as
energy-space diagram.

where the index labels the respective lead N1 or N2. The non-local gener-
alization of the Andreev mechanism is known as crossed Andreev reflection
(CAR). In the case depicted in Fig. 3.4, where the incoming hole from N1 is
reflected as electron into N2, CAR corresponds to the splitting of a Cooper
pair into two separate leads. This process triggered a lot of attention because
it is a potential source for spatially separated spin-entangled electrons (see
Sec. 3.2, Chapter 6 and references therein). The reverse process corresponds
to the non-local creation of a Cooper pair.

In metallic NSN structures it is hard to observe CAR processes because
there is another competing process, which can be viewed as the non-local
generalization of a normal reflection: A single charge carrier, be it an elec-
tron or a hole, can tunnel between N1 and N2 by propagation through S
as a virtual quasiparticle. In analogy to the tunnelling events discussed in
Sec. 2.3.4 this process is called elastic co-tunnelling (EC). At a first sight one
might guess that the probability amplitude for EC is lower than for CAR
because EC involves a virtual intermediate state with an energy deficit ∆.
However, when we assume that the separation between the tunnelling points
obeys L < ξ0 = ~vF/π∆ this argument does not apply. If the quasiparticles
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propagates from x to x+L with the Fermi velocity, then the duration time
in S is given by τ = vFL. Thus the restriction of the length-scale can be
translated into the inequality τ < ~/π∆, which means that the uncertainty
principle allows the creation of the virtual quasiparticle. It turns out that
CAR and EC have approximately the same probability amplitudes, which
decay exponentially on the scale of ξ0 [83].

3.2. Cooper pair splitters

We saw in the last section that crossed Andreev reflections provide a mech-
anism to create pairs of spatially separated spin-entangled electrons. How-
ever, metallic NSN junctions provide only little control over the respective
transport processes. In particular it is very hard to enhance CAR processes
with respect to local transport and EC. In an influential work Recher et al.
suggested to insert tunable QDs between S and N to gain additional control
knobs [84]. Figure 3.5 shows a sketch of such a device, to which we refer
in the following as Cooper pair splitter. The figure also lists the relevant
device parameters2.

The main idea is that the on-site Coulomb interactions prohibit a dou-
ble occupancy of the QDs, which forces the Cooper pairs are to split into
separate QDs in a crossed Andreev process. In principle it is possible to
build an entangler with 100% efficiency: a device that converts an incom-
ing stream of electrons into pairs of spin-entangled electrons that leave the
device through two separate output terminals. Below we will discuss this
claim, closely following the argumentation of Ref. [84].

3.2.1. Basic idea and working conditions

The Cooper pair splitter is based on the combination of two main effects,
the Coulomb interactions U1 and U2 on QD1 and QD2 (for simplicity we
assume U1 = U2 = U) and the pairing interaction ∆ in the superconductor.
Naturally, the device must be operated at a temperature where these two
effects are well resolved, kBT � U, ∆. Also the bias voltage, applied
between S and each of the drains N1 and N2, must not exceed these energy
scales, |eVSD| < U, ∆. The basic idea of the device is to suppress the
tunnelling of Cooper pairs into the same lead. Such local pair tunnelling
(LPT) can happen via the two channels illustrated in Fig. 3.6(a,b). The two
electrons of a Cooper pair can tunnel simultaneously on one QD, at the cost

2The chemical potentials of the leads µN1, µN2 and µS, the couplings between QDi
and the leads, ΓNi and ΓSi with i = 1, 2, the inter-dot coupling Γ12, the charging
energies Ui, the energy gap ∆ and the spatial separation between the tunnelling
points δr.
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Figure 3.5.: Illustration of CPS device (a) in real space and (b) as energy-space dia-
gram. Adapted from [84, 85].

of the charging energy U , and then leave to the respective lead (process I).
Since neither T nor VSD provide the charging energy, the doubly occupied
QD constitutes a virtual state that is suppressed by 1/U . Alternatively, the
two electrons of a Cooper pair can escape to the same lead by a sequential
tunnelling process (process II): A Cooper pair is broken up, one electron
tunnels to one of the QDs, while the second electron waits in S as a virtual
quasiparticle excitation. After the first electron tunnels from the QD to
the lead, the second electron can follow the first one without causing a
double occupancy of the QD. This process is suppressed with 1/∆ due to
the virtual excitation of a quasiparticle. By increasing U and ∆ the rate of
the parasitic local tunnelling processes can be made arbitrarily small. On
the contrary, the desired Cooper pair splitting (CPS) suffers from no such
suppression factors. CPS requires neither a double occupancy of a QD nor
the waiting in a virtual quasiparticle state. Therefore the ratio between the
desired CPS current and the parasitic LPT current can become arbitrarily
large, ICPS/ILPT →∞ for U, ∆→∞.

In addition to T and VSD the lifetime broadenings Γ1 = ΓS1 + ΓN1 and
Γ2 = ΓS2 +ΓN2 of QD1 and QD2 are the critical quantities against which U
and ∆ must be small. We simplify the discussion by setting Γ = Γ1 = Γ2.
When the level broadening Γ becomes comparable to ∆ (or U), the lifetime
of the QD states, τ ∼ ~/Γ, corresponds to an energy uncertainty that is
compatible with transport process II (or process I): the filter mechanism of
the respective QD becomes ineffective.

Recher et al. proposed to operate the device in the regime ΓN � ΓS .
This asymmetric coupling ensures that the electrons leave the QDs much
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Figure 3.6.: Energy diagrams for the two parasitic local pair tunnelling processes. (a)
The two electrons of a Cooper pair tunnel simultaneously on QD2 before they leave to
N2. (b) The Cooper pair tunnels sequentially through QD2. The Cooper pair breaks up
and one electron waits in a virtual quasiparticle state until the other electron tunnels
via QD2 to N2.

faster to the N side, than they are replaced by new electrons from S. In
this limit the QDs have vanishing occupation probabilities, which greatly
simplifies the theoretical treatment of the device. We don’t have to worry
about electrons that remain on the QDs and thereby block subsequent CPS
processes. In general a competition between different transport processes
arises when the QDs are occupied with a finite probability. In chapter 6 we
introduce a semi-classical master equation ”toy model” that considers these
competitions. This ”toy model”, however, neglects the coherence of the
tunnelling processes which may lead to even further-reaching consequences:
coherent oscillations between states with the Cooper pair in S and states
with the Cooper pairs in the QDs may modify the energy spectrum of the
QDs. In the limit ΓN � ΓS this can lead to the formation of Andreev
bound states via the coherent repetition of the first step of LPT process I
(see Sec. 3.3).For models that take such coherent oscillations into account
we refer to Refs. [86–88]. A strong coupling to the Fermi leads, where the
coherence is typically lost on a very short time-scale τ ∼ 1/EF, inhibits such
coherent oscillations [86].

Another coupling constant that we must take into account is the inter-dot
tunnel coupling Γ12. Such a coupling can arise due to elastic co-tunnelling
via a virtual intermediate state in S or due to a direct tunnel coupling
between QD1 and QD2. Obviously, an inter-dot tunnelling can lead to
processes where both electrons of a Cooper pair end up in the same lead
N1 or N2. The condition ΓN � Γ12 ensures that the electrons usually leave
to N before they have the chance to tunnel between QD1 and QD2. Again,
one can think of this condition not only in the time domain, but also in the
energy domain. The inter-dot tunnel coupling leads to a hybridization of
the two QDs. This hybridization is characterized by avoided crossings in the
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Figure 3.7.: Cooper pairs can also be split in electronic forks that act as Cooper pair
”beam splitters” [64]. Such a device can be realized with a double QD with strong inter-
dot coupling, Γ12 � ΓN1,ΓN2. The maximum efficiency is achieved with an unbiased
beam splitter, ΓN1 = ΓN2. In this case each electron of a Cooper pair will enter any of
the two output terminals with 50% chance. This yields a splitting efficiency of 50% as
illustrated in the figure.

level spectra of the QDs [64, 89]. Neglecting the mutual charging energy due
to the capacitive cross-talk between QD1 and QD2 the anti-crossing has a
magnitude of 4Γ12 [64, 89]. When this anti-crossing can not be resolved the
level broadening, Γ ≈ ΓN , is at least twice as large as the inter-dot coupling
and the QDs may be approximated as decoupled.

If the tunnel rate between the QDs is larger than the tunnel rate to the
drains, Γ12 � ΓN1,ΓN2, the device acts as Cooper pair ”beam splitter”
[64, 90]. The electrons leave to N1 or N2 at random, in analogy to a optical
beam splitter that randomly guides photons into different paths. If the
beam splitter is unbiased (i.e. a 50/50 beam splitter, ΓN1 = ΓN2) one can
achieve a splitting efficiency of 50%, as illustrated in Fig. 3.7. This also
marks the upper bound for the efficiency of such a beam splitter device. To
achieve efficiencies beyond this threshold the splitting must be enforced by
interactions. The inequalities

∆, U � Γ, |eVSD|, kBT ΓN � ΓS, Γ12 (3.12)

summarize the working conditions that allow to do so.

Loss of entanglement

Up to now we have treated the conditions that enforce the splitting of
Cooper pairs. The spin-entanglement of the initial Cooper pair is preserved
due to the nature of the crossed Andreev process and eventually destroyed
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3. Quantum dots coupled to superconductors

by the inevitable dephasing of the electrons. However, there are also para-
sitic processes in which one electron of an entangled pair is swapped with
another random-spin electron. Such processes would prevent the opera-
tion of the device as electron-entangler, even in the case of 100% splitting
efficiency and infinite spin-dephasing times. To exclude such processes a
sufficiently large level spacing

δε� Γ, |eVSD|, kBT (3.13)

is required. Otherwise, the QD simply acts as capacitive island: after an
entangled electron enters the island any electron from the QD may leave
to the N lead, irrespective of spin properties. Furthermore the levels of the
QDs should be empty in order to avoid unwanted correlations. Thus QDs
which exhibit a clear shell-filling pattern are desirable. Finally, the QD
levels might also be occupied by electrons which hopped on from the Fermi
leads (electron-hole pair excitations). Such processes, which potentially
exchange the entangled electron with an electron from the Fermi leads, may
easily happen due to the strong couplings to N1 and N2. To suppress such
contributions a sufficiently large bias voltage,

|eVSD| > Γ, (3.14)

can be applied to position the Fermi edge of the leads well below the QD
resonance, while keeping the dots resonant with S, i.e. µS = µQDi.

3.2.2. Quantitative description of the Cooper pair splitter

In reference [84] Recher et al. give analytic expressions for the currents from
CPS and LPT. These calculations were based on a T -matrix approach (i.e.
the tunnel Hamiltonian was treated perturbatively in all orders). Parts
of the calculation use some of the above specified working conditions as
approximations. The resulting formula for the CPS current reads

ICPS =
eΓ2

SΓ̂

(ε1 + ε2)2 + Γ̂2/4
F (δr), (3.15)

where ε1 (ε2) is the energy level of the QD1 (QD2), F (δr) is a geometrical
factor that depends on the separation of the tunnelling points and ΓS =
ΓS1 = ΓS2, while Γ̂ = ΓN1 + ΓN2. The current depends on the level position
of both QDs, as one should expect for such a correlated two-particle effect.
For ε1 = −ε2 the two-particle Breit-Wigner resonance takes its maximal
value:

ICPS =
4eΓ2

S

Γ̂
F (δr). (3.16)
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The local current is given by

ILPT,i =
2eΓ2

SΓNi

E2
,

1

E =
1

π∆
+

1

U
(3.17)

where the label i = 1, 2 refers to the respective QD.When setting ΓN =
ΓN1 = ΓN2 we see that the local current is suppressed by a factor

ILPT

ICPS
∝
(

ΓN
E

)2

. (3.18)

The term Γ2
S drops out, since LPT and CPS both require the tunnelling of

two electrons through the barrier on the S side.

The spatial decay of CPS

The chance for a CPS event scales with a geometry dependent factor F (δr),
where δr is the spatial separation of the two tunnelling points in S.3 It is
intuitively clear that F (δr) will decay rapidly when δr exceeds the coher-
ence length ξ0. However, the relevant form of factor F (δr) is ambiguously
discussed among researchers.

In reference [84] Recher et al. consider a ballistic 3-dimensional super-
conductor and find

F (δr) =

∣∣∣∣ sin(kFδr)

kFδr

∣∣∣∣2 exp

[
−2δr

πξ0

]
, (3.19)

with kF being the Fermi wavevector in S and ξ0 being the coherence length.
This result is well in agreement with an earlier calculation by Falci et al.
[83]. The CPS rate decays exponentially with the distance δr on a scale
given by the coherence length ξ0. The latter is typically up to several
hundred nanometers, which lies well within the reach of modern fabrication
techniques. However, the algebraic pre-factor (kFδr)

−2 in Eq. (3.19) poses
a severe problem for the efficiency of a Cooper pair splitter. The short
Fermi wavelengths in S, which is typically on the order of Ångström, implies
an additional suppression on the order of ∼ 10−7 for a realistic spatial
separation of δr = 150 nm) between the QDs.4

As a more realistic scenario one may consider the diffusive limit where
the mean free path in S is shorter than the coherence length, lmfp < ξ0.
In the diffusive limit the coherence length is reduced to ξ =

√
lmfpξ0 and

3If the device is realized with a CNT (or a semiconducting nanowire) the order of δr
is given by the width of the S contact covering the CNT.

4If the spatial separation between the QDs is not sufficiently large the device will usu-
ally exhibit a strong inter-dot coupling, Γ12, which leads to the problems discussed
above.
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3. Quantum dots coupled to superconductors

the denominator in Eq.(3.19) is replaced by (kFδr)
−1(lmfpkF)−1 [91]. How-

ever, for realistic numbers (e.g. λF = 3.6 Å, δr = 150 nm and lmfp = 5 nm
[63]) one still computes a suppression on the order of 10−6. Surprisingly,
the observed CPS rates in InAs nanowires [63, 65], as well as in CNTs
[64, 66], showed no indication of such an algebraic suppression term. It
was therefore speculated that these 3-dimensional calculations are not valid
for such confined geometries [63, 69]. We may assume that the CPS tun-
nelling does not occur at the periphery of the superconducting contact, but
instead happens from the wire segment underneath the S contact, which
effectively can be viewed as a superconductor by virtue of the proximity
effect. Indeed, for a 1-dimensional ballistic superconductor one finds that

F (δr) ∝ | sin(kFδr)| exp
[
− 2δr
πξ0

]
, i.e. the problematic term (kFδr)

−2 is not

present anymore [69, 92].

However, there are also alternative explanations for the absence of a
strong geometrical suppression term. As it turns out, Recher et al. consid-
ered a system, where each QD is coupled to only one conductance channel of
S. The algebraic pre-factor (kFδr)

−2 is not directly related to superconduc-
tivity, but can be viewed as a non-local analogue of a Sharvin resistance: it
arises from a summation over all ballistic electron trajectories that connect
the two tunnelling points. If CPS can arise not only from two tunnelling
points, but from two interface areas A1 and A2, then the factor must be
multiplied by N1N2, where N1,2 is the number of conducting channels of
the corresponding interface given by N1,2 = k2

FA1,2/4π [93]. Let us consider
that CPS tunnelling does occur at the periphery of S, but from e.g. the last
10 nm of the S contact into a CNT. In this case each contact area provides
about 360 conducting channels (on the S side), where we assumed a CNT
with 1.5 nm diameter which is fully covered with aluminium (λF = 3.6 nm).
In this example the we would get F (δr = 150 nm) ∼ 10−2, i.e. the pre-factor
is much less severe, but still present. However, it is not fully clear to the
author if the theory from reference [93], which studies NSN structures, can
simply be adapted in this manner to describe QD-S-QD devices (after all a
CNT-QD only provides only a single conductance channel).

The authors from reference [93] also extended their theory to the experi-
mentally more realistic case of a superconductor in the diffusive limit. Their
result for the non-local resistance (again of a NSN structure) reads [94]

R12 =
Rξ
2

exp [−δr/ξ] , (3.20)

where Rξ is the Drude resistance in the normal state over the length ξ. In
contrast to the prior study of Feinberg [91] Eq.(3.20) does not contain any
dependence on δr.
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In conclusion we note that the geometry dependence of ICPS is strongly
influenced by the theoretical framework that one chooses to describe the
experimental situation (diffusive vs. ballistic limit, number of conducting
channels, dimension of the superconductor). From experiments [63–66] it
is clear that CPS is not suppressed by an additional pre-factor (kFδr)

−2.
However, there are several plausible explanations for the absence of this
factor and it is not yet clear which theoretical framework is most appropriate
to describe the experimental circumstances that one encounters in such CPS
devices.

3.3. Andreev bound states

When a QD is strongly coupled to a superconducting electrode the proximity
effect can drastically alter the energy spectrum of the QD. In this section we
discuss the the formation of Andreev bound states (ABSs), a new type of
sub-gap energy level that can appear in the spectrum of such QD-S devices.
When a weakly coupled normal contact (N) is connected to the QD-S system
one can directly observe these new energy levels by means of tunnelling
spectroscopy. As we will see, a N-QD-S junction in the limit ΓN � ΓS

behaves very different compared to a device which exhibits the coupling
asymmetry of an ideal Cooper pairs splitter, ΓN � ΓS.

3.3.1. The superconducting atomic limit

The physics of a QD-S system is usually described within the framework
of the superconducting Anderson model. We consider a Hamiltonian of the
form [55]:

Htot = HQD +HS +HTS , (3.21)

with a single level QD discribed by

HQD =
∑
σ

εdd
†
σdσ + Un↑n↓, (3.22)

where d†σ (dσ) creates (annihilates) an electron with spin σ at εd. U is the
Coulomb interaction, which is only present if the energy level holds two
electrons n↑ = n↓ = 1, where nσ = d†σdσ is the QD’s number operator. The
superconducting electrode is described by the standard BCS Hamiltonian

HS =
∑
k,σ

εkc
†
kσckσ −∆S

∑
k

(
c†k↑c

†
−k↓ + h.c.

)
. (3.23)

Here c†k↑ (ck↑) creates (annihilates) an electron with wavevector k and spin
σ in S and ∆S is the energy gap. The last term in Htot is the tunnel
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3. Quantum dots coupled to superconductors

Hamiltonian that couples the lead and the QD:

HTS = tS
∑
k,σ

(
d†σck,σ + h.c.

)
. (3.24)

The tunnelling probability tS is related to the coupling constant via ΓS =
2πt2Sρ0, where ρo = 1/2D is a constant DOS in the an energy window
[−D,D] around the Fermi energy. One can easily include a second lead into
the model by adding additional terms HS2 + HTS2 to Eq. (3.21). Normal
conducting leads can be described analogously by setting ∆S = 0 for the
respective lead.

The above Hamiltonian Htot has no exact solution. It must be treated ei-
ther with sophisticated numerical methods or in restricted parameter regimes
that allow an analytic solution. The easiest approximation one can make
is called the atomic limit. One takes the tunnel coupling to zero, tS → 0,
which decouples the lead and the QD. The Hamiltonian of the decoupled
QD, HQD, has four eigenstates, {|0〉 , |↑〉 , |↓〉 , |↑↓〉}, which give rise to the
well-known energy spectrum shown in Fig. 3.8(a). The spectral density of
the QD exhibits sharp peaks at εd and εd +U which correspond to the (first
order) transitions between these states. The atomic limit gives the typical
behaviour of a QD in the Coulomb blockade regime, but evidently all super-
conductivity related phenomena are lost. Theoreticians therefore developed
a so-called superconducting atomic limit, where the decoupling between the
lead and the dot is achieved by increasing the bandwidth, D → ∞, and
taking the limit ∆S → ∞. It was shown that in this case one can consider
a local effective Hamiltonian [95–97]

Heff = HQD −
ΓS

2
(d†↑d

†
↓ + d↑d↓) (3.25)

in analogy to the usual atomic limit. This Hamiltonian accounts for the
proximity effect by an additional term that creates and destroys Cooper
pairs on the QD. This new term occurs because Cooper pairs constantly
tunnel back and forth between S and the QD via virtual Andreev reflections
[Fig. 3.8(b)]. By comparing the local effective Hamiltonian to the BCS
Hamiltonian from Eq. (3.23) we see that the coupling constant ΓS plays the
role of the pairing energy 2∆ for the proximitized QD. We therefore obtain
physically meaningful results, even though the limit ∆ → ∞ may seem
unphysical. The critical reader should try to look at the superconducting
atomic limit as a convenient mathematical method to neglect quasiparticle
interactions and not as case study of a hypothetical superconductor with
infinite pairing energy.

The virtual Andreev reflections couple the even charge states of the QD
and hence |0〉 and |↑↓〉 are no longer eigenstates of Heff . In contrast, |σ〉

48



3.3. Andreev bound states

↑
↑

,

εd+U

εd
0

↑
↑ QD S

Virtual Andreev 
reflections

↑
↑

,

− 0=u       - v* ↑
↑

+ 0=v*       + u ↑
↑

(a) (b) (c)

ζ+

ζ- 

Figure 3.8.: (a) Energy spectrum of a single level QD in the atomic limit. (b) Virtual
Andreev reflections couple the even charge states of the QD [curly arrow in (a)]. (c)
Energy spectrum of the coupled QD-S system in the superconducting atomic limit. ζ−
and ζ+ are the elementary excitation energies of the system.

(σ =↑, ↓) remains an eigenstate. However, the proximity term in Heff shifts
the respective eigenenergy to Eσ = εd+U/2, which lies half way between the
energy levels E0 and E↑↓ of the uncoupled QD. For the sake of convenience
we introduce a new variable δ = εd + U/2 which accounts for this electron-
hole (e-h) symmetry.
Heff can be diagonalized by means of a Bogoliubov transformation, a

consequence of the formal analogy with the BCS Hamiltonian. The new
eigenstates are

|−〉 = u |0〉 − v∗ |↑↓〉
|+〉 = v∗ |0〉+ u |↑↓〉

(3.26)

with the Bogoliubov-de Gennes (BdG) amplitudes u = 1
2

√
1 + δ/

√
δ2 + Γ2

S

and v = 1
2

√
1− δ/

√
δ2 + Γ2

S [95–97]. The two BCS-like states |±〉 are called

Andreev bound states and their energy is given by5

E± =
U

2
±
√
δ2 + Γ2

S + δ. (3.27)

The top panel of Fig. 3.9 shows the evolution of the energy levels of the
coupled QD, Eσ, E− and E+, with the gate-tunable dot energy εd in units
of U . The two dashed lines are the energy levels of the uncoupled QD

5To emphasize that the QD and S are no longer individual entities one could also write
the ABSs in the form |−〉 = u |0〉⊗ |N〉− v∗ |↑↓〉⊗ |N − 1〉, where N is the number
of Cooper pairs in S. However, we won’t write this entanglement between QD and
S explicitly.
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Figure 3.9.: Excitation energies (top panel) and energy levels (bottom panel) of Heff

fur U = 3 meV and (a,d) ΓS = 0.3 meV, (b,e) ΓS = 1.2 meV and (c,f) ΓS = 1.7 meV.
The dashed lines in the top panel correspond to E = ±εd and E = ±(εd +U). The two
dashed lines in the bottom panel give the eigenenergies of the uncoupled QD shifted by
U/2.

shifted by U/2, i.e. E0 = U/2 and E↑↓ = 2εd + 3U/2. We see that the ABS
energies follow the uncoupled states |0〉 and |↑↓〉, but obey and avoided
crossing as a result of the tunnel coupling between these two states. As the
coupling strength ΓS is increased the gap between |+〉 and |−〉 grows, while
the energy of the |σ〉 state remains unaffected [Fig. 3.9(a-c)]. At some point
the energy gap is so large that E− is pushed below Eσ for all values of εd.

In transport experiments one measures transitions between two energy
levels, rather than individual energy levels by themselves. Figure 3.8(c)
shows the two elementary transitions |σ〉 ↔ |−〉 and |σ〉 ↔ |+〉 with exci-
tation energies ζ− and ζ+. In the |σ〉 state the QD holds an odd number of
electrons, while |+〉 and |−〉 have an even parity of the charge state. Transi-
tions between |+〉 and |−〉 are thus second order processes that have a much
lower probability than the first order transitions |σ〉 ↔ |±〉.
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3.3. Andreev bound states

The excitation energies ζ± can be measured by tunnelling spectroscopy:
when a normal conducting tunnel probe is connected to the QD-S hybrid
the differential conductance shows peaks at |e|VSD = ±ζ±. We refer to
these differential conductance peaks as Andreev resonances6. The respec-
tive transport mechanisms are discussed in detail in Chapter 7. For the
moment our interest is focused on the energy dispersion of these Andreev
resonances plotted in the bottom panel of Fig. 3.9. We see that ζ+ (blue
curve) always lies above ζ− (red curve). In the language of molecular physics
|−〉 corresponds to the bonding and |+〉 to the anti-bonding orbital. We also
find that the energy of the |−〉 state can either lie below or above Eσ. At
the points where E− and Eσ cross the QD undergoes a ground state (GS)
transition and also the Andreev resonances ζ− and −ζ− cross each other
at zero energy. For large couplings ΓS the pairing term in Heff becomes so
strong that the system always remains in the |−〉GS, i.e. the QD chooses
to be in a singlet state regardless of the charging energy U , which favours
the doublet |↑〉 , |↓〉 as the GS.

3.3.2. Finite superconducting gap

In case of a finite ∆ the presence of quasiparticles greatly complicates the
theoretical treatment of the problem. Interactions with quasiparticles renor-
malize the energy spectrum and modify the dispersion of the Andreev res-
onances ζ± [95, 96, 98, 99]. In Fig. 3.10(a-c) we qualitatively sketch ex-
perimentally realistic stability diagrams for N-QD-S devices in the limit
ΓN � ΓS for different values of ΓS. At bias voltages that exceed the gap
energy, |eVSD| > ∆, one observes the usual Coulomb diamond pattern (one
line of the diamond follows the Fermi level of N, the other line follows the
quasiparticle peak in the DOS of the superconductor). For |eVSD| < ∆ one
observes a mirror symmetric pair of Andreev resonances at ±ζ−. The tran-
sition to the |+〉 can usually not be observed because E+ > ∆ (recently the
first spectroscopic observation of the |+〉 was reported, however, Bretheau
et al. used superconducting atomic contacts, i.e. U = 0, instead of QDs
[100]).

A key difference between the finite ∆ scenario [Fig. 3.10(a-c)] and the
∆ → ∞ limit [Fig. 3.9(d-f)] is that ζ− remains bound to ζ− < ∆ and can
not grow arbitrarily. Let’s consider the sub-gap spectrum in the regions
where n = 0 and n = 2. In these regions the |−〉 state is nearly identical
with the uncoupled |0〉 and |↑↓〉 states (i.e. |u| ≈ 1 for n = 0 and |v| ≈ 1 for

6In the literature the transition energies ζ± (or the respective poles of the Green’s
functions) are often called Andreev bound states, too. The reading of literature
can become quite confusing if one is not aware of this fact. Here we use the term
”Andreev bound state” only for the actual energy levels |±〉.
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Figure 3.10.: (a-c) Qualitative sketches of the stability diagrams for N-QD-S devices
in the ΓN � ΓS regime. The red lines depict the Andreev resonances, the black lines
depict the conventional Coulomb diamonds. The coupling ΓS increased from (a) to
(c). (d-f) Qualitative sketches of phase diagram that predict the GS as a function of
ΓS/U and gate voltage. Each of the phase diagrams corresponds to the above stability
diagram.

n = 2). In the ∆→∞ case the energy of the singly occupied state lies much
higher than that of the |−〉 state. For a finite gap the Andreev resonances
have the maximal possible energy, i.e. they are pinned to the gap, ζ− ≈ ∆.
The more interesting region lies within n = 1 diamond, where Coulomb
repulsion favours an odd GS but the superconducting pairing would prefer
the |−〉GS. This competition can be illustrated by the phase diagrams shown
in Fig. 3.10(d-f). The effect of the Coulomb repulsion is largest in the middle
of the n = 1 diamond where the distance to the even charge states maximal.
The larger the ratio ΓS/U , the deeper one can enter into the n = 1 diamond
before the |σ〉 state becomes the ground state.

When ΓS/U is increased there will be a critical ratio for which the |−〉 state
always remains the GS of the system. Above this threshold value the
Andreev resonances don’t cross anymore [Fig. 3.10(c,f)]. In the limit of
very small ratios ΓS/U the transition between the different GS occurs very
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Figure 3.11.: Differential conductance maps of a N-QD-S device in the ΓN � ΓS

regime. The device was made from a CNT with Ti/Nb (3 nm/50 nm) and Ti/Au
(5 nm/50 nm) contacts and measured at a base temperature of 25 mK. The situation
in (a) corresponds to Fig. 3.10(a,d). In (b) the coupling to S was stronger. The An-
dreev resonances are well resolved in correspondence with Fig. 3.10(b,e).

rapidly [Fig. 3.10(a,d)]. In this case ζ− quickly runs into ∆. Now the
Andreev resonances fall together with the quasiparticle edge, also inside
the n = 1 diamond. This explains why the experimental observation of
ABSs happened only recently [56, 101], although the effective Hamiltonian
from Eq. (3.25) always exhibits ABSs: for small ΓS/U the splitting be-
tween the Andreev resonances becomes very small and can not be resolved
anymore due to the lifetime broadening ΓN induced by the tunnel probe.
Figure 3.11(a) shows a stability diagram, measured on a CNT QD connected
to a superconducting niobium lead and a normal conducting Ti/Au tunnel
probe, in the regime of Fig. 3.10(a,d). At the charge degeneracy points
(n = 0/1 and n = 1/2) the evanescent features of the ABS can just be re-
solved within the given linewidth. Off-resonance the Andreev resonance can
not be distinguished from the onset of the quasiparticle co-tunnelling cur-
rent. Figure 3.11(b) shows the same device, but at a different gate position
where the coupling to S was stronger. The Andreev resonances are well re-
solved in correspondence with Fig. 3.10(b,e). For the regime of Fig. 3.10(c,f)
we have no own experimental data. We thus must refer the reader to the
beautiful data presented in Ref. [56, 72].

53





4
Device fabrication and measurement

set-up

The fate of a PhD student who is working in the field of nanoelectronics
to a large fraction is decided in the clean room. A ”good” sample – or at
least a working sample – is certainly a prerequisite for any experiment. But
the small size of the devices makes the fabrication process very sensitive
to external perturbations and intrinsic sample-to-sample variations. In this
chapter we introduce the basic fabrication process for CNT based QDs.
Detailed recipes are given in Appendix A. The chapter closes with a brief
description of the used measurement set-ups.

4.1. Standard fabrication process

Wafer preparation. All devices in this thesis are fabricated on a highly
doped silicon wafer capped with a 400µm thick layer of thermally grown
oxide. The wafer is cut into pieces of about 1 × 1 cm2 size and thoroughly
cleaned.

Carbon nanotube growth. We use chemical vapour deposition (CVD) to
grow single walled CNTs on the wafer [102, 103]. To do so we spin coat
nanoparticles of an iron based catalyst solved in isopropyl alcohol (IPA)
onto the wafer. The wafer is placed in a CVD reactor and heated to 950◦C
under 1500 sccm of argon flow. When the growth temperature is reached
argon atmosphere is replaced by methane at a flow rate of 1000 sccm and
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4. Device fabrication and measurement set-up

hydrogen at flow rate of 500 sccm. The methane dissociates at the catalyst
particles, providing the carbon for the nanotube growth. The addition of
hydrogen helps to reduce the amount of bundled CNTs [103]. The chosen
parameters for the CVD growth are based on experience [103, 104]. Detailed
models of the growth process are still ongoing research, see e.g. [105] and
references therein. After 10 min growth time we replace the methane by
argon and let the furnace cool down to room temperature.

SiO2 substrate

PMMA
PMMA(950K)

Electron beam

100 nm

After development(a) (b)

SiO2 substrate

PMMA

SiO2 substrate

PMMA

Metal deposition(c)

SiO2 substrate

Lift-o� in acetone(d)

Figure 4.1.: Illustration of a standard e-beam lithography process. a) The substrate
is covered with PMMA resist and exposed to an electron beam that writes the desired
pattern into the resist. The inset shows the structural formula of PMMA chains. (b)
After development a patterned resist mask remains. (c) Metal deposition. (d) Lift-off
in acetone dissolves the PMMA mask and leaves a patterned metal film.

EBL step 1: alignment markers. After CNT growth we use standard elec-
tron-beam lithography (EBL) to pattern marker grids onto the wafer which
serve later as coordinate system. The spacing between the markers is 10µm
and each grid consists of 10× 10 markers that fill an area of 0.1× 0.1 mm2.
The basic principle of EBL is illustrated in Fig. 4.1. We use polymethyl
methacrylat (PMMA) solved in chlorobenzene as lithography resist. The
resist is spin-coated onto the wafer and baked on a hot plate at 180◦C for
2 min. Then the wafer is placed in a scanning electron microscope (SEM),
where a highly focused electron-beam (e-beam) writes the desired struc-
ture into the resist [Fig. 4.1(a)]. PMMA is a long-chained polymer that is
available in different molecular weights from 50000 (50K) to 950000 (950K).
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4.1. Standard fabrication process

The e-beam cuts the polymer chains of the resist into short segments (chain-
scission) and a developer, typically a 1:3 mixture of methyl isobutyl ketone
(MIBK) and IPA, is used to wash out the light-weighted polymer frag-
ments [Fig. 4.1(b)]. The remaining resist acts as a mask for metallization
[Fig. 4.1(c)]. For the marker grid we usually evaporate Ti/Au (5 nm/30 nm)
in an e-beam evaporator. A bath in hot acetone removes the PMMA mask
and only the desired structure, the area where the resist was opened be-
forehand, remains on the wafer [Fig. 4.1(d)]. In tenacious cases we help the
lift-off process with a syringe which is used to create turbulent flow in the
acetone bath and ”blow off” the sticky parts.

CNT localization. We use SEM imaging to locate individual CNTs with
respect to the marker grid. Under the irradiation of the scanning e-beam
the insulating substrate charges. The conducting CNTs act as additional
capacitances, leading to a much slower charging of the substrate below them
[106]. Thus, a positively charged shadow of the CNT becomes visible. An
optimal contrast is achieved by using the in-lens detector and low accelera-
tion voltages (0.5-2 keV). We select individual CNTs of appropriate length
which we plan to contact. The CNTs are chosen randomly. It is usually not
possible to distinguish between single- or multi-wall, metallic or semicon-
ducting and defect rich or pristine CNTs from the charge shadow the CNT
leaves on the SiO2 substrate.

EBL steps 2 + 3: building a Cooper pair splitter from a CNT. The po-
sitions of the CNTs are transferred into a GDS II-file where contacts and
gates can be designed as illustrated in Fig. 4.2(a). In case of a Cooper pair
splitter device at least two more EBL steps are required.

In the first EBL step we fabricate the central contact, using a metal which
becomes superconducting at low temperatures. For the devices presented in
this thesis we used either Al or Nb. Since both of these materials make only
very poor contact to CNTs a thin contact layer below the superconductor
is required. Pd and Ti with thicknesses between 3 and 5 nm have proven
successful for this purpose. Pd/Al bilayers were evaporated thermally in a
UHV system at ∼ 10−10 mbar. Ti/Nb bilayers were sputtered. To avoid
damage of the CNT we sputtered the contact layer at a rather high back-
ground gas pressure of 15 mTorr (≈ 2 · 10−2 mbar), at which the Ti atoms
loose a large fraction of their kinetic energy in collisions with the working
gas (Ar with a flow rate of 35 sccm). The central contact is connected from
both sides to bond pads, which allows to determine the critical temperature
of the superconductor by two-terminal conductance measurements. We fab-
ricate bond pads, shown in Fig. 4.2(b), and CNT contacts in the same EBL
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4. Device fabrication and measurement set-up

step, using to different apertures (typically 10µm and 120µm) of the SEM.

0.5 mm2μm

CNT

(a) (c)(b)

Figure 4.2.: (a) SEM image of an individual CNT with the design for a CPS device
with side gates. The four alignment markers uniquely determine the position within a
grid of 10× 10 markers that fill the area marked by a white square in (b). (b) Optical
microscope image of a chip with 4 CPS devices. Each device is connected to 6 bond
pads. The chip is glued into a chip-carrier and contacted with a wafer bonder. (c)
Image of a chip-carrier in the socket of a cryostat (source for image (c): reference [85]).

In a second EBL step we fabricate the two normal conducting drain con-
tacts and two side gates, using either Pd or Ti/Au (5 nm/50 nm). To exclude
the formation of different Schottky barriers at source and drain (e.g. n-type
contact to source and p-type contact to drain) we use the same wetting
material as for the superconducting contact. The materials are evaporated
either by e-beam or by thermal evaporation.

In a last step the 1 × 1 cm2 wafers are cut into 4 × 4 mm2 pieces and
glued into chip-carriers. The chip-carriers fit into sockets at the cryostats
which are electrically connected to 20 measurement lines [Fig. 4.2(c)]. The
electrical connection between bond pads and chip-carrier is achieved with
a wire bonder. The contact to the backgate is made by scratching the
oxide and sealing the scratch with silver-paint. We chose to fabricate 4 CPS
devices per chip, with 6 terminals per device. Since the chip-carrier provides
20 terminals (from which one is needed to contact the back gate) we can
maximally bond three devices per chip. To decide which devices will be
bonded we measure the room temperature conductance of each device with
a needle prober station.

4.2. Residues from lithography resist

It is a well known fact that organic lithography resists often leave poly-
mer residues on the substrate surface. Figure 4.3(a) shows AFM images of
PMMA(80K) residues that remained after exposure and development of the
resist [107]. The authors of reference [107] found that granular residues of
up to 10 nm height remained on the Si substrate after EBL processing with
a standard recipe similar to the one given in appendix A.5. As the dose
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4.2. Residues from lithography resist
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Figure 4.3.: (a) AFM images and height profiles of residues that remained after after
exposure and development of PMMA(80K). For exposure doses of 350 and 461µC/cm2

the granular residues with up to 10 nm height are observed. A continuous residue layer
(2.5 − 3.2 nm) remains for all exposure doses up to 800µC/cm2. Source: reference
[107]. (b) Measurement of the thickness of the residue layer of 150 nm PMMA(50K) on
a SiO2 substrate. The thickness is extracted from the intensity decrease of SiO2 peaks
in photoemission spectra. Source: reference [108].

is increased granules get smaller and fewer and finally vanish.1 However,
the AFM profiles in Fig. 4.3(a) show that these granules lie on a plateau
of about 3 nm height. This plateau remains visible even when the resist is
overexposed with a dose of 800µC/cm2 before development. Similar findings
are reported in reference [108], where the thickness of the residual layer from
150 nm of PMMA(50K) on SiO2 is measured as a function of the exposure
dose, see Fig. 4.3(b). By using photoemission spectroscopy and interpreting
the intensity decrease in the SiO2 spectra the authors conclude that the
substrate surface remains covered with a 0.5 nm thick residue layer even at
overexposed conditions.

It is obvious that polymer residues between the CNTs and the contact
metal might degrade the contact properties or even prevent electron conduc-
tion. Usually resist residues (and other organic contaminants) are cleaned
by an oxygen plasma ash or by UV ozone cleaning [107]. However, these
conventional cleaning schemes are not suitable for carbon-based electron-
ics. The ion bombardment from the plasma, as well as the oxidation by O
radicals also attack CNTs and eventually remove them.

1Such granular PMMA residues have a tendency to remain sticking to CNTs. The
chargeable PMMA granules are visible in the SEM where they appear as dark spots
on the CNTs, see reference [109], p. 34.
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4. Device fabrication and measurement set-up

4.2.1. Minimizing resist residues

To minimize resist residues from EBL one may increase the exposure dose
to the highest tolerable values. The rational behind this idea is that the re-
sist polymers are fragmented into smaller and more uniform pieces. Shorter
polymer chains dissolve more easily and leave less residues [110]. This strat-
egy is also applied by groups that are interested in high resolution EBL: in
the sub-10 nm regime the same polymer clusters that leave granular residues
also limit the resolution and cold development [110] or less sensitive devel-
opers [111] are used to increase the clearing dose. Instead of increasing the
dose one may also decrease the molecular weight of the resist.2 For our pur-
poses resolution is not the major concern and the usage of a resist bilayer,
as schematically shown in Fig. 4.4, seems the best option. A thin top layer
of PMMA with a molecular weight of 950K gives the resolution of the resist
mask. A thick bottom layer of PMMA with a molecular weight of 50K is
heavily overexposed, which helps to minimize residues and creates a nice
undercut to ease lift-off.

SiO2 substrate

PMMA(50K)
PMMA(950K)

Electron beam

100 nm
200 nm

After development(a) (b)

SiO2 substrate

PMMA(50K)
PMMA(950K) 100 nm

200 nm

Figure 4.4.: A resist double with thin layer of high molecular weight on top of a thick
layer with low molecular weight allows to overexpose the bottom layer without loosing
resolution. This procedure increases the surface cleanliness and creates an undercut to
help lift-off. Schematic drawing (a) during exposure and (b) after development.

The amount of residues may also be minimized by choosing an appropri-
ate resist. Several products based on different polymers are on the market.
In the beginning of this thesis we used bilayers of PMMA(950K) and the
copolymer PMMA-MA 33% from Allresist (serial number AR-P 617.03).
This combination gave good lift-off and nicely defined structures, but the
yield of good electrical contacts too the CNTs was very poor. In the mean-
while people in our group made very good experience with ZEP-520A from
Zeon as single layer resist [112]. However, even ZEP leaves residues, as

2The molecular weight M∗ of the fragmented polymers can be calculated as M∗ =(
1
M + gD

ρNA

)−1
, where M is the initial molecular weight of PMMA resist and D is

the dose, g indicates the chain scission efficiency, ρ is the density of PMMA and NA

is Avogadro’s number [110].
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Figure 4.5.: Stability diagram of a CNT QD measured in the same set-up at two
different temperatures: (a) 4.2 K and (b) 20 mK. The image illustrates the importance
of sufficiently low temperatures for transport experiments.

can be concluded AFM measurements of the surface roughness which in-
creased up to 15 nm (rms) after exposure and development of ZEP [113]. It
is therefore highly desirable to test novel fabrication schemes which avoid
or remove organic contaminations. Chapter 5 discusses some attempts in
this direction.

4.3. Measurement set-up

The electronic properties of a device can only be resolved if the electron
Temperature is well below the relevant energy scale, such as the charging
energy U , the level spacing δE, the lifetime broadening Γ and, if super-
conductivity is involved, the energy gap ∆. Several cryogenic set-ups, with
base temperatures ranging from 4.2 K to 20 mK, were available for this PhD
project. Figure 4.5 illustrates the importance of a sufficiently low tempera-
ture: the stability diagram of a CNT QD is measured at 4.2 K and a second
time at Tbase ≈ 20 mK in the same cryostat (i.e. with the same filtering).
The charging energy is about 5 meV/kB ≈ 60 K, but still the resolution
drastically increases as the temperature is lowered below 4.2 K until the
lifetime broadening is reached, which is typically Γ/kB ∼ 1 K. Furthermore,
coherent effects, such as Cooper pair splitting, are often very fragile and
require even lower temperatures (see Ref. [63] and Fig. 7.4).

A temperature of 4.2 K can be reached with relatively little effort by dip-
ping the sample into liquid 4He. To lower the temperature one can pump
on the helium bath. The ”hottest” particles boil away and the liquid is
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4. Device fabrication and measurement set-up

cooled. The lowest temperature that is reachable by this evaporative cool-
ing is determined by the respective vapour pressure curve. By pumping
on 4He on can lower the temperature down to 1.2 K. The rare (and expen-
sive) isotope 3He has a lower boiling point that allows to conveniently reach
temperatures around 230 mK in a so-called 3He cryostat. Even lower tem-
peratures can be reached with dilution refrigerators that use a mixture of
3He and 4He. Below ∼ 870 mK the mixture undergoes a phase separation
into a 3He-rich and a 3He-poor phase. With a cleverly designed pumping
and cooling scheme, described e.g. in [114], one can create an osmotic pres-
sure difference that drives 3He from concentrated to the dilute phase. The
3He ”evaporates” into the 4He (which can effectively be viewed as 3He gas).
The achievable temperatures are given by the phase diagram of 3He/4He
mixtures and the dilution refrigerators that are available in our group reach
base temperatures around ∼ 20 mK.

To perform transport measurements one inevitably has to connect the
sample, which is held in the cryogenic environment, with the necessary read
out electronics at room temperature. The measurement lines thus form a
heat leak. At very low temperatures the phonon lattice of the sample, which
is cooled by the cryostat, can not fully take up the heat transferred through
the measurement lines: the electron and phonon temperatures decouple,
Tel > Tph. For the used dilution refrigerators we assume very roughly
Tel ∼ 100 mK for Tel ≈ 20 mK. To keep the heat leak as small as possible
the measurement lines are thermally well anchored and strongly filtered (a
temperature of 100 mK corresponds to a frequency f = TkB/h ≈ 2 GHz).
We use a two-stage filter set-up consisting of a specifically designed tape-
worm filter at cryogenic temperature [115] and commercial π-filers from
Syfer at room temperature. The cut-off from the tape-worm filter starts at
f > 10 MHz, that of the π-filter at f > 1 MHz. A schematic of the complete
measurement set-up is shown in Fig. 4.6.

The gates are addressed by low noise DC voltage sources (either Yokogawa
YK 7651 or homebuilt 8-channel low-noise DAC). The gate voltages run
through a 1 MΩ resistor to protect the sample from high currents in case of
a spontaneous formation of a gate leak during the measurement. To bias the
sample we use a DC voltage superposed with a small AC excitation, typically
around VAC ∼ 10µeV, which is provided from a lock-in amplifier (Stanford
SR 830) and added to the DC signal by a transformer with a 1:4 winding
ratio. In addition a voltage divider with a 1:1000 ratio is mounted directly
before the π-filter on the break-out box. The frequency of VAC is limited
by the line capacitances and we typically chose f = 135 Hz or lower. For
a CPS device we read out two currents simultaneously, by two homebuilt
current-to-voltage (I/V) converters with a transimpedance of 107 V/A or
108 V/A. The output voltage of the I/V converters is fed to two separate
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SR 830 lock-in amplifiers, both phase-locked to the same frequency. The
set-up is controlled with a computer via Labview programs and a General
Purpose Interface Bus (GPIB).
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Figure 4.6.: Typical measurement set-up for voltage biased differential conductance
measurements on parallel QD devices. Adapted from [109].
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The most spectacular results in CNT research – the discovery of spin-orbit
interactions [116], the formation of a 1D Wigner crystal [117] and a 1D
Wigner molecule [118], the observation of Klein tunnelling [119] and the
observation of valley-spin blockade [120] and the realization of a valley-spin
qubit [121], to name only the most prominent ones – were driven by the con-
tinuously improving quality of devices.These tremendous improvements of
the device quality were obtained by applying so-called ultraclean processing
schemes. In these schemes the CNT is grown either in the last produc-
tion step [122] or transferred as-grown by means of stamping techniques
[120, 123]. Both approaches avoid contamination and damage of the CNT
that results from chemical processing and the location of individual CNTs
by AFM or SEM. Unfortunately, it turns out to be extremely challenging
to incorporate superconductors into these processing schemes [124]. Indeed
the yield of ”good” superconducting contacts is typically significantly lower
than the yield of ”good” normal conducting contacts, also for conventional
processing schemes. In the beginning of this PhD project we faced a very
low yield of devices that showed signatures of superconductivity. Urged by
this low yield – and inspired by the stunning characteristics of ultraclean
devices – we experimented with novel fabrication approaches. These ap-
proaches aim to improve the contact quality or the device quality or even
both at the same time.
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5. Novel fabrication approaches

5.1. Aluminium oxide protection layer against resist
contamination

As outlined in section 4.2 lithography resist usually leaves residues which can
not be removed from CNTs with conventional methods: cleaning by oxygen
plasma or UV ozone both attack the CNT and eventually remove it. In the
following we introduce an approach which avoids a direct contact between
the lithography resist and the nanotube and thereby prevents a contami-
nation with polymer residues. To achieve this we cover the CNTs with an
aluminium oxide (Al2O3) protection layer directly after CVD growth. The
Al2O3 is grown by atomic layer deposition (ALD) as described in reference
[125]. The CNT surface is chemically inert to the precursor molecules of the
ALD process [126] and we use a substrate-assisted growth to encapsulates
the CNTs.1 The oxide was grown in 40 ALD cycles, yielding a 4.4 nm thick
layer under which the CNTs could still be located with the SEM. The de-
vices went through the standard lithography processes, but the Al2O3 was
locally etched away after the resist was developed. The etching was done
in a 25% tetramethylammonium hydroxide (TMAH) water solution during
20 sec at 50◦C and stopped in a water bath. A good adhesion between the
resist and the Al2O3 layer is required to avoid an under-etching of the resist
mask, which is driven by capillary forces between the hydrophobic resist
and the water diluted TMAH. We found that PMMA(950K) masks work
well, while PMMA-MA masks get under-etched.
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Figure 5.1.: Stability diagram of a N-QD-S device (N = 50 nm Pd; S = 4 nm/50 nm
Pd/Al) measured at 230 mK. The red arrows guide the eye to the superconducting trans-
port gap of 2∆ ≈ 0.24 meV. The device was fabricated with an Al2O3 protection layer
against resist contamination and corresponds to QD2 of the CPS device in Chapter 6.

After dissolving the protection layer we presumably recover a clean CNT
surface, free of polymer residues. We fabricated several batches to test if

1Some groups functionalize the CNT surface by an iterative exposure to NO2 and
trimethylaluminum (TMA) to grow Al2O3 directly on the CNT [126, 127].
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5.1. Aluminium oxide protection layer against resist contamination

the protection layer fully covers the CNTs in the first place and dissolves
sufficiently within the given etch time. If the Al2O3 layer was etched for only
1 sec no electrical contact to the CNTs could be established, indicating a full
CNT coverage. In batches with etch times t ≥ 10 sec about one-third of the
devices had good contact properties with a room temperature two-terminal
resistance below 200 kΩ. For typical processing we chose an etching time of
20 sec, well above the clearing time of ∼ 10 sec. The uncontacted segments
of the CNT remained covered with Al2O3 after the sample fabrication was
completed. Due to the poor wetting properties of Al2O3 on the CNT surface
we presume that the π-electron system is not disturbed severely. Figure 5.1
shows the stability diagram of a CNT QD fabricated in this manner. The
stability diagram demonstrates the formation of a stable QD, but the height
of the diamonds and the width of the resonances exhibit irregular variations
on a scale that is typical for conventionally fabricated CNT QDs. Figure 5.1
may also serve as a reference for the clean and ultraclean QD characteristics
discussed in Section 5.2 and 5.3.

5.1.1. Conclusions

In the conduct of this PhD project the application of the described protec-
tion layer technique marked a breakthrough. We unsuccessfully fabricated
16 batches of CNT based Cooper pair splitter devices, without ever ob-
serving an induced superconducting gap. The first batch fabricated with
a Al2O3 interlayer yielded the sample presented in chapter 6 (Near-unity
Cooper pair splitting efficiency). However, one should be cautious when
drawing conclusions from this fact. It does not necessarily mean that the
protection layer technique is notably good, it could also be a hint that we did
a particular bad job in the fabrication of the first 16 batches.2 Indeed other
groups successfully fabricated devices with narrow superconducting strips
on CNTs with standard EBL techniques [56, 64]. Thus, one may achieve
comparable good devices by optimizing the EBL process as described in
section 4.2.

In conclusion we successfully applied a fabrication scheme that protects
CNTs from contamination by lithography resist. The technique relies on an
Al2O3 interlayer and is probably most effective when the EBL processing is

2In retrospect I believe that the main problem during the fabrication of the first 16
batches was a too low exposure dose for the EBL of the narrow superconducting
strip. As outlined in section 4.2 this presumably increases the amount of residues.
However, instead of increasing the dose I first increased the development time. Dose
tests were interpreted to find the dose that gives the best match with the designed
structure (later I tried to determine the highest dose that is tolerable). The increased
development time caused therefore even smaller exposure doses, which increased the
amount of residues further.
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not thoroughly optimized, leaving problematic amounts of residues on the
contact area after development. However, we fabricated too few batches to
make definite statements about the yield and the device quality. We can
therefore not judge if the benefits of the method prevail the drawbacks, such
as the unknown variables that one introduces – will there be harmful trap
states in the Al2O3 layer? does the etching procedure degrade the properties
of the CNT properties? – and the additional processing time.

5.2. Cleaning and selective CNT etching with hydrogen
radicals

Instead of trying to avoid a resist contamination of the CNT one may also
develop new cleaning methods. The finesse is to find a method that is ag-
gressive enough to remove organic residues without attacking the nanotube’s
carbon atoms. Hydrogen radicals are a potential candidate to manage this
balancing act: they don’t break the C–C bonds of an intact graphene lattice
but attack carbon atoms which are not fully embedded into such a robust
lattice [128–131]. However, already a single defect site in the graphene lat-
tice can be sufficient to trigger a chain reactive etching process [128–131].
Below we will show that hydrogen radicals not only remove PMMA, they
can also be used to selectively etch CNTs. It is not clear which factors
eventually determine if a CNT is inert against H radical etching. Despite
this uncertainty we suggest a etching mechanism that discriminates between
CNTs that are free of dangling bonds and others which are not. The po-
tential application of H radicals is therefore twofold: 1) They can remove
undesired residues from structured PMMA masks without attacking the
CNT. 2) They may be used to preselect low-defect CNTs. We present sev-
eral devices that are fabricated from H radical inert CNTs and characterized
at low temperatures by transport measurements to support the hypothesis
of a low-defect CNT selection.

5.2.1. Generation of hydrogen radicals from a hydrogen plasma

Hydrogen radicals can be generated as a by-product of a hydrogen plasma
which we create in the vacuum CVD reactor shown in Fig. 5.2. The quartz
tube of the CVD reactor is equipped with a cylindrical capacitor connected
to a radiofrequency (RF) generator. We apply an RF power of 25 W at
13.56 MHz to the electrode, while letting H2 flow through the quartz tube
at rate of 20 sccm and a pressure of 1.2 mbar. These conditions allow to
ignite and maintain a H2-plasma. The characteristic plasma glow, caused
by the recombination of ions and electrons, gives a good estimate of the
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Figure 5.2.: Set-up for hydrogen radical etching. A vacuum CVD reactor is equipped
with a cylindrical capacitor connected to an RF generator to ignite a hydrogen plasma.
The sample is placed downstream in the quartz tube at a position where the aggressive
hydrogen ions already recombined but the H2 gas is still enriched with less aggressive
hydrogen radicals. The set-up allows to control H2 flow, pressure, temperature and RF
power. The distance between sample and RF electrode is 52 cm.

longitudinal extension of the plasma. The sample is placed downstream of
the RF electrode at a position where the high energetic hydrogen ions al-
ready recombined, but the H2 gas is still enriched with the less aggressive
hydrogen radicals. By varying the distance between the plasma and the
sample allows to tune the ratio of hydrogen ions, radicals and molecules,
as a result of the different recombination rates of ions and radicals [130].
To hinder that the CNTs are damaged by ion bombardment the samples
were placed at a distance 52 cm downstream from the RF electrode. Fur-
ther details on the set-up and the etching mechanisms, as well as further
specifications of etch rates, can be found in the PhD thesis of Dorothée Hug
[130] who equipped the CVD set-up with the RF electrode and performed
many etching experiments with graphene and graphite.

5.2.2. Selective etching of carbon nanotubes

Figure 5.3 shows a SEM image of CNTs, grown by CVD on a SiO2 substrate
with a Ti/Au marker grid that was patterned after growth. The wafer was
exposed to hydrogen radicals for 60 min at T = 350◦C under the above
stated conditions. After this treatment the wafer was again imaged. The
comparison of SEM images in Fig. 5.3 shows that a large fraction of CNTs
got etched away. However, some CNTs were inert to the treatment. A third
class of CNTs was partially etched or fragmented into shorter segments (see
upper right image in Fig. 5.3).

In the following we propose an etching mechanism that discriminates
between CNTs that are free of dangling bonds and others which are not.
However, the proposed etching mechanism should be treated as hypothe-
sis for which we have no direct experimental evidence. This hypothesis is
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Figure 5.3.: SEM images of CVD grown CNTs on SiO2 before and after a 60 min
hydrogen radical treatment at 350◦C. A large fraction of CNTs is etched away, whereas
some CNTs are inert to the treatment. The spacing between the markers is 10µm. For
a better visibility the contrast of the CNTs was enhanced with a image editing software.

derived from state of the art experiments in which graphene is exposed to
H radicals under similar conditions [128–130]. These experiments consis-
tently show that for certain parameter regimes graphene is merely etched
at defect sites and at the edges, but not in the basal plane. More strikingly,
the etching is anisotropic and produces regular hexagonal pits around an
initial defect site. The current understanding of this process can be sum-
marized as follows. H radicals can not brake the C–C bonds in a graphene
lattice, unless an additional activation energy of about 1.2 eV is provided
[131]. At the graphene edge and at strong defect sites the carbon atoms
have an unsaturated bond. Two H radicals can bind to these atoms with-
out braking a strong C–C bond: one H radical binds to the dangling bond,
the other H radical breaks the weak π-bond. The electronic configuration of
the bi-hydrated carbon is no longer sp2. The two remaining C–C bonds are
weakened and can now be broken up by the H radicals. The C atom with
the initial dangling bond is removed from the lattice under the creation of
a CH4 molecule. Each carbon atom that is removed from the lattice leaves
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two new C atoms with a dangling bond: a chain-reaction sets in. For a
CNT this chain-reaction can be viewed as a process that is inverse to CVD
growth. Atom by atom is removed from the CNT lattice and methane is
created as end product. Within this analogy the dangling bonds play the
role of the CVD catalyst, they initiate the reaction. The fact that some
CNTs become fragmented into several long segments is not compatible with
an etching mechanism that attacks the CNT uniformly. It may thus be seen
as an indication for the non-uniform ”inverse growth” mechanism.

5.2.3. Etching of PMMA

To determine the etch rates of PMMA we spin-coated wafers with 200 nm
thick films that were baked for 2 min on a hot plate at 180◦C. The wafers
were exposed to H radicals at the same conditions as above (p = 0.4 mbar,
PRF = 25 W, H2 flow rate: 20 sccm, sample–electrode distance: 52 cm)
and etched for 10 min at different temperatures. As a control test we also
exposed the samples to the same conditions without plasma (PRF = 0). It
turns out that the PMMA etch rate is strongly temperature dependent. At
room temperature no significant etching was obtained. At T = 110 ◦C a
convenient PMMA etch rate of 7 nm/min was observed. The etch rate was
the independent of the molecular weight (we tested 50K and 950K) and
without igniting the plasma no etching took place. At 350◦C the PMMA
was fully removed during 10 min, even without application of an RF power.
We found that a temperature of 110◦C is still compatible with structured
and developed PMMA masks (at too high temperatures the masks start
to melt). However, the etching degrades the lift-off properties and a good
undercut of the PMMA mask is required.

5.2.4. Transport measurements on hydrogen radical inert CNTs

In Fig. 5.4 and 5.5 we present low temperature transport measurements
on CNT devices that were fabricated by modifying the standard scheme,
described in Section 4.1, in the following ways:

1. After CVD growth we performed H radical etching for 30-60 min at
350◦C to preselect inert CNTs.

2. Before depositing the metal contacts we cleaned the contact areas by
a 1 min exposure to H radicals at 110◦C, which removes about 7 nm
PMMA.

3. After lift-off the samples were annealed for 60 min in vacuum at 350◦C
to exclude possible hydrogenation effects (dehydrogenation of CNTs
sets in at 200◦C [132]).
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Contacts Etch time Resist

Sample A Ti/Nb & Ti/Au 30 min bilayer

Sample B Ti/Nb & Ti/Au 30 min bilayer

Sample C Ti/Nb 60 min single layer

Sample D Pd/Nb 60 min single layer

Table 5.1.: Summary of fabrication details. The thickness of the adhesion layers below
the Nb contacts was 3-4 nm. The etch time refers to step 1 of the protocol (CNT
preselection). As single layer resist we used 300 nm of PMMA(950K), bilayers where
made from PMMA(50K)/PMMA(950K) (200 nm/100 nm).

We fabricated four test batches, labelled A, B, C and D, and contacted
between four and eight CNTs per batch. Below we present measurements
from one selected CNT, named A, B, C and D, out of each test batch. The
study was not fully systematic. The differences between the devices are
summarized in Table 5.1.

Starting with the stability diagram of sample A [Fig. 5.4(a)] we note that
a clear fourfold symmetric shell-filling pattern can be observed over a wide
range of gate voltages. The gate voltage allows to tune the QD from a
closed into an open regime. At the right side of Fig. 5.4(a) the individual
Coulomb peaks can no longer be resolved and a Fabry-Perot like beating
pattern is observed. However, the rather low conductance of only 5 ·10−2 G0

seems unexpected in combination with Fabry-Perot oscillations, which are
usually observed for very transparent contacts with tunnel resistances R <
h/e2. In a capacitor model of the QD this condition allows electrons to
enter and leave the QD on a time-scale τ ∼ RC, that is short enough
to overcome the charging energy, U = e2/C, according to Heisenberg’s
uncertainty principle, h/τ > U . For sample A we conclude that only one of
the two contacts fulfils the condition R < h/e2, while the second contact is
weakly coupled and acts as tunnel probe. In this interpretation the Farby-
Perot interferometer consists of a semi-transparent mirror (strongly coupled
contact) and a second mirror that is almost fully reflecting (tunnel probe).

Test sample B exhibits similar transport characteristics as sample A, in-
cluding fourflod symmetry and gate dependence of the contact resistance
[Fig. 5.4(b)]. However, the Fabry-Perot regime is not entered, even though
the conductance is about one order of magnitude higher than for sample A.

Within the range −30V < VBG < 30V neither sample A nor sample
B could be gated into a band gap. Test sample C was selected to show
that the hydrogen radical etching does not discriminate between metallic
and semiconducting CNTs. The back gate sweep in Fig. 5.5(a) displays
a semiconducting CNT with a band gap of 0.87 eV. Conduction though
the electron band and the hole band are on the same order of magnitude,
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Figure 5.4.: (a,b) Stability diagrams of hydrogen radical inert CNTs from two different
fabrication batches. The measurements were performed in a He dewar at 4.2 K. The
top panels show a cut of the differential conductance, G, across zero bias, VSD = 0.
Both samples show clear fourfold symmetry and are backgate tunable from a closed to
a open QD regime. For (a) the low conductance values suggest a strongly asymmetric
coupling, Γ1 � Γ2.
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suggesting that the work function of the contact lies in deep inside the
band gap. The center of the band gap is shifted to VBG = −18 V due
to doping. It remains unclear if this doping is caused by the hydrogen
treatment. Figure 5.5(c) shows a zoom into the backgate region where the
first electrons are filled into the CNT. By eye it is hard to see a shell-filling
pattern, but the addition energy spectrum of the QD demonstrates a twofold
degeneracy. Such a reduced symmetry indicates disorder which strongly
scatters the electrons between the K and K’ valley (alternatively it is also
conceivable that the spin-degeneracy is broken and the valley degeneracy is
conserved).

Test sample D is a three-terminal device with two well-decoupled QDs.
An SEM image of sample D is shown as inset of Fig. 5.5(b). The curly
structures are metal residues due to an insufficient undercut. Such lift-off
problems were not present for samples A and B, which have been fabricated
with a resist bilayer (see Table 5.1). In Fig. 5.5(b) both QDs show a weak
fourfold symmetry. This underpins the view that the shell-filling symmetries
are determined by the CNT and not by the contacts.
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Figure 5.5.: Differential conductance around zero bias as a function of backgate voltage
for two hydrogen radical inert CNTs. Measurements were performed in a He3 cryostat
at 230 mK. (a) A semiconducting CNT with a band gap of 0.87 eV. The center of the
band gap is strongly shifted away from VBG = 0, indicating the presence of chemical
doping. (b) Measurements on the two QDs from the three-terminal shown in the inset.
(c) Zoom into the backgate region where the first electrons are filled into test sample C.
The extracted addition energies (top panel) show a only twofold symmetric shell-filling.
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5.2.5. Conclusions

In this section we demonstrated that clean and stable CNTs behaviour can
be observed on devices where the CNTs were cleaned and pre-selected by a
hydrogen radical treatment. The low-defect rate of the CNTs is concluded
rather indirectly from shell-filling patterns which frequently showed fourfold
symmetry. Devices of similar quality were frequently obtained with standard
fabrication techniques, see e.g. Refs. [50, 133, 134]. However, this actually
fits to the viewpoint that the shell-filling properties of CNT QDs are mostly
governed by the tube quality: when many CNTs are contacted it is only a
matter of time until a high quality CNT is found. The transport properties
of the presented test samples suggest that the chances to find clean CNTs
can be improved by pre-selecting the CNTs via an exposure to hydrogen
radicals. However, a more systematic study with better statistics would be
desirable to support this claim.

Unlike shell-filling symmetries, the superconductivity related properties
of a CNT QD seem to be determined by the contact and not by the CNT.
Without stating it explicitly we showed devices that were connected to at
least one superconducting contact. Test samples A and B had a S-QD-N
geometry and test samples C and D had a S-QD-S geometry, where S refers
to a sputtered Nb contact with a Ti or Pd adhesion layer (3-4 nm). Anyhow,
none of the presented stability diagrams showed signatures of superconduc-
tivity. In general the yield of working QD devices was much higher than the
yield of QDs that showed signatures of superconductivity. About 50% of
the fabricated QDs had room temperature resistances RRT < 100 kΩ, but
from 18 fabricated QDs only 3 showed superconductivity related behaviour.
In Section 6.7 and Chapter 7 we present results that were obtained from
these QDs. The reason for the lower yield of superconducting QDs remains
unclear. Following the theoretical study of Takei et al. [135] one may spec-
ulate that not only the coupling between S and the QD plays an important
role, but also the homogeneity of the coupling, i.e. the variation of a lo-
cally defined ΓS(x), where x describes the position along the metal-CNT
interface.

Lastly we assess that the cleaning of PMMA residues from the contact
area by hydrogen radical etching did not lead to the desired reproducibil-
ity of the contact properties. Many devices exhibit asymmetric couplings,
O(Γ1) 6= O(Γ2), and the yield of QDs with superconducting contacts was
considerably lower than the yield of QDs with transparent contacts. How-
ever, the clean CNT behaviour, the good yield of transparent contacts and
the small but acceptable yield of QDs with niobium induced superconduc-
tivity are good arguments for the additional processing time. In addition,
the method can be applied for a controlled reduction of the CNT density
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after CVD growth (a too high CNT density often hinders further process-
ing of a batch, which is especially annoying if the wafer already contained
nanostructures, e.g. bottom gates).

5.3. Bottom-gate defined quantum dots

We discussed in the introduction to this chapter how improvements of the
device quality have pushed CNT experiments into realms that many re-
searchers would have conceived as unreachable before. The dramatic im-
provements of the device quality have been a result of so-called ultraclean
processing schemes. In these schemes the CNT is placed in the last step of
the fabrication [120, 122, 123]. The pristine and stable behaviour of these
devices was naturally attributed to the absence of any kind of chemical pro-
cessing and the fact that the CNTs were suspended from the SiO2 substrate
[122]. However, Minkyung Jung et al. surprisingly found that the charac-
teristics of ultraclean CNTs can also be obtained, even when a conventional
resist-based lithography step is used after placing the CNT [34]. In the
following the findings of Jung et al. are briefly summarized. The author of
this thesis made minor contributions to the sample fabrication. The main
work was carried out by Minkyung Jung.

5.3.1. Sample fabrication

The samples were fabricated as described in Section 4.1, but pairs of bot-
tom gates were embedded into the SiO2 substrate before CVD growth.
These gates could be used to define the QDs electrostatically, as opposed
to contact-defined QDs. Figure. 5.6 illustrates the device fabrication. The
trenches for the bottom gates were fabricated by EBL and a reactive ion
etching with CF4, followed by a wet etch step with buffered HF to create
an undercut. The trenches are metallized with sputtered Re, but any metal
that is compatible with the conditions during CVD growth may be chosen.
SEM imaging is used to find CNTs that grew over the pre-defined bottom
gates and a standard EBL step is used to place source-drain contacts of
Ti/Au (5 nm/65 nm).

5.3.2. Transport characteristics

The devices were measured in a 4He transport dewar at 4.2 K. The investi-
gated CNTs exhibited band gaps of ∼ 100−300 meV. The back gate voltage
was set to VBG = −7.5 V. In this regime the complete CNT was p-doped
and the device acted as a Fabry-Perot cavity (Fig. 5.7). The cavity length
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can be extracted from the energy dependence of the Fabry-Perot oscilla-
tions according to L = πvF~/eVC [136], where vF = 8.1 · 10−5 m/s [25] is
the Fermi velocity and VC = 3 V is the characteristic bias voltage marked
in Fig. 5.7(b). This yields an effective length of 700 nm, which is well in
agreement with the separation between the source and drain contact mea-
sured by SEM. To define a QD a positive voltage is applied to one of the
bottom gates. This pulls the conduction band below the Fermi energy, as
illustrated in the top row of Fig. 5.8, until a p∗-n-p∗ junction is formed.
Here p∗ denotes the doping of CNT segment adjacent to the source-drain
contacts. The tunnel barrier between p∗ and n region is given by the CNT
band gap and the electric field configuration. In this way it is possible to
define extremely small QDs with smooth confinement potentials. The sta-
bility diagram shown in Fig. 5.8 exhibits a charging energy of U & 50 meV.
The estimated size of the QD is 80 nm (see [34]), which is comparable to the
bottom gate width of 70 nm. A QD of similar quality could be formed over
each of the two bottom gates. In addition it was possible to form double
QDs (p∗-n-i-n-p∗) and even bipolar triple QDs (p∗-n-p-n-p∗).

Rhenium bottom gates 

20 nm  

70 nm  
p++ Si back gate 

SiO2 

Drain 

p++ Si back gate 

SiO2 VL VR 

3 �m 

20 nm  

70 nm  

VL VR 

Source 

(a) 

(c) 

(b) 

(d) 

Source Drain 

Re 

700 nm  
Nanotube Ti/Au 

Figure 5.6.: (a) Schematics of the recessed Re bottom gates that were sputtered in
trenches in the SiO2 substrate. (b) SEM image of the bottom gate contact area in (d)
taken at 80◦ tilting angle. (c) Schematics of the CNT device with source and drain
contacts. The CNT growth is not the last step but is followed by a conventional resist-
based electron beam lithography step to define the source and drain contacts made
of Ti/Au bilayer. (d) SEM image after the carbon CNT growth. Reproduced with
permission from [34]. Copyright 2013 American Chemical Society.
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Figure 5.7.: (a) Energy band diagram of the CNT in the Fabry-Perot regime. (b)
Differential conductance, G, as a function of the voltage applied to the right bottom
gate, VR, and source-drain bias, VSD. Reproduced with permission from [34]. Copyright
2013 American Chemical Society.

5.3.3. Conclusions

The work of Jung et al. shows that ultraclean CNT-QD characteristics can
be obtained after a resist-based microfabrication process is used. To ap-
preciate the device quality one may compare Fig. 5.8 with the conductance
map of a conventional QD exemplified in Fig. 5.1 and the conductance maps
of the clean devices shown in Fig. 5.4. The characteristic energy scales of
the bottom gate defined QD, U and δE, are a factor of ∼ 10 larger than
that of typical contact defined QDs. This is mainly a consequence of the
small dot length (for the charging energy also the suspension from the di-
electric substrate contributes). Jung et al. suggest that this large energy
scales leave the devices immune to the remaining disorder potentials caused
by resist residues and adsorbates. It is interesting to note that the change
to ultraclean processing schemes led almost naturally to the inclusion of
bottom gates to control the devices and the devices e.g. in Refs. [27, 119]
also exhibit very large charging energies U ∼ 40 meV.

The bottom gate definition of CNT QDs greatly increases the versatility
of the device fabrication and offers the prospect to realize ultraclean QD-S
hybrid devices. This calls for the fabrication of an ultraclean CNT based
Cooper pair splitter. Eventually more advanced gating schemes may even
allow individually tune the tunnel coupling of the QDs.
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6
Near-unity Cooper pair splitting efficiency

6.1. Introduction

In this chapter we present experimental results from CNT based Cooper
pair splitter device. By charge transport measurements we demonstrate
that up to 90% of the incoming current is converted into subsequently split
Cooper pairs. Efficiencies close to unity mark an important step on the
way to applications and more sophisticated experiments, for example the
explicit demonstration of entanglement. The obtained efficiencies, which
by far exceed 50%, can also be regarded as a proof that the splitting is
enforced by electron-electron interactions. Splitting efficiencies up to 50%
can in principle be reached without enforcing the splitting, e.g. in a chaotic
cavity [90], or in a double-dot system with strong inter-dot coupling [64],
where the electrons of a Cooper pair can exit the device through two ports
at random.

In the regime of high efficiencies also new questions arise: we find an
apparent mismatch between the CPS currents extracted in the left and in
the right arm of the device. We develop a master equation ”toy model”
to explain how these discrepancies arise from a competition between local
processes and CPS. We also present first attempts to further improve such
devices by using superconducting materials with energy gaps on the meV
scale. Parts of this chapter were published elsewhere in similar form [66].
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Figure 6.1.: (a) Schematic of the device geometry. The probabilities for the individual
transport processes, pi, are discussed in the text. (b) Scanning electron micrograph of
the CPS device and measurement set-up.

6.2. Device and measurement set-up

An artificially coloured scanning electron micrograph of a CPS device is
shown in Fig. 6.1(b), together with a schematic of the measurement set-
up. The device was fabricated as described in Sec. 5.1. A CVD grown
CNT (arrow) is contacted in the center by a 200 nm wide Pd/Al (4 nm /
60 nm) contact (S), which becomes superconducting below ∼ 1.1 K. Two
pure Pd contacts to the right and left of S serve as normal metal contacts
N1 and N2, both of which define a quantum dot (QD1 and QD2) on the
two CNT segments adjacent to S. The QDs can be tuned electrically by a
global backgate and the local side-gates SG1 and SG2.

The experiments are performed in a dilution refrigerator at a base tem-
perature of ∼ 20 mK. From standard charge stability diagrams we extract
charging energies of ∼ 7 meV for QD1 and ∼ 4 meV for QD2 and an orbital
energy spacing of ∼ 1 meV. At zero magnetic field we find that a BCS-like
density of states is impinged on the co-tunnelling background of each QD.
Figure 6.2(a) shows the non-linear differential conductance of QD1 and QD2,
measured off resonance in the co-tunnelling regime for different strengths
of an external magnetic field. The magnetic field was aligned parallel to
the chip plane. From Fig. 6.2(a) we extract the magnitude of the induced
energy gap as ∼ 120µeV and a critical magnetic field of ∼ 150 mT. With
S in the normal state we find typical level broadenings of ∼ 150-500µeV.
Many Coulomb peaks exhibit relatively low peak conductances which sug-
gests rather asymmetric couplings of the QDs to the leads. The lever arms
from a side-gate across the superconductor to the other QD is roughly ten
times smaller than that of a local side-gate. Figure 6.2(b) shows a conduc-
tance measurement in the normal state, with both QDs in series and the
S contact floating. We find that the conductance is maximal when both
QDs are resonant and we do not observe any avoided crossings of the QD
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Figure 6.2.: (a) Differential conductance G1 (left) and G2 (right) of QD1 and QD2 as
a function of the source-drain voltage VSD for different magnetic fields B‖. The arrows
indicate the position of the quasiparticle peaks in the BCS density of states. For clarity
the curves are offset by 5 · 10−4 G0. (b) Serial conductance of QD1 and QD2 measured
from N1 to N2 with floating S contact while varying VSG1 and VSG2.

resonances. This demonstrates that the two QDs are well decoupled and
can be tuned individually without a hybridization of the QD levels. This
difference to Ref. [64] might be due to the larger width of S.

6.3. Experimental signature of Cooper pair splitting

Figures 6.3(a) and 6.3(b) show the simultaneously recorded differential con-
ductances G1 through QD1 and G2 through QD2, both as a function of the
side-gate voltages VSG1 and VSG2. The measurements were done at zero bias
and zero magnetic field. When VSG1 is varied, QD1 is tuned through several
resonances, which result in conductance maxima in G1, labelled L1, L2 and
L3 in Fig. 6.3(a). The amplitudes of the resonances vary only little when
tuning VSG2, while the resonance position changes slightly due to capacitive
cross talk from SG2 to QD1. Very weak, but similar conductance ridges la-
belled R1, R2 and R3 can be observed in the conductance through QD2 in
Fig. 6.3(b). These are mainly tuned by SG2, which results in conductance
ridges almost perpendicular to the ones in Fig. 6.3(a) due to QD1.1

Our main experimental findings are pronounced peaks when both QDs
are in resonance. At these gate configurations the conductance is increased

1The two weak lines between R1/R2 and R2/R3 at two constant VSG1 values are
probably due to random charge rearrangements.
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by up to a factor of ∼ 100 compared to the respective conductance ridge.
This is most prominent in G2, but most of the peaks are also visible in G1

on a larger background. No peaks at resonance crossings can be observed
when the superconductivity is suppressed by a small external magnetic field
(see inset of Fig. 6.4(a) and discussion below). If only one QD is resonant,
only local transport through this QD is allowed. A possible local process
is local (Cooper) pair tunneling (LPT), illustrated in Fig. 6.3(c): the first
electron of a Cooper pair is emitted into the QD, which leaves S in a virtual
excited state. When the first electron has left the dot, the second tunnels
into the same QD. Other local processes like double charging of a dot are
strongly suppressed by the large charging energies. However, if both QDs
are in resonance, the second electron can tunnel into QD2, as shown in
Fig. 6.3(d), which splits the initial Cooper pair.

We now focus on the resonance crossing (L2,R2). Figure 6.4(a) shows the
Coulomb blockade resonance L2 in G1 as a function of VSG1 (blue curve).
In the same gate sweep G2 is tuned through the resonance R2 due to capac-
itive cross-talk which results in a wide conductance maximum (red curve).
However, an additional much sharper peak occurs at the voltage of the L2

84



6.3. Experimental signature of Cooper pair splitting
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G2(VSG1) for a series of side-gate voltages VSG2. The curve from (a) is highlighted red.
(c) G2(VSG1) for a series of side-gate voltages VSG2 in the normal state (B‖ = 250 mT).

resonance, with similar width and shape as the resonance inG1. This narrow
peak corresponds to the additional conductance due to CPS. Figure 6.4(b)
shows the evolution of this CPS conductance in G2 for a series of different
side-gate voltages VSG2 with the curve from Fig. 6.4(a) highlighted in red.
Note that the position of the CPS peak in G2 has almost no dependence
VSG2. It remains pinned to the position of the G1 resonance, as expected
for a correlated two-particle effect like CPS.

As a control experiment we suppress the superconductivity in the S-
contact by a magnetic field of 250 mT and perform the same side-gate
voltage scans as in Fig. 6.3(a,b). The results are plotted in Fig. 6.5(a,b).
In the superconducting state the local current was strongly suppressed by
the combination of Coulomb interactions and superconducting pairing. In
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6. Near-unity Cooper pair splitting efficiency

the normal state there are no paired electrons in the S-contact and this
suppression is not present. The overall conductance is strongly increased.
More importantly, on the scale of Fig. 6.5(a,b) no conductance correlations
between G1 and G2 are observed. In Fig. 6.4(c) we plot slices across the
conductance map of Fig. 6.5(b) for a series of VSG2 values, in analogy to
Fig. 6.4(b). Fig. 6.4(c) reveals that conductance correlations are still present
in the normal state. However, these correlations are considerably smaller
than in the superconducting state. At the SG1 voltage of the QD1 reso-
nance (dashed vertical line) we observe either tiny dips (close to resonance)
or S-shaped structures (off resonance) in G2. This S-shape is inverted on
the other side of the resonance. The amplitudes and line shapes of these
features are consistent with a finite lead resistance of the S-contact in the
cryostat [63] and a capacitive coupling between the quantum dots, which
leads to features characteristic for ”charge detection” of the QD1 state by
QD2 [137].
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Figure 6.5.: (a) Normal state (B‖ = 250 mT) differential conductance G1 of of QD1,
and (b) G2 of QD2, as a function of the side-gate voltages VSG1 and VSG2. Compared
to the superconducting state (B‖ = 0) the overall conductance is strongly increased

and the huge CPS peaks vanished.
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6.4. Evaluation of the splitting efficiency

After having established that the non-local signals arise from CPS we want
to quantify the CPS rates. To do so we use the amplitude ∆G2 of the
additional peak in G2 at the position of the QD1 resonance, as illustrated
in Fig. 6.4(a). The subtracted background is determined by manually in-
terpolating the bare QD2 resonance. In Fig. 6.4(a) we also define δV , the
detuning between the two resonances. One finds that ∆G2 depends strongly
on the detuning δV . In Fig. 6.6(a) we therefore plot ∆G2 vs. δV . The value
that was extracted from the slice in Fig. 6.4(a) is marked by a red triangle.
As another example, the conductance variation near the crossing (L3,R2)
is also plotted in Fig. 6.6(a). For all crossings we find that ∆G2 has a
maximum at δV ≈ 0, i.e. where both QDs are in resonance, in agreement
with theoretical predictions [compare Eq.(3.15)]. For δV 6= 0, ∆G2 falls off
rapidly and tends to zero on an energy scale consistent with the width of
the respective resonances. We note that Hofstetter et al. observed a quali-
tatively different behaviour [63]. In their CPS experiment the non-local cur-
rent was maximal when the second QD was positioned on the Coulomb peak
tail (δV 6= 0). As the double resonance condition was approached (δV → 0)
the CPS currents decreased and eventually even turned negative for δV = 0.
This unexpected behaviour may be attributed to the discrepancy between
the experimental coupling regime (ΓS +ΓN ≈ 500µeV� ∆ ≈ 150µeV [63])
and the aspired working conditions (ΓS < ΓN < ∆ [84]).
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On the resonance crossings investigated here the maximum change in G2

is 0.012 e2/h. This number has to be compared to the total conductance,
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6. Near-unity Cooper pair splitting efficiency

including the local processes, so that we define the visibility of CPS in the
second branch of the Cooper pair splitter as η2 = ∆G2/G2 (similar for G1).
The CPS visibilities for both branches on resonance crossing (L3,R2) are
plotted in Fig. 3d. η2 is essentially constant over a large range of δV and
reaches values up to 98%, i.e. the current in one branch can be dominated
by CPS. η1, however, has a maximum of only 73% at δV ≈ 0 and drops to
zero for a large detuning.

As a measure for the CPS efficiency we compare the CPS currents to the
total currents in both branches of the device. Assuming that CPS leads
to a conductance GCPS in each branch, independent of other processes, we
define the CPS efficiency as

s =
2GCPS

G1 +G2
. (6.1)

By assuming that GCPS = ∆G2 we find efficiencies up to s ≈ 90%. Effi-
ciencies up to 50% can also be reached when the splitting is procured by
chance, as outlined in Sec. 3.2. Therefore our experiment provides a solid
proof that the splitting is enforced by interactions.

The efficiency as a function of δV is plotted in Fig. 6.6(b) for the cross-
ing (L3,R2). However, depending on the intended purpose of the entangler,
s is not necessarily the relevant parameter. For example, in tests of Bell’s
inequality proposed for electrons [138, 139], the measured quantities are cur-
rent cross correlations between the normal metal terminals, which suggests
to use the following figure of merit:

η = η1 · η2 =
∆G1

G1
· ∆G2

G2
(6.2)

A violation of Bell’s inequality requires η > 1/
√

2 ≈ 71%. In Fig. 6.6(b), η
is plotted as a function of δV for the crossing (L3,R2). We find values up to
η = 68%, mostly limited by the large rates of local processes through QD1.
Nonetheless, the large visibility in G2 demonstrates the feasibility of testing
Bell’s inequality with electrons, if an ideal detection scheme was available.

We note that there is no consensus in the literature about the definition
of splitting efficiencies. Das et al. define efficiency as the ratio of CPS
current and local background current: ICPS/ILPT ∝ ∆Gi/GBG,i with the
local background conductance GBG,i, given by Gi = GBG,i + ∆Gi [65]. This
definition only considers one arm of the device and the efficiency can become
infinitely large. In our terminology the splitting efficiencies of 100% (and
above) that were reported in Ref. [65] correspond to CPS visibilities of 50%
(and above).

Intuitively one might expect ∆G1 = ∆G2. This is found within experi-
mental errors for 4 of the 9 resonance crossings. As an example, ∆G1 and
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∆G2 of the crossing (L3,R2) investigated above are plotted as a function of
δV in Fig. 6.8(a). For the other crossings, the two conductance variations
deviate significantly from each other. 4 of the 9 crossings exhibit curves
comparable to (L3,R1) plotted in Fig. 6.8(b). Here, ∆G2 is larger than
∆G1 by about a factor of 2, but with a similar curve shape. One of the
9 crossings, (L2,R1) shown in Fig. 6.8(c), is very peculiar: the variation in
∆G1 is almost negligible, while ∆G2 exhibits a pronounced peak. In addi-
tion, one finds that ∆G2 > G1, i.e. the conductance variation in one branch
is larger than the total conductance in the other.

6.5. Semi-classical master equation model

To qualitatively understand our experiments we discuss the electron dynam-
ics in our devices using a strongly simplified semi-classical master equation
model, graphically illustrated in Fig. 6.7. For each QD we consider a single
level with constant broadening and a large charging energy. The system can
be in one of the following four states k: both QDs empty, (0,0), either QD
filled with one electron, (1,0) or (0,1), or both dots occupied, (1,1). The
average occupation probability Qk of each state is given by a rate equation
of the form [140]

d

dt
Qk =

N∑
l=1

[pk,lQl(t)− pl,kQk(t)] (6.3)

with the respective transition probabilities per time pk,l being defined in
Fig. 6.7. The first term describes transitions to the state k, while the second
describes transition from k to any other state. We consider only transitions
that correspond to the transport processes depicted in Fig. 6.1(a): CPS
changes the system from (0,0) to (1,1) with a rate pCPS, the transition from
(1,x) to (0,x) is given by pN1 (similar for N2), the tunnelling between the
QDs, i.e. from (0,1) to (1,0), by p12 (similar for the reversed tunnelling) and
the transition from (0,x) to (1,x) is described by pLPT1 (similar for LPT2)2.
We assume that electrons are transferred only in one direction, from S to
the QDs and from the QDs to the respective normal metal contact. In
this regard the pk,l are effective rates. The model also neglects virtual
intermediate states and coherent transition between them. We refer to
Refs. [86–88] for models which take these into account. We explicitly assume
that the QD spectra remain unaffected by S – a condition that will break

2The interpretation of pLPTi is not trivial since it contains the tunnelling of the first
and then the second electrons from S to QDi, and from QDi to Ni. However, we
simply assume that both, the first and the second electron, lead to a change in the
time-averaged dot occupation, treating LPT as one single transition.
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6. Near-unity Cooper pair splitting efficiency

down for a weak coupling N [96] – and simply choose effective values for the
pk,l that qualitatively reproduce the experiments. The main purpose of this
”toy model” is a pedagogic one: to illuminate the mutual influence that the
transport processes have on each other.

(1,0)

(0,0)

(1,1)

(0,1)

pCPS

pN1

pLPT1

pLPT2pN2

pLPT2pN2

pN1

pLPT1
p21p12

Figure 6.7.: Graphical represen-
tation of the semi-classical master
equation model of a Cooper pair
splitter. The four allowed states of
the model – both QDs empty, (0,0),
either QD filled with one electron,
(1,0) or (0,1), or both dots occupied,
(1,1) – are connected by transi-
tion rates that correspond to the
processes illustrated in Fig. 6.1(a).

We solve Eq.(6.3) for the Qk by using the maximal tree method, as de-
scribed in detail in Ref. [140]. The solutions are found in Appendix B. To
incorporate the QD resonances we multiply each probability with effective
density of states in the the target state, assuming gate-dependent Lorentzian
profiles g1(VSG1) and g2(VSG2) for QD1 and QD2:

p̃LPT1(VSG1) = pLPT1 g1(VSG1) (6.4)

p̃LPT2(VSG2) = pLPT2 g2(VSG2) (6.5)

p̃12(VSG1) = p12 g1(VSG1) (6.6)

p̃21(VSG2) = p21 g2(VSG2) (6.7)

p̃CPS(VSG1, VSG2) = pCPS g1(VSG1)g2(VSG2) (6.8)

p̃Ni(VSGi) = pNi (6.9)

Based on the occupation probabilities we calculate the conductances in
units of G0 = 2e2/h as follows:

GCPS = p̃CPSQ(0,0) (6.10)

GLPT1 = p̃LPT1

(
Q(0,1) +Q(0,0)

)
(6.11)

GLPT2 = p̃LPT2

(
Q(1,0) +Q(0,0)

)
(6.12)

G1 = p̃N1

(
Q(1,0) +Q(1,1)

)
(6.13)

G2 = p̃N2

(
Q(0,1) +Q(1,1)

)
. (6.14)

We then extract the conductance variations ∆G1 in the same way as in the
experiments, i.e. by taking the difference between the maximum and the
minimum of the conductance G1 along a trace that follows the resonance
maximum in G2, and analogous for G2. Appendix B contains a the code for
a Matlab program to calculate ∆G1, ∆G2 and other quantities of interest.
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Figure 6.8.: (a)-(c) ∆G1 and ∆G2 as a function of the detuning δV for the indicated
resonance crossings. (d)-(f) Similar plots obtained from the master equation model of
CPS, including GCPS. The parameters varied between the simulations are given in the
figures. The inset in (e) shows the conductances in the branch of QD1 due to local
processes (GLPT1), CPS and at N1.

Our model shows that a finite QD population can lead to a competition
between the various transport mechanisms. In Figs. 6.8(d-f) simulated con-
ductance variations are plotted for different QD1 parameters, while those of
QD2 are kept at pLPT2 = 0.01 and pN2 = 0.1 for all plots, i.e. in the regime
of Ref. [84], where the coupling to S is much weaker than to the normal
contacts. We set pCPS = 0.03 to obtain conductances comparable to the
experiments, and p12 = 0.001 so that the inter-dot coupling is the smallest
parameter in the problem. If the occupation of both QDs are negligible, i.e.
pLPTi << pNi, one finds ∆G1 = ∆G2, as shown in Fig. 6.8(d), similar to the
experiments presented in Fig. 6.8(a). For clarity we chose slightly different
widths for the QD resonances.

If one QD occupation becomes significant, the conductance variations are
not identical anymore. Figure 6.8(e) shows plots for pLPT1 = pN1 = 0.1, for
which ∆G2 ≈ 2∆G1, as in the experiment shown in Fig. 6.8(b). The model
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6. Near-unity Cooper pair splitting efficiency

also allows us to calculate the rate at which Cooper pairs are extracted from
S by CPS. The corresponding conductance is also plotted in Figs. 6.8(d-f).
We find that ∆Gi < GCPS as long as the inter-dot coupling p12 is negligible,
i.e. the experimentally extracted CPS conductance underestimates the ac-
tual value,
max(∆G1,∆G2) < GCPS, which is explained as follows. The rate pN1

starts to limit the current. QD1 is not emptied fast enough, which inhibits
the following processes on the dot resulting in a competition between the
processes that fill QD1. An increase of CPS current is accompanied by a de-
crease of the LPT current (and vice versa). This is illustrated in the inset of
Fig. 6.8(e), where the calculated local conductance from S to QD1, GLPT1,
has a minimum where GCPS is maximal. The same suppression mecha-
nism might also account for the discrepancy between noise correlations and
conductance measurements in Ref. [65].

The situation is more complex if the tunnel coupling between the dots
becomes relevant. For example, if pN1 = p12 = 0.001 and pLPT1 = 0.01 >
pN1, as used for Fig. 6.8(f), the electrons can leave QD1 to N1 and to QD2
with the same probability. Since pN1 is small, this quenches G1, but G2 is
increased due to the additional current from QD1. Here, the ∆Gi do not
give an upper or lower bound for the CPS rate and ∆G2 can become larger
than G1, as in the experimental curves in Fig. 6.8(c). We note that the
discussed situations are not in the regime of completely filled QDs. Our
model suggests that in this unitary limit the conductances can be reduced
considerably in the center of a resonance crossing, which might account for
the yet unexplained anomalous behaviour of the on-resonance signals in [63].

6.7. Outlook: niobium based Cooper pair splitters

Above we showed that a regime can be reached in which Cooper pairs are
split with efficiencies up to 90%. However, a near-ideal Cooper pair splitter
is not necessarily a near-ideal electron entangler. One serious source of
entanglement loss are electron-hole (e-h) pair excitations in which electrons
hop from the Fermi leads onto the QDs [84]. As discussed is Section 3.2,
such excitations can be suppressed by positioning the QD resonances above
the chemical potentials of the N-leads, while keeping the dots resonant, i.e.
µS = µQDi > µNi. But this is barely possible if the level broadening of
the resonance is of similar magnitude as the induced superconducting gap,
Γ ≈ ∆. The bias voltage one would need to apply to exclude e-h pair
excitations would be large enough to break up Cooper pairs and let them
escape as quasiparticles. A CPS entangler requires therefore that Γ and ∆
are well separated. This can be reached by decreasing Γ or by increasing
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∆. Since the current fabrication techniques barely provide control over
the tunnel couplings we chose to work with superconducting materials that
exhibit larger energy gaps.
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Figure 6.9.: (a,b) Simultaneous recorded differential conductance maps Gi(VSD, VBG

(i = 1, 2) of the two QDs from a Nb based CPS device. QD1 (a) shows a hard transport
gap of 2∆ = 2.5 meV, but QD2 (b) shows only a very weak and inconclusive features of
a soft transport gap. (c) Magnetic field evolution differential the conductance G1(VSD)
of QD1 measured at VBG = 1.6 V. The spacing between the splices is 0.2 T. Note that
the induced energy gap is about ten times larger than for Fig. 6.2(a).

Figure 6.9 shows the two stability diagrams of a CPS device for which
we used a Ti/Nb (3 nm/50 nm) bilayer as superconducting contact. The
device was fabricated according to the recipe given in Section 5.2 that in-
volves the cleaning and pre-selection of CNTs by hydrogen radical etching.
The stability diagram of QD1, shown in Fig. 6.9(a), exhibits a transport
gap of 2∆ with ∆ = 1.25 meV. The magnetic field evolution of the gap is
shown in Fig. 6.9(c) where we plot G1(VSD) measured at VBG = 1.6 V. As
in Fig. 6.2(a) a BCS-like density of states is impinged on the background
conductance of QD1 and a critical magnetic field Bc ∼ 4 T can be deduced.
The induced superconducting gap is close to the bulk value for niobium,
∆Nb = 1.45 meV [141], and about 10 times larger than the aluminium in-
duced gap in Fig. 6.2(a). To our knowledge such large superconducting
energy gaps were not reported yet for CNT QDs.3 Nevertheless, the reli-

3In Ref.[142] induced gaps of ∆ ∼ 0.25 meV were reported for Nb contacted CNTs.
In Ref. [143] multi-walled CNTs with Nb contacts were investigated. Supercurrent
was measured, but no superconducting gaps were observed. Ref. [144] reports quasi-
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6. Near-unity Cooper pair splitting efficiency

able implementation of CNT devices with large superconductivity induced
energy gaps (∆ & 0.5 meV) remains a challenge. As an example the reader
may consider the stability diagram of the second QD, shown in Fig. 6.9(b).
A weak conductance suppression for |eVSD| < 1.25 meV points towards the
existence of a soft superconducting gap, but the respective features are too
smeared to be conclusive. Also, we were not able to observe any no non-local
conductance correlations between QD1 and QD2 for this device.

The key problem in the fabrication of CNT based CPS devices are the
random variations of the contact properties. To obtain a device with two
QDs that show a hard energy gap and obey the same coupling asymmetry,
ΓSi � ΓNi, one needs an appreciable share of luck.

6.8. Conclusions

We presented Cooper pair splitting experiments with efficiencies up to 90%,
demonstrating the importance of electron-electron interactions in such sys-
tems. For the figure of merit relevant in tests of Bell’s inequality for elections
we find values close to the required limits. In addition, we assessed CPS on
both QDs and found rather large apparent discrepancies between the CPS
signals in the two output terminals. We explained these discrepancies in a
semi-classical master equation model. Our model suggests that for negligi-
ble inter-dot couplings the experimentally extracted CPS rates are a lower
bound to the real CPS rates. Our experiments and calculations show that
there is a large variety of different transport phenomena in CPS devices that
need further investigation. In addition we showed that niobium contacted
CNTs can exhibit superconductivity induced energy gaps on the meV scale.
Both findings are important steps on the way to a Bell experiment in which
the spins of single electrons are used as flying qubits.

particle peaks at ∆ ≈ 1 − 1.5 meV, but the investigated Nb-junction used several
CNTs in parallel to form a weak link. Alternatively, rhenium [145] and molybde-
num/rhenium alloys [146] were successfully used as CNT contacts. In Ref. [145] a
superconducting gap of ∆ ∼ 0.1 meV is visible while in the supplementary mate-
rial of Ref. [146] shows no signs of an induced gap, although the main text clearly
demonstrates supercurrent.

94



7
Non-local spectroscopy of Andreev bound

states

In this chapter we will discuss a device which looks very similar to the
Cooper pair splitter presented in the preceding chapter. However, despite
the similar geometry of the devices, we will encounter completely different
physics. It will turn out, that the device we investigate in this chapter
has one QD which is strongly coupled to the superconductor (S), while
the second QD is weakly coupled to S. As a result, the strongly coupled
QD forms Andreev bound states (ABSs). The second QD forms no ABSs,
but it can be used to probe the ABSs on QD1 non-locally via CPS and
elastic co-tunnelling. We find an appreciable non-local conductance with
a rich structure, including a sign reversal at the ground state transition
from the ABS singlet to a degenerate magnetic doublet. We describe our
device by a simple rate equation model that captures the key features of our
observations and demonstrates that the sign of the non-local conductance
is a measure for the charge distribution of the ABS, given by the respective
Bogoliubov-de Gennes amplitudes u and v.

7.1. Introduction

7.1.1. Local spectroscopy of ABS

The proximity allows superconducting order to leak into a QD. As we dis-
cussed in Chapter 3 this may lead to the formation of ABSs. In a pictorial
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way, one might think of the ABSs as emerging from the superposition of
virtual Andreev reflections at the interface between the QD and a super-
conducting electrode (S). In each such Andreev reflection, a Cooper pair
(virtually) enters or leaves the QD, thereby mixing the even charge states
of the QD. In the so-called superconducting atomic limit, the ABS can be
expressed as a BCS-like superposition of an empty and a doubly occupied
QD level, denoted as |−〉 = u |0〉 − v∗ |↑↓〉 (see Sec. 3.3). The |−〉 state is
characterized by its energy E− and by the Bogoliubov-de Gennes (BdG)
amplitudes u and v. The odd charge states are not affected by the BCS
condensate and remain eigenstates of the QD, forming a spin-degenerate
doublet {|↑〉 , |↓〉} [95–97].
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Figure 7.1.: (a) Example of the low-energy excitation spectrum of a QD-S device, with
the magnetic doublet as GS, separated from the ABS by the Andreev addition energy
ζ. (b) Energy diagram of the local Andreev transport through a normal conducting
tunnel probe. The alternation of an excitation and a relaxation process (labelled E and
R) converts a normal current into a supercurrent. (c) Transport process at negative
bias.

The low-energy excitation spectrum of a QD-S system is shown schemat-
ically in Fig.7.1(a), where we chose the magnetic doublet to be the ground
state (GS) and the ABS to be the excited state (ES). A natural experiment
to measure the Andreev addition energy ζ = |E− − E↑,↓|, defined as the
energy difference between ABS and magnetic doublet, uses a normal con-
ducting tunnel probe (N) in a N-QD-S geometry. If the tunnel coupling
between N and the QD, ΓN, is sufficiently weak, the influence of the tun-
nel probe on the QD-S excitation spectrum is negligible and the differential
conductance across the device, G = ∂I/∂VSD, shows a peak for |eVSD| = ζ
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[56, 70–73, 101].
This peak in differential conductance represents the onset of a current

through the Andreev channel when the electrochemical potential of the tun-
nel probe, µN, exceeds the addition energy, ζ, as depicted in Fig. 7.1(b). This
allows an electron to tunnel across the barrier ΓN and excite the QD, even
in the presence of a large charging energy U � ζ. The electron does not
enter the |↑↓〉 state, but the |−〉 state, where the charge is shared between
QD and S. The probability of this transition, |↑〉 +1e−−→ |−〉, scales with v2,
the weight of the |↑↓〉 term in the |−〉 state [147]. To relax back to the GS,
the QD takes up a second electron at negative energy −ζ from N, which
is equivalent to the emission of a hole with energy ζ into N. The rate of
this relaxation process is proportional to u2, the probability to find the QD
empty so that an electron can be added to reach the |↑〉 state. A complete
transport cycle, GS→ES→GS, reflects an incoming electron as a hole and
transfers a Cooper pair to S with a probability proportional to u2v2.

Since the |−〉 state is a superposition of an empty and a doubly occupied
QD level, the same ES can be reached either by addition of an electron
with positive energy ζ to the GS, or by removal of an electron with negative
energy −ζ from the GS. Consequently, the Andreev resonances are always
observed symmetrically about Fermi level of the superconductor, which we
define as reference potential µS = 0. In case of a negative bias, µN ≤ −ζ,
the QD is excited by removing an electron with negative energy −ζ from
the QD and transferring it to N, as shown in Fig. 7.1(c). The probability
of this excitation, |↑〉 −1e−−→ |−〉, scales with u2. Compared to the situa-
tion in Fig. 7.1(b) the rates for excitation and relaxation are inverted and
the direction of electron flow is reversed, but the Andreev current is again
proportional to u2v2. Therefore local spectroscopy of ABS is not able to
investigate the excitation and relaxation process individually in a controlled
manner.

7.1.2. Non-local spectroscopy of ABS

When a current is passed through the Andreev channel the QD fluctuates
between {|↑〉 , |↓〉} and |−〉 . In each such fluctuation the QD state changes
between even and odd occupation, which requires the addition or removal
of a single electron to the QD. If only local processes are considered the
S contact can not drive such transitions because the electrons at energies
below ∆ are paired and form a so-called BCS condensate. However, if a
second QD is added to the QD-S system, higher-order processes involving
electrons from the second QD can deliver single electrons at sub-gap energies
to one side of the superconductor.

Figure 7.2(a) shows a sketch of the device geometry we consider. Two
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7. Non-local spectroscopy of Andreev bound states

QDs (QD1 and QD2) are connected to two normal conducting drains (N1
and N2) and one common superconducting source. One possible process,
in which the S-contact can excite QD1, is elastic co-tunnelling: an electron
at energy ζ tunnels from QD2 to QD1 via a virtual quasiparticle state in
S. Another mechanism is crossed Andreev reflection, also known as Copper
pair splitting (CPS): a Cooper pair is coherently split into two electrons
at opposite energies, here ζ and −ζ, that leave S at different sites [84]. In
Chapter 6 we demonstrated that the splitting of Cooper pairs can be con-
trolled by tuning the levels of the individual QDs with local gates (see also
Refs. [63–66, 148]). Compared to the preceding chapter we explore a new
coupling regime, summarized in Fig. 7.2(a), which leads to the formation
of ABSs on QD1. We then employ the non-local transport mechanisms to
excite these ABS. Thus, in our device the Cooper pairs play a twofold role.
On the one hand, the Cooper pair condensate mixes the even charge states
of QD1 as a result of the proximity effect. On the other hand, Cooper
pairs can be split into individual charges that drive QD1 from even to odd
occupation (or vice versa) with the assistance of QD2.

Since CPS and elastic co-tunnelling are coherent processes with electrons
from two spatially separated QDs, we refer to them as non-local. In this
chapter we use local tunnelling spectroscopy to identify ABSs and then
investigate the response of the ABS channel to non-local excitations. In
section 7.2 we describe how the double QD device is realized with a car-
bon nanotube and present local and non-local transport measurements. In
section 7.3 we introduce a simple rate equation model that explains our
main experimental findings. We show that the non-local current reflects the
relative amplitudes of the BdG amplitudes. In section 7.4 we summarize
the results and conclude that non-local transport measurements provide a
novel spectroscopic tool to investigate the charge distribution of the ABS
– an information that complements the knowledge of the Andreev addition
energy ζ accessed by local tunnelling spectroscopy.

7.2. Experiment

7.2.1. Device and measurement set-up

Figure 7.2(b) shows a colored scanning electron micrograph of our device
and schematically the measurement set-up. The device was fabricated from
a hydrogen radical inert CNT, according to the recipe given in Sec. 5.2. A Nb
lead (50 nm thick, 170 nm wide), with a Ti contact layer (3 nm thick) below,
serves as superconducting reservoir. Together with two Ti/Au contacts
(5/50 nm thick) the S contact defines two QDs. The QDs can be tuned by
applying a voltage VBG to the Si substrate, or by applying a voltage VSG2
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Figure 7.2.: (a) Device schematic: two QDs are coupled to a common superconducting
reservoir and two independent normal leads. The tunnel couplings follow ΓN1 � ΓS1

and ΓS2 � ΓN2. The subscript S/N labels the contact and the numbers refer to the
respective QD. When both QDs are resonant Cooper pairs can split and leave S at
different sites, thereby exiting the ABS on QD1. (b) Coloured SEM micrograph of
the device and measurement set-up. (c,d) Differential conductances G2 and G1 as a
function of the common source drain voltage, VSD, and back gate voltage, VBG.

to a local side gate in the vicinity of QD2. The side gate of QD1 was not
connected, due to a defect. In comparison to Chapter 6 we will measure
non-local signals also at finite bias voltages, VSD, which are applied to the S
contact. We use two independent current voltage converters at N1 and N2 to
obtain the currents through QD1 and QD2. The differential conductances
through QD1, G1 = ∂I1/∂VSD, and through QD2, G2 = ∂I2/∂VSD, are
measured simultaneously by standard lock-in technique, while varying the
gate voltages and VSD. All measurements are carried out in a dilution
refrigerator at a base temperature T ≈ 25 mK.
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7.2.2. Local transport measurements

The structure of the stability diagrams differs strongly for QD1 and QD2.
The stability diagram of QD2 [Fig. 7.2(c)] shows the well known pattern of
Coulomb diamonds, disconnected by an induced transport gap of 2∆ due
to the superconductor, from which we extract ∆ ≈ 0.5 meV. For voltages
|eVSD| < ∆ the conductance through QD2 is suppressed by a factor of ∼ 10.

The conductance map for QD1 is shown in Fig. 7.2(d) and 7.3(c), which
zooms into the gate range around a diamond with odd occupation. Again
the conductance is suppressed for |VSD| < 0.5 mV, but inside the supercon-
ducting gap we observe two lines, positioned symmetrically about VSD = 0,
that cross each other near the diamonds edges. We interpret these sub-gap
features as Andreev resonances at ±ζ. The crossing of two Andreev reso-
nances at zero energy is associated with a quantum phase transition in which
the GS of the QD changes from the |−〉 singlet to the magnetic doublet, or
vice versa [71, 72, 96]. For odd occupation numbers the Coulomb repulsion,
which favours the doublet GS, can prevail over the superconducting pair-
ing, which favours the ABS as GS. At the phase boundary the energy of the
|−〉 state equals the energy of the magnetic doublet and hence the Andreev
resonances cross, i.e. ±ζ = 0. For even occupation, where the QD is in the
|−〉GS, we find that the Andreev addition energy is pinned close to the gap
edge, ζ ≈ ∆, as discussed in Sec. 3.3.

Both QDs have similar charging energies of ∼ 5 meV and their stabil-
ity diagrams exhibit a fourfold symmetry that is characteristic for clean
CNT devices [134]. However, remaining disorder and spin orbit interactions
lift the fourfold degeneracy, breaking up the CNT shells into two pairs of
Kramer doublets [149]. For QD1 we evaluate the separation between both
Kramer doublets to be δ = 1± 0.3 meV. Thus we treat the ABS as emerg-
ing from two-fold spin-degenerate energy levels, neglecting the influence of
the additional orbital degree of freedom on the ABS spectrum.

7.2.3. Non-local conductance correlations

CPS and elastic co-tunnelling involve electron exchange with both QDs and
can therefore be identified by studying correlations between the conduc-
tances G1 and G2. By tuning QD2 from Coulomb blockade to resonance,
or vice versa, the non-local transport processes can be switched on and off,
provided |eVSD| ≥ |ζ|. In Figs. 7.3(a) and 7.3(b) we plot G1 and G2 as a
function of the voltage applied to the local side gate at QD2. When a reso-
nance of QD2 enters the bias window, which was set to VSD = 0.375 mV, a
sudden increase in the differential conductance G2 is observed. These peaks
in G2 are accompanied by a conductance change ∆G1 in G1. We ascribe

100



7.2. Experiment

 

 

−2.4 −2.38 −2.36 −2.34 −2.32 −2.3 −2.28 −2.26
−2

−1

0

1

2

VBG(V)

V SD
(m

V
)

G1 (10-2G0) 

(a) (b)

(c)

(b)(a)

-0.2 0 0.2 0 0.2 0.4
δG

1=0
.0

2G
0
δG

2=0
.1

G
0

δG
1= 

0.
01

G
0δ
G

2= 
0.

2G
0

δVSG2 (V) δVSG2 (V)

0 5 10

-2.359 V

-2.351 V

-2.290 V

-2.286 V
VBG 

* VBG 
*

∆G1
max

-0.2

− ↑ GSGS
↑

, − GS

n=0 n=1 n=2

|u| = |v||u| >> |v| |u| << |v|

Figure 7.3.: (a,b) Simultaneously recorded differential conductances G1 and G2 as a

function of δVSG2 = VSG2 − V̂SG2 for increasing values of V *
BG = VBG + αV̂SG2. The

source drain voltage was kept fixed at VSD = 0.375 mV. The resonances in G2 are
accompanied by a non-local conductance change ∆G1 in G1. (c) Stability diagram
G1(VSD, VBG) for QD1 measured at VSG2 = 0. The black arrows indicate the direction
along which the non-local signal is probed in (a,b). The sign change of ∆G1 coincides
with the GS transitions of QD1.

these correlations ∆G1(G2) to the non-local conductance caused by CPS
and elastic co-tunnelling. To substantiate this interpretation we note that
the conductance correlations tend to zero when superconductivity is sup-
pressed, either by raising the temperature above 500 mK or by applying an
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Figure 7.4.: (a) Simultaneously recorded G1 and G2 as a function of VSG2 at VBG =
−1.958 V and VSD = −0.45 mV. The non-local conductance variations ∆G1 tend to zero
as the base temperature is increased. (b) Visibility of the non-local signal ∆G1/G1 vs.
T obtained from the data shown in (a). (c) Simultaneous recorded G1 and G2 as a
function of VSG2 at VBG = 15.583 V and VSD = 0 mV. The non-local conductance
variations ∆G1 tend to zero when an external magnetic field is applied. The field
direction is parallel to the plane of the S-contact. (d) Visibility of the non-local signal
∆G1/G1 vs. B|| obtained from the data shown in (c).

external magnetic field B‖ > 500 mT as shown in Fig. 7.4.

By repeating these correlation measurements for many consecutive values
of VBG we can map out how the non-local signal depends on the energy level
configuration of QD1. To correct for the capacitive cross-talk from the side
gate to QD1 we introduce the new variable V *

BG = VBG + αV̂SG2. Here
V̂SG2 is the side gate voltage for which the non-local conductance takes its
maximal value, ∆Gmax

1 , and α = 1.56×10−2 is a geometry dependent factor
that accounts for the respective gate efficiency. The variable V *

BG allows to
assign a position in the stability diagrams of QD1, measured at VSG2 = 0,
to the non local signals, measured at V̂SG2 6= 0. In Fig. 7.3(c), we indicate
the direction along which ∆Gmax

1 is probed in Fig. 7.3(a,b) by black arrows.
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S contact.

The conductance correlations can be either positive or negative, i.e. G1 can
show a peak or a dip at the QD2 resonance, depending on V *

BG. Strikingly,
the turnover from a negative to a positive non-local conductance coincides
with the quantum phase transition in which the GS changes from the ABS
singlet to the magnetic doublet.

In Fig. 7.5 we plot the evolution of ∆Gmax
1 over the complete back gate

range of a odd QD1 state for opposite bias voltages VSD = ±0.375 mV.
Starting from the left side of Fig. 7.5(a) a negative non-local signal starts to
build up when the Andreev resonance enters the bias window, ζ < |e|VSD =
0.375 mV, at V *

BG ≈ −2.37 V. The magnitude of ∆Gmax
1 increases towards

the singlet–doublet phase boundary where it rapidly changes sign. In the
doublet GS region, the positive correlations decay and become immeasur-
ably small around the centre of the plot. As the right GS transition is
approached the non-local signal builds up again, but with a negative sign.
Around V *

BG ≈ −2.288 V, where we expect the |−〉 state to become the GS,
the sign of ∆Gmax

1 is again inverted. The evolution of the non-local signal at
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a negative bias voltage of VSD = −0.375 mV, shown in Fig 7.5(b), exhibits
a similar behaviour, except for a sign change that results from the reversal
of the bias voltage.

Comparing the left and the right side of Figs. 7.5(a) and 7.5(b) we notice
a sharper reversal of ∆Gmax

1 at the right GS transition. However, the slope
of the dispersion ζ(VBG) in Fig. 7.3(c) is also steeper at the right GS tran-
sition, implying a more rapid crossover between different GSs than for the
left GS transition. We speculate that this asymmetry results from a gate
dependence of ΓS1, which decreases for increasing VBG.

The sign change of the non-local signal is reminiscent of the 0–π transition
in S-QD-S Josephson junctions. There, a reversal of the supercurrent across
the device is observed when the GS of the QD changes from singlet to
doublet [56, 62, 150, 151]. However, the back gate evolution of ∆Gmax

1

demonstrates that the sign of the non-local signal is not merely determined
by the GS of QD1, but also changes in the doublet GS region and under
reversal of bias voltage. Hence, the sign of ∆G1 can not be explained by
analogy to the supercurrent reversal at the 0–π transition.

7.3. Model

To understand the nature of the observed non-local signals we discuss the
relevant transport processes and their impact on the conductance G1. As-
suming |e|VSD > ζ, the local Andreev channel gives rise to a background
current that flows from N1 to S, as shown in Fig. 7.6(a), where te and tr
denote the rate of the local excitation and the local relaxation by electrons
from N1. If QD2 is tuned into resonance it can provide single electrons with
energy ζ. This configuration allows the non-local creation of Cooper pairs
in a process inverse to CPS: an electron from QD2 with energy ζ and an
electron from QD1 with energy −ζ pair up and enter S in a distance on
the order of the superconducting coherence length [Fig. 7.6(b)]. We refer
to the rate of this process as tCPS. In addition, an electron from QD2 can
also co-tunnel via a quasiparticle state in S and excite QD1, as shown in
Fig. 7.6(c), where we define the rate of elastic co-tunnelling as tEC.

We note that non-local relaxation processes, which require that QD2 ab-
sorbs electrons at energy ζ, are suppressed by the coupling asymmetry of
QD2: The condition ΓS2 � ΓN2 implies that QD2 is refilled much faster
from N2 than from S. Therefore, the relaxation of QD1 is dominated by the
same local process, independent of the nature of the preceding excitation.
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do not contribute to the current through N1.

7.3.1. Rate equation

To model the conductance through QD1 we formulate a two-level rate equa-
tion, graphically illustrated in Fig. 7.6(d). The steady state occupation
probabilities of GS and ES, denoted PGS and PES = 1− PGS, are given by

d

dt
PES = (te + tn`)PGS − trPES = 0, (7.1)

where tn` = tCPS + tEC is the sum of both non-local excitation rates.
From the occupation probabilities one can calculate the current through

the tunnel probe N1

I1 =
e

~
(tePGS + trPES) . (7.2)

The influence of tn` on I1 is hidden in the occupation probabilities PGS

and PES, which are modified according to Eq. (7.1) when tn` changes. The
non-local excitations, depicted by the dashed arrows in Fig. 7.6(b,c), do not
exchange electrons with N1. Hence the current through the barrier ΓN1 is
only carried by local excitation and relaxation processes. In the absence
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of non-local transport, Eq. (7.2) simplifies to I1(tn` = 0) = e
~

2tetr
te+tr

. To
calculate the non-local current, we subtract this local background from the
total current, which yields

∆I1 = I1(tn` 6= 0)− I1(tn` = 0)

=
e

~
tn`PGS

tr − te
tr + te

.
(7.3)

As one may expect, the non-local current is proportional to the excitation
rate tn` and the occupation probability of the GS, PGS = tr/(te + tr + tn`).
However, the sign of ∆I1 is determined by tr − te, the relative strength of
the local rates te and tr. This can be understood by considering a very
asymmetric situation, tr � te, as assumed in Fig. 7.6. tr limits the current
and the QD is ”stuck” in the ES most of the time. The non-local processes
increase this imbalance, but without contributing to the current through
N1. The QD gets even more ”stuck” in the ES and the current flow is
hindered, ∆I1 < 0. In the reversed situation, tr � te, the excitation rate
is the bottleneck. Here, the non-local excitations bypass this bottleneck,
leading to an increased current, ∆I1 > 0. When the asymmetry between te
and tr decreases the sign of ∆I1 remains the same, but the non-local current
also decreases and finally vanishes for te = tr.

The gate evolution of the rates te and tr is determined by the physics
of ABSs. We first discuss these rates in the limit ∆ → ∞, where analytic
expressions for the eigenstates of the QD-S system can be found. Later
we compare these results to numerical calculations from the literature that
consider a finite gap and therefore represent a more realistic scenario.

Figure 7.7(a) shows the dispersion relation of the Andreev resonance in
the limit ∆ → ∞ calculated with the analytic expressions given in [95] for
ΓS1 = 0.37 in dimensionless energy units. The energy level of the QD, εd, is
parametrized by δ = εd + U/2. The local transport rates can be calculated
with Fermi’s golden rule [97, 147], which yields

|σ〉 +1e−−→ |−〉 : t+e = ΓN1 | 〈−|d†σ̄|σ〉 |
2︸ ︷︷ ︸

v2

f1(ζ)

|−〉 +1e−−→ |σ〉 : t+r = ΓN1 | 〈σ|d†σ|−〉 |2︸ ︷︷ ︸
u2

f1(−ζ)
(7.4)

and

|σ〉 −1e−−→ |−〉 : t−e = ΓN1 | 〈−|dσ|σ〉 |2︸ ︷︷ ︸
u2

(1− f1(ζ))

|−〉 −1e−−→ |σ〉 : t−r = ΓN1 | 〈σ|dσ̄|−〉 |2︸ ︷︷ ︸
v2

(1− f1(−ζ)).
(7.5)
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Here f1(E) is the Fermi function of the lead N1, d†σ (dσ) is the creation
(annihilation) operator of QD1 for an electron with spin σ =↑, ↓ and σ̄
denotes the spin opposite to σ. For a sufficiently positive bias |e|VSD > ζ we
can approximate f1(±ζ) ≈ 1, hence the rates t−e and t−r can be neglected.
In Fig. 7.7(c) we plot the rates t+e and t+r which reflect the evolution of the
BdG amplitudes v2 and u2 with the QD energy. When the GS changes the
initial and final states of the respective matrix elements are interchanged
and the rates t+e and t+r are inverted.

The non-local excitation rate relevant for positive bias can be written as

|σ〉 → |−〉 : t+n` =
(
kCPS| 〈−|dσ|σ〉 |2 + kEC| 〈−|d†σ̄|σ〉 |

2
)

× ΓS1ΓS2 %QD2(ζ)f2(ζ),
(7.6)

where %QD2(E) is the spectral density of QD2 and f2(E) is the Fermi func-
tion of the lead N2. The rate t−n` can be obtained by the following replace-

ments: dσ ↔ d†σ̄, ζ → −ζ and f2 → 1 − f2. The probabilities for CPS and
elastic co-tunnelling scale with a geometry depended pre-factor kCPS and
kEC.

It is generally assumed that the non-local tunnelling processes originate
from the wire segment below S, which is turned superconducting by the
proximity effect, and not from the bulk S [63, 69, 88]. This is concluded
from the fact that non-local tunnelling through the bulk of S is suppressed by
factor (kFδr)

−2 [83, 84], where k−1
F ∼ Å is the Fermi wavevector in S and δr

is the separation between the QDs. The non-local transport rates reported
in Refs. [63–66, 148] are way larger than compatible with the suppression
term (kFδr)

−2. This term arises from a summation over different paths in
S. It is therefore not present in 1-dimensional superconductors, for which
one expects probability amplitudes on the order of

kCPS ∼ kEC ∼ e−δr/πξ
∗

(7.7)

in the ballistic limit [69, 91]. ξ∗ = ~vF/π∆∗ ≈ 340 nm is the coherence
length that corresponds to the induced gap ∆∗ in the CNT, where the Fermi
velocity is vF = 8.1 · 105 m/s [152]. The exponential function ensures that
non-local tunnelling can only take place over distances on the order of the
superconducting coherence length. However, the estimated coherence length
ξ∗ is larger than the dot separation. Thus we expect that the non-local
current is mostly limited by the rate of the competing first order process t+r
and not by the geometry of the device. We emphasize that for the devices
investigated in Refs. [63, 65, 84] elastic co-tunnelling could be neglected
not because the probability amplitude kEC was small, but because of the
vanishing occupation probability of the QDs (PQDi ≈ 0) that is implied by
the coupling asymmetry ΓSi � ΓNi.
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7.3.2. Model results and comparison with experiment

-1

0

1

-0.5 -0.25 0 0.50.25

-1

0

1

-0.5 -0.25 0 0.50.25

+- +-

+ -+ -

+- +-

+ -+ -

±ζ
 /Δ

±ζ
 /Γ

S2

tr

te
+

+ tr

te
+

+

Lo
ca

l r
at

es
 

(a
rb

. u
ni

ts
)

Lo
ca

l r
at

es
 

(a
rb

. u
ni

ts
)

Δ
I 1 

   
 

(a
rb

. u
ni

ts
)

Δ
I 1 

   
 

(a
rb

. u
ni

ts
)

Δ
I 1 

   
 

(a
rb

. u
ni

ts
)

Δ
I 1 

   
 

(a
rb

. u
ni

ts
)

δ/U δ/U

(a) (b)

(c) (d)

(h)(g)

(f)(e)
|e|VSD≥ζ |e|VSD≥ζ

|e|VSD≤-ζ |e|VSD≤-ζ

0

1

0

1

0

1

0

1

limit ∆ → ∞ NRG

∝v2

∝u2

m
ax

m
ax

m
ax

m
ax

Figure 7.7.: Model for non-local signals calculated in the limit ∆→∞ for ΓS1 = 0.37
(left column) and based on NRG results for the parameters U = 1, ∆ = 0.01
and U/πΓS = 5 extracted from reference [96] (right column). The QD energy is
parametrized by δ = εd + U/2. The grey shaded regions indicate the |−〉GS. (a,b)
Dispersion of the Andreev resonances. The plus and minus symbols denote the sign of
the non-local current in the respective region. (c,d) Local rates for |e|VSD ≥ ζ. (e,f)
Non-local current ∆I1 for |e|VSD ≥ ζ and (g,h) for |e|VSD ≤ −ζ.

In Fig. 7.7(e,g) we plot the gate evolution of the maximum non-local
current for positive and negative bias, calculated from Eq. (7.3) with the
assumption kEC = kCPS. Despite the oversimplification ∆ → ∞ the model
captures the main features of our experimental findings. The sign of the
non-local current alternates in the same order as in the experiment (see
Fig. 7.5), going through two sharp transitions and one smooth transition.

The sharp reversal of ∆I1 is the signature of the GS transition, in which
the rates te and tr are inverted. In the experiment this transition is smeared
out by the broadening of the Andreev resonance not considered in our model.
In the doublet GS the non-local conductance changes gradually from positive
to negative values, owing to the gate evolution of the BdG amplitudes. As
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the dot energy is increased the weight of the |−〉 state is shifted from the
|0〉 -term to the |↑↓〉 -term, thereby gradually moving the average location
of the two electron charges confined in the ABS from the superconductor to
the QD. This continuous change of the BdG amplitudes leads to a smooth
reversal of the non-local current at the electron-hole (e-h) symmetry point
(δ = 0), where te = tr.

In case of a finite superconducting gap exchange interactions between the
|σ〉 state and quasiparticles can lead to a spin screening of the |σ〉 state.
This Kondo effect complicates the theoretical treatment of the problem.
The wavefunction of the doublet state aquires a singlet admixture and the
dispersion relation of the Andreev resonances, as well as the transport rates
become renormalised. An analytical solution of the problem is not possible,
but the numerical renormalization group method (NRG) provides a reliable
approach to calculate the QD spectral densities [88].

In the right column of Fig. 7.7 we test our model with NRG results calcu-
lated in reference [96] for the parameters U = 1, ∆ = 0.01 and U/πΓS = 5.
The dispersion of the Andreev resonances for these parameters, shown in
Fig. 7.7(b), resemble our experiment. The local transport rates, plotted
in Fig. 7.7(d), are given by the spectral weight of the respective Andreev
resonance. To calculate the non-local current we assume again kCPS = kEC.
Figure 7.7(f,h) shows that the qualitative behaviour of the non-local signal
is altered only marginally when interactions with quasiparticles are con-
sidered. The main effect of the finite gap on our model originates from a
suppression of the local transport rates when the Andreev resonance ap-
proaches the gap edge, i.e. te/r → 0 for ζ → ∆. This leads to a cut-off
of the non-local signal at the ends of the inspected gate range (δ = ±0.5)
and a more rapid decay towards the e-h symmetry point compared to the
∆→∞ case. Both of these modifications in the line shape of the non-local
signal improve the agreement with our experimental findings in Fig. 7.5.

7.4. Discussion and Conclusion

We experimentally investigated a CNT QD, strongly coupled to a supercon-
ducting niobium lead. By local transport spectroscopy through a normal
conducting tunnel probe we could resolve individual ABSs in the excita-
tion spectrum of the QD-S system. A second QD, coupled parallel to the
same S-contact, allowed to excite these ABSs also by non-local processes,
namely CPS and elastic co-tunnelling. We found appreciable non-local cor-
relations in the conductance through both QDs. These non-local signals
change sign with reversed bias and exhibit a complex gate dependence with
a sign change at the GS transition and a sign change when the e-h symmet-

109



7. Non-local spectroscopy of Andreev bound states

ric point is crossed. We qualitatively explain this rich behaviour in a simple
rate equation model.

In our model, the sign of the non-local current is determined by the
asymmetry between the local excitation and relaxation rates. In the limit
∆→∞, this asymmetry is given by the difference of the BdG amplitudes,
γ(v2 − u2), where the pre-factor γ = ±1 changes sign when the GS or the
bias direction changes. One can ascribe a physical meaning to this term
by rewriting it as 2v2 − 1, using the normalization condition u2 + v2 =
1. Multiplying with the electron charge, this corresponds to the charge
difference between ES and GS,

∆Q = QES −QGS, (7.8)

where the average on-site charge in the |−〉 state is given by the expectation
value of the number operator, Q− = e 〈−|

∑
σ d
†
σdσ|−〉 = 2e v2. The QD

charge in the doublet state is Qσ = 1e.
While local spectroscopy measures the energy difference between the ES

and the GS, ζ = EES − EGS, the non-local signals provide a spectroscopic
tool to investigate the charge difference between both states. However,
a quantitative determination of ∆Q is hindered by the lack of knowledge
about tn`. Still we are able to qualitatively follow the gate evolution of ∆Q,
which is a direct witness of the competition between repulsive Coulomb
interactions and the superconducting pairing, associated with an attractive
electron-electron interaction.

The |−〉 state, being subject to quantum fluctuations of the charge, allows
continuous changes of the mean QD charge. We were able to indirectly
observe this gradual charging of the ABS by following the smooth crossover
from a positive to a negative non-local signal when the QD is in the doublet
GS. When ∆Q becomes negative, the QD holds more charge in the GS
than in the first ES – a situation that can only occur in the presence of
attractive interactions. At the GS transition, which is identified by the
continuous crossing of the two Andreev resonances in local spectroscopy, the
sign of ∆Q is inverted. The resulting abrupt reversal of the non-local current
constitutes a novel experimental probe of the discontinuity characteristic for
such quantum phase transitions.

In conclusion, we established a new spectroscopy method to study ABSs in
QDs. Our method complements local tunnelling spectroscopy and provides
access to the qualitative evolution of the BdG amplitudes, yielding a novel
experimental view on the superconducting proximity effect in QDs.
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Summary and outlook

In this thesis we studied a special type of carbon nanotube (CNT) based
double quantum dot (QD) devices. The two QDs, QD1 and QD2, are con-
nected to a common superconducting electrode (S), but otherwise well de-
coupled from each other. Each of the QDs is connected to a normal metal
drain N1 and N2. Devices with such a geometry are commonly referred
to as Cooper pair splitters. However, weather, and how well, such devices
actually split Cooper pairs is mostly determined by geometry independent
factors, such as the coupling constants, ΓSi, ΓNi (i = 1, 2) and Γ12, as well
as the superconducting energy gap ∆.

In Chapter 6 we presented a device that marks so far the best performing
Cooper pair splitter, benchmarked in terms of splitting efficiency. In the
context of the visionary experiments by Hofstetter et al. [63] and Herrmann
et al. [64] our work must be seen as a second generation experiment. It
was published only one month before Das et al. [65] demonstrated CPS
by noise cross-correlation measurements in a InAs nanowire device. The
logical next step for traditional Cooper pair splitting experiments is the
implementation of spin sensitive measurements. Ferromagnetic contacts are
one option for this purpose, but they are hard to control [112] and in the
end the achievable spin polarizations might be too low for a Bell test [153].
Alternatively, the QD itself can be used as spin filter by means of the Zeeman
effect. For this approach, a spin splitting of the QD levels must be induced
by an external magnetic field without quenching the superconductor. In
Chapter 7 we reported non-local signals in external magnetic fields up to
500 mT, a field strength that is already sufficient to resolve Zeeman splitting
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8. Summary and outlook

in weakly coupled CNT QDs. Thus, niobium contacted CNTs bear a great
prospects as spin sensitive Cooper pair splitters. In this context, the spin-
orbit interactions in CNT QDs might provide a neat advantage over InAs
based QDs, which excel with a larger g-factor. It was shown that a Bell
test can be implemented in Cooper pair splitters which are fabricated from
bent CNTs [154]. The proposed scheme requires no noise measurements and
supports imperfect splitting efficiency and disorder. In a simplified picture,
the spin-orbit interactions enhance the magnetic field along the CNT axis.
Bent tubes allow therefore to perform non-collinear spin projections, a key
ingredient of any Bell test. This spin-orbit induced g-factor anisotropy was
already exploited in recent experiments with bent nanotubes [121, 155].

In Chapter 7 we investigated Cooper pair splitter device in the ”wrong”
coupling regime. Superconducting correlations leaked onto QD1, as a result
of a too strong coupling between QD1 and S. This led to the formation of
Andreev bound states (ABSs). The ABS adds a local first order transport
channel and the respective QD is no longer a good filter to enforce CPS.
However, ABSs are a very interesting topic in their own right. They are
characterised by their energy and by two Bogoliubov-de Gennes amplitudes.
Previous studies mostly focused on the energy dispersion of these states
[56, 70–73, 101]. By means of non-local conductance measurements we
could also probe the Bogoliubov-de Gennes amplitudes, albeit only in a
qualitative manner.

To further study the interplay between ABSs and CPSs it would be very
interesting to realize a Cooper pair splitter where both QDs are coupled
strongly to S, but weakly to N1 and N2. In such a device a state that
we nicknamed the Andreev molecule could form. One may first consider
a conventional double QD, where the a tunnel coupling between the two
charge states (1,0) and (0,1) gives rise to a molecular state. If the two QDs
are coupled via a superconductor, then crossed Andreev reflections mix the
charge states (1,1) and (0,0). This can also lead to a molecular state –
the Andreev molecule. Such systems have recently been topic of interesting
proposals which predicted the existence of a so-called triplet blockade [87],
the existence of so-called ”poor man’s Majorana bound states” [68] and the
possibility to non-locally couple spin qubits [69].
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[50] B. Babić and C. Schönenberger, Observation of fano resonances in
single-wall carbon nanotubes, Phys. Rev. B 70, 195408 (2004).

[51] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K.
Vandersypen, Spins in few-electron quantum dots, Rev. Mod. Phys.
79, 1217 (2007).

[52] C. W. J. Beenakker, Theory of coulomb-blockade oscillations in the
conductance of a quantum dot, Phys. Rev. B 44, 1646 (1991).

[53] J. Paaske, Cotunnelling and kondo effect in quantum dots,
Lecture notes (2010), published online: http://www.thp.uni-
due.de/∼koenig/DPG School 10/index.html.

[54] S. De Franceschi, S. Sasaki, J. M. Elzerman, W. G. van der Wiel,
S. Tarucha, and L. P. Kouwenhoven, Electron cotunneling in a semi-
conductor quantum dot, Phys. Rev. Lett. 86, 878 (2001).

[55] A. Mart́ın-Rodero and A. Levy Yeyati, Josephson and andreev trans-
port through quantum dots, Advances in Physics, Advances in Physics
60, 899 (2011).

117

http://dx.doi.org/10.1103/PhysRevB.77.113403
http://dx.doi.org/10.1021/ja8002843
http://dx.doi.org/10.1021/ja8002843
http://dx.doi.org/ http://dx.doi.org/10.1063/1.2405393
http://dx.doi.org/ 10.1021/nl0604311
http://dx.doi.org/ 10.1021/nn9015955
http://dx.doi.org/ 10.1021/nn9015955
http://dx.doi.org/10.1038/nnano.2010.220
http://dx.doi.org/10.1103/PhysRevB.70.195408
http://dx.doi.org/10.1103/RevModPhys.79.1217
http://dx.doi.org/10.1103/RevModPhys.79.1217
http://dx.doi.org/10.1103/PhysRevB.44.1646
http://www.thp.uni-due.de/~koenig/DPG_School_10/index.html
http://dx.doi.org/10.1103/PhysRevLett.86.878
http://dx.doi.org/ 10.1080/00018732.2011.624266
http://dx.doi.org/ 10.1080/00018732.2011.624266


Bibliography

[56] J.-D. Pillet, C. H. L. Quay, P. Morfin, C. Bena, a. L. Yeyati, and
P. Joyez, Andreev bound states in supercurrent-carrying carbon nan-
otubes revealed, Nat. Phys. 6, 965 (2010).

[57] W. Chang, V. E. Manucharyan, T. S. Jespersen, J. Nyg̊ard, and
C. M. Marcus, Tunneling spectroscopy of quasiparticle bound states in
a spinful josephson junction, Phys. Rev. Lett. 110, 217005 (2013).

[58] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers,
and L. P. Kouwenhoven, Signatures of Majorana fermions in hybrid
superconductor-semiconductor nanowire devices, Science 336, 1003
(2012).

[59] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrik-
man, Zero-bias peaks and splitting in an al-inas nanowire topological
superconductor as a signature of Majorana fermions, Nat. Phys. 8,
887 (2012).

[60] P. Jarillo-Herrero, J. A. van Dam, and L. P. Kouwenhoven, Quantum
supercurrent transistors in carbon nanotubes, Nature 439, 953 (2006).

[61] J.-P. Cleuziou, W. Wernsdorfer, V. Bouchiat, T. Ondarcuhu, and
M. Monthioux, Carbon nanotube superconducting quantum interfer-
ence device, Nat. Nano. 1, 53 (2006).

[62] R. Maurand, T. Meng, E. Bonet, S. Florens, L. Marty, and W. Werns-
dorfer, First-Order 0-π Quantum Phase Transition in the Kondo
Regime of a Superconducting Carbon-Nanotube Quantum Dot, Physi-
cal Review X 2, 011009 (2012).

[63] L. Hofstetter, S. Csonka, J. Nyg̊ard, and C. Schönenberger, Cooper
pair splitter realized in a two-quantum-dot Y-junction, Nature 461,
960 (2009).

[64] L. G. Herrmann, F. Portier, P. Roche, A. L. Yeyati, T. Kontos, and
C. Strunk, Carbon nanotubes as Cooper-pair beam splitters, Phys. Rev.
Lett. 104, 026801 (2010).

[65] A. Das, Y. Ronen, M. Heiblum, D. Mahalu, A. V. Kretinin,
and H. Shtrikman, High-efficiency Cooper pair splitting demon-
strated by two-particle conductance resonance and positive noise cross-
correlation, Nat. Commun. 3, 1165 (2012).

[66] J. Schindele, A. Baumgartner, and C. Schönenberger, Near-unity
Cooper pair splitting efficiency, Phys. Rev. Lett. 109, 157002 (2012).

118

http://dx.doi.org/10.1038/nphys1811
http://dx.doi.org/10.1103/PhysRevLett.110.217005
http://dx.doi.org/ 10.1126/science.1222360
http://dx.doi.org/ 10.1126/science.1222360
http://dx.doi.org/10.1038/nphys2479
http://dx.doi.org/10.1038/nphys2479
http://dx.doi.org/10.1038/nature04550
http://dx.doi.org/10.1038/nnano.2006.54
http://dx.doi.org/10.1103/PhysRevX.2.011009
http://dx.doi.org/10.1103/PhysRevX.2.011009
http://dx.doi.org/10.1038/nature08432
http://dx.doi.org/10.1038/nature08432
http://dx.doi.org/10.1103/PhysRevLett.104.026801
http://dx.doi.org/10.1103/PhysRevLett.104.026801
http://dx.doi.org/10.1038/ncomms2169
http://dx.doi.org/ 10.1103/PhysRevLett.109.157002


Bibliography

[67] A. Cottet, T. Kontos, and A. L. Yeyati, Subradiant split Cooper pairs,
Phys. Rev. Lett. 108, 166803 (2012).

[68] M. Leijnse and K. Flensberg, Parity qubits and poor man’s Majorana
bound states in double quantum dots, Phys. Rev. B 86, 134528 (2012).

[69] M. Leijnse and K. Flensberg, Coupling spin qubits via superconductors,
Phys. Rev. Lett. 111, 060501 (2013).

[70] T. Dirks, T. Hughes, S. Lal, B. Uchoa, Y.-F. Chen, C. Chialvo,
P. Goldbart, and N. Mason, Nat. Phys. 7, 386v1 (2011).
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glement and violation of Bell inequalities in mesoscopic conductors,
Phys. Rev. Lett. 91, 157002 (2003).

[140] J. Schnakenberg, Network theory of microscopic and macroscopic be-
havior of master equation systems, Rev. Mod. Phys. 48, 571 (1976).

124

http://dx.doi.org/10.1002/adma.201000618
http://dx.doi.org/10.1103/PhysRevB.63.235311
http://dx.doi.org/10.1103/PhysRevB.63.235311
http://dx.doi.org/10.1021/ja061324b
http://dx.doi.org/ 10.1103/PhysRevLett.88.126801
http://dx.doi.org/ 10.1103/PhysRevLett.88.126801
http://dx.doi.org/ 10.1103/PhysRevLett.89.046803
http://link.aps.org/doi/10.1103/PhysRevLett.110.186803
http://link.aps.org/doi/10.1103/PhysRevLett.110.186803
http://dx.doi.org/10.1038/35079517
http://dx.doi.org/10.1103/PhysRevLett.70.1311
http://dx.doi.org/10.1143/JPSJ.70.1210
http://dx.doi.org/10.1143/JPSJ.70.1210
http://dx.doi.org/10.1103/PhysRevLett.91.157002
http://dx.doi.org/10.1103/RevModPhys.48.571


Bibliography

[141] V. Novotny and P. Meincke, Single superconducting energy gap in pure
niobium, Journal of Low Temperature Physics 18, 147 (1975).

[142] K. Grove-Rasmussen, H. I. Jørgensen, B. M. Andersen, J. Paaske,
T. S. Jespersen, J. Nyg̊ard, K. Flensberg, and P. E. Linde-
lof, Superconductivity-enhanced bias spectroscopy in carbon nanotube
quantum dots, Phys. Rev. B 79, 134518 (2009).

[143] E. Pallecchi, Multiwall Carbon Nanotube Josephson Junctions with
Niobium Contacts, Ph.D. thesis, University of Regensburg (2009).

[144] A. F. Morpurgo, J. Kong, C. M. Marcus, and H. Dai, Gate-controlled
superconducting proximity effect in carbon nanotubes, Science 286, 263
(1999).

[145] D. R. Schmid, P. L. Stiller, C. Strunk, and A. K. Hüttel, Magnetic
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A
Detailed fabrication recipes

A.1. Wafer characteristics

– Substrate material highly doped Si
– Dopant p, boron
– Resistivity 0.003− 0.005 Ωm
– Capping layer 400 nm thermally grown oxide

A.2. Wafer cleaning

1. Sonicate for 10 min in acetone.
2. Rinse with IPA, blow-dry.
3. 30 min UV ozone cleaning (Model 42-220, Jelight Company, USA).

A.3. CVD catalyst

The CVD catalyst is made from 3 stock solutions,

– 30 mg of Al2O3 (particle size: 4 nm) solved in 20 ml IPA
– 93 mg (0.23 mmol) of Fe(NO3)3-9H2O solved in 20 ml IPA
– 27 mg (0.14 mmol) of MoO2Cl2 solved in 20 ml IPA

which are sonicated for two hours before 0.5 ml of each solution is mixed
and 38 ml IPA are added. Changing the amount of added IPA is an efficient
means to tune the CNT density on the wafer. However, we achieved very
convenient densities with the give recipe.
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A. Detailed fabrication recipes

In the beginning of my thesis I worked with an alternative recipe: the
molybdenum solution (MoO2Cl2 in IPA) is replaced by a ruthenium solu-
tion (48 mg RuCl3-H2O in 20 ml IPA) and growth is carried out at 850◦C.
However, it was shown in reference [156] that this recipe yields very narrow
CNTs with a diameter distribution centred around 1.1 nm that ranges from
0.7 nm to 1.8 nm. FeMo tubes usually have a wider diameters ranging from
1 nm to 3 nm [156]. During a lab course Markus Weiss and co-workers con-
firmed that very narrow tubes with less than 1 nm diameter grow from the
FeRu catalyst [157] (although the diameter distribution was much wider
than in [156]). At the same time experiments show consistently that a
smaller diameter correlates with a larger contact resistances [23, 37]. I
therefore recommend to use the FeMo catalyst when aiming for a low con-
tact resistance. However, other members of our working group also realized
nice devices with the FeRu catalyst.

A.4. CVD growth

1. Sonicate catalyst solution for 3 h to break up catalysts clusters.
2. Place 1-2 droplets of the catalyst solution onto the already spinning

wafer with 4000 rpm.
3. Place wafer in quartz tube of the CVD reactor.
4. Check leak tightness and set the desired flow rates:

– 1500 sccm for Ar (read 104 l/h at the flow meter1)
– 1000 sccm for CH4 (read 44.7 l/h at the flow meter)
– 500 sccm for H2 (read 8 l/h at the flow meter)

5. Heat furnace to 950◦C under Ar flow.
6. Replace Ar flow by CH4 and H2 for 10 min.
7. Switch off CH4, leave on H2 and switch on Ar.
8. Switch off heating.
9. At T < 550◦C H2 flow can also be switched off.

10. Switch off gas flow and take out wafer at T < 300◦C.

The amount and density of CNTs can vary strongly between different wafers.
It is therefore recommended to grow on 3 to 4 wafers in parallel. Before
proceeding one can check quickly in the SEM if the growth result was sat-
isfying.

1The flow meters are gauged for air. When different gases are used one must consider
the density of the respective gas to calculate the actual flow rate [103]
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A.5. E-beam lithography

A.5. E-beam lithography

During the duration of this PhD project we tried several resist systems and
exposure parameters. Below we will give only one recipe which we believe
to be the most suitable for the fabrication of CPS devices.

Bilayer resist

1. Spin 200 nm PMMA(50K) (AR-P 631.09 from Allresist) diluted in
chlorobenzene (4000 rpm, 40 sec, 4 sec ramp).

2. Bake for 2 min on a hot plate at 180◦C.
3. Spin 100 nm PMMA(950K) (AR-P 671.09 from Allresist) diluted in

chlorobenzene (4000 rpm, 40 sec, 4 sec ramp).
4. Bake for 2 min on a hot plate at 180◦C.

The thickness refers to the baked resist and should be checked from time
to time. To adjust the thickness one may change the dilution ratio in
chlorobenzene or change the frequency of the spinner.

Exposure

– Used microscopes Supra 35 and Supra 40 from Zeiss
– Acceleration voltage 20 kV
– Area dose 230µC/cm2

– Line dose 950 pC/cm, exposed twice
– Working distance 9 mm or 17 mm
– Aperture (small) 10µm
– Aperture (large) 120µm

Design guidelines

The specified area dose leads to a significant overexposure and narrow con-
tact strips turn out about 30% wider than designed. Thus, when one aims
for a 180 nm wide contact it should be designed with 140 nm width. The in-
tentional overdosing improves the cleanliness of the contact area (see section
4.2).

A specific problem that one may encounter during EBL is posed by abrupt
shifts of the e-beam during exposure. This leads to distorted patterns, as
shown in Fig. A.1, that are most likely caused by a charging (and sudden de-
charging) of the PMMA resist (see e.g. [158], p. 12-14). To make the design
fault tolerant against such distortions one may define the order in which the
different structures (usually rectangles and trapezoids) are exposed. First
the small structures that directly contact the tube are written. Since these
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A. Detailed fabrication recipes

3 µm

Figure A.1.: Example of a structure that is disrupted by sudden jumps of the e-beam
position during exposure. These jumps have typical magnitudes of a few hundred of
nanometers. By using the ordering function of the Elphy software the design can be
made fault tolerant against such jumps.

structures are very small charging effects are negligible. Then one succes-
sively proceeds with the surrounding structures which are designed with
sufficient overlaps (e.g. 3µm overlaps). The Elphy software provides an
ordering function for this purpose.

Development

1. Dip 60 sec into 1:3 mixture of MIBK:IPA.
2. Dip in pure IPA to stop development, blow-dry.
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B
Solution for the CPS master equation

model

In this appendix we provide the Matlab code for the semi-classical master
equation model discussed in Chapter 6. The code contains the explicit
formulas for the occupation probabilities, calculated with the maximal tree
method [140]. From the electronic version of this thesis the code may just
be copy-pasted into Matlab.

function CPS_master()

%-------------------------------------------------------

% set transition amplitues

%-------------------------------------------------------

p_LPT1 = 0.01; p_LPT2 = 0.01;

p_N1 = 0.1; p_N2 = 0.1;

p_CPS= 0.03; p_12_d= 0.001;

%-------------------------------------------------------

% include density of states of the QDs

%-------------------------------------------------------

% define "gate range"

x=-0.7:0.005:0.7;

y=-0.7:0.005:0.7;

[X,Y]=meshgrid(x,y);

% density of states of QD1
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B. Solution for the CPS master equation model

w = 0.05; % set resonance width

rho1=w./(Y.^2+w.^2); % define Lorentzian peak shape

rho1=rho1/max(max(rho1)); % normalize the peak height

% density of states of QD2

w = 0.04;

rho2=w./(X.^2+w.^2);

rho2=rho2/max(max(rho2));

% gate dependend transition probabilities:

p_LPT1=p_LPT1*rho1; p_LPT2=p_LPT2*rho2;

p_CPS=rho1.*rho2*p_CPS; % model assumption

p_N1=p_N1*ones(size(p_LPT1)); p_N2=p_N2*ones(size(p_LPT2));

p_12=rho2.*p_12_d;

p_21=rho1.*p_12_d;

%-------------------------------------------------------

% calculate occupation probabilities

%-------------------------------------------------------

Q_00 = p_LPT1.*p_N1.*p_N2 + p_LPT2.*p_N1.*p_N2 ...

+ p_N1.*p_N2.^2 + (p_N1.^2).*p_N2 ...

+ (p_N2.^2).*p_12 + (p_N1.^2).*p_21 ...

+ p_N1.*p_N2.*p_12 + p_N1.*p_N2.*p_21;

Q_01 = (p_LPT2.^2).*p_N1 + p_LPT2.*p_N1.^2 ...

+ p_LPT2.*p_N1.*p_N2 ...

+ p_LPT1.*p_LPT2.*p_N1 + (p_N1.^2).*p_CPS ...

+ p_LPT2.*p_N1.*p_CPS + p_LPT2.*p_N2.*p_12 ...

+ p_LPT2.*p_N1.*p_12 + p_LPT1.*p_N1.*p_12 ...

+ p_LPT1.*p_N2.*p_12 + p_N2.*p_CPS.*p_12...

+ p_N1.*p_CPS.*p_12;

Q_10 = p_LPT1.*p_N1.*p_N2 + p_LPT1.*p_N2.^2 ...

+ (p_LPT1.^2).*p_N2 ...

+ p_LPT1.*p_LPT2.*p_N2 + p_LPT2.*p_N2.*p_21 ...

+ p_LPT1.*p_N2.*p_CPS + p_LPT2.*p_N1.*p_21 ...

+ (p_N2.^2).*p_CPS + p_N1.*p_LPT1.*p_21 ...

+ p_N2.*p_LPT1.*p_21 + p_N1.*p_CPS.*p_21 ...

+ p_N2.*p_CPS.*p_21;

Q_11 = p_LPT1.*p_LPT2.*p_N2 + (p_LPT1.^2).*p_LPT2 ...
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+ p_LPT1.*p_LPT2.^2 ...

+ p_LPT1.*p_LPT2.*p_N1 + p_LPT2.*p_N2.*p_CPS ...

+ (p_LPT1.^2).*p_12 + p_LPT1.*p_LPT2.*p_CPS ...

+ p_LPT1.*p_LPT2.*p_21 + p_LPT1.*p_LPT2.*p_12 ...

+ p_N1.*p_N2.*p_CPS + (p_LPT2.^2).*p_21 ...

+ p_N1.*p_LPT1.*p_CPS ...

+ p_N1.*p_CPS.*p_21 + p_N2.*p_CPS.*p_12...

+ p_LPT2.*p_CPS.*p_21 + p_LPT1.*p_CPS.*p_12;

N = Q_00 + Q_01 + Q_10 + Q_11;

Q_00 = Q_00./N;

Q_01 = Q_01./N;

Q_10 = Q_10./N;

Q_11 = Q_11./N;

%-------------------------------------------------------

% calculate conductances

%-------------------------------------------------------

G1 = p_N1.*(Q_10 + Q_11);

G2 = p_N2.*(Q_01 + Q_11);

G_CPS=p_CPS.*Q_00;

G_LPT1=p_LPT1.*(Q_01 + Q_00);

G_LPT2=p_LPT2.*(Q_10 + Q_00);

G_12=p_12.*Q_10; % from QD2 to QD1

G_21=p_21.*Q_01; % from QD1 to QD2

ind=find(x==0);

delG2=G2(:,ind)-min(G2(:,ind));

delG1=G1(ind,:)-min(G1(ind,:));

%-------------------------------------------------------

% plot results

%-------------------------------------------------------

figure

hold on

plot(x,delG2,’r-’)

plot(x,delG1,’b-’)

plot(x,G_CPS(:,ind),’g-’)
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B. Solution for the CPS master equation model

figure

surface(X,Y,G1); shading flat;

set(gca,’view’,[30 60]);

figure

surface(X,Y,G2); shading flat;

set(gca,’view’,[30 60]);
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C
Additional data to Chapter 7

In this appendix we discuss the bias dependence of the non-local conduc-
tance correlations from Chapter 7. Figure C.1(a,b) shows the simultane-
ously recorded differential conductances G1 and G2 as a function of VSG2

and VSD at VBG = −2.284 V. The lever-arm of VSG2 to QD1 is about 8 times
weaker than to QD2. Therefore the Andreev resonances in Fig. C.1(a) ap-
pear very broad and smeared out compared to the Coulomb diamonds in
Fig. C.1(b). This separation of energy scales makes it easy to identify con-
ductance correlations ∆G1(G2), e.g. the ones indicated by the black arrows
in Fig. C.1(a), where a shallow imprint of the left diamond from Fig. C.1(b)
is observed. Fig. C.1(c,d) show cross sections at constant bias voltages that
demonstrate the sign reversal of ∆G1(G2) with opposite bias. We note that
otherwise the bias dependence of the non-local conductance is surprisingly
weak. The intensity of the non-local conductance line is approximately con-
stant between the Andreev resonance and the gap edge. Another intriguing
feature in Fig.C.1 is the slightly tilted vertical line, running exactly through
the crossing point of the Andreev resonances, ±ζ = 0. Such lines, also
visible in the data from reference [56], may be explained as follows. In the
region |ζ| ≤ |eVSD| ≤ |∆| the Andreev resonance is the only conductance
channel and the local current through the device is constant. The two An-
dreev resonances, ζ and −ζ, have different conductances. When the two
resonances cross, the current through the Andreev channel changes as a
step function, yielding a peak in differential conductance. Thus, this line
can be interpreted as a finite bias signature of the GS transition. Its slope
is given by the capacitive cross-talk from the source contact. However, the

135



C. Additional data to Chapter 7

 

 

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6

10-2

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6

10-1

V SD
 (m

V)

VSG2 (V)

G1 (G0)

V SD
 (m

V)

G2 (G0)

QD1

QD2

(a)

(b)

 

 

-0.6 -0.4 -0.2 0 0.2 0.4
0

0.1

0.2

G
1 (1

0-2
G

0)

G
2  (10

-2G
0 )

G
2  (10

-2G
0 )

G
1 (1

0-2
G

0)

(c)

(d)

VSG2 (V)
-0.5 -0.3 -0.2

0

0

1

2

3

-0.4

VSD = 0.3mV

VSD = -0.3mV

2

4

0

0

5

10

15

1

2

Figure C.1.: (a,b) Simultaneously recorded differential conductances G1 and G2 as a
function of side gate voltage, VSG2, and source drain bias, VSD, at VBG = −2.284 V.
The black arrows in (a) guide the eye to conductance correlations ∆G1(G2). (c) Cross
sections of G1 and G2 for VSD = +0.3 mV. The large peak in G2 correlates with a dip in
G2, i.e. the non-local signal ∆G1(G2) is negative. (d) Cross section for VSD = −0.3 mV,
yielding positive conductance correlations.

reason for the conductance difference between ζ and −ζ, also observed in
[56, 70–72, 101], remains unclear. One possible explanation might be a soft
superconducting gap for which quasiparticle states at energies E < ∆ are
available [135]. This scenario would also allow tunnelling processes that
break the e-h symmetry of the local sub-gap transport, e.g. the tunnelling
of an electron from N1 to QD1 to a quasiparticle state in S. In this case the
complete transport cycle, GS→ES→GS, has a probability proportional to
either v4 or u4.
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