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Chapter 1

Introduction

When in 1991 the Japanese scientist Sumio Iijima studied the carbon soot
created by a direct current arc-discharge between carbon electrodes, he dis-
covered a range of molecules that have been the object of intense scientific
research ever since [1]. Using a high-resolution transmission electron mi-
croscope he found long molecules consisting of several coaxial cylinders of
carbon. Multiwall carbon nanotubes, as they are known now, consist of
carbon alone and have an outer diameter of a few nm. Two years after the
discovery of multiwall carbon nanotubes, researchers found ways to synthe-
size even smaller tubes of one shell only which were coined singlewall carbon
nanotubes [2]. Due to their small size and the special features of the carbon
atom, both varieties of nanotubes exhibit some extraordinary properties.

Perhaps the most remarkable one is that the individual shells of a nano-
tube are 1-dimensional conductors that can be either semiconducting or
metallic on the basis of geometrical factors alone. The mechanical proper-
ties are no less amazing and carbon nanotubes are simultaneously extremely
strong and flexible fibres [3]. Due to this rather exceptional combination
of properties, carbon nanotubes are now a model example of a robust 1-
dimensional system. An additional advantage of nanotubes is that their
extended lengths facilitate the use of standard electron beam lithography
for device fabrication. This has been exploited in this thesis which describes
electrical transport experiments on individual multiwall carbon nanotubes.
These studies provide information on some basic electronic properties of
the nanotubes such as the number of conduction channels or the amount
of scattering electrons experience. In most experiments, however, the mul-
tiwall carbon nanotubes are primarily used as a well-defined model system
and the observed transport characteristics are not nanotube specific but
generic features of many mesoscopic devices. These include electron inter-
ference phenomena, quantum dot physics, and the effect of superconducting
proximity.

1



1.1 Quantum interference phenomena 2

1.1 Quantum interference phenomena

Electron transport in mesoscopic devices is often considered as a scattering
problem. In this approach, the current through a conductor is related to the
probability that an electron can be transmitted through it. This is expressed
in the Landauer formula which relates the conductance G to the number
of transmitting modes M in the conductor and the average transmission
probability T of the modes [4, 5]:

G =
e2

h
MT (1.1)

where e2/h is the conductance quantum. The contacts to the conductor are
incorporated in this formula. This implies that even a ballistic conductor
with a transmission probability of unity (T = 1) and perfect contact cou-
pling has a finite resistance. For an ideal (i.e. undoped and ballistic) carbon
nanotube, the expected 2-terminal conductance is 4 e2/h because there exist
2 spin-degenerate modes at the Fermi energy (see section 2.2). In general,
additional scattering takes place at the contacts and in the nanotubes. An
example of a scattering process is shown schematically in Fig. 1.1 in which
a path starts out in mode n in lead 1 and after a few elastic scattering pro-
cesses, transmits to mode m in lead 2. Note that a lead in this context is a
conceptual entity which carries M modes and provides an ideal connection
between the electron reservoirs and the scattering region of a conductor.
The restriction to classical trajectories is allowed if the separation between
scattering events is much larger than the electron wavelength. The overall
transmission amplitude from mode n to mode m can be expressed as the
sum of the probability amplitudes Ai of all possible paths connecting mode
n in lead one and mode m in lead two. The transmission probability Tmn

is obtained by squaring the transmission amplitude [6]:

Tmn =
∣∣∣∣
∑

i

Ai

∣∣∣∣
2

=
∑

i

|Ai|2 +
∑

i 6=j

AiA
∗
j (1.2)

The first term represents the sum of the probabilities of all the paths, while
the second term is due to interference among the different paths.

A striking effect of quantum interference is to enhance the probability
for backscattering in a disordered system in the metallic regime. This is the
precursor of strong electron localization and has therefore become known as
weak localization [7]. The probability that an electron will be transmitted
or reflected from a mode m into mode n is obtained by squaring the sum
of probability amplitudes, as has been done in Eq. 1.2. If the conductor
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m

Figure 1.1: Example of a scatter-
ing process. A path starts out in
an input mode n and finally leaves
the conductor via an output mode
m. Adapted from Ref. [8]

is phase-coherent, the second term of the equation describing the interfer-
ence between the different paths cannot be neglected. However, usually the
phases of the various paths are random and any interference effects cancel
out on the (ensemble) average. This is correct if the beginning and end
states are different. If the two coincide, i.e. for backscattered trajectories,
one can group the sum of Eq. 1.2 in time-reversed pairs A+

i and A−i . Time-
reversal invariance guarantees that the probability A+ and A− for clockwise
and counterclockwise propagation around the closed loop are identical. The
coherent backscattering probabilities |A+ + A−|2 = 4|A|2 is then twice the
classical result. The enhanced probability for return to the point of depar-
ture reduces the diffusion coefficient and therefore the conductivity. The
maximum weak localization correction turns out to be of the order of e2/h,
independent of the number of modes. For a diffusive metallic wire the cor-
rection is typically very small (compared to the background conductance)
but the effect can be manifest dramatically in multiwall carbon nanotubes.

Another hallmark of quantum interference is the occurrence of so-called
universal conductance fluctuations [6]. These are random sample-to-sample
variations of the conductance of diffusive and phase coherent devices. Ex-
perimentally, universal conductance fluctuations are most conveniently stud-
ied in a single sample as a function of magnetic field or Fermi energy. The
fluctuations depend on the specific scattering potential but are universal in
the sense that their amplitude at zero temperature is of the order of e2/h
irrespective of the sample size and degree of disorder. A study of universal
conductance fluctuations in MWNT devices is presented in section 4.4.

1.2 Quantum dot physics

The observation of quantum interference effects in small mesoscopic struc-
tures such as nanotubes requires a strong coupling to the electrical leads.
More weakly coupled devices are in a transport regime which is often domi-
nated by Coulomb interaction [9]. In these structures, the current is blocked
when the charging energy UC required for adding a single electron to the
system is larger than the thermal energy available in the leads. However,
electron transport can be restored if the energies of two charge states are
degenerate. For example, an equilibrium current can flow via the sequence
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Figure 1.2: (a) Potential landscape of a quantum dot. The addition energy
is larger than the energy available for electrons in the leads and the current is
blocked. (b-c) When the electrostatic energy φN of the dot is lowered with a gate
electrode, an electron can tunnel from the source electrode to the dot whereafter
it can tunnel to the drain electrode.

N → N +1 → N if the total ground-state energies for N and N +1 electrons
are equal. Such degeneracies can be induced by adjusting the electrostatic
potential with a capacitively coupled gate electrode.

In addition to the charging energy, the particle-in-a-box level spacing
δE of the electron states needs to be taken into account. Devices in which
electron transport occurs through individual quantum states are coined ar-
tificial atoms or quantum dots [10]. If the levels are spin degenerate, the
addition energy required to add an electron to a quantum dot is given by
∆Eadd = UC + δE when the number of electrons is even and ∆Eadd = UC

when the number of electrons is odd.
A schematic diagram of a quantum dot coupled to metallic leads is given

in Fig. 1.2. The tunnel barriers that couple the dot to the source and drain
electrodes are characterized by their tunnelling rates Γ. In the first diagram
a situation is depicted in which electron transport is blocked. The addition
energy is larger than the energy available for the electrons in the leads and
the number of electrons will be a well-defined integer. In the second and
third diagrams electron transport is restored. The gate voltage has been
adjusted such that the electrostatic energy of the quantum dot is lowered
and an electron level is aligned between the Fermi energies of the source and
drain electrodes. The gate voltage required to lower the level will depend on
the addition energy and the ratio between the gate and total capacitances.
Electron transport can also be restored by applying a large bias voltage
between the source and drain electrodes. The current will then increases
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in steps each time a new level becomes available for transport (the excited
states). The difference in the source-drain voltage ∆Vsd between the steps
is directly proportional to δE. The study of the differential conductance as
a function of gate and bias voltage thus provides important information on
the electronic spectrum.

For a finite nanotube, the wave vector is quantized in the direction of the
tube axis. The expected level spacing δE can then be calculated from the
dispersion relation and the total effective length L of the tube. In the vicin-
ity of the Fermi energy of an ideal nanotube, the single-electron level spacing
is given by δE = hvF /2L, where the Fermi velocity vF = 8 · 105 m/s. This
implies that for a typical length of L = 1 µm the level spacing is 1.7 meV.
These are large energy scales and can be resolved in a standard He4 cryo-
stat (an energy of 1.7 meV corresponds to about 20 K). For an ideal tube
the electron levels are four-fold degenerate (including spin) because of an
additional orbital degeneracy of the 1-dimensional subbands of the nano-
tubes. In chapter 5 an experimental observation of the four-fold degeneracy
in a multiwall carbon nanotube quantum dot is presented. This chapter
also discusses higher-order tunneling processes which have been neglected
in this short introduction.

1.3 Andreev reflection in mesoscopic devices

A superconductor does not have a continuous conduction band at the Fermi
energy and an energy 2∆ has to be provided by a voltage source if a single
electron is to be transferred between two superconducting reservoirs in their
ground state, see Fig. 1.3a. A current can still flow at lower bias if higher-
order processes are allowed to contribute. An incoming electron can be
transferred into a superconductor if a second electron is also transferred
through the interface to form a Cooper pair [11]. This process is equivalent
to the reflection of a hole and goes under the name of Andreev reflection
[12]. The electron transport involves a multiple of such Andreev reflections
if the applied bias is small [13], see Fig. 1.3c. In general, the current between
two superconductors, separated by a barrier characterized by a transmission
probability T , is dominated by an Andreev process of order n determined
by the applied bias as:

2∆/en ≤ Vsd ≤ 2∆/e(n− 1) (1.3)

The probability of higher-order Andreev processes is proportional to Tn

when the transmission probability is small. The resulting I-V characteristics
are therefore highly non-linear and often present a series of sharp current
steps at the onset of each successive Andreev process.
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Figure 1.3: (a) Schematics of two superconductors coupled by a barrier with
transmission probability T . At Vsd > 2∆ quasi-particles can tunnel directly from
occupied states in the source to unoccupied states in the drain electrode. (b) First-
order Andreev reflection. The solid and open circles represent quasi-particles and
quasi-holes respectively. (c) Second-order Andreev reflection.

The observation of multiple Andreev reflection is not limited to tunnel
junctions (as in Fig. 1.3) but can be observed in a number of systems where
two superconductors are coupled by a weak link. Outstanding systems in
this regard are atomic-size break junctions [14, 15]. Here the constriction
of a single atom between two superconducting reservoirs restricts the num-
ber of conduction channels of the device to the number of available valence
orbitals of the specific atom. The transmission probability of each chan-
nel is determined by the material and the exact atomic arrangement of the
junction. In their turn, the observed I-V characteristics depend in a highly
non-linear fashion on the transmission probability T of each mode. These
measurements are therefore very useful as a tool to determine the set of
transmission probabilities that make up the conductance.

The central atom of an atomic-size break junction is strongly coupled to
its neighbours. Therefore, the discrete energy levels of the atom broaden
to form a continuous density of states and it is for the same reason that
electron-electron interaction can be neglected in these devices. In chapter 7
of this thesis we investigate a novel system of two superconductors coupled
by a multiwall carbon nanotube quantum dot which can be considered as
an artificial atom. As discussed in the previous section, size and charge
quantization cannot be neglected in quantum dots. This has a pronounced
effect on the transport properties, both when the reservoirs are in the nor-
mal state (in the presence of a small magnetic field) and when the leads are
superconducting. An advantage of quantum dots is that the presence of a
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b)10nm 200nma)

Figure 1.4: (a) TEM image of a multiwall carbon nanotube synthesized by the
arc-discharge method. The individual shells of the nanotube are clearly visible.
(b) SEM image of a powder of purified multiwall carbon nanotubes.

gate electrode allows one to adjust the level position of the single-electron
states and to study the system in a number of different configurations. For
example, the total spin on the quantum dot can be varied between 0 and
1/2. This has been exploited in chapter 7 which emphasizes the interplay
between the Kondo effect in quantum dots and superconductivity. More-
over, the observed multiple Andreev reflection pattern is compared with a
theoretical model of the device.

1.4 Multiwall nanotube material and devices

All transport experiments described in this thesis have been on multiwall
carbon nanotubes (MWNT) with outer diameters between approximately 5
and 15 nm. The length of the MWNTs can be many µm’s. Figure 1.4 shows
a SEM image of a powder of MWNTs and a TEM image of an individual
MWNT produced by Laszlo Forró’s group at the EPFL (Lausanne) from
whom we have obtained the MWNT material. The tubes have been syn-
thesized by the arc-discharge method [1, 16, 17]: a current of order 100 A is
passed through a graphite rod (anode) to a graphite cathode in a He atmo-
sphere. A deposit forms on the cathode containing bundles of MWNTs. Sin-
glewall nanotubes (SWNTs) can also be produced by this method but this
requires the addition of catalyst particles like Co or Ni which cannot be com-
pletely removed by purification methods. For MWNTs no catalyst particles
are necessary and the tubes therefore do not contain any of these (mag-
netic) impurities. Furthermore, high-resolution TEM images have shown
that arc-discharge grown MWNTs contain very few defects. The as-grown
material, however, is often covered by a thin layer of amorphous carbon.
Furthermore, it is exposed to ambient conditions (containing e.g. O2, H2O)
which may effect the electrical transport properties of the tubes (see also
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MWNT

600 nm

Figure 1.5: Scanning electron microscope image of an individual MWNT on
an oxidized Si substrate and contacted by two Au reservoirs. The tube is lying
completely under the reservoirs. On the right, (part of) an alignment marker is
still visible.

chapter 3). The MWNT material has been stored in chloroform.
To make electrical contact to individual MWNTs, a droplet (∼ 50 µl)

of the suspension of nanotubes in chloroform is deposited on an oxidized
Si wafer (2 x 2 cm) with pre-defined alignment markers and bonding pads.
Prior to deposition, the dispersion is sonicated for several minutes. Directly
after the droplet has spread, the wafer is rinsed with isopropanol (IPA) and
dried in a N2 flow. Next, the MWNTs are imaged in an SEM (Philips
XL30 FEG, 15 kV acceleration voltage) in order to locate the randomly
deposited tubes. Only individual tubes are selected. After having noted
the coordinates of the tubes with respect to the alignment markers a layer
of polymethylmethacrylate (PMMA) resist is spun over the wafer. Elec-
tron beam lithography (Jeol JSM-IC848 SEM, 35 kV acceleration voltage)
is used to pattern the contact structure into the resist. The exposed PMMA
is then removed with a developer (MibK:IPA in a ratio 1:3) and rinsed with
IPA after 45 seconds to stop the development. The metal deposition (usu-
ally Au and/or Al) has been done by e-beam evaporation in a Balzers PLS
500 system. The e-gun is equipped with four revolving targets which al-
lows for the evaporation of different materials without breaking the vacuum
(typically 10−7 mbar). Usually the sample was cooled (∼ 0◦ Celsius) dur-
ing evaporation. Figure 1.5 shows an example of a contacted MWNT. The
electrical contacts to the tube terminate as large bonding pads on the wafer
(not shown). A finished device is mounted in a commercially available chip
carrier and contacted with the use of an ultrasonic bonding machine



Chapter 2

Theoretical background on
carbon nanotubes

2.1 Geometric structure

A carbon nanotube can be considered as a graphene sheet that is rolled up
into a seamless cylinder. One of the many possible realizations is shown in
Fig. 2.1. Each tube is uniquely defined by the vector C=na1+m a2, where
a1 and a2 are the unit vectors of the hexagonal lattice. The pair of indices
(n, m) corresponds to a specific set of chiral angle φ and diameter d:

φ = arccos[
√

3(n + m)/2
√

n2 + m2 + nm] (2.1)

d =
a

π

√
n2 + m2 + nm (2.2)

where a = 2.46 Å is the lattice constant. The unit cell of each tube is defined
by the vectors C and T. Special symmetry directions in the graphene lattice
are (n, 0) and (n, n) which are called the zigzag and armchair direction
respectively. The names refer to the patterns of the carbon bonds around
the circumference of the tube. Figure 2.2 shows examples of an armchair,
a zigzag and a chiral tube together with a scanning tunnelling microscopy
image of an individual single-wall carbon nanotube [18].

2.2 Energy dispersion of graphene and nanotubes

The dispersion relation of carbon nanotubes can be obtained from that
of graphene which will, therefore, be discussed first. Figure 2.3 shows a
fragment of the hexagonal graphene sheet in real and in reciprocal space.
Each carbon atom in the graphene sheet has four valence electrons. Three
electrons form a strong sp2 σ-bond with its three nearest neighbours which

9
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Figure 2.1: A graphene sheet is rolled up to form a (10,5) nanotube by connecting
the dashed lines along vector C. The wrapping angle of chiral tubes are specified
relative to the zigzag (θ) or armchair (φ = 30◦ − θ) direction. Also shown is the
lattice vector T of the 1D unit cell.

φ

(a)

(b)

(c)

(d)

φ

armchair

zigzag

chiral

chiral

Figure 2.2: (a-c) Shown are a (5,5) armchair tube, a (9,0) zigzag tube, and a
(10,5) chiral tube which has been constructed in Fig. 2.1. (d) Atomically resolved
STM image of an individual single-wall carbon nanotube. The diameter here was
found to be d = 1.3 nm and the chiral angle φ = 7◦. Adapted from Ref. [18]
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b2 b1

ky

Figure 2.3: (a) Fragment of the graphene lattice. The primitive lattice vectors
a1 and a2 define the unit cell (shaded). There are two carbon atoms per unit cell,
denoted by 1 and 2. (b) Reciprocal lattice of graphene with the 1st Brillouin zone
(shaded). The primitive lattice vectors are b1 and b2.

are in the same plane with angles of 120◦. The fourth electron is in a π-
orbital which has its lobes perpendicular to the plane of the sheet. The
electronic properties of graphene and carbon nanotubes are well described
taking into account the energy dispersion of the π-electrons only [19, 20, 21].
Note that the unit cell in real space of graphene contains 2 carbon atoms.

The dispersion relation for the π-electrons of the graphene sheet can
be calculated in a tight-binding approximation yielding a bonding (-) and
anti-bonding (+) band given by [22]:

E(kx, ky) = ±γ0

[
1 + 4 cos

(√
3kxa

2

)
cos(

kya

2
) + 4 cos2(

kya

2
)
]1/2

(2.3)

where γ0 is the energy overlap integral between nearest neighbours. The
bandstructure is shown in Fig. 2.4. Note that the bonding and anti-bonding
bands touch at 6 points that coincide with the corners of the hexagonal Bril-
louin zone. The Fermi surface is thus reduced to six points, two of which,
the K and K ′ points, are inequivalent. The others can be obtained by lat-
tice transformations along b1 and b2. In a carbon nanotube the electrons
are free to move only in the length direction. To obtain the dispersion rela-
tion for a carbon nanotube, the quantization condition for the wavevector
component along the circumference has to be included: k ·C = 2πm, where
m ∈ Z. In reciprocal space this quantization can be represented as parallel
lines in the direction of the tube axis, see Fig. 2.5a for an example of a
(10,10) armchair nanotube. Since the allowed k-lines cross the K and K ′

points (where the bonding and anti-bonding bands touch) this nanotube
is metallic. The bandstructure of a (10,10) armchair nanotube is plotted
in Fig. 2.5b. Each band is doubly degenerate, except for the ones cross-
ing E = 0 and the ones with maximal and minimum energy. Near E = 0
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Figure 2.4: Bandstructure of graphene.
The energy overlap integral between near-
est neighbours γ0 = 2.5 eV. Note that the
the Fermi surface is reduced to six points.

the subbands are approximately linear with kx and the energy dispersion is
given by E = ~vF kx, where vF is the Fermi velocity. Note that since the
K and K ′ points are inequivalent, there are two sets of (spin-degenerate)
propagating modes at the Fermi energy. The existence of two sets of spin-
degenerate propagating modes is of importance for the interpretation of the
electronic spectrum of MWNT quantum dots presented in chapter 5.

Armchair carbon nanotubes are always metallic whereas zigzag or chiral
nanotubes can be either metallic or semiconducting. The interline spac-
ing ∆k depends only on the diameter as d/2. Since the distance between
the center and edge of a hexagon in reciprocal space equals 2π/

√
3a, see

Fig. 2.5a, it follows directly from Eq. 2.2 that any (n,n) armchair nanotube
is metallic. The different chirality of zigzag and chiral nanotubes means
that the allowed k-lines for these nanotubes are rotated (by 30 degrees for
zigzag nanotubes) and orientated differently around the K points. Zigzag
and chiral tubes will be metallic if the allowed k-lines do cross the K points
and semiconducting otherwise. The size of the energy gap of semiconducting
nanotubes and the subband spacing of both semiconducting and metallic
nanotubes is inversely proportional to the diameter [23]. A multiwall car-
bon nanotube typically consists of a concentric set of nanotubes of both
varieties.

2.3 Backscattering in carbon nanotubes

Of interest for electronic transport experiments on carbon nanotubes is
the amount of backscattering the electrons experience. An example of a
backscattering processes, i.e the transition from a right moving state to a
left moving one or vice versa, is shown in Fig. 2.6 which displays the energy
dispersion in the vicinity of a K point for a metallic and semiconducting
nanotube. In Fig. 2.6 the Fermi level is shown below the K and K ′ points
in the valence or bonding bands. This is the situation observed in most
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Figure 2.5: (a) Reciprocal space for a (10,10) armchair carbon nanotube. The
parallel lines represent the allowed and independent k-values. (b) The corre-
sponding bandstructure of the (10,10) armchair nanotube. The shaded region is
the 1. Brillouin zone.

nanotube experiments and is the result of chemical or electrostatic doping.
To estimate the scattering probability, it is important to realize that the unit
cell of graphene contains 2 atoms each having one electron in a π orbital,
see Fig.2.3. The atomic wavefunction φ(x) is therefore described by a linear
combination of the electronic orbitals on the two sublattice atoms as:

φ(x) = s1φ1(x) + s2φ2(x) (2.4)

where s1 and s2 give the amplitudes of the electronic wavefunctions on
the carbon atoms. It now turns out that, in the vicinity of K (or K ′)
and in addition to their real spin, the electrons possess a pseudospin, the
two-component vector (s1, s2), see Refs. [24, 25, 26]. When considering
backscattering processes, this pseudo-spin part of the wavefunction has to
be taken into account. It can be shown that the matrix element between
states depends on the angle between them as cos2( 1

2 θk,k′), where k and
k′ are the initial and final states as in Fig. 2.6. As can be seen in the
schematics, this angle for metallic tubes is π and such a process is not
allowed. In other words, the k and k′ states are built from an anti-bonding
and a bonding molecular orbital respectively and are orthogonal. Interband
scattering is still allowed but the direction of motion is retained in this
process and does not introduce any electrical resistance. Metallic carbon
nanotubes are therefore expected to have long mean-free paths. For semi-
conducting nanotubes the situation is different and, as the angle between
initial and final states < π, backscattering is only partially suppressed.
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E E

metallic semiconducting

Figure 2.6: (a) Reciprocal space and energy dispersion for a hole-doped metal-
lic carbon nanotube in the vicinity of a K point. The circle represent the Fermi
surface of a hole-doped graphene sheet and the parallel lines represent the allowed
k-values for the nanotube, as in Fig. 2.5. Interband scattering processes are sup-
pressed (see text). (b) Same as panel (a) for a semiconducting nanotube. Both
interband and intraband scattering processes are allowed. Adapted from Ref. [26].

Semiconducting nanotubes are therefore expected to be much more sensitive
to (long-range) disorder as introduced by, e.g. dopant impurities. Note that
by a simple extension of these arguments, the same would be true for the
higher subbands of a doped (metallic or semi-conducting) nanotube. The
amount of doping in multiwall carbon nanotubes is the topic of chapter 3.



Chapter 3

Doping state of multiwall
nanotubes

Carbon nanotubes, in particular SWNTs, are prototype one-dimensional
conductors which ideally come in two forms, either as metals or semicon-
ductors. This classification assumes that nanotubes are undoped. An im-
portant parameter is the position of the Fermi energy EF (the chemical
potential) with respect to the charge neutrality point. For an undoped
nanotube EF coincides with the charge neutrality point. Electron (n) or
hole (p) doping shifts the Fermi energy up or downwards. If the doping in-
duced Fermi level shifts are larger than the energy separation between the
1D subbands, a semiconductor nanotube is turned into a metallic one. In
previous work on SWNTs the characteristic 1D density-of-states was mea-
sured, from which EF < 0 was deduced [18, 27, 28]. Hole-doping was also
inferred from nanotube-based field-effect transistors [29, 30]. In contrast to
semiconductor SWNTs, only weak field effects were observed in MWNTs
[30].

3.1 Electrochemical carbon nanotube FET

Here we explore the electrochemically induced field-effect of carbon nano-
tubes. The electrochemical gating is so effective that EF can be determined
unambiguously on a single MWNT. An extreme sensitivity of the net doping
concentration on the environment, in our case different electrolytes, is ob-
served. Because the doping is reflected in the measured electrical resistance,
nanoscaled sensors, such as pH sensors can be envisaged.

Electrochemical gating is studied on an individual MWNTs with litho-
graphically defined Au contacts evaporated over the nanotubes [31]. The
nanotube - contact structure is fabricated on degenerately doped Si with a

15
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Figure 3.1: Liquid-ion gating of a MWNT.

400 nm thick SiO2 spacer layer. The Si substrate can be used as a back-
gate. Large changes have been observed in the electrical resistance R of
SWNT based field-effect transistors (FET) by using such a backgate. The
transconductance can be increased if the gate is placed as close as possi-
ble to the nanotube, ultimately into intimate contact. This is achieved in
the present work by immersing the nanotube into an electrolyte (Fig. 3.1).
The resistance of the nanotube devices is measured on a probe stage at
room temperature. The stage is complemented with a micropipette ending
in a drawn glass capillary. The pipette is positioned over the device and
a small droplet of size . 100 µm is delivered. The droplet size is chosen
such that the macroscopically large bonding pads are not immersed in the
liquid resulting in negligible leak currents in the resistance measurements.
The gate contact is formed by a Pt wire within the glass pipette. If, as
sketched in the inset of Fig. 3.1, a positive gate voltage Vg is applied, the
nanotube-electrolyte interface is polarized by the attraction of cations. The
gate capacitance Cg is formed by the double-layer capacitance which can
be very large. Here, we focus on experiments in LiClO4 electrolytes, used
at concentrations of 1-500 mM.

Figure 3.2 compares the gate effect of a MWNT for two cases: with
(a) liquid ion-gate and (b) backgate. While the initial electrical resistances
R at Vg = 0 are comparable, the gate induced changes are very different;
dR/dVg is 2.5 Ω/V in (a) and 570Ω/V in (b). Hence, liquid-ion gating is by
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a by a factor > 200 more effective than back gating. Starting from Vg = 0,
R increases with increasing Vg, which is characteristic for p-type behavior.
With the backgate, this increase persists up to the largest possible gate
voltages of ∼ 80V, where the sample is destroyed. In contrast, R(Vg) has
a maximum at Vg = V0 in the electrolyte. The decrease of R for Vg ≥ V0

now suggests n-type behavior. The position of the resistance maximum
therefore marks the charge-neutrality point of the nanotube, i.e. EF = 0,
if Vg = V0 ≈ 1V. The resistance R(Vg) is measured cyclicly. After some
cycles, an equilibrium situation is established with a relatively well-defined
peak position and only weak hysteresis, provided one ramps slowly (10 min
per sweep). In this example, R changes by only 20%.

Figure 3.3 shows another example. It illustrates the time dependence
and, most notably, shows a much larger R change. The maximum resis-
tance Rmax is a factor of 5 larger than R(0). Of all our measured samples,
approximately half display a weak R change of order 20%−50%, whereas R
changes by several 100% for the other half. The first up sweep (increasing
Vg), shown as (×) was followed by a down sweep (+). This is repeated until
a stationary curve is obtained (•). It is seen that the resistance maximum
shifts to higher voltages with time to finally reach V0 = 1 V in this case.

In the following we will present a model which captures the essential
physics of this experiment. We assume that only the outermost nanotube
shell needs to be considered [32] and describe the nanotube DOS by that
of a single layer of graphite, neglecting 1D bandstructure effects [3]. This
is justified, because kBT is of order of the subband separation at room
temperature. Using the Einstein relation, which relates the diffusion coeffi-
cient D to the conductivity, the electrical conductance G can be written as
G = (2πr/L)e2DN�. Here, r is the radius of the nanotube, L the contact
separation, and N� the two-dimensional DOS which depends on EF . For
an ideal single sheet of graphite, the DOS is N� = 2|EF |/π(~vF )2, where
vF is the Fermi velocity. At the charge-neutrality point, i.e., at EF = 0,
N� vanishes. We add a phenomenological parameter EC accounting for a
finite DOS at the CNP due to temperature and adsorbate induced band-
structure modifications and write N� = (2EC/π(~vF )2)(1+(EF /EC)2)1/2.
The normalized conductance g(EF ) = G(EF )/G(0) = (1+(EF /EC)2)1/2 is
used to fit our data. For this g(Vg) is required, so that the relation between
Vg and EF needs to be derived.

Figure 3.4 shows schematically what happens when a nanotube is bi-
ased via an external gate (engineering sign convention is used here). There
are two effects: Firstly, there is an external electric field −→

E and corre-
spondingly an electrostatic potential difference φ between the nanotube and
the gate electrode. Secondly, EF must increase because of the addition of
charge carriers to the nanotube. The relation between charges Q1, Q2, (see



3.1 Electrochemical carbon nanotube FET 18

0 0.5 1.51 2

∆V

Vg (V)

0.1 M

0.5 M

V0

3.0

2.5

2.0

R
 (
k

Ω
)

2.5

2.3

2.2

2.1

R
 (
k
Ω

)

0-20-40 4020
Vg (V)

Si gateliquid-ion gate

3

(a)

(b)

Figure 3.2: Electrical resistance R of a MWNT as a function of gate voltage Vg

measured (a) in a LiClO4 electrolyte for two ion concentrations (0.1 and 0.5M)
and (b) in air with a backgate.

Fig. 3.4c) and potentials EF /e, φ are determined by the geometrical capac-
itance Cg = dQ2/dφ and chemical capacitance CNT = dQ1/d(EF /e) of the
nanotube (NT), see Fig. 3.4c. These two capacitors are in series. Figure
3.4b. shows the energy-dependent DOS for a general biasing condition. The
externally applied voltage Vg corresponds to the electrochemical potential
η, given by eVg = η = EF +eφ. From this relation together with dQ1 = dQ2

and Cg, CNT we obtain

e
∂Vg

∂EF
= 1 +

CNT (EF )
Cg

, (3.1)

which provides us with the required relation between Vg and EF . A signif-
icant simplification follows for nanotubes immersed in electrolytes because
Cg À CNT . This is shown now. The differential nanotube capacitance
per unit length (denoted by C ′ instead of C) is given by C ′NT = e2N ′(EF )
with N ′(EF ) = 2πrN�(EF ). Thus, C ′NT = C ′0(1 + (EF /EC)2)1/2 with
C ′0 = 4e2rEC/(~vF )2. Taking r = 5nm, vF = 106 m/s, and EC = 0.1 eV
one obtains C ′0 ≈ 100 pF/m. The gate capacitance in solution (the dou-
ble layer capacitance) is C ′g = 2πrε/λ, where ε is the dielectric constant
(εH2O ≈ 80×ε0), r the nanotube radius, and λ the screening length ∝ c−1/2

(c = ion concentration). Taking c = 0.1M, typical numbers are λ ≈ 1 nm
and C ′g ≈ 10 nF/m. If the nanotube is gated by the Si substrate, a coupling
capacitance of C ′g ≈ 5 pF/m is deduced from our experiments (valid for 300
nm contact separation). Hence,

Cg(BG) ¿ CNT ¿ Cg(electrolyte). (3.2)

If the nanotube is immersed in an electrolyte, the case of interest here,
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Figure 3.3: Electrical resistance R(Vg) of a MWNT measured in a 10 mM LiClO4

electrolyte. After immersion, the measurement commenced at point A with the
data-point sequence ×, +, • (10 min per curve). Drawn curves are guides to the
eye. Inset: Comparison of G = 1/R (•) with theory (full curve).

the gate capacitance is much larger than the internal nanotube capacitance
and we obtain from Eq. 3.1 a very simple relation eVg ' EF , valid for
an undoped nanotube. If it is doped, Q2 6= Q1. We denote the doping
charge by Qd = Q2 − Q1 and the external gate voltage required to induce
charge neutrality by V0. Since EF = 0 at the CNP, V0 = Qd/Cg. The
effect of doping is simply to shift the functional dependence of EF versus
Vg, so that EF ' e(Vg − V0). The interpretation of the measured two gate
sweeps is now straightforward because there is a one-to-one correspondence
between Vg and EF . V0 coincides with the CNP and directly reflects EF for
an unbiased nanotube (in the engineering convention EF > 0 corresponds
to an excess of positive carriers). A substantial hole doping for MWNTs
immersed in LiClO4 is evident, leading to Fermi level shifts of ∼ 1 eV. What
is the origin of this considerable hole doping ?

Figure 3.2a. shows two measurements of the same MWNT for c = 0.1
and c = 0.5M. If we assume that doping is intrinsic to the nanotube, for ex-
ample due to defects or inclusions, the doping charge Qd should be constant.
The relation V0 = Qd/Cg predicts that the position of the resistance max-
ima should shift to lower values with increasing c according to V0 ∝ c−1/2.
Though a peak shift in the right direction is seen in Fig. 3.2a, the magni-
tude is far too low, suggesting that Qd is affected by the electrolyte itself.
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Figure 3.4: (a) Single sheet nanotube is assumed to model R(Vg). (b) The
energy-dependent DOS under a general biasing condition. CNP denotes the
charge-neutrality point, φ, EF , and η the electrostatic, chemical, and electrochem-
ical potentials. (c) A geometrical (Cg) and chemical (CNT ) capacitance need to
be considered to account for the dependence of EF (Vg).

This conclusion is supported by the time dependence shown in Fig. 3.3.
If the nanotube is immersed into the electrolyte the resistance R(Vg = 0)
drops which corresponds to a shift of V0 to the right. During the first sweep
in Fig. 3.3, V0 ' 0.5V, whereas V0 ≈ 1V in all later sweeps. It is clear
that EF < 0.5 eV in air before immersion. Hence, we conclude that the
electrolyte induces hole doping in the nanotube, the magnitude of which
depends on c. Intercalation of Li-ions can be excluded because this would
lead to n-doped nanotubes. This leaves the perchlorate ion ClO−4 as the
source of doping. This (weakly) oxidizing species seem to adsorb on the
nanotube specifically leading to a charge transfer which partially oxidizes
the nanotube (hole doping). It is evident that this oxidation is weak in
the sense that the carbon network of the nanotube remains intact. If the
nanotube would be eroded, irreversible measurements with a final loss of
the conductance would be expected. If ClO−4 is able to dope nanotubes by
physisorption the same is expected from O2 in air. A large sensitivity of
the nanotube conductance on different kind of gases, in particular also O2,
have been reported recently [33, 34]. This scenario is further supported by
our measurements in other electrolytes. If a a stronger oxidizing electrolyte
is used, we observe an additional shift of the R(Vg) curve to the right (ad-
ditional hole doping). In contrast, the curve shifts to the left in a reducing
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solvent.
Finally, a quantitative comparison of the experiments with theory is

possible. This is demonstrated in the inset of Fig. 3.3 where a fit (taking
the full theory) to the measured conductance G is shown. The fit yields:
EC ≈ 0.12 eV and A ≡ Cg/C0 ≈ 10. The product AEC only depends on
known parameters, like ε, vF , and c, but not on the nanotube radius r. Our
model predicts for this product 0.9 eV which is in good agreement with
1.2 eV obtained from the fit. This agreement proves that the model of a
single tube is correct, implying that the electrical current flows preferentially
in the outermost shell where most of the electrical field is screened. The
parameter EC was introduced to account for a finite DOS at the CNP. N ′(0)
is found to be ∼ 6× larger than N ′

1D of an ideal metallic SWNT, possibly
because of dopant induced states [35]. The other class of R(Vg) curves,
which show a much weaker resistance change [e.g., Fig. 3.2b] can be fitted
too. However, the deduced parameters are inconsistent with the model of a
single tube. In these cases, the current is most likely flowing in inner shells
too, explaining the much weaker gate effect.

For the interpretation of previous electrical measurements, the net dop-
ing concentration Qd and the Fermi-level shift for an as-grown MWNT
in air are important. The later can immediately be obtained by compar-
ing R0 measured in air for Vg = 0 with the R(EF ) dependence of the
same nanotube. This is indicated in Fig. 3.3: the dash-dotted line corre-
sponds to R0 and ∆V0 denotes EF before immersion. Typical values are
0.3− 0.5 eV. Comparing this with the average 1D subband spacing ~vF /2d
(≈ 33meV for a 10 nm diameter nanotube), we conclude that 9-15 sub-
bands may contribute to G instead of 2 for an ideal metallic nanotube.
This finding explains why previous low-temperature measurements could
be fairly well described by 2D diffusive transport [31]. A doping-induced
EF = 0.3 eV corresponds to a doping concentration of Q′

d/e ≈ 2× 103 µm−1

or, expressed per surface area, to Qd/e ≈ 0.7× 1013 cm−2 giving approxi-
mately one elementary charge per 500 carbon atoms. Finally, estimates for
the diffusion constant D can be given too. We obtain D = 170± 50 cm2/s
corresponding to a mean-free path of 35 nm, in agreement with our previous
results obtained differently [31].

MWNTs in air are hole-doped with a (sheet) doping concentration of
∼ 1013 cm−2 caused by the adsorption of oxygen. If immersed in a LiClO4

electrolyte doping increases further most likely due to a specific adsorption
of the oxidizing species ClO−4 . Polarizing the nanotube via an electrolyte
allows to move EF over a wide range, resulting in large resistance changes.
Nanotubes are possibly the most sensitive FETs for environmental applica-
tion, because the mobile nanotube carriers are in intimate contact with the
environment.
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3.2 Fermi level shifts by local aluminum gates

The large shift of the Fermi energy with liquid-ion gating relies on the fact
that the MWNT and electrolyte are in intimate contact. Disadvantages of
this method are that the droplet applied cannot be made much smaller than
∼ 50µm. Furthermore, the device cannot be left to itself (the droplet slowly
evaporates), nor can it be cooled down to cryogenic temperatures. A close-
by gate that circumvents these problems is a local gate of aluminum, only
separated from the nanotube by a few nanometers of AlO2. Schematics
of two such devices that have been measured are depicted in 3.5. The
aluminum is evaporated directly over the MWNTs. In practically all cases
this did not introduce any electrical shorts and resistance values À 10MΩ
are standard (shorts could appear if the voltage difference between gate and
tube exceeds more than ∼ 4 V). It is conceivable that during evaporation
(typical pressure 10−7 mbar) the aluminum reacts with oxygen residues or
water on the tube, forming a thin oxide layer. Since Al is a reducing agent a
peak shift of the resistance maximum to the left, towards the neutral state,
might be expected. This has indeed been observed in a number of samples.
Sometimes an even further shift to an n-doped state (as in Fig. 3.5) is
seen. The devices are stable in time and it seems that the evaporation of Al
protects the tube from adsorbing oxygen again and stabilizes a hole-depleted
state. Similar to the electrochemical gating the nanotube can reversibly be
tuned between a p and n-type device by changing the gate voltage. A
similar use of local Al gates to tune the doping state of semi-conducting
SWNTs between a p and n state has recently been reported in Ref. [36]. In
this work, a range of logic operations has been demonstrated by integrating
several SWNT devices on the same chip.
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Figure 3.5: Shown are the resistance versus Vg at room temperature for two
MWNT samples contacted with Au electrodes and covered by an Al gate (see
schematics). The width of the Al gate is ∼ 500 nm in both cases. The 2t-resistance
curve of sample B is of the MWNT piece under the Al gate.



Chapter 4

Multiwall nanotubes as
quantum wires

In the next two sections, low-temperature transport measurements on multi-
wall nanotube devices will be discussed. It is found that the phase-coherence
length lφ can be very large (of order 1µm). Provided that the tubes are well
coupled to their leads, the transport properties are dominated by quantum
interference phenomena such as weak localization and universal conductance
fluctuations.

4.1 Weak localization and AAS oscillations

A striking effect of quantum interference is to enhance the probability for
backscattering in a disordered system in the metallic regime. This is the
precursor of strong electron localization and has therefore become known
as weak localization [7]. Weak localization can be suppressed by applying a
magnetic field. The counter-propagating trajectories which are responsible
for the weak localization correction to the conductance will acquire a phase
difference in a magnetic field and no longer interfere constructively (see sec-
tion 1.1). The longest paths which contribute to weak localization are those
with a size approximately equal to lφ and will give the largest phase-shifts
at a given field. The critical field necessary to destroy weak localization
depends on the value of the phase-coherence length and magnetoresistance
measurements are therefore often used to probe lφ.

In what follows, two sets of magnetoresistance measurements by Bach-
told et al on MWNTs are reviewed [31, 32]. Figure 4.1a shows the mag-
netoresistance of a MWNT (L = 1.9 µm) perpendicular to B for 5 different
temperatures [31]. Note that the curves of Fig. 4.1a are not offset for clarity.
A resistance maximum is observed at zero magnetic field. The resistance

23
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Figure 4.1: (a) Four-terminal magnetoresistance of an individual MWNT in per-
pendicular field for 5 temperatures. Note that the curves are not offset for clarity.
The decrease of the resistance on applying a magnetic field is attributed to weak
localization. The dashed curves show fits using 1D weak-localization theory. (b)
Magnetoresistance measured for a MWNT in parallel magnetic field. The curves
are offset. Due to the cylindrical shape of the MWNTs the weak-localization cor-
rection is periodically modulated with a magnetic-field period determined by the
radius of the outermost shell of the MWNT. Adapted from Ref. [32]

decreases on applying a magnetic field. This is consistent with weak local-
ization in a diffusive metallic conductor. The dashed curves are fits to 1D
weak localization theory [31]. From these fits the coherence length can be
deduced. The coherence length can also be estimated in a simple way. The
weak-localization conduction correction δGWL in a system that is 1D with
respect to lφ is of the order (2e2/h)(lφ/L). Comparing the conductance val-
ues at zero and high magnetic field (where weak localization is completely
suppressed) directly yields δGWL and therefore lφ as the sample length L is
known. At 2.5 K the conductance difference is ∼ 0.4 e2/h and the estimate
for lφ ∼ (0.4/2)× 1.9 µm ≈ 380 nm. This value is consistent with the more
elaborate fit of the data to 1D weak-localization which yields lφ ∼ 500 nm.
This also shows that the interference correction is indeed in the 1D limit,
i.e. d ¿ lφ ¿ L, where d is the MWNT diameter.

The conductance at high magnetic field, when weak-localization is sup-
pressed, is still found to be temperature dependent. This temperature
dependent background conductance most probably results from residual
electron-electron interaction (see also chapter 6). The aperiodic fluctua-



4.1 Weak localization and AAS oscillations 25

tions superimposed on the weak-localization curve are attributed to univer-
sal conductance fluctuations (UCF) and will be discussed in more detail in
section 4.2.

Figure 4.1b shows the magnetoresistance of an individual MWNT aligned
parallel to B measured for 4 different temperatures [32]. At zero magnetic
field the resistance has a maximum. On increasing the magnetic field the
resistance decreases. At B ≈ 8.8T, however, a second resistance peak devel-
ops. The resistance peak at zero field can be understood in the framework
of weak localization. In the special case of a diffusive and thin-walled cylin-
der in a parallel magnetic field it encloses a well-defined flux and the weak
localization correction to the conductance is periodically modulated with a
magnetic-field period given by ∆B = (h/2e)/r2π, where r is the radius of
the cylinder. This is known as the Altshuler-Aronov-Spivak (AAS) effect.
Using this relation, a magnetic-field period of 8.8 T would correspond to a
cylinder radius of r = 8.6 nm. This value is in excellent agreement with the
outer radius ro = 8± 0.8 nm of the MWNT as determined by atomic force
microscopy.

Agreement with theory could only be obtained if at most two outer shells
contribute to the current. This is much less than the number of shells that
make up an actual MWNT (in this case ∼ 20 are expected). If much more
shells would contribute, no clear period could have been observed as the dif-
ferent shells have different diameters which would lead to a superposition of
different periods. It can therefore be concluded that quantum-interference
corrections to the resistance can account for the measured magnetoresis-
tance, if and only if the electrical current is assumed to flow in one (or two)
of the outermost shells. This is a crucial observation. It means that, as
long as low-temperature, low-bias transport measurements are concerned, a
MWNT can be considered as a large-diameter SWNT. These findings have
been confirmed recently by Collins and co-workers who determined the con-
tribution of each individual shell to the conductance directly by removing
the carbon shells sequentially [37]. It was found that at low temperatures
leakage currents through inner shells were frozen out, in accordance with
the conclusions of the AAS interference measurement.

The observation of weak localization and of AAS oscillations in the mag-
netoresistance clearly shows that backscattering is present in MWNTs and
that they are therefore not ballistic. How diffusive are the MWNTs ? The
value of the mean free path could be estimated from a careful analysis of the
temperature dependence of lφ and turns out to be of order 100 nm for the
MWNT in perpendicular magnetic field, Fig. 4.1a (see Ref. [31]). As this
number is much larger than the tube diameter d but still smaller than the
sample length transport should be qualified as quasi-ballistic rather than
diffusive.
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A shorter mean-free path l, however, is expected for the MWNTs show-
ing AAS oscillations since this effect is based on interference of time-reversed
trajectories due to scattering along the circumference of the tube, which re-
quires l . πd. The microscopic origin of scattering is not known and this
variation in mean-free paths may reflect a sample-to-sample variation in
disorder potential by static impurities, scattering by inner shells or even
of atomic defects. A large variation of mean-free paths is not unique for
MWNTs but also observed for SWNTs. For SWNTs these differences arise
from the different response of metallic and doped semiconducting tubes
to disorder. As found in Refs. [24, 25, 26], backscattering by long-range
disorder is suppressed in metallic tubes, in marked contrast to the semicon-
ducting ones (see also section 2.3). An extension of these arguments shows
that this also holds for backscattering in higher subbands, i.e. scattering
is not suppressed for sufficiently doped carbon nanotubes (see also chapter
3). Analogous to SWNTs, the variation in l might therefore be the result of
differences between semiconducting and metallic outermost shells and the
degree of doping of the MWNTs.

4.2 Universal conductance fluctuations

Another fingerprint of quantum interference are universal conductance fluc-
tuations (UCF) [38]. In a phase-coherent device the total conductance is
given by the total transmission probability between source and drain elec-
trodes. This, in turn, depends on the scattering potential, on the wavelength
of the electrons at the Fermi energy, and on the phase-shifts induced by a
magnetic field. Since in a diffusive (or quasi-ballistic) conductor the trans-
mission probability will change randomly if these parameters are changed
also the conductance fluctuates randomly from sample-to-sample, as a func-
tion of gate voltage, or as a function of magnetic field. The most surprising
feature of UCF is that the magnitude of these conductance fluctuations (the
root-mean-square value) at zero temperature is of the order e2/h, regardless
of the sample size and degree of disorder which are therefore called universal
conductance fluctuations.

Magnetic field

Figure 4.2 shows the conductance of an individual MWNT as a function
of magnetic field for 6 different temperatures. The sample has been con-
tacted with 4 electrodes separated by 400 nm. The difference between 2 and
4-terminal resistance measurements is ∼ 1.5 kΩ at all temperatures. This
shows that the metallic electrodes are very well coupled to the MWNT
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and Coulomb blockade therefore expected to be of minor importance. The
conductance has a minimum at 0 Tesla for all temperatures and shows
aperiodic fluctuations at higher fields. At the lowest temperatures these
fluctuations completely dominate electron transport. Assuming that these
features are due to electron interference, valuable information about the co-
herence length can be extracted. As before, the conductance minimum at
B = 0 T is attributed to a weak-localization correction to the conductance.
From the weak-localization dip the coherence length at 8 K is estimated to
be ∼ 50 nm.

Also the amplitude of the universal conductance fluctuations can be com-
pared with theory [38, 6]. Electron transport between source and drain is
fully coherent if the coherence length equals (or exceeds) the sample length.
In that case the root-mean-square value of the conductance fluctuations
should saturate at a value of δGrms ≈ 0.73 e2/h. If time-reversal symmetry
has been broken (for instance by a magnetic field) this equals δGrms ≈
0.52 e2/h. The UCF amplitude at T = 400mK gives δG ≈ 0.40 e2/h, close
to the universal limit. This suggests that at these temperatures lφ ≈ L and
that transport occurs through one phase coherent unit.

For smaller lφ, the UCF amplitude is suppressed. The effect of lφ < L
is to subdivide the sample in uncorrelated segments of length lφ. The con-
ductance fluctuations of each individual segment will still be of order e2/h.
Except for the prefactor, δGrms is then easily obtained if one calculates δG
for L/lφ uncorrelated segments in series:

δGrms = C
e2

h

(
lφ
L

)3/2

(4.1)

where C is a constant which equals
√

12 if time-reversal symmetry applies
and

√
6 when it is destroyed by a magnetic field. Note that the dependence

of UCF on lφ (and therefore on the temperature) is stronger than that of
weak localization. Indeed the aperiodic fluctuations disappear faster in the
experiment than the conductance dip at B = 0T. The estimated δGrms for
lφ = 50 nm at T = 8K yields ∼ 0.1 e2/h which is in good agreement with
the experimental observations.

In Fig. 4.2b the values of δGrms, evaluated at B > 1.5T and corrected
for the weak localization slope, is given for all temperatures. The number
of fluctuations is very limited. Nevertheless, the UCF amplitude seems to
follow a powerlaw behavior in temperature. A best fit yields a slope of
−0.55 ± 0.2. Following Eq. 4.1 this implies for the coherence length that
lφ ∝ T−0.37. This result is mentioned because it is consistent with a number
of similar measurements on other MWNT devices and with the tempera-
ture dependence of lφ from fits to the weak localization correction at B = 0
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Figure 4.2: (a) Conductance versus perpendicular magnetic field at tempera-
tures between 400 mK (blue) and 50 K (red). The distance between electrodes
is 400 nm. On applying a field B the conductance increases in accordance with
weak localization. This in best seen at high temperatures. At the lowest tempera-
tures the curves are completely dominated by aperiodic conductance fluctuations,
attributed to UCF. The magnitude of the fluctuations, δGrms, reaches a value
of ∼ 0.4 e2/h at 400 mK. (b) The corresponding root-mean-square δGrms of the
conductance fluctuations versus temperature.

T. For a wire that is 1D with respect to weak localization the dominant
dephasing mechanism is by quasi-elastic electron-electron scattering, a pro-
cess known as Nyquist dephasing [39, 40]. In this theoretical model the
coherence length is expected to follow a T−1/3 behavior, close to what has
been observed for MWNTs.

Gate potential

Universal conductance fluctuations can also be studied by changing EF

by means of a gate electrode. Figure 4.3a shows a grey-scale representa-
tion of the differential conductance as a function of source-drain (Vsd) and
gate voltage (Vg) for a 2.2 µm MWNT with short (L = 300 nm) contact
spacing. A small magnetic field of B = 150 mT is applied perpendicular to
the tube axis. The linear-response conductance G and the corresponding
root-mean square of the fluctuations δGrms versus temperature are shown
in Figs. 4.3b and 4.3c, respectively. Large and reproducible fluctuations of
order e2/h develop in G versus Vg. Note that the average conductance is
quite large, i.e., 〈G〉 ∼ 4.0 e2/h and temperature independent.
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Figure 4.3: (a) Grey-scale representation of the differential conductance as a
function of source-drain (Vsd) and gate voltage (Vg) at 280 mK for an open MWNT
device (lighter = more conductive). The separation between the source and drain
electrodes is 300 nm. (b) Linear-response conductance G as a function of Vg.
(c) The corresponding root-mean-square δGrms of the conductance fluctuations
versus temperature. The saturation of δGrms close to the universal limit suggests
conduction through one phase coherent unit.

The conductance variation is interpreted to result from quantum inter-
ference. It differs from the patterns observed in nanotube samples with tun-
nel contacts exhibiting Coulomb blockade (these devices will be discussed
in the following chapters). Extended low-conductance regions bounded by
high-conductance lines, as expected for Coulomb blockade, are not apparent
in the vicinity of Vsd = 0mV. Instead, well defined conductance dips de-
velop (arrows in Fig. 4.3b). The irregularity of the resonances suggests the
presence of scatterers along the tube and should be contrasted to the ob-
servation of periodic interference patterns in some ballistic SWNTs [41].
The fact that G often exceeds 4e2/h would be surprising for a SWNT
but is consistent with the findings that MWNTs can be substantially hole
doped by the environment, allowing more than two spin-degenerate modes
to contribute to the current (see chapter 3 or Ref.[42]). For a wire that
is 1D with respect to lφ one expects a crossover to the universal value
δGrms = 0.73 e2/h when lφ ∼ L. This appears in the measurement at
T . 1 K and δGrms saturates around 0.6 e2/h at T0 = 280 mK, in good
agreement with theory [38]. Note that the applied field of 150 mT is not
enough to fully destroy time-reversal symmetry in which case 0.52 e2/h is
expected. The saturation of δGrms close to the universal limit suggests con-
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temperature. The conductance fluctuations are reduced by the series addition of
many independent phase coherent units. A best fit of δGrms versus temperature
gives a ∝ T−0.52 dependence.

duction through one phase-coherent unit. This in turn implies that lφ & L
at T0.

The slope of δGrms versus temperature (plotted on a double logarith-
mic scale) studied for several short samples varies between -0.3 and -0.8.
Deviations from the expected -0.5 exponent might be due to the fact that
some samples are (almost) fully phase-coherent, at which point the scaling of
Eq. 4.1 should break down. It is also possible that residual electron-electron
interaction affects the measurements and is superposed on the interference
correction to the conductance. This might explain why the dips in Fig. 4.3
(having the lowest transmission probability) are more pronounced than the
peaks. For the longer samples, see e.g. Fig. 4.4, which are far from be-
ing fully phase-coherent (expressed in the much lower values of δGrms in
Fig. 4.4b as compared to 4.3c) and which have a larger capacitive coupling
to the gate electrode (which scales roughly linear with the tube length) a
better agreement is obtained.

4.3 Conclusions

The most important conclusions that can be drawn from the interference
experiments are that the current in MWNTs flows preferentially in the out-
ermost shell and that the tubes are diffusive (or quasi-ballistic) conductors.
The experiments furthermore show that at low temperatures (T . 1 K) the
phase-coherence length is of order 1 µm.



Chapter 5

Multiwall nanotubes as
quantum dots

In the previous chapter, low-temperature transport measurements on open
multiwall carbon nanotube devices have shown that the electron transport
can be fully phase-coherent. Here we will present results on a multiwall car-
bon nanotube device that is more weakly coupled to its leads and for which
size and charge quantization of the electron states are of importance. We
find that the electron states are nearly fourfold degenerate (including spin)
and that their evolution in magnetic field (Zeeman splitting) agrees with a
g factor of 2. In zero magnetic field the sequential filling of states evolves
with spin S according to S = 0 → 1/2 → 0.... A Kondo enhancement of
the conductance is found when the number of electrons on the tube is odd.

5.1 Coulomb blockade and shell filling

While there are many examples of SWNT quantum dots in the literature
[43, 44], little effort has gone into the investigation of MWNTs as such sys-
tems. Here we will demonstrate that MWNTs can form clean quantum dots
as well, a nontrivial result given the larger diameter, the correspondingly
smaller energy scale (subband spacing), and, most notably, the diffusive
nature of the tubes. Moreover, in MWNT quantum dots the single-particle
level spacing δE can exceed the charging energy UC . This implies that even
for a lifetime broadening Γ ∼ UC transport occurs via one individual quan-
tum state. Interestingly, the electron levels are found to be nearly fourfold
degenerate, a property directly related to the unique band structure of the
nanotubes.

Figure 5.1. shows a grey-scale plot of the differential conductance of a
2.3 µm MWNT device (electrode spacing L = 300 nm) as a function of Vg

31
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Figure 5.1: Grey-scale representation of the differential conductance as a func-
tion of source-drain (Vsd) and gate voltage (Vg) at 280 mK (lighter = more con-
ductive). The average two-terminal conductance is high (∼ 2e2/h); nevertheless,
clear traces of Coulomb blockade are observed. The pattern of a large diamond
followed by three smaller ones suggests a (nearly) fourfold degeneracy (including
spin) of the single-electron dot states. ∆Eadd, UC , and δE denote the addition
energy, the charging energy, and the single-electron level spacing, respectively.

and Vsd for relative large positive gate voltages. In the range Vg ≤ 10V(not
shown) the data resembles Fig. 4.3a. In contrast to that device, however,
clear and regular traces of Coulomb blockade are visible when Vg is increased
beyond Vg ∼ 12V. These changes are accompanied by a gradually decreas-
ing 〈G〉 as Vg is increased. The most striking observation in Fig. 5.1 is a se-
quence of a large low-conduction ‘diamond’ followed by 3 smaller ones (best
seen on the left). The diamonds are highlighted by dashed lines in the fig-
ure. The size of the diamonds reflects the magnitude of the addition energy
∆Eadd, which measures the difference in chemical potential of two adjacent
charge states of the dot. In the constant interaction model ∆Eadd = UC+δE
where UC = e2/C is the single-electron charging energy and C the electro-
static capacitance [10]. If all the single-electron levels would repel each
other (only 2-fold spin degeneracy) and δE ∼ UC , an alternating sequence
of small and large diamonds would be expected. Starting from an even
filling number, ∆Eadd = UC + δE for the first added electron (large dia-
mond) and UC for the second one (small diamond) [45]. The sequence of
one large diamond, followed by three smaller ones of approximately equal
size, which is observed here, suggests that the degeneracy of the states is not
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2, but rather 4 (including spin). From the size of the diamonds we obtain
δE ≈ 0.8meV and UC ≈ 0.4meV, the latter corresponding to CΣ = 400 aF.
The total capacitance CΣ is the sum of the gate capacitance Cg and the con-
tact capacitances Cs (source) and Cd (drain). All three parameters can be
deduced from the diamonds. We obtain: Cg = 1 aF and Cs,d = 260, 140 aF.
An estimate of the lifetime broadening Γ can be obtained from the measured
width of the Coulomb peaks and yields Γ ≈ 0.25 meV.

The appearance of regularly spaced electron states seems puzzling given
the disorder and the substantial hole-doping in MWNTs. To reconcile this
we propose transport through a semi-conducting outermost shell and a
metallic inner one for this device. The semi-conducting shell will be hole-
doped by the environment [42] and conducts at moderate Vg. At large
positive gate voltages, however, the tube will be depleted of charge carriers
and the 2nd shell (assumed to be metallic) will dominate electron transport,
as observed in Ref. [37]. Separated from the dopants on the outside of the
MWNT the inner shell then constitutes a clean and largely undoped quan-
tum dot. As the coupling to the leads decays exponentially for inner shells
[37] we do not expect more shells to contribute to the current at low tem-
peratures. For the same reason we expect this quantum dot to be extended
over the whole nanotube length.

The level spacing δE of an ideal and undoped metallic nanotube is given
by δE = hvF /2L, where vF = 8 · 105 m/s is the Fermi velocity [3]. Assuming
L to be the complete tube length of 2.3 µm this yields δE = 0.72meV in
good agreement with the observed δE ≈ 0.8meV. Transport through a
clean and undoped would also explain why the large diamonds of Fig. 5.1
look uniform. This would not be the case if more than the ideally expected
2 modes participate in transport. The appearance of quantized states also
shows that transport can be phase coherent over distances of order 1 µm, in
agreement with the findings for more open devices.

The observation of a ratio δE/UC > 1 is particularly interesting. The
level spacing δE of an undoped tube is independent of diameter and depends
only on L. The charging energy, on the other hand, is found to be dominated
by the contact capacitances. Given the 10 times larger diameter and overlap
with electrodes, MWNTs are more likely to have a small UC as compared
to SWNTs, yielding large δE/UC ratios.

The observed 4-fold degeneracy can be explained by a specific property
of graphene. In the simplest tight-binding band-structure calculation all
1D-bands are twofold degenerate (not including spin) [3]. This degener-
acy can be traced back to the presence of two C-atoms per unit cell, each
contributing with one valence orbital. This so-called K − K ′-degeneracy
has not been observed before, although it is supposed to be a generic fea-
ture of graphene. To explore this scenario further we have also studied the
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Figure 5.2: (a) Linear-response conductance G as a function of gate voltage
Vg for different magnetic fields B = 0 · · · 3T (vertically offset for clarity). The
evolution of the conductance peaks are highlighted by dashed lines. (b) Peak
positions versus B = 0 · · · 5T. Curves are guides to the eye and LC denotes level-
crossings. (c) Magnetic field dependence of the addition energy deduced from the
separation of adjacent peaks involving electrons on the same orbital (the pairs
1 ↔ 2 3 ↔ 4, 5 ↔ 6, and 7 ↔ 8). The dashed line (least-square fit) corresponds
to the Zeeman energy with Landé factor g = 2.1.

gate-voltage shifts of the linear-response conductance peaks as a function
of a magnetic field B perpendicular to the tube axis, Fig. 5.2. The differ-
ence between the positions of adjacent peaks can be related to the addition
energy: e∆Vg = ∆EaddCΣ/Cg. Figure 5.2a shows the evolution in small
magnetic field B ≤ 3 T. Adjacent peaks are seen to shift in opposite di-
rections. This is the behavior of a ground-state whose spin alternates as
S = 0 → 1/2 → 0 · · ·. This indicates that the assumed 4-fold degeneracy
is not exact as we will explain now: In the presence of a magnetic field the
energy of an electron depends on its spin due to the Zeeman effect which
lowers the degeneracy from 4 to 2. When the four (nearly) degenerate states
are occupied by N = 2 electrons, these are thus expected to occupy differ-
ent orbitals with parallel spins. Actually, this would already be expected
for B = 0, because of exchange-correlations. Hund’s rule would favour the
spin-triplet with total angular momentum S = 1 when the gain in exchange
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energy EX exceeds the level spacing between single-particle states [46]. The
spin should therefore evolve as S = 1/2 → 1 for N = 1 → 2. Experimen-
tally, however, the first 2 electrons have opposite spins and are thus added
to the same orbital state. This discrepancy can only be resolved, if the
assumed 4-fold degeneracy is not exact, i.e. there are pairs of states which
lie close together with spacing δE?. The pairs themselves are spaced by
δE À δE?. A detailed study of the peak evolutions (Fig. 5.2b) reveals that
this is indeed the case. ∆Eadd at B = 0 of the 2 → 3 (6 → 7) transition
is clearly larger than the 1 → 2 and 3 → 4 (5 → 6 and 7 → 8) ones. We
obtain δE?

23 ≈ 0.1meV and δE?
67 ≈ 0.18meV. We have also verified that

the energy shifts agree with the Zeeman term for electrons occupying the
same orbital. We plot in Fig. 5.2c the corresponding addition energies as
a function of B. A best fit of the data to UC + gµBB , where µB is the
Bohr magneton and g the Landé factor, is shown as a dashed line and yields
g = 2.1 ± 0.3. This value is consistent with g = 2.0 for graphite and with
previous measurements of g for a SWNT [43, 47].

In high magnetic field levels cross. Two crossings (LCs) are seen in
Fig. 5.2b. At B ≈ 3 T, for example, the spin-up of the first orbital crosses
the spin-down of the second, giving rise to an S = 0 → 1 transition. A
similar crossing is not seen in the upper part. On the one hand, this is
due to the larger δE?. On the other hand, there is also a magnetic-field
dependence of the orbitals which increases δE? at higher fields.

We find a pattern that repeats every 4th electron due to an apparent
pairing of orbital states. We believe that this pairing is related to the
K−K ′-degeneracy. Hybridization via the contacts is proposed as a possible
mechanism for the slight level splitting δE? of the orbital states, which in
size is comparable to the life-time broadening. Alternatively, scatterers
which lower the symmetry of the system may cause the level splitting. In
high magnetic field the intrinsic K −K ′-degeneracy should be lifted which
enhances the level separation further. This may explain why the S = 0 → 1
transition is not observed for the upper quartet in Fig. 5.2b. Finally, the
fact that S = 0 for N = 2 at B = 0 is consistent with Hund’s rule only if the
exchange energy EX < δE?, yielding an upper bound for EX of ∼ 0.1meV.

5.2 Kondo physics in multiwall nanotubes

Another interesting manifestation of the electron spin on the electronic
transport can be seen in the gate region between 15.5 and 16.5V, see
Fig. 5.3. In the valleys marked as E (even filling) the conduction decreases
with decreasing temperature while it increases in the valleys marked as O
(odd filling). Contrary to what one might expect from normal CB, a high
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Figure 5.3: (a) Grey-scale representation of dI/dV as a function of source-drain
(Vsd) and gate voltage (Vg) at 280 mK (lighter = more conductive). Within re-
gions marked as O (E) the number of electrons on the tube is odd (even). The
horizontal features are caused by the Kondo effect. (b) Temperature dependence
of the linear-response conductance. The arrows indicate directions of decreasing
temperature. (c) Schematics of a quantum dot in the Kondo regime. The dot is
occupied by an odd number of electrons. Driven by exchange correlation effects
between the dot state and the electrons in the leads, higher-order spin-flip pro-
cesses screen the spin of the dot and form a resonance in the DOS at the Fermi
energy of the leads.

conduction ‘ridge’ around Vsd = 0V develops in the latter (best seen in
the right most diamond). These observations can be understood with the
Kondo model [48, 49]. When the number of electrons on the tube is odd and
the coupling to the leads is strong enough to allow for higher-order tunnel-
ing processes, a spin singlet can form between the spin polarized tube and
electrons in the leads. This results in a resonance in the density-of-states at
the Fermi energy (i.e. the Kondo resonance). The width of the Kondo res-
onance reflects the binding energy of the singlet which is usually described
by a Kondo temperature TK . The conductance is expected to increase log-
arithmically with decreasing temperature in the centers of the ridges below
TK . Following G as a function of temperature at Vg = 16.2V we indeed
find a logarithmic dependence between 280 mK and 1 K. At temperatures
well below TK the conductance is expected to saturate at the unitary limit
of 2e2/h. In our case, however, no saturation has been observed down to
280mK.



5.2 Kondo physics in multiwall nanotubes 37

The Kondo effect is expected to be suppressed by a small bias voltage
across the tube of the order of ±kBTK/e. The ridge at Vg = 16.2 V has a
width of ∼ 0.2 meV which would correspond to TK = 1.2 K (see curve in
Fig. 5.3a). This is in agreement with the onset of the logarithmic increase
of G below ∼ 1 K. An additional prediction is the splitting and disappear-
ance of the Kondo resonance in a magnetic field. The high-conductance
ridge indeed broadens and disappears above ∼ 1.5T. Simultaneously, the
Coulomb blockade diamonds are recovered. Measurements on a different de-
vice in which the splitting in field could be more clearly resolved are shown
in App. C. In Fig. 5.3a the boundary of the CB region at half-filling is
clearly seen to be distorted into a truncated diamond. The associated en-
ergy δEst = 0.20± 0.05meV, indicated in the figure, corresponds to the en-
ergy difference between the singlet ground state and the triplet excited state
[49, 50]. The relation δEst = δE?

67 − EX together with δE?
67 ∼ 0.18meV

shows that EX must indeed be small.
In conclusion, we show that MWNTs can form clean quantum dots in

which the level separation exceeds the charging energy. Moreover, we ob-
serve a pairing of 0D states which we propose to be caused by the K −K ′

degeneracy generic to graphene. Since adsorbates on the outside of a NT
are a likely source of scattering, the ability to selectively address clean inner
shells of a MWNT may prove advantageous in this regard.



Chapter 6

Suppression of tunneling into
multiwall nanotubes

Carbon nanotubes (NTs) are emerging as an excellent system for the in-
vestigation of electronic transport in one dimension (1D). Two different
classes of NTs exist: small diameter (≈1 nm) single-wall NTs (SWNTs)
and large diameter (≈ 10nm) multi-wall NTs (MWNTs). Metallic SWNTs
are characterized by two 1D channels and long mean free paths: l > 1 µm
[43, 44, 51, 52]. As such, they represent a nearly perfect 1D system. It is
well known that in 1D transport is strongly affected by electron-electron
(e-e) interaction, producing a system called a Luttinger-liquid (LL) whose
low energy states are collective in nature [53, 54]. The tunneling density of
states (tunneling DOS = TDOS) of a LL diminishes as a power law with
energy according to ν ∝ Eα with different exponents α for different ge-
ometries, e.g. whether the electron tunnels into the end or the bulk. The
tunneling conductance G ∝ TDOS has been measured for SWNTs in a
variety of geometries and good agreement with LL predictions have been
achieved [55, 56, 57].

Various experiments on the transport properties of MWNTs have been
performed. Experiments with low resistance contacts show interference ef-
fects, such as Aharonov-Bohm oscillations [31, 32], weak localization, and
universal conductance fluctuations [31, 58]. These have been used to infer
the mean free path, yielding l . 100 nm. They also indicate that the dc
current is predominantly carried in the outer shell of the NT. Similarly,
transport [31] and scanned probe experiments[52, 59] indicate a typical re-
sistance per unit length of 5− 10 kΩ/µm.

Here we discuss measurements of the tunneling conductance of MWNTs.
In one geometry, metallic contacts to the tube with high resistance are em-
ployed. In a second geometry, NT-NT junctions are created by manipulation
with an atomic force microscope (AFM). The tunneling conductance is mea-
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sured as a function of temperature and bias voltage. These measurements
show that also for MWNTs the TDOS is a power law over a wide energy
range of 1 . E . 100meV with geometry-dependent exponents, which sur-
prisingly agree quite well with those for SWNTs. This suggests a similar
origin. Unlike SWNTs, however, MWNTs are diffusive or at best quasi-
ballistic, so that the applicability of LL theory must be carefully considered.

Power laws in tunneling may also be caused by the disorder-enhanced
Coulomb interaction, as was treated perturbatively in the seminal work of
Altshuler, Aronov and Lee (AAL) [60]. Importantly, perturbation theory
does not suffice for MWNTs since the observed corrections are large. A
non-perturbative treatment, applied to the specific geometry of MWNTs,
has recently been put forward by Egger and Gogolin (EG) [61]. Similar
to LL theory, a power-law is predicted. We will therefore compare our
measurement with both the EG and the LL model.

The MWNTs were synthesized by arc-discharge evaporation and de-
posited from a dispersion in chloroform onto an oxidized Si wafer. NTs
with diameters ranging from 8 to 17 nm are selected and located using a
scanning electron microscope or an AFM. For devices of the first type, gold
contacts to the tube are then created using e-beam lithography. This pro-
cedure typically leads to contacts with low resistance (≈ 1 kΩ), but it also
occasionally produces highly resistive contacts (>10kΩ). The microscopic
origin of the high resistance is not known. Here, however, we merely exploit
these accidental tunnel barriers to probe the electronic properties of the
MWNT.

The inset of Fig. 6.1 shows a schematic of a device consisting of a
d = 17 nm diameter MWNT contacted to 3 electrodes. The 4.5 kΩ resis-
tance measured between the two outer electrodes corresponds to the typical
intrinsic resistance for a MWNT contacted with electrodes that are sep-
arated by 700 nm. This indicates that the contact resistances of the two
outer electrodes are low and that the NT connecting them is electrically
continuous. However, the resistance measured from the inner electrode to
either of the outer electrodes is much higher, 140 kΩ. This inner electrode
has thus low transparency and serves as a tunneling contact to explore the
TDOS of the tube.

Fig. 6.1 shows a series of measurements of the tunneling conductance
versus bias for different magnetic fields B applied parallel to the tube. The
dI/dV spectra are highly structured. We first note that, at small energies
(0− 10mV) the spectra display a strongly suppressed conductance. This
suppression is centered at V = 0 independent of B. Before discussing this
anomaly, we first will briefly address the complex features at higher en-
ergy. These features are quasi-periodic, with an average spacing between
the maxima of ≈ 25 mV and they evolve with increasing magnetic field.
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Figure 6.1: G = dI/dV as a function of V at 2K for different parallel magnetic
fields B = 0, 1,. . . 15T. Curves are offset for clarity. The movement with B of two
well discernable peaks are indicated by solid curves. Inset: schematic of MWNT-
Au devices with 3 electrodes, here separated by 350 nm. The inner electrode has
a high resistance and serves as tunneling contact for measuring dI/dV .

The observed features are likely a consequence of quasi 1-dimensionality.
One-dimensional states (so called 1D-subbands) have a pronounced energy-
dependent DOS with peaks at the subband threshold (van Hove singularity)
[18, 27]. Here, the peaks are broadened due to scattering from disorder.
This assignment is supported by the observed peak spacing of ≈ 25mV
which is in good agreement with the expected spacing of ~vF /d = 29 meV
(vF = 8 105 m/s is the Fermi velocity, d = 17 nm). The identification of
these peaks as broadened van Hove peaks is further supported by their
behavior in B. With evolving parallel field B the position of the peaks move
in energy up and down, as expected from the Aharonov-Bohm effect [62].
Theory predicts a periodic movement with a fundamental period h/e which
translates into a field of ≈ 17T. Though the level moves on the expected
field scale, the peak movement is not simple in Fig. 6.1. The reason is
not clear yet, but may be attributed to disorder and inhomogeneities. The
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emergence of broadened van Hove peaks in the TDOS demonstrates that the
elastic length l is of the same order as the circumference of the tube. The
MWNTs are therefore not in the two-dimensional diffusive regime (l < d).

We now turn to the low bias suppression of the conductance. It is
independent of B, which suggests a different origin than the peaks discussed
above. In addition, its dependence on V and T is very different, as we now
discuss. Fig. 6.2 shows the tunneling conductance G = dI/dV of a second,
similarly prepared MWNT sample. A conductance dip centered at zero
bias (zero-bias anomaly = ZBA) is again observed in G(V ) (Fig. 6.2a).
As T is decreased down to 350 mK, the amplitude of the dip increases.
In Fig. 6.2b the zero bias conductance is plotted as a function of T in a
double logarithmic plot, demonstrating that the measured data can be well
described by a power law G ∝ Tα with exponent α = 0.36. For bias voltages
larger than kBT/e, the voltage dependence can also be described by a power
law with the same exponent 0.36. This can be seen in Fig. 6.2c, which shows
a double-logarithmic plot of the symmetrical part of G divided by Tα as a
function of eV/kBT . All data collapse on a single universal curve, similar
to what has been observed in SWNTs [55]. Power-law scaling in T and V
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Figure 6.3: AFM images of junctions formed between two MWNTs: (a) end-
bulk junction, and (b) end-end junction. The arrows indicate the position of the
junctions.

has been found in 11 different samples with exponents α ranging from 0.24
to 0.37.

To explore this ZBA further, we created devices composed of 2 MWNTs
arranged in different geometries. An AFM tip has been used to move NTs
[57, 63]. The end of one tube is pushed against either the end or the middle
(bulk) of a second tube. Au contacts are attached to both tubes. Exam-
ples of end-bulk and end-end junctions are shown in Fig. 6.3a and 6.3b,
respectively. The resistance values of these junctions vary considerably,
from immeasurably large to ≈ 100 kΩ. These large values suggest that the
junction between two tubes serves as a tunnel barrier.

As in metal-NT junctions, pronounced ZBAs are present in all junctions.
However, the suppression is significantly more dramatic in NT-NT as com-
pared to Au-NT junctions. Fig. 6.4a shows dI/dV as a function of V in a
double logarithmic scale at T = 3K for a bulk-end and an end-end junction.
For comparison, the tunneling conductance of a typical Au-NT junction is
also plotted. The curves show approximate power law behavior, but with
different exponents. We find α = 0.9 and 1.24 for bulk-end and end-end
NT-NT junctions. These exponents are representative of seven junctions
studied.

Overall, our result for tunneling into MWNTs can be summarized by a
simple rule. The conductance is given by G ∼ Eα, where E is the excess
energy of the tunneling electron, given by the larger of eV or kBT . The
exponent α can be approximated by α = α1 + α2, where α1,2 represent the
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Figure 6.4: (a) G as a function of V in a double logarithmic plot for a Au-bulk,
an end-bulk and an end-end junction. The corresponding slopes are α = 0.25, 0.9
and 1.24, respectively. (b) plot of α as a function of the junction type for Au-Au,
Au-bulk, Au-end, bulk-end, and end-end junctions.

properties of the conductor on either side of the junction: αbulk ∼ 0.3 for
the tube bulk, αend ∼ 2αbulk ∼ 0.6 for the tube end, and α ∼ 0 for the Au
contact, respectively.

We now discuss the possible origins of the ZBA. The voltage and tem-
perature dependence of G could be caused by the energy dependence of the
single particle DOS of graphene, the 2D material from which NTs are made.
The 2D-DOS of graphene is ∝ E, which would relate into αbulk = 1, in con-
tradiction to the observation. Moreover, if the observed anomaly would be
related to the single particle DOS, its position would depend on gate voltage
(back gate), which is not observed.

A ZBA in the TDOS is often taken to be a signature of e-e interac-
tions. For example, the correction (suppression) to the density of states
ν due to e-e interaction has been calculated by AAL perturbatively, valid
if δν ¿ ν, or δG ¿ G [60]. This interpretation has been successful in
describing ZBAs in tunnel contacts to disordered metals [64]. In contrast
to these earlier experiments, we report on anomalies with large amplitudes
δG ∼ G. A quantitative understanding requires to calculate the TDOS
nonperturbatively in the interaction.

Nonperturbative treatments exist for a number of cases. In the case of a
clean 1D quantum wire, the e-e interaction can be accounted for analytically
at any strength leading to a Luttinger liquid (LL),[53]. The case of a tunnel
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junction whose coupling to the ideal reservoirs is described by a frequency
dependent impedance Z(ω) has also been studied extensively [65]; we refer
to this as the environmental Coulomb blockade theory (ECBT). The LL and
ECBT theories bare a lot in common. Tunneling into a LL excites plasmon
modes which can be understood as the eigenmodes of an LC-transmission
line, where L is the kinetic inductance and C the external electrostatic
capacitance. The impedance Z of such an ideal transmission line is ohmic
with Z = R =

√
L′/C ′, where L′ and C ′ denote inductance and capacitance

per unit length. In the limit of many modes in parallel, both theories give
G ∝ V α (at T = 0) with αend = 2R/RK , where RK = h/e2 is the quantum
resistance [66, 67].

These theories also predict αend/αbulk = 2 for a large number of modes.
The factor 2 reflects the fact that a quasiparticle added to the bulk can
propagate away into the ‘right’ and ‘left’ arm of the NT, while it can prop-
agate only in one arm if added to the end. In the spirit of ECBT the
effective environmental impedance is halved. This can be generalized to
other geometries. In terms of αbulk, both theories predict αend = 2 · αbulk,
αbulk−end = 3 · αbulk, and αend−end = 4 · αbulk.

The limit of many modes applies to our experiment, since MWNTs have
recently been shown to be considerably hole doped [42]. Due to doping
N ≈ 10 − 20 subbands are occupied, instead of 4 for an ideal SWNT.
The large-N LL/EBCT theory should therefore apply. Indeed the data is
in very good agreement with the predictions. The power-law exponents
increase as predicted with changes in geometry; see Fig. 6.4b (solid line).
We can also numerically estimate the exponent. The kinetic inductance is
given by L′ = RK/2NvF , where vF ≈ 106 m/s is the Fermi velocity and
N ≈ 10 − 20 the number of modes, yielding L′ ≈ 1 nH/µm. A typical
value for the (external) capacitance of a nanotube is C ′ = 30 aF/µm. These
values yield a transmission line impedance of R ≈ 5.7 kΩ, and consequently
a bulk exponent of αbulk ≈ 0.22, a value which is in reasonable agreement
with the measured exponents. It therefore appears that ECBT assuming a
fixed-impedance environment (such as an LC transmission line), or equally,
the LL theory in the large N limit, explain our observations.

So far, however, we ignored that the MWNTs are disordered conductors.
Because MWNTs are disordered, it is more appropriate to model the NT
as an RCL transmission line rather than an LC one. Let us estimate the
significance of the resistance. We compare ωL′ with R′ ≈ 5 kΩ/µm. The
inductive part is equal to the resistive part for ~ω = 3.0meV. Since the
power-law is observed for larger voltages, the resistive part can in fact be
neglected. Therefore, the LC transmission line model is applicable for not
too small voltages.

We now compare our data with a nonperurbative treatment of the dis-
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order enhanced renormalization of the TDOS caused by intra-Coulomb
interaction. This topic has only recently become the subject of inten-
sive theoretical studies [61, 68, 69]. For MWNTs this problem has been
solved by Egger and Gogolin [61]. They predict a power-law with expo-
nent αend = 2αbulk = (r/πD~ν0)log(1 + ν0U0), where U0 is the 1D intra-
Coulomb interaction, r the radius of the tube, and D the diffusion con-
stant. The log() term turns out to be ∼ 2 − 3 and the (bare) DOS is
ν0 = N?/2π~vF . Here, N? denotes the number of modes not counting the
spin and K-K ′ degeneracy of the graphene lattice, i.e. N? = N/4 ≈ 5.
This yields αbulk ≈ 5r/N?le = 20r/Nle. This equation can be expressed
solely in terms of measured quantities by noting that R′ = RK/Nle, yielding
αbulk ≈ 20rR′/RK = 0.02 . . . 0.08. The typical value is roughly a factor 5
smaller than observed in the experiment. As a result, the large-N LL/EBCT
model is the more likely cause of the observed suppression of tunneling.

In conclusion, the tunneling DOS of MWNTs is renormalized by e-e in-
teraction leading to a suppression of the tunneling conductance for small
energies with power-law scaling. The observed power-laws can be explained
by environmental Coulomb blockade theory in which the tube acts as an
effective LC-transmission line in series with the tunnel junction. The ob-
served power-laws are qualitatively also captured by a recent nonperturba-
tive treatment of disorder-enhanced corrections to the DOS due to intra-
Coulomb interaction. The comparison of the measured exponents with the-
oretical predictions favors the LC transmission line model. Further experi-
mental work is needed to separate these two contributions.



Chapter 7

Superconducting proximity
effect in multiwall nanotubes

In this chapter electron transport in MWNTs coupled to superconducting
electrodes is investigated. We have studied MWNT devices with strong,
intermediate, and weak coupling to superconducting leads. In the weak
coupling limit (not shown here) electron transport is dominated by Cou-
lomb blockade. In the intermediate regime on the other hand, higher order
tunneling processes such as the Kondo effect become important. In sec-
tion 7.2 we discuss a MWNT quantum dot in the Kondo regime coupled
to superconducting electrodes. We show that the superconductivity of the
leads does not destroy the Kondo correlations on the quantum dot when the
Kondo temperature, which varies for different single-electron states, exceeds
the superconducting gap energy. The observed subharmonic gap structure
in the differential conductance is discussed in section 7.3 and compared to
a theoretical model of the device. The transport characteristics of an open
MWNT device are discussed below.

7.1 Open multiwall nanotube devices

Transport measurements of an open MWNT device with superconducting
electrodes are shown in Fig. 7.1. The device consists of a MWNT of 2.2 µm
length with short (L = 300 nm) contact spacing. The contacts consist of
a bilayer of Au/Al of 50/125 nm thickness respectively. The degenerately
doped Si substrate is used as a gate electrode. This geometry is typical
for all devices with Au/Al leads studied. The gold is in direct contact
to the MWNT and is necessary to obtain good electrical contact between
the tube and the leads. As will be shown below, the aluminum becomes
superconducting at T . 1 K. Due to the proximity of the aluminum, the
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gold develops a gap of 2∆ ≈ 0.15meV at the interface with the MWNT (see
Fig.7.1c). This value is smaller than the expected bulk value for Al which is
0.38meV. This is attributed to the intermediate Au layer. Indeed we find
that for smaller Au layers the gap size is increased. Similar findings have
been reported for measurements on break junctions consisting of an Au/Al
bilayer [70]. Evaporation of aluminum directly over the MWNTs resulted
in immeasurably large contact resistances, probably because an oxide layer
forms at the interface between the MWNT and aluminum. This has been
exploited in section 3.2 to make local Al gates.

Normal-state conductance

Figure 7.1a shows a grey-scale representation of the differential conductance
versus Vsd and Vg at T = 280 mK when the contacts are driven normal
by a small magnetic field of 150 mT (which is much larger larger than
the experimentally observed critical field of ∼ 12mT). The corresponding
linear-response conductance G is shown in Fig. 7.1b. Large and reproducible
fluctuations of order e2/h develop in G versus Vg. The average conductance
is quite large, 〈G〉 ∼ 4 e2/h. The conductance variation is interpreted to
result from quantum interference (UCF). It differs from patterns observed in
nanotube samples with tunnel contacts, exhibiting Coulomb blockade. The
pattern is not periodic and extended low-conductance regions bounded by
high-conductance lines, as expected for Coulomb blockade, are not apparent
in the vicinity of Vsd = 0 V. The fact that G often exceeds 4 e2/h implies
that more than the ideally expected two spin-degenerate modes contribute
to the current (see also section 4.2).

Superconducting-state conductance

Figures 7.1c-g show the (differential) conductance of the same device when
the leads are superconducting, i.e. when the magnetic field is switched
off. The most striking difference between Figs. 7.1a and 7.1c are the high-
conductance bands at Vsd = ± 0.15 mV, almost independent of Vg. These
lines are identified as 2∆ and mark the onset of direct quasi-particle tun-
nelling between source and drain electrode.

The (differential) conductance at Vsd < 2∆ varies significantly with the
gate voltage. It is assumed that the main effect of changing Vg is to change
the Fermi energy of the nanotube. This changes the transmission probabili-
ties of the different modes connecting the source and drain electrodes. As a
results, the conductance versus Vg fluctuates randomly (but reproducible)
by ∼ e2/h when the device is in the normal state, as observed in Fig. 7.1b.
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Figure 7.1: (a) Grey-scale representation of the differential conductance as a
function of source-drain (Vsd) and gate voltage (Vg) at T = 280mK for an open
MWNT device in the normal state (lighter = more conductive). A small field
of 150mT has been applied. The conductance variation is interpreted to result
from quantum interference (UCF). (b) Corresponding linear-response conduc-
tance. The numbers indicate peaks in the conductance. (c) Differential conduc-
tance versus Vsd and Vg when the leads are superconducting. The bands at ±0.15
mV mark the onset of direct quasi-particle tunnelling. The subgap structure is
due to (multiple) Andreev reflection. (d) Corresponding linear-response conduc-
tance. The numbered peaks of panel (b) appear enhanced in the superconducting
state. (e-g) Differential conductance at the positions given in panel (d).

As the conduction is more sensitive to the transmission probabilities when
the leads are superconducting, one might expect small differences in G to
be enhanced in the superconducting state as compared to the normal state.
Indeed, the features (conductance differences between valleys and peaks) in
the linear-response conductance of Fig. 7.1b are much clearer in Fig. 7.1d.

The variation in transmission probabilities is also expressed in the dif-
ferential conductance. Figure 7.1e-g shows dI/dV versus Vsd at 3 different
positions of Vg, having different normal state conductances (G increases go-
ing from position e to g). Although the total conductance is never small, a
clear gap appears in Fig. 7.1e, around Vsd = 0 meV, followed by peaks at
∆ and 2∆. In contrast, a large peak at Vsd = 0 meV shows up in Fig. 7.1g
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Figure 7.2: Resistance as a function of temperature of an open MWNT device
between Au/Al electrodes for 5 different gate positions. A clear transition occurs
around T = 950 mK.

having a linear-response conductance of more than 12 e2/h. These are all
clear indications that we have indeed observed (multiple) Andreev reflection
in our MWNT devices [71].

The temperature dependence for this device at 5 different Vg with increas-
ing resistance is shown in Fig. 7.2. A clear transition is observed around
T = 950 mK for all traces. Although Fig. 7.2 suggests a clear one-to-one
relation between the normal and superconducting state resistances, this is
only a trend and ‘crossing’ R(T ) lines have also been observed.

7.2 A quantum dot in the Kondo regime

The electron spin is of central importance in two of the most widely studied
many-body phenomena in solid-state physics: the Kondo effect and super-
conductivity. The Kondo effect can be understood as a magnetic exchange
interaction between a localized impurity spin and free conduction electrons
[48]. In order to minimize the exchange energy, the conduction electrons
tend to screen the spin of the magnetic impurity and the ensemble forms
a spin singlet. In an s-wave superconductor the electrons form pairs with
antialigned spins and are in a singlet state as well. When present simul-
taneously, the Kondo effect and superconductivity are usually expected to



7.2 A quantum dot in the Kondo regime 50

be competing physical phenomena. In a standard s-wave superconductor
containing magnetic impurities, for example, the local magnetic moments
tend to align the spins of the electron pairs in the superconductor which
often results in a strongly reduced transition temperature. A more subtle
interplay has been proposed for exotic and less well understood materials
such as heavy-fermion superconductors in which both effects might actually
coexist [72].

Given the complexity of a system involving two different many-body phe-
nomena, it would be highly desirable to have a means to investigate their
mutual interplay at the level of a single impurity spin. In this respect, the
study of a quantum dot as an artificial impurity in between superconduct-
ing reservoirs is of great interest. This approach has already proved very
successful in the study of the Kondo effect in normal metals [73, 74, 49].
Here we achieve this for a carbon nanotube quantum dot coupled to super-
conducting Au/Al leads.

The device we consider consists of an individual MWNT of 1.5 µm length
between source and drain electrodes that are separated by 250 nm [75]. The
lithographically defined leads were evaporated over the MWNT, 45 nm of
Au followed by 135 nm of Al. The degenerately doped Si substrate was
used as a gate electrode. Low-temperature transport measurements of the
device exhibited pronounced superconducting proximity effects, as did all
other 14 measured samples having Au/Al contacts.

Before investigating the influence of the superconducting correlations in
the leads, the sample is characterized with the contacts driven normal by
a magnetic field of 26 mT. This field is quite small in terms of the Zeeman
energy (gµBB = 3.0 µeV at B = 26mT where µB is the Bohr magneton and
g ' 2 the gyromagnetic ratio) but exceeds the critical field of the electrodes,
which was experimentally determined to be ∼ 12mT, see App. C. Figure 7.3
shows a grey-scale representation of the differential conductance as a func-
tion of source-drain (Vsd) and gate voltage (Vg). An alternating sequence of
truncated low-conduction ‘diamonds’, linked by narrow ridges of high con-
duction can be seen. The size of the diamonds reflects the magnitude of the
addition energy ∆Eadd which measures the difference in chemical potential
of two adjacent charge states of the dot. In the constant interaction model
∆Eadd = UC + δE, where UC = e2/CΣ is the single-electron charging en-
ergy, CΣ the total electrostatic capacitance and δE the single-electron level
spacing [10]. Starting from an even filling number, ∆Eadd = UC + δE for
the first added electron (large diamond) and UC for the second one (small
diamond). The horizontal features at Vsd 6= 0 mV truncating the large dia-
monds are attributed to the onset of inelastic co-tunneling. From the size
of the truncated diamonds we obtain δE ≈ 0.40− 0.70meV. The charging
energy is obtained from the size of the (faintly visible) small diamonds and
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Figure 7.3: (a) Grey-scale representation of the differential conductance as a
function of source-drain (Vsd) and gate voltage (Vg) at T = 50mK and B = 26mT
for a MWNT device in the Kondo regime (darker = more conductive). The
dashed white lines outline the Coulomb diamonds. The black curve shows the
dI/dVsd versus Vsd trace at the position of the arrow. The regions with even and
odd number of electrons are labelled E and O, respectively. (b) Linear-response
conductance G as a function of Vg. The Kondo ridges are labelled A, B and C. (c-
d) Temperature dependence of ridge A between 50mK (thicker line) and 700mK
(dashed line). The data can be fitted using the empirical function given in the
text yielding a Kondo temperature for ridge A of ∼ 0.75K. (e) When a magnetic
field is applied (0.1− 2T), the ridges split into components at Vsd = ±gµBB/e.
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yields UC ≈ 0.45meV.
The high-conductance ridges are a manifestation of the Kondo effect oc-

curring when the number of electrons on the dot is odd (total spin S = 1/2).
The width of the Kondo resonance reflects the binding energy of the spin
singlet between the spin polarized dot and the electrons in the leads and is
usually described by a Kondo temperature TK . Several of the Kondo ridges
observed show a conductance saturation at the lowest temperatures and
the valley between peaks has completely disappeared at T ≈ 50mK, which
is the base electron temperature of our dilution refrigerator. Figures 7.3c-e
show that the Kondo ridges follow the expected behavior such as a logarith-
mic increase of the linear-response conductance G below TK , a saturation
of G at T ¿ TK and a linear splitting into components at Vsd = ±gµBB/e
when a magnetic field is applied.

From the width of the Kondo ridge out-of-equilibrium, the full width
at half-maximum (FWHM) corresponds to ∼ kBTK , we estimate a Kondo
temperature of 0.82 K for ridge ‘A’ [76]. The Kondo temperature can also
be obtained from the temperature dependence of the linear-response con-
ductance. In the middle of the ridge this is given by the empirical function:
G(T ) = G0/(1 + (21/s − 1)(T/TK)2)s, where s = 0.22 for a spin 1/2 sys-
tem and G0 is the maximum conductance [77]. A best fit to the data yields
G0 = 1.96 e2/h and TK = 0.75K, in agreement with the estimate of TK from
the width of the Kondo ridge. From here on the width of the resonance out-
of-equilibrium is taken as the measure of TK . For the ridges ‘B’ and ‘C’
this yields TK ’s of 1.11K and 0.96K respectively.

We now turn to the behavior of the conductance when the magnetic field
is switched off and the reservoirs become superconducting. Figure 7.4 shows
a grey-scale representation of the differential conductance versus Vsd and Vg

for the same gate range of Fig. 7.3 at B = 0 mT. Note that the vertical axis
is shown only between -0.3 and 0.3 mV here. From comparing Figs. 7.3
and 7.4 it is clear that the conductance pattern has completely changed.
The horizontal lines around Vsd = ±0.20mV in Fig. 7.4 correspond to the
superconducting gap of 2∆, and mark the onset of direct quasi-particle tun-
neling between source and drain. These lines continue throughout the whole
measured gate range, fluctuating slightly with varying Vg, and have been
observed for all 14 samples studied. The appearance of a subgap structure
at Vsd ≤ 2∆ can be understood by invoking multiple Andreev reflection
(MAR) at the boundaries of the superconducting leads and the quantum
dot [12, 13]. Andreev reflection is a higher-order tunneling process in which
an incident electron is converted into a Cooper pair, leaving a reflected hole
in the normal region (see Fig. 7.4c). Andreev reflection has been studied
extensively in mesoscopic devices such as thin wires or break junctions [14]
in which electron-electron interaction and energy-level quantization can be
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neglected.
In a quantum dot, however, Coulomb interaction cannot be neglected

and is expected to suppress higher-order MAR [78, 71]. It is evident from
Fig. 7.4 that the current through the dot also crucially depends on the level
position of the electron states and on the number of electrons on the dot,
having total spin S = 0 or S = 1/2. Note that both UC , δE > 2∆ in the
gate range of Fig. 7.4 and only a single level is expected to be present within
a bias window 2∆.

We will first discuss the conductance behavior in the even diamonds
(S = 0). In the normal state the conductance has a relatively large value
of ∼ 0.5 e2/h in the middle of the diamonds but becomes suppressed when
the leads are superconducting, see Fig. 7.4d-e. Whereas in the normal state
second-order elastic co-tunneling processes can contribute significantly to
the conductance in our device, this is no longer allowed in the supercon-
ducting state due to the opening of an energy gap in the leads. Only
higher-order MAR processes can give rise to a finite conductance at small
bias. The dominant order n depends on Vsd as 2∆/en ≤ Vsd ≤ 2∆/e(n−1)
and is therefore large when Vsd is small. This leads to a rapid decay of
the linear-response conductance when a single-electron state is tuned away
from the Fermi energy of the leads and G almost completely vanishes in the
middle of the diamonds. When Vsd is increased, lower-order MAR processes
become possible. Indeed at Vsd ≈ 0.10mV (∆/e) the current increases (see
peaks in the dI/dV in Figs. 7.4d-f), corresponding to the opening of a chan-
nel with one Andreev reflection (n = 2). In Fig. 7.4e peaks in the dI/dV at
even lower Vsd can be observed (arrows), probably involving a process with
two Andreev reflections (n = 3), shown schematically in Fig. 7.4c.

It is interesting to note that, as indicated in Fig. 7.4a by the dotted
white lines, the Andreev peaks appear to shift in energy as Vg is changed.
This is unique for quantum dots and related to the shift of the level position
of the single-electron states with Vg [79, 80]. A detailed comparison of the
observed energy dependence of the MAR peaks with theory is discussed in
section 7.3.

For the odd diamonds (S = 1/2) the situation is different. In the normal
state the source and drain electrode are strongly coupled by virtue of the
Kondo effect. The lowest-order process in the normal state, where one elec-
tron on the dot is replaced by another one with opposite spin, is no longer
directly possible in the superconducting state since each such process must
necessarily break a Cooper pair. One might therefore expect the Kondo
effect to be suppressed when the leads become superconducting. Indeed,
the conductance in the middle of two of the Kondo ridges (A and C) di-
minishes in the superconducting state. The conductance of Kondo ridge
B, however, is actually enhanced and a narrow resonance remains around
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Figure 7.5: (a) dI/dV grey-scale plot for 3 different Kondo ridges at T = 50mK
and B = 26 mT. The dI/dVsd versus Vsd traces are measured in the middle of the
ridges. (b) The same plot for the superconducting state. An intricate patterns
develops showing multiple Andreev peaks, the position and magnitude of which
depend on the level position. (c) Linear-response conductance in the normal (solid
line) and superconducting (dashed line) state. The rightmost plot shows that
even if the conductance modulation in the normal state is weak and G ∼ 2 e2/h
both for S = 0 and S = 1/2, the difference can be dramatic when the leads are
superconducting.

Vsd = 0 mV, see Fig. 7.4f. Note that ridge B has a higher TK than those
of A and C. These observations are in accordance with theoretical predic-
tions which state that the Kondo resonance should not be destroyed by the
superconductivity if TK is sufficiently large [81, 82, 83]. More precisely, a
cross-over is expected for kBTK ∼ ∆.

The Kondo temperature varies from level to level reflecting the fact that
the wave functions of the particular quantum states can have different over-
laps with the electrodes. Since we observe a multitude of Kondo resonances
in our MWNT quantum dot, having a variety of TK ’s we are able to test
the theoretical predictions mentioned above. The width (FWHM) of the ob-
served Kondo ridges, corresponding to kBTK/e, ranges between 0.045 and
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Figure 7.6: The data points give the ratio GS/GN of the conductances in the
middle of 12 different Kondo ridges in the superconducting (GS) and normal
(GN ) state versus TK/∆ measured at T = 50mK. The gap energy ∆ is 0.1 meV,
corresponding to 1.16 K. The numbers indicate GN in units of e2/h for each data
point. The fact that GN can reach values as high as 2.7 e2/h implies that more
than 1 level can contribute to the current. The dashed line is a guide to the eye.

0.29mV. The superconducting gap is a constant (∆/e ≈ 0.10 mV), which
means that the ratio of both numbers can both be slightly larger or smaller
than 1 depending on the particular level. In Fig. 7.5 we show 3 different
Kondo ridges with increasing TK from left to right. The conductance in the
middle of the narrowest ridge is clearly suppressed when the leads become
superconducting. At the other end of the spectrum, however, a pronounced
increase can be observed. This can be understood qualitatively consider-
ing that in the latter case the energy necessary to break a Cooper pair,
which is proportional to ∆, is more than compensated for by the formation
of the Kondo singlet, having a binding energy of ∼ kBTK . The Kondo
state now provides a strong coupling between superconducting electrodes
and the conductance can increase far beyond its normal-state value [84].
No supercurrent branch has been observed, which we attribute to quantum
and thermal fluctuations in our device [85]. In Fig. 7.6 we show the ra-
tio of the conductances in the superconducting and normal state, GS/GN ,
versus TK/∆ for all measured Kondo resonances (see also App. C). The
cross-over between increased and suppressed conductance indeed appears
at TK/∆ ∼ 1, consistent with the theoretical predictions.

The present study has shown detailed transport measurements of a car-
bon nanotube quantum dot coupled to superconducting leads. Exactly such
systems are presently considered as excellent candidates for the creation of
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nonlocal spin-entangled electron pairs [86, 87]. In these proposals the su-
perconductor acts as a natural source of entangled electrons (the Cooper
pairs) and the repulsive interaction in the nanotubes can be exploited to
spatially separate the electrons of a pair. Future research will explore this
important topic further.

7.3 Multiple Andreev reflections in a quantum dot

The electronic transport properties of quantum dots coupled to metallic
leads have been the object of extensive theoretical and experimental study
[10]. When weakly coupled to its leads, the low-temperature transport char-
acteristics of a quantum dot are usually dominated by size and charge quan-
tization effects, parameterized by the single-electron level spacing ∆E and
the single-electron charging energy UC . When the coupling of the quantum
dot to the source and drain electrodes is increased, higher-order tunneling
processes such as the Kondo effect become important [48]. New effects are
expected when the leads coupled to the quantum dot are superconductors.
In that case electron transport is mediated by multiple Andreev reflection
(MAR) [12, 13]. Unlike conventional S-N-S devices, however, the MAR
structure is now expected [79, 80] to strongly depend on the level positions
of the single-electron states of the quantum dot which can be tuned with
a gate electrode. The influence of Coulomb and Kondo correlations have
been addressed theoretically in Refs. [83, 88].

Because MAR is suppressed rapidly for low-transparency junctions, its
observation requires a relatively strong coupling between the leads and
quantum dot. Even more so as on-site Coulomb repulsion, which is com-
mon to weakly coupled dots, is expected to reduce Andreev processes even
further. A quantum dot very weakly coupled to superconducting leads has
been studied experimentally by Ralph et al. [78]. In this case the transport
characteristics were indeed dominated by charging effects and MAR was
completely suppressed.

The coupling to the leads, expressed in the life-time broadening Γ of the
quantum dot levels, should be compared to the superconducting gap energy
∆. Favourable for the observation of MAR in a quantum dot are coupling
strengths of order Γ ∼ ∆ and a small charging energy UC < ∆. Together
with the restriction that Γ < ∆E (for any quantum dot) this leads to the
approximate condition UC . Γ . ∆E. For most quantum dots typically the
opposite is true and ∆E ¿ UC . It has recently been shown [89] however,
that well-coupled multiwall carbon nanotube (MWNT) quantum dots can
have favourable ratio’s of ∆E/UC ∼ 2 and UC can be as small as 0.4 meV,
comparable to the energy gap 2∆ of a conventional superconductor like Al.
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Figure 7.7: (a) Grey-scale representation of the differential conductance as a
function of source-drain (Vsd) and gate voltage (Vg) at T = 50mK and B = 26mT
for a MWNT quantum dot (darker = more conductive). (b) Linear-response
conductance G as a function of Vg. The appearance of a single broad peak is due
to the Kondo effect. (c) Differential conductance at two different values of Vg.
(d) Typical device geometry. For the measurements presented here, the electrode
spacing is 250 nm and the MWNT length 1.5 µm. The Si substrate is used as a
gate electrode.

Here we report on the experimental study of resonant MAR in a MWNT
quantum dot. The superconducting leads to the MWNT consist of an Au/Al
bilayer (45/135 nm) deposited on top of the nanotube (see Fig. 7.7d). Be-
fore investigating the system in the superconducting state, the sample is
first characterized in the normal state by applying a small magnetic field.
From these measurements relevant parameters such as ∆E, UC , and Γ are
obtained. We then discuss a theoretical model that describes the differ-
ential conductance of an individual level in a quantum dot coupled to su-
perconducting electrodes. In the final part of this section we compare the
calculated differential conductance with the experimental data.

Figure 7.7 shows a grey-scale representation of the differential conduc-
tance dI/dVsd versus source-drain (Vsd) and gate voltage (Vg) at T = 50 mK
when the contacts are driven normal by a small magnetic field. The dot-
ted white lines outline the onset of first-order tunneling and appear when
a discrete energy level of the quantum dot is at resonance with the elec-
trochemical potential of one of the leads. From these and other electron
states measured for this sample (about 20 in total), we obtain an av-
erage single-electron level spacing ∆E ∼ 0.6meV and a charging energy
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UC ∼ 0.4meV. Since UC = e2/CΣ this yields CΣ = 400 aF for the total
capacitance which is the sum of the gate capacitance (Cg) and the contact
capacitances Cs (source) and Cd (drain). From the data of Fig. 7.7a we
obtain Cg/CΣ = 0.0036, and Cs/Cd = 0.45. The lifetime broadening Γ is
obtained from the width of the single-electron peaks at finite source-drain
voltage (taking the background conductance into account) and is found to
be Γ ∼ 0.35meV.

The high-conductance ridge around Vsd = 0 mV in Fig. 7.7a is a manifes-
tation of the spin-1/2 Kondo effect occurring when the number of electrons
on the dot is odd. As a result, the Coulomb valley in the conductance has
disappeared in this region of Vg and at 50 mK, which is the base tempera-
ture of our dilution refrigerator, only a single peak remains, see Fig. 7.7b.
The appearance of the Kondo effect is an indication that the coupling to
the leads is relatively strong. We will not discuss the Kondo effect here, and
instead refer to section 7.2 or Ref. [90].

When the magnetic field is switched off, the leads become superconduct-
ing. To calculate the expected differential conductance in the supercon-
ducting state of the leads we have used the non-equilibrium Green-function
technique [91]. We model the quantum dot as a series of spin-degenerate
resonant levels coupled to superconducting electrodes, which are assumed to
have a BCS spectral density. Note that neither electron-electron interaction
(Coulomb blockade) nor exchange correlations (Kondo effect) are accounted
for in the model, which may, therefore, not explain all details of the actual
measurements. However, the interplay between MAR and resonant scat-
tering already leads to strongly nonlinear IV-characteristics and reproduces
some of the key features of the data. The main parameters entering the cal-
culation are the two tunneling rates Γs(d) and ∆. In the model we account
for the gate voltage by a shift of the levels, which can be adjusted according
to the experimentally observed Coulomb diamonds, see Fig. 7.7.

The discrete nature of the single-electron states is most pronounced when
Γ is small. Therefore, before presenting the model calculation that directly
compares to the experimental data, we first discuss the transport character-
istics of a single spin-degenerate level with a relatively weak and symmetric
coupling to the superconducting leads along the lines of Refs. [79, 80]. The
total tunneling rate Γ ≡ Γs + Γd is set to ∆. Figure 7.8 shows the corre-
sponding grey-scale representation of the calculated differential conductance
dI/dVsd versus ϕg := eVgCg/CΣ and eVsd. The peak structure in dI/dVsd

at Vsd < 2∆/e is the result of MAR. In general, Andreev channels become
available for transport at voltages Vsd = 2∆/ne, where n is an integer num-
ber. These positions are indicated by the horizontal dashed black lines in
Fig. 7.8a. The appearance and magnitude of the MAR peaks, however, is
strongly dependent on the position of the resonant level in the quantum dot
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with respect to the Fermi energy of the leads. Only those MAR trajectories
that connect the resonant level to the leads’ BCS spectral densities give a
significant contribution to the current. Consider, for example, the position
marked by C in Fig. 7.8a, which corresponds to the schematics of Fig. 7.8c
and indicates the position (ϕg, eVsd) = (0, 2∆/3). The corresponding An-
dreev trajectory connects the gap edges of the source and drain electrodes
and includes the resonant level which is situated exactly in between the
respective Fermi energies. This results in the large peak in dI/dVsd seen in
Fig. 7.8b.

A similar peak is absent at (ϕg, eVsd) = (0,∆), corresponding to point
D in Fig. 7.8a. Now, the corresponding trajectories (see Fig. 7.8d) do
not directly connect the resonant level to the leads’ spectral densities, and
therefore do not significantly contribute to the current. Only when the
gate voltage is adjusted to align the level with the Fermi energy of one
of the leads (indicated by the arrows in Fig. 7.8a) a peak in dI/dVsd is
observed. It can be shown (for symmetric junctions) that the subharmonic
gap structure at Vg = 0 is suppressed for all voltages Vsd = 2∆/ne with
n = even [79, 80]. When Vsd is increased beyond ∆/e, peaks are observed
either when the level stays aligned with the electrochemical potential of the
leads (red dashed lines: ϕg = ±eVsd/2) or when the level follows the gap
edges as an initial or final state of an Andreev process (blue dash-dotted
lines: ϕg = ±(∆− eVsd/2) or ϕg = ±(∆− 3eVsd/2)).

We now turn to the actual measurements of the differential conductance
when the leads are in the superconducting state. Figure 7.9 shows a grey-
scale representation of the measured dI/dVsd versus Vsd and Vg at B = 0 mT
for the same single-electron state of Fig. 7.7. A number of differences be-
tween the normal state (Fig. 7.7) and superconducting state (Fig. 7.9) can be
observed. The horizontal high-conductance lines at voltages Vsd = ±0.2mV
in Fig. 7.9, for example, are attributed to the onset of quasi-particle tun-
neling when the voltage difference between the source and drain electrode
equals 2∆/e. The subgap structure at Vsd < 2∆/e is attributed to MAR. As
anticipated, the magnitude and the position (dashed white lines) of MAR
peaks depend on Vg. To allow for comparison with theory, the adjustable
parameters of the model are set to the values obtained from the measure-
ment of Fig. 7.7. The most important parameter is the coupling between
the electrodes and the dot which turns out to be Γ ∼ 3.5 ∆. The voltage
division between the two tunnel barriers separating the quantum dot from
the leads is Cs/Cd = 0.45. The individual tunneling rates of the source and
drain electrodes to the dot are not exactly known but are not expected to
show a strong asymmetry since the Kondo resonance of Fig. 7.7 saturates
at a value close to 2 e2/h. The neighboring single-electron states, separated
by ∆E ∼ 6.5∆, are included in the calculation. The finite temperature of
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the experiment is taken into account and set to T = 0.1∆.
The resulting calculated grey-scale representation of the differential con-

ductance is shown in Fig. 7.10. The overall appearance clearly resembles the
measured data of Fig. 7.9. For example, both the model and the measured
data show a large peak in dI/dVsd around Vsd = 0mV when the electron
state is at resonance with the electrochemical potential of the leads (i.e.
at Vg = 0). When the level is moved away from this position, the linear-
response conductance rapidly decays to values below its normal-state value.
In contrast, the differential conductance peak at Vsd = 2∆/e shows the
opposite behavior (both in the model as in the experiment). At Vg = 0,
this peak is much less pronounced than at lower values of Vg. These obser-
vations are similar to conventional S-N-S structures, such as atomic-sized
break junctions [14]: For large transparencies of the junction a peak is ob-
served at Vsd = 0 but no structure at 2∆ while for small transparencies a
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gap is observed around Vsd = 0 and a large peak at 2∆ marks the onset of
quasi-particle tunneling. In contrast to breakjunctions, for which the trans-
parency depends on the atomic arrangement of the junction, the effective
transparency can be tuned in a quantum dot by moving the level position
through the gate electrode. The effective transparency is large if the level
is aligned with the Fermi levels of the leads (on resonance) and it is small
otherwise (off resonance).

The subharmonic gap structure is clearly visible in the measured data of
Fig. 7.9 and has a similar gate-voltage dependence as in the model calcula-
tion of Fig. 7.10. However, there are several differences. The most dramatic
one is the pronounced peak at (Vg, Vsd) = (0, ∆/e) in the measurement
(Fig. 7.9c). Because this position corresponds to an even MAR cycle it
should be absent based on our previous consideration (see Fig. 7.8d).

Let us compare theory and experiment by focussing on the dI/dVsd lines
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traces shown in Figs. 7.9b-c and Figs. 7.10b-c (solid curves). In panels (b)
the dot level is off resonance, while it is on resonance in panels (c). For
the former case, experiment and theory agree fairly well. The differences in
MAR structure between model and experiment are much more pronounced
at the resonance position. Whereas the experiment (Fig. 7.9c) reveals pro-
nounced peaks at ∆/2, ∆ and 2∆, the calculated dI/dVsd (Fig. 7.10c, solid)
reveals fine structure for small Vsd and pronounced peaks at 2∆/3 and 2∆.
According to our previous discussion dI/dVsd should indeed show a pro-
nounced peak at Vsd = 2∆/3e, if the dot level is centered in the middle,
i.e. for ϕg = 0 at point C in Fig. 7.8a and Fig. 7.8c. It rather appears in
the experiment that, contrary to expectations, the subgap feature at 2∆/3
is missing, while the ‘forbidden’ at ∆ is present. Such behavior would be
expected only for very asymmetric junctions having Cs/Cd ¿ 1 [92], which
is not the case in the present work.

There are different imaginable scenarios that may account for the ob-
served ∆ peak and the lack of fine structure around Vsd = 0 mV in the
data of Fig. 7.9c. Inelastic scattering processes inside the dot, for exam-
ple, would broaden and obscure higher-order MAR features. Other possible
reasons may be found in a broadened BCS spectral density (the supercon-
ductor consists of a bilayer of Au/Al [70]) or a suppression of higher-order
MAR due to the on-site Coulomb repulsion.

In a phenomenological approach, we may try to account for the addi-
tional broadening by manually introducing larger bare couplings Γs,d. Many
curves with varying parameters were calculated of which a representative set
is displayed in Fig. 7.10b-c (dashed curves) corresponding to relatively large
dot-electrode couplings of Γs = 2.5 ∆ and Γd = 3.5∆. For the off-resonance
position (Fig. 7.10b) the main effect of the larger Γ is the increased magni-
tude of dI/dVsd. In contrast, the MAR structures significantly changes for
the resonance position (Fig. 7.10c). Remarkably, at large coupling Γ, peaks
now appear at 2∆, ∆ and ∆/2. These peaks do not originate from the res-
onant level, but from the two neighboring ones which are off resonance (the
dot levels are spaced by ∆E ≈ 6.5∆). Though the agreement is now rea-
sonable, there is one remaining problem. We were unable to reproduce the
relative peak height between the 2∆ and ∆ peaks. Using any reasonable set
of parameters, the 2∆ peak is always larger than the ∆ peak in the model,
while it is the opposite in the experiment. We emphasize that the model
does not take into account interaction and correlations. Since a Kondo res-
onance is observed in the normal state, which need not be suppressed in
the superconducting state [90], this may be the origin of the discrepancy.
The Kondo resonance changes the spectral density in the leads by adding
spectral weight to the center of the gap and removing spectral weight from
the gap edges. The former tends to enhance the ∆ peak, while the latter
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tends to suppress the 2∆ one. This explanation is attractive, but more work
both in theory and experiment is needed to substantiate it.

In conclusion, we have investigated the non-linear conductance char-
acteristics of a quantum dot coupled to superconducting electrodes. We
find a strong dependence of the MAR structure on the level position of
the single-electron states. The experimental data is compared with a the-
oretical model, assuming a BCS density-of-states in the electrodes and an
interaction-free dot. Reasonable agreement is possible, if the tunneling cou-
pling to the leads is enhanced by a factor ∼ 2 in the model as compared to
the experimental value. There are additional subtle differences which point
to the importance of interaction and exchange correlations.



Appendix A

Measurement cryostats

The low-temperature measurements have been performed in two different
cryostats. Except for the measurements described in chapter 7 all experi-
ments were done in a 3He cryostat from Cryogenics with a base temperature
of 280 mK. The second cryostat is an Oxford TLM 400 dilution refrigerator
with an electron base temperature of about 50 mK.

3He Cryostat

Figure A.1 shows (parts of) the 3He cryostat used in our experiments. The
3He is contained in a closed space and can be condensed at the ‘1 Kelvin
pot’ when cooled below about 2 K. In turn, the samples can be cooled to a
base temperature of 280 mK by pumping away the 3He vapour of the 3He
condensate using an charcoal adsorption pump which adsorbs 3He molecules
when cooled below 20 K. The samples can be kept cold at the base temper-
ature for about 20 hours after which the 3He has to be recondensed. The
system is equipped with a π-filter stage at room temperature and thermo-
coax filters at low temperature.

Dilution refrigerator

The dilution refrigerator is based on the fact that below a critical temper-
ature (860 mK) a mixture of 3He and 4He spontaneously separates into
two phases, one rich in 3He and one rich in 4He. Cooling is obtained by
‘evaporating’ the 3He from the rich phase into the dilute phase, similar to
an ordinary vapour/liquid system. To obtain a continuous operation the
3He atoms that pass through the phase boundary are pumped away and
led back into the mixture through a condensor stage. The dilution refrig-
erator used in our experiments is an Oxford TLM 400 with a top loading
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Figure A.1: (a) Low-temperature part of the 3He insert with the tube for the
isolation vacuum removed. (b) 3He cryostat with instrument rack.

sample probe. The turn-around-time is approximately 10 hours. The mix-
ing chamber base temperature is 28 mK. The electron base temperature has
been determined from the shape of Coulomb blockade peaks (see below) and
yielded ∼ 50 mK. To achieve the low electron temperature the wiring had
to be filtered carefully. At room temperature the system has been equipped
with two π-filter stages. At low temperatures all wires (8 sample and 4 ther-
mometer wires) include about 100 cm of ‘lossy’ coaxial cable, see Fig. A.2.
The sample is mounted in a RF tight brass box. In addition, the sample
holder has been modified such that commercially available chip carriers can
be inserted. As the top loading probe has a diameter of only 12 mm, the
mounting of a new shielded sample holder, a calibrated thermometer and 12
separate lines of coaxial cable (requiring cadmium solder) has by no means
been a straightforward task.

As mentioned above, the attenuation properties of a thin coaxial cable
have been exploited as a low-temperature microwave filter. If the inner
conductor and jacket are resistive enough, the losses in a coaxial cable in-
crease as the square root of frequency due to the skin effect. In our system,
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Figure A.2: The coaxial cables used as a low-
temperature filter before the final assembly.

the central wire of the coaxial cable consisted of an IsaOhm resistive wire
(NiCr20AlSi) of 0.23 mm diameter coated with 0.06 mm of insulating var-
nish (dielectric constant ε = 3.3). The wire has an almost temperature
independent resistivity of 1.32 µΩm. The jacket had been made of stainless
steel (Goodfellow, resistivity of 0.71 µΩ m) with an inner diameter of 0.38
mm and an outer diameter of 0.5 mm. The space in between the central
wire and jacket has been filled with paraffin. An estimate of the attenuation
at 20 Ghz for this geometry is at least ∼ 150 dB [93].

Figure A.3 shows the width (FWHM) of a Coulomb peak of a very weakly
coupled MWNT having G ¿ e2/h. The peaks of this device were well sep-
arated at the temperature range of the dilution fridge (see inset). A linear
decrease of the peak widths is observed down to T ∼ 50mK. The slope
of this curve should follow the relation ∆Vg = 3.5kBT/αe, where α is the
gate voltage-to-energy conversion factor given by the ratio of the gate and
total capacitance Cg/CΣ. The slope indicates an α of 1/150 in reasonable
agreement with estimates of α from the Coulomb diamond patterns in the
differential conductance measurements.
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Appendix B

Freestanding MWNTs and
shell burning

Preliminary tests have been performed to fabricate freestanding MWNT
devices and to remove individual shells of the MWNTs. To this effect, a wet
etch has been used to remove 200 nm of the SiO2 substrate of the nanotube
devices following the simple procedure of Ref. [94]. A buffered HF etch
(10 % HF, etch rate 200 nm/3 min.) was used to suspend the nanotubes.
After the HF etch the devices are transferred to de-ionized water followed
by isopropanol.

Due to the high rigidity of MWNTs (as compared to e.g. SWNTs) the
rate of successful suspension of the MWNTs with a 400 nm gap between
electrodes is nearly 100 %. Room temperature measurements indicate that
the HF etch leaves the MWNTs and Ti/Au electrodes unaffected as the
2-terminal resistance values of etched devices show no apparent difference
compared to regular devices. Scanning electron microscope images of an
etched MWNT device are shown in Fig. B.1. Freestanding carbon nano-

Floating marker

a) b)

Figure B.1: (a) SEM image of a freestanding MWNT. Approximately 200 nm of
the SiO2 substrate has been removed using a buffered HF etch. (b) This floating
alignment marker clearly illustrates the achieved SiO2 etch.
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tubes of different lengths and diameter can be useful e.g. as templates for
evaporating metallic nanowires [95] or as high frequency nanometer scale
mechanical resonators [96].

The MWNTs can support a remarkable large current before electrical
breakdown occurs. When the contact resistance is sufficiently low (of order
1 kΩ) the MWNTs fail via a series of equally sized current steps, as first
observed in Ref. [97]. An example of the electrical breakdown of a free-
standing MWNT in air is shown in Fig. B.2. Here the applied voltage over
the MWNT could be raised to ∼ 2.3 V at which the current saturated at
a value of 140 µA (not shown). When the voltage is increased above the
threshold voltage of 2.3 V the individual shells fail and the current decreases
in steps of about 15 µA. Current saturation around a value of 15− 25 µA
has been observed first for SWNTs and attributed to electron-phonon scat-
tering processes [98]. In the example of Fig. B.2 each individual shell of the
MWNT indeed contributes to the saturation current with ∼ 15 µA. This
would correspond to 8 to 10 current carrying MWNT shells.

0 5 10 15 20 25 30 35 40

t (sec)

no data points taken

break of 10 sec

(buffer read)

sampling rate of 5 kHz

120

100

80

60

40

20

0

I 
(µ
A

)

20.3 µA

46.3 µA

15.5 µA

14.5 µA

15.4 µA

Figure B.2: Time trace of the measured current during a MWNT breakdown
in air. The MWNT fails in steps of approximately 15 µA. No data points were
taken at the positions indicated by the arrows which lasted about 10 seconds. The
sampling rate of 5 kHz has been sufficient to resolve the steps. The insets shows
a significant thinning in the middle of the MWNT after the experiment.



Appendix C

Additional Kondo data

Normal state

The Kondo resonances observed in chapters 5 and 7 are expected to show a
linear splitting into components at Vsd = ±gµBB/e when a magnetic field
is applied, i.e. the total separation of the components is twice the Zeeman
energy. Although the Kondo resonance described in chapter 5 indeed broad-
ens and disappears when a magnetic field is applied, a clear splitting could
not be resolved. This is different for the measurements presented in chapter
7 obtained at a lower base temperature of T = 50mK. Here the splitting
into two components is clearly visible as illustrated in Fig. C.1.

0.0 0.1-0.1
∆Vg (V)

0.2

0.0

-0.2V
sd

 (
m

V
) 26 mT 0.7 T 1.1 T

0.0 0.1-0.1
∆Vg (V)

0.0 0.1-0.1
∆Vg (V)

Figure C.1: Shown in a grey-scale representation of the differential conductance
versus gate (∆Vg) and source-drain voltage (Vsd) is the splitting of a Kondo reso-
nance in a magnetic field at T = 50mK (darker = more conductive). This Kondo
resonance is part of the measurement series on the MWNT device presented in
chapter 7, see e.g. Fig 7.3.
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Superconducting state

As discussed in section 7.2, the ratio GS/GN of the conductances in the mid-
dle of a Kondo ridge in the superconducting (GS) and normal state (GN )
of the leads crosses unity when kBTK ∼ ∆. The gradual cross-over between
the regimes of increased and suppressed conductance has been shown in
Fig. 7.6 which plotted points of GS/GN versus TK/∆ for different Kondo
ridges. The value of GS of each of these points has been obtained using
graphs like Fig. C.2 which shows a grey-scale representation of the differ-
ential conductance with the leads in the superconducting state for a Kondo
ridge having TK = 0.96K. The Kondo temperature of 0.96 K is slightly
smaller than the superconducting gap energy ∆ ≈ 0.1 meV which corre-
sponds to 1.16 K. Indeed, the conductance is found to be suppressed in the
middle of the Kondo ridge when the leads are superconducting as compared
to the normal state (here GS/GN ∼ 0.65). Even so, a small resonance is still
visible. In fact, the resonance around Vsd = 0mV in the superconducting
state of the leads gradually develops when the Kondo temperature increases.
This is most clearly illustrated in Fig. C.3 which shows an emerging Kondo
resonance with increasing TK for 10 different ridges.
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Figure C.2: Grey-scale representation of the differential conductance in the su-
perconducting state of the leads for a Kondo resonance having TK = 0.96K. The
line trace shows the differential conductance evaluated along the dashed line at
∆Vg = 0V.
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when the leads are in the superconducting state. The measurements are obtained
at a temperature of T = 50 mK.



74

Magnetic field dependence

The magnetic field dependence at small fields is shown in Fig. C.4. The top
and bottom plots are obtained at two different positions of the gate voltage
for the MWNT device described in sections 7.2 and 7.3. The top plot shows
a position in the middle of a Coulomb diamond having total spin S=0. The
critical field appears to be ∼ 12 mT. Above this field the differential con-
ductance is featureless and has a relatively low value of 0.5 e2/h. When the
field is decreased a gap opens, the linear-response conductance vanishes and
Andreev structure appears. The slight shift of the center to 3 mT is prob-
ably due to a small remanent field. When in chapter 7 the devices are said
to be studied in the superconducting state at B = 0 T, the magnetic field
is actually carefully tuned to be at the position where the superconducting
gap is maximum (here at around 3 mT). The bottom plot of Fig. C.4 is near
(but not exactly at) the center of a Kondo resonance. As before, the normal
state properties are retained above ∼ 12 mT. When the field is decreased
the Kondo resonance is transformed into a narrow resonance accompanied
by Andreev peaks at higher Vsd.
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Figure C.4: Grey-scale representations of the differential conductance versus
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L. Forró, W.A. de Heer, and A. Châtelin, Advanced Materials 9, 827
(1997).
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