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Chapter 1

Introduction

Mesoscopic physics is a subfield of condensed matter physics devoted to
electrical phenomena of small conductors in which the quantum nature of
the electrons plays an important role. The term ‘meso’ indicates that meso-
scopic physics is at the borderline between the microscopic and macroscopic
world. On one hand, the systems of interest are small enough, that elec-
trons maintain their quantum phase coherence over a distance larger than
the sample size leading to interference effects which cannot be described
classically. The wavelength of the electrons can be of the same order as
the confining potential so that quantized states are formed. On the other
hand, mesoscopic systems contain like macroscopic devices a large number
of atoms so that statistical descriptions like distribution functions are mean-
ingful. The most important length scales defining the mesoscopic regime are
the coherence length lφ and the Fermi wavelength λF of the electrons. Al-
though some mesoscopic effects are observable on a macroscopic scale - as for
example the quantum Hall effect - most studies are carried out on devices
of sub-micrometer dimensions. Thus, the experimental research in meso-
scopic physics, which started around twenty years ago, has always closely
been related with the development of sophisticated lithographic and crystal
growth techniques. The fundamental research also benefitted much from
the massive industrial research and development efforts towards minitur-
ization of integrated electronic circuits based on semiconducting materials.
Since nowadays these conventional techniques seem to reach their limits in
further miniturization other materials such as organic molecules, nanotubes
or DNA might be used in the future. That is why mesoscopic physics has
also become a part of an interdisciplinary field including physics, chemistry
and biology.

Initially, the research in mesoscopic physics was mainly focused on diffu-
sive metals in which the electronic motion is a random walk between impuri-
ties. Interference in multiple scattering processes gives rise to corrections to

1
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t

I(t)
Figure 1.1: Time dependent fluctuations
∆I(t) = I(t)−〈I〉 of the electrical current
I(t) around its mean value 〈I〉.

the classical conductance as manifest in, for example, universal conductance
fluctuations (reproducable fluctuations in the conductance versus Fermi en-
ergy or magnetic field). Another system commonly used to study mesocopic
effects are very pure semiconductor heterostructures (e.g. GaAs/AlGaAs),
where scattering processes are rare compared to metalls. In these high-
mobility systems electrons are confined to two dimensions at the interface
of the two semiconducting components. Because of the large Fermi wave-
length, the dimensions of such a two-dimensional electron system can be
reduced even further by quantum confinement to one (quantum wire) or
even zero (quantum dot) dimensions. Nowadays, heterostructure semicon-
ductors are increasingly used in telecommunication technology and can be
found in mobile phones, CD-players, bar-code reader etc.

Central topic of this thesis are fluctuation phenomena in the electrical
current of high-mobility semiconductors. Such time dependent fluctuations
of the current around its mean value occur due to the discrete nature of
the electron charge and are called shot noise. They are present even at zero
temperature. In contrast to classical music, where noise is most often a dis-
turbance, the noise in the electrical current contains additional information
on how the electrons move in a conductor. This information is not available
from common conductance measurements.

For example, the statistics or the charge of the particles involved in
transport can be probed by shot noise. Furthermore, electrical noise has
become an alternative and very accurate method to determine the temper-
ature of electrons in a solid. Thus, measuring the noise in the electrical
current is a very powerful tool in mesoscopic physics. It will certainly play
an important role in the future, too, for example within the field of quantum
computing in order to probe the correlations caused by entanglement.

This thesis is organized in the following way. The second chapter gives
an introduction into some basic concepts of electrical transport and noise
in mesoscopic systems. Furthermore, I briefly review the properties of two-
dimensional electron gases. The third and fourth chapter describe the pro-
cessing of heterostructure devices (chap. 3) as well as the technique to de-
tect low-frequency noise (chap. 4). In the following chapters (chap. 5 - 8)
the main results on fluctuation phenomena in low dimensional conductors
of this thesis are presented:
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Chapter 5: In the fifty’s of the last century a new field, nowadays called
quantum statistics, was invoked by a fundamental experiment of Hanbury
Brown and Twiss (HBT). The statistics of inherent indistinguishable quan-
tum particles is different from that of classical particles which always can be
distinguished by their unique classical trajectories. As is well known, there
are two different kinds of quantum particles, Bosons and Fermions, which
differ in the symmetry of the wave function upon interchange of two parti-
cles. HBT explored the statistics of a thermal photon field which is made
out of Bosons performing an intensity correlation experiment. In this chap-
ter we present an analogous experiment carried out with electrons which
are Fermions.

Chapter 6: The amount of shot noise in mesoscopic conductors is not ar-
bitrary but equals various so called universal values for different systems.
Here, ‘universal’ means that the noise level is insensitive to microscopic
properties of the device. Cavities of micrometer dimensions in which elec-
trons scatter randomly are one example of a system where the shot noise is
believed to be universal. Here, we present the first experimental confirma-
tion of this theoretical prediction for the shot noise in so called open chaotic
cavities.

Chapter 7: Shot noise was first discovered in classical systems, namely in
vacuum tubes by W. Schottky in 1918. The detailed investigation of shot
noise in nano-conductores started only during the last ten years ago and
since than has provided a tremendous amount of new information about
charge transport. Surprisingly, the mathematical expressions for shot noise
in classical systems like vacuum tubes and in coherent (mesoscopic) con-
ductors are very similar which leads to the question about differences and
similarities in the origin of shot noise in classical and quantum mechanical
systems. In this chapter I discuss an experiment which clearly shows that
the shot noise present in mesoscopic devices is a purely quantum mechanical
effect, which disappears in the case that electronic motion is governed by
laws of classical mechanics alone.

Chapter 8: In this final chapter I investigate the crossover of shot noise
from a single scatterer to the limit of a large number of scatterers in series.
Experimentally, each single scatterer can be modeled as a quantum point
contact. Whereas for one scatterer shot noise is highly sensitive to the prob-
ability for transmission through the contact it reaches the same universal
value for an infinite number of scatters independently of the transmission
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probability. Theoretically, this problem has been considered before for a
series of planar tunnel junctions. In our case however, the system does not
consist of a one-dimensional array of barriers, but cavities are formed in
between the contacts. We therefore present a theoretical model which in-
cludes the additional cavity noise contribution to the partition noise of the
contacts, and compare it to our experimental results.



Chapter 2

Mesoscopic physics

2.1 The scattering approach to transport

In classical electron transport theory (Drude model [1]) the conductivity σ
of an electrical conductor follows from the balance between acceleration of
the charge carriers due to an external electric field and inelastic scattering
from the environment. The basic assumption behind this description is
that scattering processes at different locations occur incoherently. Thus,
for a large homogeneous conductor the conductance G = V/I, being the
experimentally measured quantity, is related to the microscopic conductivity
σ by

G = (W/L) · σ (2.1)

with L the length and W the width (two dimensions) or the cross-section
(three dimensions) of the conductor. This scaling property of the conduc-
tance holds provided the sample size L is much larger than the mean free
path l and the coherence length lφ (the length after the phase memory of
the electrons is lost). Otherwise, a local conductivity σ cannot be defined
and the relevant physical quantitiy is the conductance G itself.1 This is the
case in mesoscopic conductors where classical concepts must be modified in
light of quantum mechanics.

A well established theoretical concept - the scattering approach, also
referred to as the Landauer-Büttiker formalism - describes transport in
mesoscopic systems relating the conductance G of a device to the quantum
mechanical transmission probability of propagating modes (quantum chan-
nels) [2]. In the following a coherent conductor ideally connected by leads2

to a left and right reservoir is considered [Fig. 2.1]. Scattering within the

1The same also holds for other physical quantities such as the specific heat.
2Ideal leads are ballistic conductors in which electrons scatter only elastically from

the boundaries and backscattering is absent.

5
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Figure 2.1: Two-terminal device coupled via two ideal leads (waveguides) to
reservoirs on the left and rigth side.

conductor is purely elastic while all inelastic processes occur in the reser-
voirs. In this manner the conductor is treated as a quantum mechanical
object, whereas the reservoirs are semiclassically described as a degenerate
Fermi gas. The distribution functions in the reservoirs are defined via their
temperatures θL,R and their chemical potentials µL,R:

fα(E) =
[
exp
(

E − µα

kBθα

)
+ 1
]−1

, α = L,R. (2.2)

Due to the transversal confinement in the leads the energy spectrum of the
electrons is quantized and so called subbands (one-dimensional channels)
form. The eigenstates of these subbands, which are also denoted as modes,
are

ψ±
n ∝ e±iknxχn(y, z), (2.3)

where n = 1, . . . , N denotes the subband index and the plus (minus) sign
corresponds to a right (left) moving state. The transverse wave functions
χn(y, z) solve the time-independent Schrödinger equation in a confining
potential V (y, z):[

− �
2

2m

(
d2

dy2
+

d2

dz2

)
+ V (y, z)

]
χn(y, z) = Enχn(y, z). (2.4)

The dispersion relation En(kn) of an electron in the n-th subband equals

En(kn) = En + �
2k2

n/2m∗. (2.5)

A general state incoming to the scattering region S in Fig. 2.1 is a
superposition of all incoming modes from the left and right reservoir. The
amplitudes of these modes form a 2N vector (aL, aR) with N the number
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of subbands. In the same way another 2N vector (bL, bR) describes an
outgoing state. The various amplitudes of incoming and outgoing modes
are related via the scattering matrix s:3(

bL

bR

)
= s

(
aL

aR

)
, s =

(
s11 s12

s21 s22

)
≡
(

r t′

t r′

)
. (2.6)

r and t (r′ and t′) are the N × N reflection and transmission matrices with
elements tnm, rnm for modes from the left (right). In case of a voltage
difference V applied between the reservoirs the states in the left and right
reservoirs are filled up to the energy µL = EF + eV and µR = EF , re-
spectively, with EF the Fermi energy. Thus, only states within the interval
EF < E < EF + eV contribute to the net current. The n-th right mov-
ing mode carries a current e

∫ EF +eV

EF
dE vnρn with vn = (1/�) · (dEn/dk)

its group velocity and ρn = 1/π · (dEn/dk)−1 the density of states of a
one-dimensional subband. The product of vn and ρn is energy independent
and is the same for all modes. Hence, the total current is equipartitioned
among the modes in the leads each carrying the universal current amount of
2e/h per unit energy.4 Thereby, a fraction (1/N)

∑
n |tnm|2 of all incoming

modes is transmitted to the right, so that the net current is given by

I =
2e

h

N∑
n,m=1

∫ EF +eV

EF

dE |tnm|2. (2.7)

From G = I/V we obtain the Landauer formula for the 2-terminal linear
response conductance (i.e. eV → 0)

G =
2e2

h

N∑
n,m=1

|tnm|2 =
2e2

h
Tr tt† (2.8)

relating the conductance G to the transmission amplitudes tnm from mode
m to mode n. The multi-terminal generalization of Eq. (2.8) is due to
Büttiker [3]. Assuming that a voltage Vβ is applied to the reservoir β of an
arbitrary device the average current through lead α at arbitrary temperature
is given by [3]

Iα =
∑

β

GαβVβ with the conductance matrix (2.9)

Gαβ =
2e2

h

∫
dE

(
− ∂f

∂E

)
[Nαδαβ − Tαβ ]. (2.10)

3In the second quantization approach incident states are described by creation oper-
ators â† and annihilation operators â, while outgoing states are described by creation
operators b̂† and annihilation operators b̂.

4The factor 2 accounts for spin degenerated electrons.
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Figure 2.2: (a) Measured conductance of a ballistic quantum point contact show-
ing quantized conductance steps of 2e2/h. (b) The thermopower S of a quantum
point contact depends on the derivative of the conductance with respect to energy
leading to an oscillating behaviour of the measured thermal voltage ∆Vth = S ·∆θ.
According to theory the peak heights are proportional to (n + 1/2)−1 with n the
subband index, what is also experimentally observed (inset).

Tαβ ≡ Tr (s†αβsαβ) is the total probability for transmission from probe β
into lead α.

If no backscattering takes place inside the conductor (ballistic transport)
all modes have unit transmission probability, so that in Eq. (2.8) the sum∑N

n,m |tnm|2 equals an integer number N . In this case the Landauer for-
mula simplifies to G = 2e2/h · N . Such a quantized conductance in units
of G0 ≡ 2e2/h � (12.9 kΩ)−1 is experimentally observed in quantum point
contacts (QPC) [4, 5], which are narrow constrictions in width comparable
to the Fermi wavelength [see sect. 2.2.2]. Increasing the width of the con-
striction the number of modes N in the point contact increases, manifesting
itself in a staircase like conductance [Fig. 2.2(a)].

Like the electrical conductance thermo-electrical properties such as the
thermopower S ≡ (∆V/∆θ)I=0, the Peltier coefficient Π ≡ (Q/I)∆θ=0 or
the thermal conductance κ ≡ −(Q/∆θ)I=0 all exhibit quantum size effects,
too [6, 7]. Here Q denotes the heat flow. In contrast to the conductance
G, the thermopower S ∝ G−1∂G/∂E probes the energy dependence of
the quantum mechanical scattering processes at the Fermi energy. As a
consequence of its proportionality to ∂G/∂E an oscillating thermal voltage
∆Vth = S · ∆θ is observed [Fig. 2.2(b)].
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2.2 The two-dimensional electron gas

The electrons of bulk metals and semiconductors are generally free to move
in all three spatial directions. The energy spectrum for a free particle with
effective mass m∗ is

E(k) =
�

2

2m∗ (k2
x + k2

y + k2
z) (2.11)

with kx,y,z the components of the wave vector k. If the Fermi wave length
λF ≡ 2π/kF is of the same order as the spatial width of the confining po-
tential in a certain direction, the quantum nature of the electrons becomes
significant. In that case, the energy spectrum for this direction is quantized
with different subband energies En, and the dimensionality of the system
becomes reduced. An example for a naturally occuring material showing
quasi-two-dimensional behaviour is graphite, where the resistance along the
sheets is much lower than between them. Other such examples are con-
ducting polymer sheets or electrons on the surface of liquid helium. In
this section, some properties of two-dimensional electron systems in semi-
conducting devices where the electrons are confined in z-direction at the
interface of two III-V-compound semiconductors5 will be discussed. The
electrons at the interace have the following dispersion relation

En(k) =
�

2

2m∗ (k2
x + k2

y) + En, n = 1, 2, 3 . . . (2.12)

At very low temperatures and appropriate doping only the first subband
E1 is occupied so that the electron system is really two dimensional. The
electrons are free to move within the xy-plane with metallic like conduc-
tion properties. The dimensionality can be even shrunken further to one
dimension (quantum wires, quantum point contacts) or to zero dimension
(quantum dots)6 by etching or electrostatic confinement [see sect. 2.2.2].

The first system where the physical properties of two dimensional elec-
tron gases (2 DEG) were studied, including the discovery of the quantum
Hall effect [8] [sect. 2.2.1], is the metal-oxide-semiconductor (MOS) struc-
ture. In such a device the potential at the surface of a bulk semiconductor
(typically silicon) is changed with a metal electrode on top to form either
an accumulation or an inversion layer. In that way electrons or holes are
trapped in a potential well forming a two-dimensional system. Such de-

5A III-V-compound consists of one element of the third group and another one of the
fifth group in the periodic table.

6Natural versions of one-dimensional systems are for example polymer chains or nano-
tubes. Quantum dots can be regarded to some extend as artifical atoms.
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Figure 2.3: Different layers of a GaAs/AlxGa1−xAs-heterostructure used in this
thesis (top). Due to the different bandgap of GaAs and AlxGa1−xAs a tri-
angular potential well is formed on the GaAs side of the interface. The con-
duction band diagram as well as the carrier concentration are calculated solv-
ing the 1D-Poisson and the Schrödinger equation selfconsistently [9] [see also
www.nd.edu/∼gsnider/]. At low enough temperatures (kBθ � EF ) only the
energy E1 of the first subbband lies below the Fermi energy EF , so that the sys-
tem is only 2 dimensional. The spacer layer of 30 nm undoped AlGaAs serves to
increase the electron mobility, because in this manner, scattering of the electrons
from the charged impurity states (donors) can be prevented (modulation doping).
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system dimension DOS ρ(E) natural version

- 3 ∼
√

E bulk metal
quantum well 2 m∗/π�

2 graphine sheet
quantum wire 1 ∼ 1/

√
E nanotube

quantum dot 0 discrete atom

Table 2.1: A system is called n-dimensional, if the energy spectrum is quantized
in n spatial directions. ‘DOS’ means ‘density of states’.

vices have also found a large application in industry as MOS-field effect
transistors.

The physical properties of the 2 DEG in the MOS-structure are mainly
determined by the roughness at the interface between the mono-cristalline
semiconductor (Si) and the amorphouse oxide (SiO2) which limits the achiev-
able mobility µ (≡ v/ E) of electrons and holes. A much higher mobility
2 DEG can be formed by burying the interface within a nearly perfect sin-
gle cristall. Advanced growth techniques like molecular beam epitaxy [see
chap. 3] enable semiconductors with a very low defect concentration to be
grown one monolayer at a time and abrupt interfaces to be formed between
semiconductors of different band gaps.

The most commonly used heterostructures are the lattice-matched GaAs/
AlxGa1−xAs-compounds, with the Al mole fraction x � 0.3. Due to the dif-
ferent band gap of GaAs (1.424 eV) and AlxGa1−xAs (1.424 eV + x·1.25 eV)
the band diagrams of the conduction and valence band show dicontinuities.
The discontinuity of the conduction band ∆EC = χGaAs −χAlGaAs is given
by the difference between the electron affinity χ of the two materials [10].
Fig. 2.3 shows the different layers of a typical GaAs/AlxGa1−xAs-hetero-
structure. While at the surface the Fermi niveau EF is located 0.6 eV below
the conduction band, it lies close to the valence band deep inside the bulk
GaAs due to the slight intrinsic p-doping [11]. Adjusting the donor concen-
tration in the wide band gap material (AlxGa1−xAs) and the thickness of
the undoped spacer layer, the conduction band Ec lies below the Fermi en-
ergy EF at the GaAs/AlxGa1−xAs-interface. Electrons now accumulate in
this triangular shaped potential well (inversion layer). Due to confinement
the energy levels in the well are quantized. For the heterostructure shown in
Fig. 2.3 only the first subband energy E1 is smaller than the Fermi energy
EF at 4.2 K.

Two-dimensional electron gases do have several properties desirable for
studying mesoscopic effects. First of all, the electron mobility is very high
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is of the order 10 nm. The arrows indicate
the mobility of 3 different heterostructures
used in this thesis.

compared to bulk GaAs or metals [Fig. 2.4]. This is due to the low impurity
concentration and also because of the small effective mass of the electrons
(m∗ = 0.067me). Furthermore, the electron density is low (compared to a
metal) and can be easily varied by means of an electrical field perpendicular
to the layers [see sect. 2.2.2]. In addition the low carrier density results in
a large Fermi wave length. For a typical heterostructure with an electron
density of ne � 3 · 1011 cm−2 (EF � 11 meV) the Fermi wave length
λF ≡

√
2π/ne � 50 nm.

2.2.1 Magnetotransport phenomena

The quantized Hall effect (QHE) observed in a strong magnetic field ap-
plied perpendicular to the electron motion is one of the most remarkable
phenomena exhibited by a 2 DEG [8]. The Hall resistance RH ≡ Rxy,
which classically equals B/nee, exhibits precisely quantized plateaus at in-
teger (and fractional) multiples of h/e2 � 25.8 kΩ [Fig. 2.5]. The QHE is
due to the formation of highly degenerated quantized energy levels (Landau
levels) in the energy independent 2D density of states:

Eν = (ν − 1/2) �ωc ν = 1, 2, 3, . . . , (2.13)

with ωc = eB/m∗ the cyclotron frequency. The filling factor ν which ap-
pears in Eq. (2.13) denotes how many of these Landau levels are occu-
pied. Simultaneously to the quantized Hall resistance, the longitudinal
4pt-resistance RL ≡ Rxx vanishes (if µB � 1 and �ωc � kBθ). Both
effects, the quantized Hall resistance and the ‘zero’ longitudinal resistance
can be understood in terms of one-dimensional magneto-electric subbands
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Figure 2.5: Longitudinal resistance Rxx and Hall resistance Rxy measured in a
very high mobility 2 DEG (µ = 6 · 106 cm2/Vs) at 270 mK.

carrying current along the boundaries of the device (edge states)7 [12, 13]
[see inset of Fig. 2.5]. The formation of these edge states results from the
bending of the Landau levels due to the confinement at the boundaries of
the conductor. The intersection of the Landau levels with the Fermi level
leads to delocalized states, which carry the current in opposite directions on
opposite sides of the sample. The number of edge states is given by the fill-
ing factor ν. In the bulk region of the conductor all states are localized due
to potential fluctuations in the interior of the sample. Because of the spatial

7Edge states are the quantum-mechanical analog of skipping orbits of electrons un-
dergoing repeated specular reflections at the boundary of the device.
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with M = t ν the number of transmitted modes. The curves are horizontally
shifted for clarity. (b) Hall bar with split gate structure to backscatter one edge
state while the other is transmitted.

separation of states carrying current in one direction from those carrying
current in the opposite direction, backscattering is completely suppressed
explaining why the voltage drop between two voltage contacts along the
same side is zero (Rxx = 0). The distinction between Rxx and Rxy is topo-
logical: Each edge state carries a current amount of e/h per unit energy
and the potential drop between any two voltage contacts on opposite sides
equals (µL − µR)/e, so that the Hall resistance follows as

Rxy = R14,35 =
(µL − µR)/e

I
=

(µL − µR)/e

ν(e/h) · (µL − µR)
=

1
ν

h

e2
. (2.14)

This simple picture of the quantized Hall effect in terms of single-electron
states holds for integer filling factors ν (i.e. for the integer quantum Hall
regime). The theory for the quantum features observed at fractional ν′s
in high mobility devices (µ > 106 cm2/Vs) invokes many-electron effects,
too [for a short review, see Ref. [14]]. This fractional quantum Hall effect
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is the result of the highly correlated motion of many electrons in 2D ex-
posed to a magnetic field. Actually, the fractional states can be described
as integer quantum Hall states of so called composite fermions, which are
quasiparticles made out of one electron attached with two magnetic flux
quanta φ0 ≡ h/e, moving in an effective magnetic field Beff = B −Bν=1/2.
Thus, the state at ν = 1/2 where one Landau Level is half filled is of special
interest, since it can be regarded as a Fermi sea of composite fermions at
Beff = 0, i.e. in the apparent absence of a magnetic field.

Besides, ‘fractional’ quantization of the longitudinal resistance can also
be observed in the integer quantum Hall regime, namely, when backscat-
tering is artifically introduced with the help of a split gate [see sect. 2.2.2]
across the Hall bar [Fig. 2.6(b)]. From a standard exercise of the Landauer-
Büttiker formalism, the longitudinal resistance follows as [13]

Rxx =
h

e2

(
1
ν
− 1

M

)
(2.15)

with M = t ν the number of modes transmitted at the point contact. Ex-
perimental results illustrating Eq. (2.15) are given in Fig. 2.6(a).

From an experimental point of view the magnetoresistance data like the
oscillations in Rxx (Shubnikov-de Haas oscillations, see Fig. 2.7) and the
low-field data of the Hall-resistance RH are commonly used to characterize
the two-dimensional electron gas, i.e. to determine the carrier density ne

and the electron mobility µ.

2.2.2 Gated nanostructures

Two-dimensional electron gases can easily be given an arbitrary shape using
lithographic techniques. This is achieved either by etching a portion of the
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Figure 2.8: (a) Two-dimensional capacitor at the edge of a 2 DEG. The gate
and the 2 DEG are assumed to lie in the same plane. ne is the electron density of
the 2 DEG far away from the boundary. (b) Too long point contacts or impurities
nearby the contact destroy the proper conductance quantization. The superim-
posed oscillations are due to interference of electrons which undergoe multiple
reflexions at the entrance and the exit of the contact.

2 DEG (permantly) or by using metallic top gates (reversal). Applying a
negative voltage −VG to the gates, electrons underneath are repelled leaving
a depleted strip behind [Fig. 2.8(a)]. The width of this strip is given by the
depletion length ld = 2εε0VG/πnee. For εGaAs = 13.1, VG = −2 V and
ne = 2.7 · 1015 m−2, which are typical parameters, the deplethion length l
is of the order 350 nm. The spatial carrier density n(x) for x > ld/2 can be
calculated solving the Laplace equation ∆φ(r) = 0 in the half-space z < 0
(ε � 1) [15]:

n(x) = ne

√
2x − ld
2x + ld

. (2.16)

ne denotes the electron density of the 2 DEG far away from the boundary.
Deep inside the 2 DEG the external potential is perfectly screened and the
electron density is homogeneous.

One example of a gated nanostructure is a QPC defined by a pair of
metallic split gates [Fig. 2.9(a) and Fig. 8.4(b)], forming a narrow constric-
tion in the 2 DEG. In a simple approximation such a constriction can be
modeled as a square well potential of length L and width W . A more real-
istic description is achieved by a saddle-point shaped potential [Fig. 2.9(b)]
[16]:

V (x, y) = V0 +
1
2
m∗(ω2

yy2 − ω2
xx2). (2.17)

Due to the lateral confinement a series of 1D subbands (N = W/(λF /2))
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Figure 2.9: (a) Metallic split gate structure on top of a 2 DEG [see also
Fig. 8.4(b)]. When a negative voltage is applied to the metallic gates, the litho-
graphic pattern is electrostatically transfered into the 2 DEG forming a narrow
constriction with quantized conductance. (b) Saddle-point potential modeling a
quantum point contact with �ωx = 1 meV and �ωy = 2 meV.

forms each contributing to the conductance by 2e2/h. For the saddle-point
potential (2.17) the transmission eigenvalues at the Fermi energy are [16]

Tn = [1 + exp(−2πEn/�ωx)]−1 (2.18)

with En ≡ EF − V0 − (n − 1/2) �ωy. Thus, in ballistic constrictions, where
the length of the constriction is much smaller than the mean free path,
the conductance G of a QPC goes down in discrete steps of 2e2/h as the
width W of the constriction is decreased by increasing the applied nega-
tive gate voltage as shown Fig. 2.2(a). However, the quantization is not
as precise as for the quantum Hall effect. In order to observe conductance
quantization the constriction must be adiabatically coupled to the reser-
voirs, which means that there is no intersubband mixing. The criterion is
that the width of the constriction changes smoothly: dW (x)/dx ≤ N−1(x).
An optimal length for the occurence of quantized conductance plateaus is
Lopt � 0.4

√
WλF [17]. If L < Lopt the plateaus show a finite slope, whereas

in the case of L > Lopt oscillations are superimposed on the plateaus, which
are due to multiple reflexions of the electrons at the entrance and the exit of
the contact leading to interference effects [Fig. 2.8(b)]. Especially for noise
measurements on point contacts [see chap. 6 - 8] the design of the contacts
is crucial, since any non-linearities in the IV -characteristics of the contacts
makes noise measurements very difficult to be performed [sect. 4.2.2].
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2.3 Current fluctuations

Electronic current noise are dynamical fluctuations ∆I(t) ≡ I(t) − 〈I〉 in
the electrical current I(t) around its time averaged mean value 〈I〉. While
the conductance G describes the time-averaged current, noise can provide
additional information about electronic transport properties which are not
contained in the conductance itself. A detailed description of electrical noise
in the time domain is given by the correlation function

CI,αβ(t) ≡ 〈∆Iα(t + t′)∆Iβ(t′)〉 (2.19)

with ∆Iα,β the current fluctuations at probe α and β of an arbitrary de-
vice. The brackets denote an average over an ensemble of identical physical
systems or (ergodicity assumed) an average over the initial time t′. Equiv-
alently, electrical noise might be presented in the frequency domain by the
power spectral density [18]

SI,αβ(ν) = 2
∫ ∞

−∞
dt ei 2πνt · CI,αβ(t). (2.20)

Intrinsic current noise is due to fluctuations in the occupation number of
states which are caused by (i) thermally activated fluctuations (thermal
noise) and (ii) by the randomness inherent in quantum-mechanical transport
(shot noise). In fact, the latter noise source is a direct consequence of the
quantization of charge.

2.3.1 Thermal noise

At temperatures θ �= 0 thermal noise is always present in any conductor.
In the following we give a classical derivation for thermal noise considering
a short-circuited classical resistor R of length L which is assumed to be in
thermal equilibrium [see Ref. [19]]. The average kinetic energy of an electron
moving in the x-direction is m∗〈v2

x〉/2 = kBθ/2. The current pulse i which
is attributed to the free propagation of a single electron over the mean free
path l during the collision time τ is

i =
l

L

( e

τ

)
=

e

L
vx. (2.21)

Because 〈i〉 = 0 the variance in the current pulses of one electron over a
large number of collisions follows then as

〈∆i2〉 ≡ 〈i2〉 − 〈i〉2 =
e2〈v2

x〉
L2

=
e2kBθ

L2m∗ . (2.22)
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For N electrons the variance of the total current is 〈∆I2〉 = N〈∆i2〉, where
N = L2/eµR with the electron mobility µ = em∗/τ . Thus, it follows

〈∆I2〉 ≡ CI(t = 0) = N · e2kBθ

L2m∗ =
kBθ

R

1
τ

. (2.23)

If the single-charge events are uncorrelated in time the correlation function
CI(t) is decaying exponentially [20, 21]:

CI(t) = CI(0) e−|t|/τ . (2.24)

Integration according to Eq. (2.20) yields a current spectral density of

SI(ν) = 2kBθG
1
τ
·
∫ ∞

−∞
dt ei 2πνt e−|t|/τ

= 4kBθG
1
τ
·
∫ ∞

0

dt cos(2πνt) e−|t|/τ

= 4kBθG · 1
1 + (2πντ)2

� 4kBθG (2.25)

for ν � τ−1. Eq. (2.25) is known as the Johnson-Nyquist relation [22, 23]
and provides an example for the fluctuation-dissipation theorem8. Thus,
the investigation of thermal noise does not provide more information than
the investigation of the AC conductance. At very high frequencies when
hν ≥ kBθ vacuum fluctuations contribute to the equilibrium fluctuations,
too. In this case Eq. (2.25) has to be changed by replacing kBθ by the
expression (hν/2) coth(hν/2kBθ), which equals the classical expression for
hν � kBθ [24]. Consequently the noise is no longer frequency independent
(‘white’) for ν > kBθ/h, but increases linearly with frequency.

2.3.2 Shot noise

Shot noise in an electrical conductor is a non-equilibrium phenomenon which
is due to the randomness in the transmission of discrete charge quanta q from
source to drain [25]. The shot noise of a single barrier with transmission
probability T can be understood simply from classical statistical arguments.
Assume there are n charge quanta q incident on the barrier per unit time τ .
The distribution of the number of transmitted particles nT is then binomial:

pn(nT ) =
(

n

nT

)
TnT (1 − T )n−nT . (2.26)

8The fluctuation dissipation theorem states that the linear response on a an external
force equals 1/kBθ times the variance of the conjugated variable while the force is absent.
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Figure 2.10: To get a feeling for shot
noise one could think of the granular
sound one hears while listening to a
droping tap. As long as the water flow
is not to large, the granularity of the
water made out of small droplets is
still perceptible. In macroscopic elec-
trical conductors shot noise is typi-
cally absent. This is similar to the
case when somebody empties a whole
bucket of water. In this case the gran-
ularity of the water is completely lost,
too, and one hears just an averaged
single sound [29].

The time averaged number of transmitted particles 〈nT 〉 equals nT , while
the variance is given by [see app. A]

〈∆n2
T 〉 ≡ 〈n2

T 〉 − 〈nT 〉2 = nT (1 − T )
= 〈nT 〉 (1 − T ). (2.27)

With I = qnT /τ the variance of the total current is 〈∆I2〉 = q〈I〉/τ ·(1−T ).
Using Eq. (2.24) and integration according Eq. (2.20) yields for ν � τ−1 a
frequency independent shot noise power of

SI = 2q〈I〉 · (1 − T ). (2.28)

In the limit of very low transmission probability (T → 0) the binomial
distribution (2.26) can be approximated by the Poisson distribution. In
this case shot noise is given by the well known Schottky formula [26]:

SI = SPoisson ≡ 2q〈I〉. (2.29)

If the charge would not be quantized, shot noise would be absent, i.e. S → 0
for q → 0. Generally, the Poissonian value 2q〈I〉 is used as a relative measure
to compare any noise. Especially in mesoscopic systems [see below] corre-
lations imposed by fermionic statistics of the electrons as well as Coulomb
interaction may change shot noise from SPoisson. This is expressed by the
Fano factor F defined as the zero-temperature excess noise normalized to
the Poisson noise:

F ≡ SI

2e〈I〉 . (2.30)

Shot noise has been observed in classical devices as well as in mesoscopic
systems. Poissonian noise is for example present in the current of vacuum
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tubes [27, 28] or tunnel junctions. In other macroscopic devices like macro-
scopic metallic wires shot noise is absent because the granularity in the
charge flow is smeared out by inelastic scattering of the electrons with the
environment. In recent years shot noise in mesoscopic systems has exten-
sively been studied providing a lot of new information on charge transport,
especially on the:

quantum of charge of the carriers involved in transport. The proportion-
ality to the quantum of charge q according to the Schottky formula
(2.29) in case of low transparencies has for example been employed to
determine the effective charge in superconducting transport [30] or in
the fractional quantum Hall regime [31, 32].

statistics, in a stream made out of identical quantum particles, or

quantum partitioning, the way charge carriers scatter and interact within
a mesoscopic device.

2.4 Shot noise in mesoscopic systems

A quantum coherent theory of noise has been derived within the frame-
work of the scattering approach [see Ref. [33]]. Similar to the conductance
Eq. (2.10) the general result is a relationship between the shot noise power
and the transmission matrix at the Fermi energy. For a two-terminal con-
figuration [Fig. 2.1] it is found [34, 35] [see also app. C]

SI = 2
e2

h

∫ ∞

0

dE
{
[fL(1 − fR) + fR(1 − fL)] Tr tt†(1 − tt†)

+ [fL(1 − fL) + fR(1 − fR)] Tr tt†tt†
}
. (2.31)

In the basis of eigen-channels of the matrix tt† this result can be expressed
by the set of eigenvalues (transmission probabilities) Tn of tt†:

SI = 2
e2

h

N∑
n=1

∫ ∞

0

dE
{
[fL − fR]2 Tn(E)(1 − Tn(E))

+ [fL(1 − fL) + fR(1 − fR)]Tn(E)
}
. (2.32)

If the response is linear so that we can neglect the energy dependence of the
transmission matrix the Fano factor is

F =
∑

n Tn(1 − Tn)∑
n Tn

. (2.33)
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Figure 2.11: Measured Fano factor
of a single QPC defined in a two-
dimensional electron gas [see sub-
sect. 2.2.2] as a function of the sum
of transmission eigenvalues Tn after
Kumar et al. [36]. There is a very
good agreement of the experimental
data with the theoretically expected
value of Eq. (2.33) and (2.34).

Provided that all transmission eigenvalues are small (Tn � 1) the Fano
factor equals 1 and the shot noise is Poissonian. Obviously, the Fano factor
and the shot noise are zero for a ballistic conductor, where all Tn equal
unity.

2.4.1 Few-channel quantum conductors

For a one-channel quantum conductor, e.g. a QPC where only one mode
contributes to the current, the Fano factor is simply given by [34, 35]

F = 1 − T. (2.34)

This has also been experimentally confirmed with very high accuracy [36]
[see Fig. 2.11]. At finite temperatures θ thermal noise of the quantum point
contact is present, too. In the tunneling regime (T � 1) the crossover
from thermal noise at voltages e|V | � kBθ to pure shot noise at voltages
e|V | � kBθ is given by [37]

SI = SPoisson · coth
(

e|V |
2kBθ

)
. (2.35)

Atomic-size metallic contacts (break junctions) are another example of
a conductor with only a few modes. For these systems shot noise can be
used in addition to conductance measurements in order to determine the
number of channels at the contact as well as their transmission eigenvalues
[38].
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Figure 2.12: Distribution of transmission eigenvalues T for (a) a diffusive
metallic wire according Eq. (2.36) and (b) a symmetric chaotic cavity according
Eq. (2.37).

2.4.2 Multi-channel quantum conductors

In other mesoscopic conductors where the number N of transmission eigen-
values Tn is large (multi-channel quantum conductors) the Fano factor
(2.33) depends on the distribution p(Tn) of the eigenvalues Tn ∈ [0, 1].
Metallic diffusive wires shorter than the electron-phonon interaction length
and chaotic cavities are two examples of such systems with high degree of
freedom (N � 1) [see insets of Fig. 2.12]. The first one is characterized by
a wire length L much larger than the mean free path l so that electrons dif-
fuse from the left reservoir through the wire to the right reservoir while they
elastically scatter from randomly placed impurities. On the other hand, a
chaotic cavity is specified by dimensions smaller than the mean free path l
so that electrons scatter ballistically within the cavity. The cavity is coupled
via two noiseless contacts to reservoirs on the left and right. Generally, the
distribution p(T ) of transmission eigenvalues can be calculated from ran-
dom matrix theory (RMT), which deals with the statistical properties of
large scattering matrices. These are chosen from an ensemble representing
the symmetry of the system [for a review, see Ref. [17]]. For both systems
- a metallic diffusive wire and a chaotic cavity - the distribution functions
p(T ) are bimodal with a peak at T = 0 and T = 1. They are given by

p(T )wire =
l

2L

1
T
√

1 − T
(diffusive wire) (2.36)

p(T )cavity =
1
π

1√
T (1 − T )

(chaotic cavity). (2.37)
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F physical system Tn experiments

0 ballistic conductor 1 [36, 38, 43, 44, 45]
1/4 chaotic cavity bimodal [46]
1/3 diffusive wire bimodal [47, 48, 49]
1/2 symmetric double-barrier bimodal [50, 51]
1 single tunnel-barrier � 1 [51]

Table 2.2: Overview over various universal Fano factors F ≡ S/SPoisson ob-
served in mesoscopic devices. The rigth column gives a selection of corresponding
experimental works. Except when negative differential conduction occurs [52] the
Fano factor of normal conducting systems is in the range 0 < F < 1 meaning that
shot noise is partially suppressed. In normal-metal/superconductor hybrid struc-
tures shot noise is enhanced due to multiple Andreev reflection [30, 53, 54, 55, 56]
and thus, the Fano factor can be larger than 1. Very recently, a Fano factor larger
than 1 has also been observed in the highly correlated regime of the FQHE [57].

Both distributions, illustrated in Fig. 2.12, are universal in the sense that
they are insensitive to microscopic properties of the device. Together with
the general expression (2.33) the Fano factors F = SI/SPoisson follow as

Fwire = 1/3 (diffusive wire [39]) (2.38)

Fcavity = 1/4 (chaotic cavity [40]). (2.39)

Electron-electron interaction enhances these universal Fano factors. In case
of hot electrons Fwire =

√
3/4 � 0.43 [41] for a diffusive wire and Fcavity =√

3/2π � 0.276 for a chaotic cavity [42]. An overview over different universal
Fano factors for various mesoscopic systems is given in Tab. 2.2.

The description of shot noise within the scattering approach is part
of a completely phase-coherent theory. Characterizing the shot noise of
an ensemble of various devices, which differ only in microscopic properties
such as the arrangement of the scattering centers or the exact shape of the
boundaries, it is not necessary to include the information about phases of
wave functions. That is why the universal Fano factors (2.38) and (2.39)
can be derived from a semiclassical analysis, too [58, 59, 60].9 Within
the semiclassical approach transport and noise are described by single par-
ticle distribution functions fp(r, t) and two-particle correlation functions
Fpp′(rr′, t) = 〈fp(r, t)fp′(r′, 0)〉 satisfiing the classical Boltzmann equation

9Similar to the universal conductance fluctuations away from the average conductance,
it is possible to find the fluctuations of the noise power away from its ensemble average
behavior [61].
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Figure 2.13: (a) Shot noise of a metallic diffusive wire [from Ref. [49, 62]].
For sensitivity reasons 8 wires are measured in series with reservoirs in between.
Special care had to be taken to minimize heating effects due to the large applied
bias voltages (eV � kBθ). The reservoirs are very thick and large to maximize
the cooling power. (b) Scanning electron microscope picture of one of 8 wires
between two reservoirs. [49, 62].

[see also chap. 6 and app. B]. Furthermore, this approach also allows to
easily incorporate interaction effects between electrons (heating).

The 1/3-shot noise suppression (2.38) in metallic diffusive wires is ex-
perimentally well confirmed [48, 49, 62]. Experimental results are given in
Fig. 2.13(a). In contrast, the experimental verification of the 1/4-shot noise
predicted for chaotic cavity has been an outstanding problem [25]. It is one
of the central topics of this thesis [see chap. 6].
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Chapter 3

Processing of heterostructure
devices

In this chapter the preparation of the devices is described. Lateral structur-
ing is carried out using standard optical and electron-beam lithography. In
general, the preparation includes three main steps: (i) the ohmic contacts
are alloyed to the 2 DEG, (ii) the 2 DEG is structured by wet-chemical
etching and (iii) metallic gates are deposited, which are used to deplete the
electron gas electrostatically. This third step is typically split into two, one
for the fine gates (e.g. QPCs) and another one for the connection to the
bonding pads.

MBE-growth

The starting material for the devices investigated in this thesis are AlGaAs/
GaAs-heterostructures. The atomic structure of GaAs is shown in Fig. 3.1.
In contrast to silicon, GaAs has a direct bandgap and is therefore very
important for optical applications, too (semiconducting laser diodes). Fur-
thermore, the material is widely used in high-frequency and low noise tran-
sistors (high-mobility field effect transistor). A sequence of the layers in a
typical heterostructure is given in Fig. 2.3. In order to create semiconduct-
ing alloy structures with extremly sharp interfaces between one type of alloy

Ga
As

a

Figure 3.1: Atomic structure of GaAs (Zinkblende).
In AlxGa1−xAs, x denotes the fraction of Ga-atoms
replaced by Al-atoms. Typically, the difference be-
tween the lattice constant a for the two materials is
of the order 0.1 %

27
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Figure 3.2: (a) Schematics of a molecular-beam epitaxy (MBE) chamber. Molec-
ular or atomic beams of the constituents are generated from different effusion cells
and travel withouth scattering to a substrate where they combine to form an epi-
taxial film. (b) Typical growth rathes are one monolayer per second. In order to
increase the mobility of the atoms on the surface the substrate is typically heated
up to 600 ◦C. During the MBE process the growth can be monitored in situ by
reflection high energy electron diffraction (RHEED).

and the next (i.e. AlGaAs and GaAs) atomic layers are grown monolayer
by monolayer in the process of molecular beam epitaxy (MBE) [63]. The
different heterostructures used in this thesis are all MBE grown. This tech-
nique provides a way to produce high quality materials with a low number
of defects, so that the mobility of electrons and holes can be extremely high.
A schematic drawing of a MBE chamber is shown in Fig. 3.2(a): molecular
beams of the constituent elements (Ga, Al, As, Si, Ge, . . . ) travel within an
ultra high vacuum chamber (p < 10−11 mbar) from different effusion cells
to a substrate, where the atoms combine to form an epitaxial film. The
elements Si and Ge are thereby used as dopants. During epitaxial growth
the atoms on the clean surface are free to move around until they find
their correct lattice position to form chemical bonds [Fig. 3.2(b)]. There
are other faster and more economic growth techniques than MBE, which
also do not require ultra high vacuum techniques. Nevertheless, the high
mobility heterostructures for research purposes can only be fabricated by
MBE.

Lithography

Optical as well as electron beam lithography are based on the same principle:
an organic resist is coated onto the substrate and polymerized to some
extent by baking in an oven or on a hot plate. When exposed to light
(optical lithogaphy) or to a focused electron beam (e-beam lithography)
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some materials (the positive resists) are broken into smaller organic units,
that are more easily dissolved by a liquid solvent. Other (negative resists)
polymerize further so that solvents subsequently remove those parts which
were not exposed [see Fig. 3.3]. In optical lithography all structures are
exposed in a single flash using a so called optical mask (metal film on glass)
which is opaque for some parts and transparent to light for other parts. The
exposure time is independent of the size of the structures. In contrast to
the parallel exposure process in optical lithography, exposing with a focused
electron beam is serial requiring the beam to be scanned step by step over
the resist, and thus, is much more time consuming. Nevertheless, in order
to fabricate nanostructures electron beam lithography is essential, because
diffraction limits the smallest feature achievable with optical lithography
to � 0.7 µm [64], whereas this limit is � 30 nm in e-beam lithography.
Furthermore, e-beam is much more flexible, since the patterns are not fixed
but can be easily altered, whereas for optical lithography a completely new
mask has to be created.

For the processing of heterostructure devices both lithography tech-
niques are typically combined. Here, we defined the ohmic contacts as
well as the protection mask for etching the 2 DEG by optical lithography.
A negative photoresist has been used, and we were working with both ‘pos-
itive’ and ‘negative’ masks. One of these structures is shown in Fig. 3.4. In
the first lithography step the areas marked as ohmic contacts are exposed.

e-beamUV-light

negative positive

(1a) (1b)

(3) (4)
heterostructure

glass

chromium

organic resist

metal

(2)

Figure 3.3: Overview over standard lithography steps. In our case we used a
negative resist for optical lithography (1a) and a positive resist (PMMA) for e-
beam (1b). Further steps are development (2), metallization (3) and lift-off (4).
Further details can be found for example in Ref. [65].
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ohmic
contacts

gates

MESA

2.2 mm

Figure 3.4: Structures on an optical mask used to define the ohmic contacts,
the Mesa as well as the large scale gate structures. The masks were designed
in a GDSII-format and commercially produced by Photronics S.A. in Neuchâtel,
Switzerland.

Ohmic contacts

An ohmic contact to a semiconductor device has ideally a linear current-
voltage characteristic and a very low resistance compared to the semicon-
dutor. When a metal and a semiconductor are put in contact to each other
they usually form a Schottky barrier with the barrier height of several eV.
To achieve a good low-ohmic contact, a heat treatement is required to alloy
the metal into the surface of the semiconductor [64, 66]. Only for some very
special systems is it possible to get non-alloyed ohmic contacts for example
for InAs with In as the contact metal. In general, the semiconductor has
to be highly doped at the interface to the metal so that the depletion re-
gion, formed by the Schottky barrier, becomes very thin and the tunneling
current through the barrier is strongly enhanced [see Fig. 3.5]. Alloying a
multilayer structure of Au-Ge-Ni is the usual method for obtaining highly-
dopped regions in n-type GaAs or AlGaAs . Thereby gold and germanium
are deposited in their eutectic mixture of 88 : 12 wt% providing a low melt-
ing point of about 360 ◦C. For contacts to p-type GaAs, Zn is used instead
of Ge and Ni [64]. During the alloying process Ge diffuses into the Al-
GaAs and forms a strongly doped region. The diffusion of germanium into
the semiconductor is increased by Ni [67]1. Gold adheases the contact to

1It is crucial that there is no residual optical resist in between the semiconductor
surface and the eutecticum, otherwise the diffusion is blocked. That is why after devel-
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Figure 3.5: Band diagrams of a Schottky contact (a) and an ohmic contact (b)
in equilibrium. In the first case thermionic emission above the barrier height is the
principal mechanims for electrons to overcome the barrier (under forward bias).
By doping the semiconductor near the surface, the depletion region caused by
the Schottky barrier becomes much thinner and so tunneling through the barrier
increases the current and gives a linear IV-characteristic. (c) Schematic eutectical
diagram of Au and Ge. (d) left: nonalloyed contact; right: the alloyed region
reaches the 2 DEG and ensures an ohmic contact.

the surface and makes it possible to bond onto the contact after annealing.
The alloying takes place in an annealing oven2 under a continuous flow of
forming gas (90% N2 + 10% H2), preventing any oxidation. The continuous
gas flow helps to achieve large heating and cooling rates as well. Typical
parameters for alloying are 400 - 500 ◦C for 30 to 90 s depending on the
specific heterostructure. For too long alloying times the contact resistances
increase, what is also well known in literature [67]. Normally, if the con-
tacts have a low-ohmic resistance at room temperature, they are also good
at liquid helium temperature provided they are cooled down slowely. The

opment the device is exposed to an oxygen plasma for cleaning. The oxide layer created
during this procedure can afterwards be removed by a dip-etch in concentrated HCl.

2AZ 500 from MBE-Komponenten GmbH, Germany.
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In-contact

2 mm

Figure 3.6: High mobility two dimen-
sional electron gas (2DEG) contacted
with Indium and mounted in a chip car-
rier. The 2 DEG is located 222 nm below
the surface. Fractional quantum Hall ef-
fect measurements on this device per-
formed in a van der Pauw-geometry are
shown in Fig. 2.6.

contacts are sometimes altered by thermal cycling.

The procedure for achieving ohmic contacts as described above works
fine for heterostructures of ‘normal’ mobility (µ ≤ 106 Vs/cm2) with a
rather large electron density (2·10−15 m−2). For extremely high mobility
heterostructures, which are for example used to study the fractional quan-
tum Hall effect [see sect. 2.2.1], the spacer layer is much thicker so that
the 2 DEG is located three times deeper below the surface than in regular
devices. Furthermore, the electron density ne is lower, too. For such het-
erostructures ohmic contacts cannot be made out of Au-Ge-Ni, but Indium
has to be used instead [Fig. 3.6]. Thereby, the Indium is soldered by hand
directly onto the wafer and is afterwards annealed.

ohmic
contact

gate

alignement
mark

(b)

Mesa
edge

(a)

90 nm

alignement
marks

Figure 3.7: (a) Optical microscope image of a wet-chemically etched Hall bar
with two voltage probes. (b) Optical microscope image of a nearly finished device
with annealed ohmic contacts and gate contacts. Various alignement marks serve
for further e-beam lithography steps.
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Mesa definition

The parts where the two-dimensional electron gas shall be removed are wet-
chemically etched a few nm. The remaining areas on the wafer are called
Mesa. For the large scale definition of the Mesa again optical lithography
has been used [see Fig. 3.4]. For finer structuring of the 2 DEG e-beam
lithography is more convenient. The resists act as a protection layer against
etching. GaAs and AlGaAs are both removed by the isotropic, non selective
etchant H2SO4 : H2O2 : H2O = 3 : 1 : 100. This etchant provides an
overcut, so that a continuous film can be deposited over the etch of the
Mesa. If the ratio H2SO4 : H2O2 is 1 : 1, an undercut is formed [68].

Metallic gates

The metallic gate structures of submicron dimensions are fabricated us-
ing electron beam lithography. The e-beam writing system consists of a
JEOL JSM-IC 848 scanning electron microscope with a motorized stage
and a commercially available writing software [69]. As a resist poly-methyl-
methacrylate (PMMA), being a standard positive resist for e-beam, has been
used. After development the PMMA-layer serves as a mask for selected-area
metal deposition. The deposition of the metals takes place in a high-vacuum
evaporation chamber, where the metal is heat evaporated either by an elec-
tron gun or resistively. In areas where the resist on the device has been
removed the evaporated metal makes direct contact with the underlying
surface, otherwise it coats the resist. Finally, the remaining PMMA is re-

1 µm(a) (b)

Figure 3.8: (a) Scanning electron microscope image of a chaotic cavity [see
chap. 6]. (b) Pattern defined in a lithography software from Raith GmbH4 used
to expose the structure in (a). The focused electron beam moves along the lines,
which are close enough so that the area in between them is exposed, too. The
spiral arrangement of the lines helps to correct the proximity effect, i.e. that the
structure is not partially over- or underexposed.
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50 µm Al-wire

(a) (b)

Figure 3.9: (a) Device mounted in a chip carrier and contacted with Al bonding
wires. On the left and the right there are five ohmic contacts while the bonding
wires from the top and the bottom make contacts to several gates. (b) The
bonding machine can also be used to interconnect various structures on chip, e.g.
to bridge over parts which are broken [62].

moved and the metal covering the resist is ‘lifted off’. The gates are made
out of 40 nm gold-layer with a 2 nm thick titanium layer underneath, that
provides good adheasion to the semiconductor surface.

Bonding

In order to measure a finished deviced it is mounted in a chip carrier and con-
tacted with the aid of an ultrasonic bonding-machine which solderes 50 µm
thin aluminium-wires from the pad on the chip carrier to the contact pad
on the device. A bonded device ready for measuring is shown in Fig. 3.9(a).
Furthermore, the bonding wires can also be used for interconnection on the
chip itself as shown in Fig. 3.9(b).

For the inspection of the finished devices we used a scanning electron
microscope from Philips (XL30 FEG).



Chapter 4

Measurement techniques

4.1 Low temperatures and filtering

Mesoscopic effects like the quantization of the conductance in ballistic point
contacts typically occur on an energy scale of one meV or smaller. In order
to measure these effects the experiments are usually performed at tempera-
tures below one Kelvin to avoid thermal smearing. Such low temperatures
are achieved with the help of cryogenic liquids with a very low boiling point.
Two different types of cryostats, a 3He- and a 4He-system, have been used
in this thesis with bath temperatures of 270 mK (∼ 23 µeV) and 1.7 K
(∼ 146 µeV), respectively. The principle of these cryostats relies on isen-
tropic cooling with liquid helium boiling under reduced pressure. Since the
vapour pressure of liquid 3He at a given temperature is higher then the one
of 4He at the same temperature, lower temperatures can be achieved in a
3He- than in a 4He-system. In the 3He-cryostat the 3He gas, which is stored
in a closed system, condensates at the ‘one-Kelvin pot’ cooled down below
2 K. Further lowering of the temperature is then achieved pumping away
the 3He-vapour using an adsorption pump with a temperature sensitive ad-
sorption rate. The adsorption pump consists of a charcoal coated surface
adsorbing 3He-molecules when it is cooled below 20 Kelvin. Its temperature
can be regulated with an additional heater and by adjusting the flux rate
of liquid 4He flowing through a tube nextby. A picture of the 3He-system
used for the measurements presented in this theses is given in Fig. 4.1(b).

In low-temperature measurements one has to be careful, because the
physical temperature of the device, i.e. the electron temperature, can be
strongly elevated above the bath temperature of the cryostat due to heat-
ing by high frequency (microwave) electromagnetic radiation. Furthermore,
hot photons can activate electron traps in semiconductor devices leading
to enhanced 1/f noise [70]. In our 3He-System, an effective microwave
cryofiltering is achieved with the help of thin ‘lossy’ coaxial cables and

35
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an RF-shielded experimental box at low temperatures [Fig. 4.1(a)]. The
high frequency attenuation of the coaxcables is due to the Skin effect: at
high frequencies the dissipative part of the impedance of the coax drasti-
cally increases with frequency. The 40 cm long Thermocoax c© from Philips
used in the 3He-cryostat yields an attenuation of 20 dB at ν = 1 GHz
(hν/kB ∼ 48 mK) [71]. At high enough frequencies the coax starts to act
as a waveguide when the wave length becomes comparable to the cross-
section. In this case the attenuation saturates and is estimated to be 52 dB
at 1 THz (hν/kB ∼ 48 K).

At the top of the cryostat all wires are filtered at room temperature with
additional commercial π-filters. The measured frequency response of these
filters is given in Fig. 4.3. The attenuation is ≥ 40 dB up to 3 GHz.

N2 & 4He
dewar

RF-shielded box
with noise
amplifiers

instrument rack

magnet
power supply

3He container

insert

spectrum
analyzer

Lock-In

temperature
controller

(b)

1 K pot

thermocoax
cables

sample
holder

3He pot

sorption
pump

needle valve

thermometers

4He inlet

(a)

Figure 4.1: (a) Low temperature filtering of in insert of the 3He-cryostat. Here,
the tube of the isolation vacuum has been removed. (b) 3He-cryostat with mea-
surement rack.
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Figure 4.2: (a) Conventional noise measurement circuit with only one amplifier.
(b) Correlation technique with two independent amplifiers (a,b) in parallel. This
method offers the advantage of an increased sensitivity. The uncorrelated fluctua-
tions of amplifier A and B are after multiplying as often positive as negative, while
the correlated contribution in both channels, stemming from the sample, are af-
ter multiplying always positive and dominate over the uncorrelated contributions
after long integration times.

4.2 Low-frequency noise detection

Conventionally, the voltage noise fluctuations 〈∆V 2
S 〉 across a sample of

resistance R and temperature θ are detected by sending the output of a
low-noise amplifier to a fast Fourier transform (FTT) spectrum analyzer,
which gives the spectral density of the total voltage noise in a bandwith ∆f
[Fig. 4.2(a)]. The square of the total voltage noise is

〈∆V 2〉 = 〈∆V 2
S 〉 + (R + RL)2∆I2

A + ∆V 2
A + 4kBθLRL∆f (4.1)

with RL the resistance of the leads at temperature θL, and ∆I2
A and ∆V 2

A =
∆V 2

A,0(1 + f1/f) the current and voltage noise of the amplifier. Below a
characteristic frequency f1 the amplifiers show 1/f voltage noise. Thus, the
detection of the voltage noise across the sample requires the knowledge of the
noise characteristics of the amplifier (∆I2

A,∆V 2
A,0, f1) and of the resistance
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Figure 4.3: Measured fre-
quency response of a com-
mercial RF-filter (π-filter)
at 300 K (50 Ω terminated)
used in the measurement se-
tups of the 3He- and 4He-
kryostat.
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and temperature of the leads. In order to get rid of these uncertainties
we used here a cross-correlation technique [see Fig. 4.2(b)]. Measuring the
voltage noise with two amplifiers in parallel and multiplying the outputs,
the voltage noise contribution of the leads and of the amplifiers is eliminated
because these contributions are completely uncorrelated in time. For the
cross spectrum of the two output voltages of amplifier a and b we obtain

〈∆Va∆Vb〉 = 〈∆V 2
S 〉 + R2∆I2

A (4.2)

for RL � R, which is the case in our setup (RL � 25 Ω). Thus, the
determination of the voltage noise 〈V 2

S 〉 originating from the sample requires
to know the current noise of the amplifiers.

The experimental setup for measuring electrical noise in the 3He-system
is shown in Fig. 4.4. The measured device is current biased using a float-
ing DC-voltage source together with two high ohmic series resistors RS �
Rsample. In order to minimize their thermal noise they are mounted di-
rectly on top of the sample holder at 270 mK. The leads used to detect the
voltage noise fluctuations are only filtered at low temperatures, because the
capacitance of the π-filters of 10 nF would affect the bandwith drastically.
At the top of the cryostat they directly enter a nearby RF-shielded box [see
also Fig. 4.1(b)] where the two low-noise voltage amplifiers (EG&G 5184)
are mounted inside. The total capacitance C of the noise leads is ∼ 550 pF
which gives a cut-off frequency ν0 = (2πRC)−1 of ∼ 30 kHz for a 10 kΩ
sample resistance. The amplifiers, which have a gain of 1000, are driven by
two independent sets of batteries to prevent any cross-talk between them.
The outputs are filtered with additional π-filters. Finally, the two signals
are fed into a two-channel spectrum analyzer (HP 89410A) which calculates
the cross-spectrum taking the fast Fourier transform of the two signals sep-
arately and multiplying the results together. The achieved sensitiviy for
voltage noise measurements is of the order 5 × 10−21 V2s.

4.2.1 Calibration

Due to the low-temperature filtering the measured voltage noise can be
attenuated which depends on the measurement frequencies and the sample

thermocoax-cable 230 pF
wireing from 1 K to 300 K 50 pF
low noise-cable 110 pF
coax-cable inside RF-box 90 pF
EG&G preamplifier 2×35 pF

Table 4.1: The independently
measured capacitance ∼ 550 pF
is in good agreement with the
capacitance determined from a
low-pass fit of the measured sig-
nal suppression factors.
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Figure 4.4: Noise measurement setup. The two voltage amplifiers (EG&G 5184),
driven by two independent blocks of batteries, are built into an RF-shielded box.
All leads are filtered at low temperatures by lossy thermocoax cables. In addi-
tion, π-filters are used at room temperature for the ‘normal’ leads, whereas the
noise leads are RF-shielded up to the amplifiers housed in the RF-tight box. All
outgoing leads from this box are again filtered with π-filters. The differential re-
sistance of the point contacts is detected using Lock-In technique with a small
AC-current coupled into the electronic DC-circuit by a passive 1:4-tranformator
(fully µ-metal shielded). The sample can be illuminated at low temperatures by an
infrared diode mounted on the sample holder, which helps to increase the density
of the 2 DEG.

resistances. In order to obtain an absolute value for the measured voltage
noise SV the mesurement setup is calibrated by measuring the equilibrium
voltage noise at different bath temperatures. Since the sample resistance R
and the bath temperature θ are known the Nyquist relation SV = 4kBθR
can be used to obtain the voltage gain as well as the offset noise Samp

I R2

caused by the finite current noise Samp
I of the amplifiers1. An example

for such a temperature calibration is given in Fig. 4.5(a). At low enough
frequencies nearly 100 % of the signal is obained [Fig. 4.5(b)]. Typical
measurement frequencies for a 10 kΩ sample resistance are around 5 − 8 kHz
with a typical frequeny bandwith of ∼ 1 kHz.

1The current noise due to the amplifiers is of the order 80 fA/
√

Hz.
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Figure 4.5: (a) Temperature calibration: the measured equilibrium voltage noise
SV is plotted versus the bath temperature. Using the Nyquist relation 4kBθR the
signal attenuation due to the filtering as well as the offset noise can be determined
very accurately. (b) Voltage noise signal as a function of νR with ν the center of
the frequency window, in which the noise is measured, and R the sample resis-
tance. Typical measurement frequencies lie between 5 and 120 kHz and R varies
from 1 to 45 kΩ. The solid curve is a fit corresponding to a 1st-order low-pass
filter. This fit yiels a capacitance of 535 pF in very good agreement with the
independently measured capacitance of 550 pF.

4.2.2 dV/dI-Correction

The resistance of a QPC in a two dimensional electron gas is electrosta-
cially defined by the voltage which is applied to the split gate as described
in section 2.2.2. If the applied bias voltage across the QPC is high enough
(out of linear response) the differential resistance can slightly change as
shown in Fig. 4.6(a), because lower lying modes, which are not transmitted
in equilibrium, start to contribute to the current. As a result the differ-
ential resistance dV/dI is not constant but slighlty changes with the bias
current [72]. The slight asymmetry of the dV/dI [Fig. 4.6(a)] might be
due to an asymmetric lithographic definition of the QPC [see Fig. 8.4(b)].
Consequently, the noise data are asymmetric, too, as shown in Fig. 4.6(b),
because the offset due to the finite current noise of the amplifiers Samp

I is
not constant but varies with the applied bias:

Smeas
V = SV + Samp

I ·
(

dV

dI

)2

. (4.3)

If the changes in the dV/dI are not too large, this can be corrected sub-
tracting the contribution which is due to the amplifier noise. That is shown
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Figure 4.6: (a) Differen-
tial resistance dV/dI as a
function of the bias current.
dV/dI changes only within
3 % and is slightly asym-
metric. (b) Current noise
vs bias current. After the
subtraction of the amplifier
noise as described in this
subsection, the data be-
come perfectly symmetric.
The asymmetry in the un-
corrected data is due to the
asymmetric dV/dI. Com-
paring the absolute values
of noise there is a huge off-
set between the corrected
and the raw data.

in Fig. 4.6(b) which represents a drastic example. In principle, one could
also try to feed back a signal to the gate voltage, such that the differential
resistance remains constant [36], however, for more than one point contact
in series this is impossible. Nevertheless, the best thing is to measure noise
in a bias regime where dV/dI is constant to make sure that one stays in
the regime of linear response. For the noise measurements presented in the
following chapters the differential resistance has always been measured in
addition.

4.2.3 Analysis of noise data

Typically, a few 100 voltage noise spectra are taken for a given bias current,
which are all averaged. Each spectrum consists of 401 points continuously
distributed over the chosen frequency interval. The measurement program
calculates the average noise power of the averaged spectra excluding points
which are off from the average by a certain magnitude, which is manually
adjusted. However, there is also another method for obtaining the average
noise power which is less sensitive to ‘accidental’ peaks in the spectra [see
Fig. 4.7]. In this method a histogram of the averaged noise spectrum is
calculated for each bias point [73]. The center of a Gaussian fit of these
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Figure 4.7: (a) Example of a voltage noise power spectrum between 18.3 and
25.8 kHz. (b) Histogramm of the trace above. The histogram is fitted with a
Gaussian function in order to determine the average noise.

histograms can give a better estimation for the average noise power than
just the average of the spectrum, since peaks, which appear in the spectra,
do not very much contribute in the histogram. This alternative method
allows one to use a larger frequency window so that the observation time is
reduced. For the experiments presented in the following chapters we tried
to measure noise in a frequency window without any spikes and used the
first method to analyze the noise spectra.



Chapter 5

The Hanbury Brown and Twiss
experiment with Fermions

5.1 Introduction

In contrast to classical particles, identical quantum particles, e.g. identical
photons or electrons, are inherently indistinguishable. This is because the
laws of quantum mechanics do not allow to label identical quantum parti-
cles (for example by coloring) and to follow their trajectories at the same
time. The identity of quantum mechanical particles manifest itself in higher-
order correlation functions as for example in the second-order correlations
of the time dependent fluctuations of the electrical current. The first mea-
surements in the field of quantum statistics, which is devoted to the study
of identical quantum particles, were carried out with photons by Hanbury
Brown and Twiss (HBT) in the 1950s. In a pioneering experiment HBT
determined the size of astronomical radio sources by measuring the spatial
coherence of the emitted radiation from correlations between intensity fluc-
tuations at two different locations [74]. Their setup is shown in Fig. 5.1(a)
where two reflectors (R) combined with photo multipliers (Ph) spaced by a
distance d were used to detect the deviations ∆I(t) of the time dependent
intensity I(t) from its mean value 〈I〉. For seperations d smaller than the
spatial coherence length lcoh of the detected radiation a positive correlator
〈∆I1∆I2〉 between the intensity fluctuations measured by telescope 1 and
2 was found, whereas in the case of d > lcoh the flucutations ∆I1 and ∆I2

were completely independent. With this method the angular diameter α of
several stellar objects was measured down to � 0.0005′′ using the relation
α · lcoh = α · d � λ. The intensity interferometry introduced by HBT
radically differs from that of the phase sensitive Michelson stellar interfer-
ometer [see Fig. 5.1(b)], since measuring the correlation between intensity

43
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Figure 5.1: (a) Schematics of the Hanbury Brown and Twiss stellar intensity
interferometer and (b) the phase sensitive Michelson star interferometer, both
used to determine the angular diameter of nearby stellar objects (after Ref. [75]).

fluctuations means that the relative phases of the two signals are lost1. The
fact that the information ‘hidden’ in the relations between the phases of the
two signals can nevertheless be obtained from intensity correlations is due
to the specific statistics of a thermal field of photons obeying Bose-Einstein
statistics, as we will discuss below.

Subsequently, a table-top version of the HBT experiment invoked one
optical light source (Hg vapor lamp) and two detectors measuring the fluc-
tuations in the transmitted (T) and reflected beam (R) generated at a half-
transperent mirror (beam splitter) [see Fig. 5.2(a)]. Instead of the spatial
coherence, in such an experiment the temporal coherence of the light beam
is probed. The equal-time intensity correlation between the two separated
photon streams was found to be positive, too [77, 78, 79, 80]. At the core
of these two observations - positive intensity correlations - lies the funda-
mental property of the particles making-up the light (= photons), namely
that they are bosons, which can occupy the same state. In an oversimplified
picture bosons do have a tendency to bunch in clusters (‘photon bunching’)
[Fig. 5.2(b)]. Thus, several particles reach the beam splitter at the same
time, so that the probability to detect one particle in the transmitted and
one in the reflected beam simultaneously is enhanced and a positive corre-
lation will be measured. The situation dramatically changes if the bosons

1In advantage to the Michelson technique, the base-line in the HBT setup is much less
limited by atmospheric or instrumental fluctuations, so that the resolution can be much
larger. Nowadays, intensity interferometry has become an important tool in high energy
nuclear and particle physics [76].
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Figure 5.2: (a) Schematics of a HBT experiment. (b) Particles obeying Bose-
Einstein statistics tend to cluster (bunching). Thus, a positive correlation is ob-
served between fluctuations in the transmitted and reflected beam. (c) In contrast,
the particles in a degenerate beam of fermions expel each other (antibunching)
because a state can be occupied by only one fermion. As a consequence, the
fluctuations in the partial beams are expected to be fully anticorrelated.

in the HBT experiment were replaced by fermions which cannot occupy the
same state and avoid each other (‘antibunch’) because of the Pauli princi-
ple. Such a beam of degenerated fermions does not show any fluctuations
in the number of particles (see below) and in a HBT-type experiment with
fermions, a negative correlation between intensity fluctuations in the trans-
mitted and reflected beam is expected [Fig. 5.2(c)].

This chapter describes one successful realization of the electronic coun-
terpart of the Hanbury Brown and Twiss experiment performed in a semi-
conducting device. Another succesful realization of a different experimental
approach, also in a semiconducting environement, was simultaneously and
independently performed by Oliver et al. [81]. Although there were earlier
attempts to measure the expected negative correlations in a free electron
beam, the problem to overcome is that even in the best field emission source
the particle density is very low (10−6 per mode) due to Coulomb repulsion
and the spreading of the beam. This made it impossible to measure the
anti-correlation before [82, 83].
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5.2 Statistics and shot noise

The mean occupation number 〈n〉 of a single particle state with energy E
is given by

〈n〉 =
[
exp
(

E − µ

kBθ

)
+ a

]−1

(5.1)

with a = 0 for classical particles, a = +1 for a gas of indistinguishable
fermions and a = −1 for a gas of identical bosons. For fermions, 〈n〉 never
exceeds unity because the occupation number n itself can only be 0 or
1 due to the Pauli-principle. In the following we consider the statistical
fluctuations of the occupation number n around its mean value 〈n〉. The
mean square flucutations are2

〈∆n2〉 ≡ 〈n2〉 − 〈n〉2

= 〈n〉
(
1 − a〈n〉

)
. (5.2)

In the classical case with particles obeying Maxwell-Boltzmann statistics
(a = 0), the fluctuations just equal the mean occupation number: 〈∆n2〉 =
〈n〉. For fermions (a = 1) the flucutations start to vanish as the mean
occupation number 〈n〉 reaches unity. Thus, a fully occupied fermionic
beam with 〈n〉 = 1 is noiseless, indicating the complete absence of observable
particle nature. In general, statistics for which 〈∆n2〉 < 〈n〉 are called sub-
Poissonian. For particles obeying Bose-Einstein statistics (a = −1), the
fluctuations can be larger than in the classical case: 〈∆n2〉 > 〈n〉. Such
statistics are therefore denoted as super-Poissonian.

In Fig. 5.3(a) the probability p(n) that there are exactly n particles
in a state of energy E is plotted as a function of the particle number n
for the three different kinds of statistics3. In case of degenerate fermions
this probability is 1 for n = 1 and zero otherwise: the state is occupied only
once with probability one. Classically, p(n) equals a Poissonian distribution
that achieves a maximum value for n = 〈n〉. Surprisingly, the probability
to have exactly zero particles in a specific state E is in the case of Bose-
Einstein statistics larger than for any finite number n. This means that
the fluctuations in this case are maximal. The ratio p(n)/p(n − 1), which
measures the probability to aquire one more particle to the state E already
occupied by n−1 particles, is independent of the number of particles already
occupying that state. This behaviour is what we call ‘bunching’. In
contrast, fermions exhibit a negative statistical correlation (‘antibunching’).

2For details, see: R. K. Pathria, Statistical Mechanics, Pergamon Press, Oxford (1986).
3In two dimensional systems, other fractional statistics are possible, too. The particles

obeying fractional statistics are called anyons.
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Figure 5.3: (a) Probability p(n) that there are exactly n particles in a state of
energy E as a function of the particle number n for different statistics. From the
relation δE · τ ∼ � the distribution p(n) can also be regarded as the probability to
detect n particles simultaneously in the two channels of a HBT-type experiment.
(b) Overview over different physical systems of bosons and electrons with various
statistics.

Photons do not necessarily ‘bunch’, because the property ‘bunching’ de-
pends on the particle statistics . It has been shown that it is also possible
to generate photon fields with a small mean particle number 〈n〉 per mode
volume displaying ‘photon antibunching’ ! [84, 85, 86, 87] In a recent ex-
periment single photons were triggered periodically using a single quantum
dot excited on resonance by laser pulses. The generated trains of photons
show pronounced anti-bunching [88].

In a HBT type experiment, not the fluctuations ∆n(t) = n(t) − 〈n〉 of
the particle number n(t) (shot noise) in a single beam are detected, but
the correlation between fluctuations in the transmitted (T) and reflected
(R) beam originating from a beam splitter [Fig. 5.2(a)]. If the incident
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statistics 〈∆n2〉 cross-correlation

Poissonian = 〈n〉 = 0
SUPER-Poissonian (‘bunching’) > 〈n〉 > 0
SUB-Poissonian (‘antibunching’) < 〈n〉 < 0

Table 5.1: Overview over different types of statistics and the cross-correlations
between fluctuations in the transmitted and reflected beam in a HBT-type exper-
iment.

beam (IN) is not prepared at a single-particle level, but shows intensity
fluctuations ∆n(t), the correlator 〈∆nt∆nr〉 between the fluctuations in
the transmitted ∆nt and the reflected ∆nr beam is given by4:

〈∆nt∆nr〉 = t(1 − t) ·
{
〈∆n2〉 − 〈n〉

}
, (5.3)

where t is the transmission probability of the beam splitter. The cross-
correlation in Eq. (5.3) is a sum of a term proportional to 〈∆n2〉, which
depends on the particle statistics in the incident beam, and a term pro-
portional to 〈n〉, which is caused by the probabilistic partitioning of single
particles at the beam splitter. This second term always gives a negative con-
tribution to the cross-correlation independent of whether the particles are
bosons or fermions. The auto-correlation of the transmitted (or reflected)
beam equals

〈∆n2
t 〉 = t(1 − t) ·

{ t

1 − t
〈∆n2〉 + 〈n〉

}
. (5.4)

Here, the sign of the second term is positive in contrast to the cross-
correlation in Eq. (5.3). For an incident beam of particles obeying Pois-
sonian statistics with 〈∆n2〉 = 〈n〉 the cross-correlation (5.3) is zero. For
super-Poissonian statistics, 〈∆n2〉 > 〈n〉, the cross-correlation is positive
(HBT result for thermal light). In contrast, anticorrelation results if the
noise in the incident beam is sub-Poissonian: 〈∆n2〉 < 〈n〉. Maximal an-
ticorrelation is obtained if the incident beam carries no fluctuations at all
(〈∆n2〉 = 0), which is the case for a completely degenerated electron beam
at zero temperature. Noise suppression in a single beam due to the fermionic
nature of the charge carriers has been found in electrical noise measurements
on quantum-point contacts and nanowires [36, 43, 47, 48, 49, 62, 89]. Es-
pecially, the shot noise suppression measured on ballistic quantum point
contacts which was found to be in excellent aggreement with the theoretical
expection SI = 2e|I|(1− T ) already demonstrates the absence of noise in a
degenerate fermionic beam [see subsect. 2.4.1].

4A derivation of the expressions Eq. (5.3) and Eq. (5.4) is given in appendix A.
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Figure 5.4: Intensity correlation experiment for a degenerated beam of electrons
realized in a Hall bar. A metallic split gate serves as tunable beam splitter [see
Fig. 5.5(b)]. Electrons escaping from contact 1 travel along the upper edge un-
til reaching the beam splitter, where they are either reflected into contact 3 or
transmitted to contact 2. The time-dependent transmitted and reflected currents
It,r are converted to voltage signals by two 1 kΩ series resistors RS . Finally, the
voltage fluctuations across the two resistors are detected by two amplifiers and the
two signals are fed to a spectrum analyzer, which calculates the cross-correlation
spectrum.

5.3 Realization in a semiconducting environment

Theoretically, HBT-type experiments with fermions and other multi-termi-
nal correlation experiments have been considered by various people before
any experiment has been performed [33, 35, 59, 90, 91, 92, 93].

One way to realize a HBT experiment with electrons has been proposed
by Büttiker [35]: In a two dimensional electron gas in the quantum Hall
regime [sect. 2.2.1] the current flows in one-dimensional channels along the
edges of the device [Fig. 5.4]. These edge channels can be used to separate
the incident from the reflected beam. If there would be no magnetic field
the current would also flow in the bulk and incident and reflected beam
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Figure 5.5: (a) Transmitted and reflected current measured at contact 2 and 3,
respecitvely, as a function of the gate voltage. At 2.5 K the two edge states are
spin-degenerated. (b) Scanning electron microscope image of the beam splitter.
Only one of these three pairs of split gates has been used.

could not be distinguished. The beam splitter consists of a lithographically
patterned metallic split gate, which can be tuned by a negative gate voltage.

Applying a constant voltage V to contact 1 the charge current I is in-
jected into the Hall bar. The magnetic field perpendicular to the 2 DEG
is adjusted to filling factor ν = 2, so that the current flows in one spin-
degenerated edge state. The electrons escaping from contact 1 travel along
the upper edge until reaching the beam splitter, where they are either trans-
mitted with probability t to leave the device at contact 2, or reflected with
probability r = 1 − t leaving at contact 3. Provided eV � kθ, the theory
predicts for the spectral densities of the auto- and cross-correlation accord-
ing to Eq. (5.3) and (5.4) [33]

〈∆Iα∆Iβ〉ω = ± 2e|I| t(1 − t) (5.5)

with α, β either t or r [see app. A]. The positive sign corresponds to the
auto-correlation, where α = β, and the negative one to the cross-correlation
with α �= β. Because the cross-/auto-correlation is largest for t = 1/2
the beam splitter is adjusted to transmit and reflect electrons with 50 %
probability [Fig. 5.5].
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Figure 5.6: Measured spectral densities of correlations between current-
fluctuations vs the current I of the incident beam at 2.5 K. The offset noise
arising from thermal fluctuations and residual amplifier noise has been subtracted.
The absolute slopes are (0.23 ± 0.030) · 2e and (0.26 ± 0.037) · 2e for the auto-
correlation and cross-correlation, respectively, in agreement with the expected
prefactor t(1 − t) = 1/4.

5.4 ‘Full antibunching’

Fig. 5.6 shows the cross-correlation 〈∆It∆Ir〉ω (solid squares) of the fluc-
tuations ∆It and ∆Ir versus bias current I at T = 2.5 K. A nearly linear
dependence with a negative slope is found showing that the fluctuations
are indeed anticorrelated. The auto-correlation (solid circles) of the trans-
mitted current 〈(∆It)2〉ω (or reflected current, not shown) has a positive
slope. The negative cross-correlation and the positive auto-correlation are
equal in magnitude confirming that the partial beams are fully anticor-
related. We can therefore conclude that there is no uncertainty in the
occupation of the incident beam, that is 〈∆n2〉 = 0 in Eq. (5.3) and (5.4).
All states in the incident beam are occupied with probability one and hence
are noiseless by virtue of the Pauli principle. Formally, this follows also
from 〈∆n2〉 = 〈(∆nt + ∆nr)2〉 = 〈∆n2

t 〉 + 2〈∆nt∆nt〉 + 〈∆n2
r〉 = 0 within

experimental accuracy. The fact that the current I of the incident beam
is noiseless demonstrates that the constant voltage applied to reservoir 1 is
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converted into a constant current e2V/h (per accessible mode) according to
the fundamental requirement of the Landauer-Büttiker formalism [sect. 2.1].

5.5 Sensitivity to the occupation in the incident beam

In an extension of our experiment we have changed the statistics in the
incident beam using an additional gate with transmission p ∈ [0, 1]. If 〈n〉
is the mean particle number of the beam incident to the beam splitter,
the particle number behind the first gate p is given by 〈ñ〉 = p〈n〉 with
noise 〈∆ñ2〉 = p(1− p)〈n〉. Using Eq. 5.3 and 5.4 the normalized auto- and
cross-correlation depend on the transmission probability p as

〈∆I2
t 〉ω

2e|I| = t(1 − pt) =
2 − p

4
(5.6)

〈∆It∆Ir〉ω
2e|I| = −t(1 − t)p = −p

4
, (5.7)

for t = 1/2 [see also app. A]. If p decreases from 1 to 0 the states in the
incident beam are diluted and the anticorrelation (5.7) becomes smaller [‘+-
centered’ and open squares in Fig. 5.8]. In case of very low transmission
p the statistics in the incident beam is Poissonian and the anticorrelation
disappears as discussed above. The auto-correlation itself increases, because
of the increased noise in the incident beam [see Eq. (5.4)]. The dependence
of the auto- and cross-correlation on the probability p is shown in Fig. 5.9.
The measured slopes of the data in Fig. 5.8 are in good agreement with the
predictions of Eq. (5.6) and (5.7) within experimental accuracy.
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Figure 5.8: If the incident beam is diluted by lowering the transmission proba-
bility p from 1 to 0, the cross-correlation gets smaller and disappears for p close
to zero. The auto-correlation itself increases, because the incident beam is noisy.

5.6 ‘Negative’ thermal noise

The two experiments presented in sect. 5.4 and 5.5 probe the system
strongly out of equilibrium (eV � kBθ). Thermal fluctuations are therefore
negligible. Interestingly, theory predicts that thermal fluctuations at two
different reservoirs can be correlated, too [33]. The correlation of thermal
fluctuations between two different reservoirs α and β are

〈∆Iα∆Iβ〉ω = −2kBθ G0 · (tαβ + tβα) (5.8)

with tαβ (tβα) the direct transmission probability from reservoir β to α (α
to β). According to this expression the thermal fluctuations at different
contacts should also be anticorrelated, provided that tαβ and tβα are not
both zero. In contrast to the previous non-equilibrium experiments, this
anticorrelation is not specific to the statistics of the charge carriers, but is
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with the prediction of Eq. 5.6 and 5.7.

a consequence of charge conservation. In a multi-terminal device different
contacts might not be coupled via a finite direct transmission probability,
leaving thermal noise at these contacts completely uncorrelated [33].

Fig. 5.10(a) shows the schematics of a device used to demonstrate the
prediction of Eq. (5.8) experimentally. In the first case, the switch at contact
4 is open. Thus, any charge transmitted from contact 2 to 4 is reinjected
by this contact because contact 4 is floating. For this reason, contact 4
can be disregarded if the switch is open and t32 equals the transmission
t of the split gate. In the opposite direction direct transmission vanishes
(t23 = 0) because any fluctuations originating from contact 3 are absorbed
by contact 1 which is connected to ground. Thus, the correlation between
thermal fluctuations at resevoir 2 and 3 is expected to equal

〈∆I2∆I3〉ω = −2kBθ G0 t. (5.9)

The correlation between thermal fluctuations are now proportional to the
transmission probability t and to the temperature θ. Fig. 5.10(b) shows
the measured correlations for three different temperatures. The fluctua-
tions are indeed negatively correlated and proportional to the transmission
probability t. The measured magnitudes also agree with theory within the
experimental accuracy. Contact 4 may also be connected to ground. This
cancels any direct transmission from contact 2 to 3 (t32 = t23 = 0). Thus,
the correlations are destroyed and both reservoirs fluctuate independently.



5.7 Conclusions and Outlook 55

2.5 K

5.0 K

7.5 K

7.5 K

reservoir 4 grounded:
t23 = t32 = 0

reservoir 4 floating:
t23 = 0, t32 = t

0

-2

-4

-6

-8

-10

0 0.4 0.60.1 0.3 0.50.2

transmission probability  t

cu
rr

en
t f

lu
ct

ua
tio

ns
  (

10
-2

7  A
2 s)

∆I
2∆

I 3
   

 , 
  e

V
 =

 0

21

3 4

B

t

beam
splitter

∆I3 

∆I2

ω
(a) (b)

Figure 5.10: (a) Four terminal conductor in the integer quantum Hall regime.
The transmission t is again tunable via the applied negative voltage to the split
gate. (b) Correlations between equilibrium fluctuations (eV = 0) vs transmission
probability t. If contact 4 is open (solid symbols) the thermal fluctuations are
negatively correlated. For contact 4 connected to ground resevoir 2 and 3 fluctuate
independently.

This is confirmed by the open circles in Fig. 5.10(b) which are data obtained
for contact 4 grounded at a relatively large temperature of 7.5 K.

5.7 Conclusions and Outlook

In conclusion, a HBT type experiment with electrons has been realized in a
solid state device. This experiment measures the equal-time correlations be-
tween fluctuations in the transmitted and reflected beam, but does not allow
to extract any information about the correlation time of the electrons. This
would require shot noise experiments at much higher frequencies (∼ THz).
Furhtermore, we have shown that current correlations are sensitive to the
particle statistics in the incident beam. Full anticorrelation is observed
for electrons obeying Fermi-Dirac statistics, whereas the anticorrelation is
gradually suppressed if the incident beam is diluted.
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Effect of incoherent scattering

The electronic correlations measured in a HBT experiment can be strongly
affected by incoherent scattering. This has recently been shown in a the-
oretical work of Texier and Büttiker [94]. Interestingly, inelastic scatter-
ing can even lead to positive correlations between transmitted and reflected
beam, if there are more than two edge states carrying the current [Fig. 5.12].
Inelastic scattering along the upper edge of the decive in Fig. 5.7 is indicated
by an additional floating reservoir [see Fig. 5.11]. For ν = 4 in the integer
quantum Hall regime we consider the case where the first spin-degenerated
edge state passes the point contact p with 100 % transmission probability
while the second one is only partially transmitted. Thus, the fluctuations
δI1 in the first edge state are zero while there is partition noise in the second
one: δI2 = δI. The floating reservoir has the affect that it equipartitions
the current between the two available edge states. The current fluctuations
introduced by the point contact p are now present in both edge states. If the
second point contact t seperates the two states so that the first one is totally
transmitted and the second one is totally reflected a positive correlation in
the current fluctuations between transmitted and reflected channel can be
measured.

HBT type experiments in the fractional quantum Hall regime

Shot noise measurements in the fractional quantum Hall regime have pro-
vided direct measurements of the fractional charge of quasiparticles [31, 32].
In a recent theoretical work of Safi et al. [95] it is suggested to monitor the
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Fig. 5.11]. For t = 0 the cross-
correlation is positive.

statistics in the FQHE via a HBT-type experiment, where quasiparticles
are emitted from one edge (3) and after tunneling through the correlated
Hall fluid are collected into two receiving edges (1,2) [see Fig. 5.13]. If the
filling factor ν is lowered from 1 towards 1/4, the noise correlation is re-
duced from full antibunching at ν = 1 to 0 at ν = 1/4. Amazingly, the
correlations become positive for ν < 1/4 (i.e. at filling factors 1/5, 1/7, 1/9,
. . . ) reminiscing of bosons bunching together. According to the authors of
Ref. [95] this positive correlations can be either attributed to the fact that
the fractional statistics are bosonic at ν → 0, or to the eventual presence
of composite bosons resulting from attachment of an odd number of flux
quanta.

500 nm

T1 T2

fractional quantum 
Hall liquid

3

12

Figure 5.13: SEM picture
of two parallel point con-
tacts. Quasiparticles tun-
neling from edge 3 through
the correlated Hall liquid
could be collected at the re-
ceiving edges 1 and 2.
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Positive HBT correlations in normal metal-superconductor de-
vices

The observation of bunching of electrons might be possible by preparing
electronic states with fluctations larger than the classical Poisson value,
which have recently been observed in resonant tunneling devices and in
superconducting weak links [52, 55, 96, 97]. Especially, positive (bosonic)
correlations are theoretically shown to exist in a fermionic system, com-
posed of a superconductor connected to two normal reservoirs via a narrow
scattering region [96] [Fig. 5.14].

S N

Figure 5.14: Bunching of
electrons might be observerd in
a system composed of a su-
perconducting injector, where
electrons are paired in Cop-
per pairs, and normal con-
ducting ‘Y’-shape structure.
Such a device could also serve
as an entangler for quantum
computing [98].



Chapter 6

Shot noise by quantum
scattering in chaotic cavities

6.1 Introduction

In classical mechanics, the essential difference between chaos and regular
behaviour is the exponential sensitivity to the initial conditions of the sys-
tem for the former. Each trajectory of a classical chaotic system explores
the entire phase space on a time scale given by the ergodic time. In the
absence of chaos stable periodic orbits exist. The general aim of the field
of quantum chaos is to study the dependence of quantum properties on
the chaotic dynamics of the underlying classical system, i.e. the relation
between classical trajectories and quantum mechanics. In a semiclassical de-
scription, the transmission probability through a chaotic cavity, as depicted
in Fig. 6.1, is given by the product of an amplitude and a phase exp(iφ),
where φ corresponds to the classical action S =

∫
dtL(t).1 This semiclas-

sical approximation is appropriate in the short-wavelength limit and equals
the classical description for � → 0 [for a review, see Ref. [99]]. Another
theoretical approach is random matrix theory (RMT). It can be used to
describe the statistics of energy levels in e.g. quantum chaotic systems [for
a review, see Ref. [17]]. RMT can only be applied when the classical motion
in the cavity is fully chaotic, while the semiclassical approach describes also
the case of integrable (non-chaotic) cavities.

In high quality semiconductor heterostructures, cavities with dimensions
smaller than the elastic mean free path l as well as the phase coherence
length lφ can easily be defined providing ideal tools to study these theoret-
ical ideas of quantum chaos [Fig. 6.2]. Disorder is not explicitly required

1For a one-dimensional problem this approximation is generally known as the WKB
(Wentzel-Kramers-Brillouin) method.

59



60 6 Shot noise by quantum scattering in chaotic cavities

NL NR

(a) (b)

Figure 6.1: (a) A classical chaotic trajectory in an open stadium billiard. (b)
Gray scale plot of a quantum wave function for the same structure. Signatures of
classical chaos also appear in quantum transport [100].

for chaoticity. Such a device corresponds to a mesoscopic electron billard.
There has been a lot of experimental work on quantum transport in chaotic
and integrable cavities. In these experiments the quantum transmission
probability, intimately related with the conductance, is explored as a func-
tion of the incident momentum k or the magnetic field B [see for example
Ref. [101, 102]]. These measurements are sensitive to chaotic or regular
behaviour. On the other hand, shot noise measurements are able to demon-
strate how much ‘quantum-like’ the chaotic system is. This is due to the
fact, that shot noise in mesoscopic systems is a purely quantum mechanical
effect [103]. It is the quantum nature of the chaotic electron motion gener-
ating noise, classical chaos alone is not sufficient. This is discussed in detail
in chapter 7.

The first part of this chapter briefly summarizes the theory on transport
and noise in quantum chaotic cavities. In the second part experimental
results for shot noise of a fully quantum chaotic system are discussed.

6.2 Transport properties of chaotic cavities

Figure 6.2 shows a chaotic cavity with two openings of the same width con-
nected to reservoirs on the left and the right side. Classically, the averaged
transmission probability T for an electron originating from the left and mov-

1 µm
VGate

right
reservoir

left
reservoir

Figure 6.2: Cavity electrostatically defined
in a two-dimensional electron gas using five
metallic top gates. Four of them are used to
define the two point contacts, which couple
the cavity to the reservoirs to the left and the
right side. The fifth large gate is used to alter
the shape.
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Figure 6.3: (a) Grayscale map of conductance fluctuations ∆G(VG, B) as a
function of magnetic field and the gate voltage VG determining the shape of the
cavity measured at 270 mK. (b) Shape averaged magnetoconductance. The min-
imum at B = 0 is due to weak localization. A fit according Eq. (6.2) yields a
phase coherence time τφ ∼ 0.2 ns.

ing to the right lead equals the reflection probability R; i.e. R = T . This
changes if the size L of the cavity becomes smaller than the phase coherence
length lφ. Similar to the case of diffusive systems, the probability for an
electron to be reflected can be larger than the transmission probability due
to constructive interference of pairs of time-reversed paths (‘weak localiza-
tion’). For an open cavity, which is a cavity with NL,R open channels in
the left and right contact (i.e. T1...NL,R

= 1, T>NL,R
= 0), RMT predicts

for the ensemble averaged total conductance G:〈
G

G0

〉
ens.

=
NLNR

NL + NR − 1 + 2/β
. (6.1)

The parameter β in Eq. (6.1) refers to the symmetry of the ensemble of
scattering matrices. For β = 1 time-reversal symmetry is present and the
scattering matrix of the chaotic cavity is assumed to be a member of the
circular orthogonal ensemble (COE), whereas for β = 2 time-reversal sym-
metry is broken and the scattering matrix belongs to the circular unitary
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Figure 6.4: (a) Sample
specific magneotresis-
tance (‘magnetofinger-
print’) from Fig. 6.3(a).
(b) Power spectrum
of the resistance fluc-
tuations presented in
(a).

ensemble (CUE). For this latter case the total conductance is equal to the
series conductance of the two contacts. In the limit of large NL(R) the
weak-localization correction to the conductance vanishes and the total con-
ductance G equals the classical series conductance. The magnetoconduc-
tance dip (weak localization) of a fully chaotic cavity centered around zero
magnetic field has a Lorentzian line shape [for a review, see Ref. [104]]

〈G(B)〉ens. = 〈G(0)〉ens. −
∆G

1 + (2B/αφ0)2
(6.2)

with φ0 ≡ e/h the with φ0 ≡ e/h the elementary flux quantum, α−1 the
area enclosed by a typical trajectory and

∆G � e2

h

(
N

2N + γφ

)
. (6.3)

γφ = h/τφ∆ with τφ the phase coherence time and ∆ = 2π�
2/m∗A the mean

level spacing for a dot with area A. N = NL = NR denotes the number of
modes in the contacts of the cavity. Experimental results illustrating the
weak localization effect of the cavity in Fig. 6.2 are presented in Fig. 6.3.
In contrast to the Lorentzian line shape (6.2) of a chaotic cavity, integrable
cavities show a linear weak-localization dip [104, 105]. In this way chaotic
and non-chaotic cavities can experimentally be distinguished [101, 102].

In addition to the weak localization contribution at zero field, interfer-
ence of coherent electrons within the cavity cause random but repeatable
conductance fluctuations ∆G when the magnetic field or the shape are var-
ied [see Fig. 6.3(a) and Fig. 6.4]. A magnetic field has the effect that it
changes the phase along each particular path in the cavity, so that the
interference and hence the conductance varies when the magnetic field is
changed. For chaotic cavities the power spectrum of these conductance fluc-
tuations ∆G(B) decays via a single exponential, whereas it shows a power
law tail for large frequencies with peaks corresponding to stable periodic
orbits for non-chaotic ones [101, 102].
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Figure 6.5: (a) In a metallic diffusive wire noise and resistance have the same
origin which is random scattering on impurities. (b) In a open chaotic cavity the
resistance is only due to the contacts which are noiseless. Shot noise occurs from
quantum scattering inside the cavity.

6.3 Shot noise of chaotic cavities

For a quantum wire with an intermediate barrier with energy independent
transmission probability T , T = 1/2 for example, the Fano factor F de-
fined as F = S/SPoisson = S/2e|I| equals 1 − T = 1/2 [see sect. 2.4.1].
Although an open and symmetric (NL = NR = N) chaotic cavity has a
mean transmission probability 〈T 〉 of 1/2, too, the Fano factor is predicted
to be only 1/4. This result was first derived by RMT which for NL,R � 1
results in a bimodal distribution function of transmission eigenvalues [see
Eq. (2.37)] with 〈T 〉 = 1/2 and 〈T (1 − T )〉 = 1/8. Thus, the Fano factor
F = 〈T (1 − T )〉/〈T 〉 equals 1/4.

Similar to metallic diffusive wires, where F = 1/3 [39, 48, 49], the Fano
factor 1/4 for a chaotic cavity is universal in the sense that it is insensitive to
microscopic properties [40, 59, 60, 106]2. Nevertheless, there is an important
difference between these two systems concerning the origin of resistance and
noise. In a diffusive conductor resistance and shot noise are both generated
locally at scattering centers, which are homogeneously distributed along the
wire [Fig. 6.5(a)]. In an open chaotic cavity resistance and shot noise do
have a different origin [Fig. 6.5(b)]. The resistance is due to the fundamental
quantum resistance of the contacts. Although the source of resistance, the

2By ‘construction’ all RMT results are universal. However, there are geometric cor-
rections, which are sensitive to the position of the leads and thus are sample specific [60].
The non-universal corrections are proportional to the angular opening of the contacts,
which is negligibly small for our cavities.
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Figure 6.6: Distribution function fC of a closed (a) and open chaotic (b) cavity.
In the case of a closed cavity the inverse tunneling rate is larger than all other
time scales so that the cavity can be regarded as a reservoir in between two tunnel
junctions.

open contacts do not contribute to noise because electrons are transmitted
with unit probability. Shot noise arises inside the cavity due to quantum
mechanical diffraction which splits the electron wave packet into two or
more partial waves leaving the two exits. In the semiclassical approach
cavity noise is determined by the average fluctuations of the state occupancy
inside the cavity given, at T = 0, by [60]

S = 2G

∫
dE fC(1 − fC). (6.4)

Here, fC(E) denotes the distribution function inside the cavity, which is
homogeneous and isotropic. Such a semiclassical description is appropriate
if the inverse dwell time is much larger than the level spacing of the cavity.
Because it is phase insensitive, interference effects (e.g. weak localization)
are excluded from this theory. The total conductance G is equal to the
series conductance of the left and right contact G0(NLNR)/(NL +NR) with
NL (NR) open channels (i.e. T1...NL,R

= 1, T>NL,R
= 0). For non-

interacting electrons the distribution function in the cavity fC just equals
the weighted average of the distribution functions fL and fR in the left
and right reservoirs [see Fig. 6.6(b)]. In the symmetric case NL = NR,
i.e. fC = 1

2 (fL + fR), Eq. (6.4) then yields a Fano factor of 1/4. For
very asymmetric contacts (NL � NR) shot noise approaches zero, since the
system can then be regarded as a single contact with NR open and therefore
noiseless channels. The general Fano factor F ≡ S/2e|I| for cavity noise is

F (η) =
NLNR

(NL + NR)2
=

η

(1 + η)2
, (6.5)
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where we introduce the parameter η ≡ NL/NR which measures the symme-
try of the cavity3.

A chaotic cavity is called closed if it is separated from the leads by tunnel
barriers. In that case, the dynamics inside the cavity does not play any role
and the Poissonian voltage noise of the two contacts adds up resulting in
SI = 1/2 · 2e|I| as for a double barrier junction with Fano factor 1/2 [see
also chapter 8].

6.3.1 Finite temperatures and inelastic scattering

The Fano factor Eq. (6.5) is valid for zero temperature and non-interacting
electrons. In order to model the experimental reality a theory for the
crossover from thermal to shot noise is required which includes interaction
effects, too. In this section a theoretical derivation for the noise of a chaotic
cavity at finite temperature is given based on a semiclassical description
closely following Ref. [60]. The final results which we use for the analysis of
the experimental data are Eq. (6.24) valid for non-interacting electrons and
Eq. (6.27) for inelastic electron-electron scattering. These two equations
describe the crossover from thermal to shot noise. Impatient readers can
skip this section.

We consider the most general case of a cavity coupled by several contacts
to the reservoirs [see Fig. 6.7]. From conservation of charge, the sum of all
in and out flowing currents must be zero:∑

m

Im =
∑
m

Gm(VC − Vm) = VCG̃ −
∑
m

GmVm = 0 (6.6)

3The weak-localization correction for shot noise of an open chaotic cavity can be
obtained from RMT in the limit NL,R � 1 [40]:

F =
NLNR

(NL + NR)2
−
(

1 − 2

β

)
(NL − NR)2 + NLNR

(NL + NR)3
−
(

1 − 2

β

)2 (NL − NR)2

(NL + NR)4
.

Gm

θ   ,C VC I n

Vl

Figure 6.7: Chaotic cavity, which is coupled by several
contacts of conductance Gm to the reservoirs of potential
Vl. The resistance of the cavity is negligible compared
to the resistance of the contacts. VC and θC denote the
potential and the effective temperature of the electrons
inside the cavity and are assumed to be uniform over the
whole cavity.
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with G̃ =
∑

m Gm. Thus, the potential VC inside the cavity is given by

VC =
∑
m

αmVm with αm ≡ Gm/G̃. (6.7)

The current Im through the m-th contact can be written as

Im = (VC − Vm)Gm =
∑

n

(αnVnGm − δnmVmGm)

=
∑

n

(αmVnGn − δnmVnGn)

=
∑

n

GnmVn (6.8)

with the multiterminal conductance Gnm given by

Gnm ≡ (αm − δnm)Gn. (6.9)

In the zero frequency limit, we can apply the charge conservation argument
to the time dependent fluctuations in the current δIm, too, implying that∑

m δIm = 0. The current fluctuations consist of a source term δIS
m describ-

ing current fluctuations in the contacts and of a contribution arising from
fluctuations δVC of the potential inside the cavity4:

δIm = δIS
m + Gm δVC (6.10)∑

m

δIm =
∑
m

δIS
m + G̃ δVC = 0 ⇒ δVC = − 1

G̃

∑
m

δIS
m

δIm = δIS
m − αm

∑
n

δIS
n . (6.11)

Since 〈δIS
n δIS

m〉 = Sn · δnm we obtain

Snm = 〈δInδIm〉 =
〈(

δIS
n − αn

∑
n′

δIS
n′

)(
δIS

m − αm

∑
m′

δIS
m′

)〉
=

〈(∑
n′

δIS
n′δn′n − αn

∑
n′

δIS
n′

)(∑
n′

δIS
n′δn′m − αm

∑
n′

δIS
n′

)〉
=

∑
n′

(δn′n − αn)(δn′m − αm)Sn′ . (6.12)

4After a time of the order of the dwell time τD an electron inside the cavity becomes
uniformly distributed and leaves the cavity through contact n with the probability αn.
For times t � τD this can be described by an instantaneous fluctuation of the potential
δVC inside the cavity [see Ref. [60]]. The requirement of the conservation of the number
of electrons leads to minimal correlations [60] between GmδVC and δIS

m. The current is
conserved at every instant of time,

∑
n δIn = 0, what eliminates the fluctuations δVC .
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The next step is to calculate Sn which is the noise in the contacts. The
noise power of the current fluctuations in a two-terminal conductor is given
by Eq. (2.32) [34, 35]:

Sn = 2G0

N∑
k=1

∫ ∞

0

dE
[
Tknfn(1 − fn) + TknfC(1 − fC)

+Tkn(1 − Tkn)(fC − fn)2
]
. (6.13)

with Tkn the transmission probability of the mode k from lead n to the
cavity.

Non-interacting electrons: The distribution function fC(E) inside the
cavity in case of cold electrons can be calculated from the conservation of
the number of electrons for each energy interval E to E +dE [see Ref. [60]].
The flux of electrons in this energy interval is Jn(E) = e−1Gn[fC(E) −
fn(E)], so that the current is given by In =

∫
dE Jn(E). Because of charge

conservation (
∑

n Jn = 0) it follows immediately that

fC(E) =
∑

n

Gnfn(E)/
∑

n

Gn =
∑

n

αnfn(E) (6.14)

with fn(E) =
[
1 + exp

(
E − eVn

kBθ

)]−1

. (6.15)

Interacting electrons: If there is strong inelastic scattering inside the
cavity, the electrons equilibrate due to energy exchange. The distribution
function fC inside the cavity is then a Fermi-Dirac distribution at an el-
evated electron temperature θ̃, which can be calculated from the energy
balance equation using the Wiedemann-Franz law. The total heat flow
from the reservoirs to the cavity is [107]

QC =
(kBπ)2

6e2

∑
n

Gn(θ2
n − θ̃2) +

1
2

∑
n

Gn(VC − Vn)2. (6.16)

Because of energy conservation, QC = 0. From this the electron tempera-
ture θ̃ inside the cavity is obtained as5:

θ̃2 = θ2 +
3e2

(kBπ)2
∑

n

Gn(VC − Vn)2/
∑
m

Gm (6.17)

5We assume here, that the bath temperature θ is the same for all reservoirs, i.e.
θn = θ, ∀n.
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= θ2 +
3e2

(kBπ)2
∑
n,m

αnαm(Vn − Vm)2. (6.18)

The distribution function fC is then given by

fC(E, VC , θ̃) =
[
1 + exp

(
E − eVC

kB θ̃

)]−1

. (6.19)

Open cavity:

For an open cavity Tkn(1 − Tkn) = 0 for all modes in the contacts. Each
mode is either totally transmitted (Tkn = 1) or totally reflected (Tkn = 0).
In this case, Eq. (6.13) simplifies to

Sn = 2G0

∑
k

Tkn︸ ︷︷ ︸
= Gn

[∫
dE fn(1 − fn)︸ ︷︷ ︸

= kBθ

+
∫

dE fC(1 − fC)︸ ︷︷ ︸
= kBθC

]
, (6.20)

where the effective temperature θC inside the cavity has been introduced.
From Eq. (6.12) together with Eq. (6.9) the total noise follows as

Snm = 2kB(θ + θC)
∑
n′

Gn′(δn′n − αn)(δn′m − αm)

= −2GnmkB(θ + θC). (6.21)

Non-interacting electrons: For non-interacting (cold) electrons the effec-
tive temperature kBθC =

∫
dE fC(1−fC) can be calculated by substituting

Eq. (6.14) into Eq. (6.21):

kBθC =
∫

dE
∑

n

αnfn[1 −
∑
m

αmfm]

=
∑
n,m

αnαm

∫
dE fn(1 − fm)

=
e

2

∑
n,m

αnαm(Vn − Vm) coth
(

e(Vn − Vm)
2kBθ

)
. (6.22)

In the second step the relation
∑

n αn = 1 has been used. In the particular
case that there are only two terminals to the cavity the effective temperature
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kBθC equals

kBθC =
e

2

[
(α2

1 + α2
2) lim

V →0
V coth

(
eV

2kBθ

)
+ 2α1α2 V

(
eV

2kBθ

)]
=

G2
1 + G2

2

(G1 + G2)2
kBθ +

G1G2

(G1 + G2)2
eV coth

(
eV

2kBθ

)
(6.23)

with V = V1 − V2. From (6.21) the total noise follows as [60]:

S = −S12 = 2G12 (kBθ + kBθC)

= 4kBθG

{
1 +

G1G2

(G1 + G2)2

[
eV

2kBθ
coth

(
eV

2kBθ

)
− 1
]}

(6.24)

with G = G12 = G1G2/(G1 + G2) the total conductance of the cavity. The
Fano factor equals [Eq. (6.5)]

F ≡ S

2e|I| =
G1G2

(G1 + G2)2
(= 0.25 for G1 = G2). (6.25)

Interacting electrons: In the case of interacting electrons the cavity tem-
perature θC for a two terminal chaotic cavity is

θC = θ̃ = θ

√
1 +

3
π2k2

B

G1G2

(G1 + G2)2

(
eV

kBθ

)2

. (6.26)

The noise then equals6

S = 2kBθG


1 +

√
1 +

3
π2

G1G2

(G1 + G2)2
·
(

eV

kBθ

)2

 (6.27)

with the Fano factor given by

F ≡ S

2e|I| =
√

3
π

√
G1G2

G1 + G2
(� 0.276 for G1 = G2). (6.28)

The functional behaviour of Eq. (6.24) and (6.27) is illustrated in Fig. 6.11.

Closed cavity:

The case of partial reflection of modes at the contacts has to be treated
numerically and is discussed in chapter 8.

6To our knowledge, this formula cannot be found in the literature.
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6.4 The device

Experimentally, chaotic cavities are realized by two quantum point contacts
in series. These are electrostatically defined in a two-dimensional electron
gas by metallic split gates on top [Fig. 6.8(a,b)]. The opening of the con-
tacts can be individually tuned by varying the applied gate voltages inde-
pendently. The 2 DEG forms 80 nm below the surface at the interface of a
standard GaAs/Al0.3Ga0.7As-heterojunction. Magnetoresistance measure-
ments yield a carrier density of 2.7 × 1015 m−2, corresponding to a Fermi
energy of ∼ 106 K and a mobility of 83 Vs/m−2 resulting in a mean free
path of ∼ 7 µm comparable to the size of the cavity. Three QPCs in series
as shown in Fig. 6.8(a) enable to define two cavities of different size: either
the outer gates A and C with the middle gate B kept completely open can
be used to define a relatively large cavity of ∼ 11 × 8 µm, or 2 of the inner
gates (A,B or B,C) creating a smaller cavity of ∼ 5×8 µm. The conductance
of the QPCs is quantized according to the Landauer formula G = G0

∑
n Tn

[see Fig. 2.2(a)]. An open cavity is defined when both QPCs are adjusted
to a conductance plateau, where N modes are fully transmitted (T = 1)
and the others are totally reflected (T = 0). The two-terminal conductance
G is experimentally found to correspond to the series conductance of the
two contacts GLGR/(GL + GR) with an accuracy of less than 1% [40, 60].
Therefore, direct transmission of electrons from the left to the right contact
can be excluded, as well as quantum corrections [109]7. Chaoticity in these
cavities is due to diffusive boundary scattering and few residual impurities
within the cavity. Diffusive reflections will always lead to chaotic dynamics
whatever the geometry is.

6.5 Measurements and discussion

Two independent low-noise amplifiers (EG&G 5184) operating at room tem-
perature are used to detect the voltage fluctuations across the cavity. A
spectrum analyzer (HP 89410A) calculates the cross-correlation spectrum of
the two amplified signals. This technique allows to reduce uncorrelated noise
contributions which do not originate from the s ample itself. Furhermore,
the whole setup is filtered against RF-interference at low temperatures by
a shielded sample-box and lossy microcoaxes to minimize heating by radia-
tion. A detailed description of the experimental setup is given in chap. 4.

Voltage noise is typically measured at frequencies around 6 kHz where
the noise is frequency independent (white) up to the maximum bias current

7Weak localization can be neglected due to residual magnetic flux through the cavity
what is larger than φ0.
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Figure 6.8: (a,b) Scanning electron microscope images of an etched Hall-bar in a
two-dimensional electron gas with metallic split gates on top. The fabrication of
this device required three optical and three e-beam lithography steps. (c) Electron
flow behind a QPC taken from Ref. [108]. The QPC acts as a point source
emitting spherical electron waves. Thus, the direct transmission probability from
one contact to the other is very low, so that the resistances of the two contacts
just add. (d) An open cavity is defined when both contacts are adjusted to a
plateau in the conductance curve (1). At position (2) the second mode is partially
transmitted, too.
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Figure 6.9: Shot noise of a chaotic cavity with ideal contacts (GL,R/G0 =
integer) for different conductance ratios η = GL/GR. The data for η = 1.0,
2.7, and 6.2 are offset for clarity by 20, 15 and 5 × 10−28 A2s, respecitvely. The
curves are the theorital predictions according Eq. (6.24) for the measured value
of η.

≤ 50 nA used in the experiment. Although shot noise is a non-equilibrium
phenomenon observed in its purest form in the limit eV � kBθ, in this
experiment bias voltages are limited to ∼ 8 kBθ/e, only. This is to avoid
non-linearities of the current-voltage characteristics of the QPCs [72] and
1/f-noise-contributions occuring at larger currents [36]. Within this limit,
the differential resistance, recorded for all noise measurements, changes by
less than 2.5 %. The current noise is finally obtained from the measured
voltage fluctuations by SI = SV /(dV/dI)2 − Samp

I .

Fig. 6.9 shows shot noise measurements of a cavity defined by gates A
and B with a size of ∼ 5 × 8 µm for different symmetry parameters η =
GL/GR. The solid curves describe the crossover from thermal to shot noise
for the measured value of η given by Eq. (6.24). In the symmetric case
(η = 1) with NL = NR = 5 we obtain a very good agreement between the
experimental data and the theoretical prediction of 1/4 · 2e|I|. When the
right contact is further opened (GR > GL) η increases from 1 (symmetric) to
∼ 41 (asymmetric). Thereby, shot noise gradually disappears as expected
from Eq. (6.5). The very asymmetric case of large η corresponds to the
situation where one contact is widely open, while the other is adjusted to a
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Figure 6.10: Shot noise is larger than 1/4 ·2e|I| if there is additional partitioning
due to non-ideal contacts (GL,R/G0 �= integer). The curves are numerical calcu-
lations assuming no mode mixing (dashed) and for slight mode mixing of 10%
(solid).

conductance plateau and hence does not produce any noise.
For partial transmission in the contacts shot noise is larger than 1/4·2e|I|

because additional noise is generated at the contacts. This is the case when
the contacts are not adjusted to a plateau in the conductance curve as for
example at position (2) in Fig. 6.8(d). The partition noise of the contacts
adds to the cavity noise so that the total noise exceeds 1/4 · 2e|I|. This is
shown in Fig. 6.10 where the first mode in the contacts is fully transmitted
(T1 = 1) while the second one is partially reflected (T2 = 0.16). The curves
are numerical calculations8 for no mode mixing (dotted) and for slight mode
mixing of ∼ 10 % (solid) with T1 = 0.90 and T2 = 0.26.

Up to now we have assumed that inelastic electron scattering inside the
cavity can be neglected. In general, heating caused by electron-electron
interaction enhances shot noise [25]. The Fano factor of a diffusive wire,
for example, changes from 1/3 for non-interacting (cold) electrons to

√
3/4

for interacting (hot) electrons [41]. Heating also affects the shot noise of a
chaotic cavity. The Fano factor is modified to [42]:

F (η) =
√

3NLNR

π(NL + NR)
=

√
3η

π(1 + η)
, (6.29)

8For details, see chapter 8 and app. D.
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and the crossover from thermal to shot noise is described by Eq. (6.27). For
a symmetric cavity F (η=1) � 0.276 for hot electrons, which is only slighly
larger than F (η=1) = 0.25 for cold electrons.

Fig. 6.11 compares SI(eV/kBθ) in the hot and cold electron regime for
a diffusive wire and a chaotic cavity. As is evident, the differences are
very small, in particular in the case of a cavity where even a crossing at
eV/kBθ � 15 occurs. In Fig. 6.13(a) the measured noise for η = 1 of
Fig. 6.9 is replotted and compared to the prediction for cold (solid) and
for hot electrons (dashed). Although the data points lie clearly closer to
the prediction for cold electrons, this alone is not sufficient to decide which
regime is realized in the cavity, because of the finite experimental accuracy.
An additional criterion is needed.

WL WR

a

b
Figure 6.12: For the estimation of the dwell
time of a chaotic cavity.



6.5 Measurements and discussion 75

0 10 20 30

3

4

5

θ = 270 mK   cold
   hot
   η = 1

ƒ  (E)
C

E0 eV

A

B

C

1 10 100

0

1

2

3

4

5

τ D
 / 

τ e-
e

η = GL / GR

G
R
 = G

0
    large

G
R
 = 5*G

0
 small

(a) (b)

S
I  (

10
-2

7  A
2 s)

current I  (nA)

Figure 6.13: (a) Shot noise of a symmetric cavity and theoretical predictions for
cold (solid) and hot electrons (dashed). (b) τD/τee vs η for the two different types
of cavity shown in the inset.

In order to decide whether the cold or hot electron theory is appropriate
for the comparison with the measurements, the electron-electron scattering
time τee is compared with the dwell time for electrons inside the cavity. We
argue that thermalization is present if τD � τee. The average dwell time is
the product of the ballistic flight time across the cavity τF with the number
of scattering events inside the cavity Nsc: τD = τF · Nsc. τF is given by
〈L〉/vF with 〈L〉 � (a + b)/2 [see Fig. 6.12] and the number of scattering
events Nsc by the ratio between the openings and the total surface of the
cavity:

Nsc =
2(a + b)

WL + WR
. (6.30)

With WL + WR = λF

2 (NL + NR) and EF = m∗v2
F /2 the dwell time τD

follows as

τD =
4π�

EF

(
〈L〉
λF

)2 1
(NL + NR)

. (6.31)

The electron-electron scattering rate τ−1
ee in a two dimensional electron sys-

tem is given by [110]

τ−1
ee =

EF

2π�

(
kBθe

EF

)2 [
ln
(

EF

kBθe

)
+ ln

(
2q

kF

)
+ 1
]

(6.32)

with the Thomas-Fermi screening wave vector q = 2me2/εrε0�
2. Because

the system is out of equilibrium the temperature θe in Eq. (6.32) has to
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cavity (open circles) with widely opened contacts (τD < τee) defined by two of
the inner gates and for a large cavity (solid squares) with nearly closed contacts
(τD � τee) defined by the two outer gates. The solid and dashed lines are predic-
tions for cold electrons and hot electrons according Eq. (6.25) and (6.28).

be replaced by the effective electron temperature θeff given by θeff =
(1/kB)

∫
dE fC(1 − fC)9. The ratio τD/τee is plotted in Fig. 6.13(b) as a

function of η = GL/GR for the two different types of cavities with θeff fixed
to the largest applied voltage V in the experiment. The upper curve belongs
to the large cavity (∼ 11 × 8 µm), where the right contact is nearly closed
(GR fixed to G0). In this case, τD � τee. The lower curve corresponds to
the smaller cavity (∼ 5 × 8 µm) with a 5 times larger opening of the right
contact. For this type of cavity we find τD < τee.

According to this argument we use Eq. (6.27) valid for hot electrons
to fit the noise data obtained for chaotic cavities with τD/τee > 1. The
Fano factor F is the only fitting parameter. On the other hand, we use
Eq. (6.24) valid for cold electrons if τD/τee < 1. The Fano factors F =
S/2e|I| obtained according to this procedure are plotted as a function of
the measured η for the two different cavities described above. For the black
squares, which belong to the large cavity with nearly closed contacts (large

9Thermalization has been assumed for fC which could slightly overestimate τ−1
ee .
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dwell time), we find good agreement with the theoretical Fano factor for
hot electrons given by Eq. (6.29) (dashed). The open circles are results
for the small cavity with wider opened contacts (small dwell time) which
are consistent with the prediction for non-interacting electrons described by
Eq. (6.5). If we use the formula for cold electrons instead of the one for
hot-electrons to fit the data obtained for the larger cavity, the black squares
move only slightly downwards by ∼ 0.02− 0.03. They still lie clearly above
the open circles, demonstrating that heating is indeed important for the
larger cavity. Good agreement between theory and experiment is found for
both regimes with the exception of very asymmetric contacts, i.e. η � 1.
Here, we attribute the deviations to slight mode mixing within the QPCs,
which is difficult to avoid [36]. Let us assume, as an example for the data
point at η = 180, that two modes instead of one participate in the left
contact transmitting respectively with T1 = 0.97 and T2 = 0.03 instead of
T1 = 1.00 and T2 = 0. This yields a Fano factor of � 0.06 in agreement to
what is experimentally observed.

6.6 Conclusions

We have experimentally studied shot noise of open chaotic cavities defined
by two QPCs in series. In the regime of non-interacting electrons a Fano
factor F = S/2e|I| of 1/4 has been measured as theoretically predicted
for symmetric cavities. The origin of this shot noise is partitioning of the
electron wave function by quantum-mechanical diffraction inside the cavity.
The contacts themselves, which actually define the resistance of the system,
do not contribute to noise. In addition, we have also investigated heating
effects due to inelastic electron-electron scattering by changing the opening
of the contacts as well as the size of the cavity. Similar to other mesoscopic
systems heating increases shot noise in agreement with theory. Shot noise
in chaotic cavities is a purely quantum phenomenon. This is discussed in
more detail in the following chapter, where an experiment is presented,
with which the crossover from ‘quantum chaos’ to ‘classical chaos’ can be
explored.
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Chapter 7

Quantum-to-classical crossover
in noise

7.1 Introduction

It was in 1918 when Schottky theoretically discovered that in vacuum tubes
[Fig. 7.1(a)] two types of time dependent current fluctuations (noise) will
remain even if all other possible noise sources had been eliminated care-
fully [26]: the ‘Schroteffekt’ and the ‘Wärmeeffekt’. The latter is known as
Nyquist noise, which is due to thermal agitation of electrons, whereas the
‘Schroteffekt’ is called shot noise [sect. 2.3.2, 2.4]. In Schottky’s vacuum
tube [Fig. 7.1(a)] electrons e are emitted by the cathode K randomly and
independently. Once an electron is emitted it will reach the anode A with
certainty. The emission process of electrons is a Poissonian process leading
to shot noise given by Schottky’s famous formula: S = 2e|I| [Eq. (2.29)].
Early shot noise measurements on vacuum tubes were carried out by Hart-
mann in 1921 [27] and Hull and Williams in 1925 [28].

In recent years, electrical current noise of coherent conductors (meso-
scopic systems) has been studied extensively [25]. In contrast to a vacuum
tube, charge does not propagate through free space, but is part of a degener-
ate and quantum-coherent Fermi sea. Early shot noise measurements on co-
herent conductors were carried out on quantum point contacts [Fig. 7.1(b)]
[36, 43]. In such systems, the electrons emitted from the reservoirs pass
the QPC with a certain transmission probability T . As for a vacuum tube
the shot noise of a QPC is proportional to the electrical charge and the
mean current [34]. One might therefore ask the question whether there is a
fundamental difference between Schottky’s ‘Schroteffekt’ and ‘modern’ shot
noise of coherent conductors?

In a QPC the spectral density S equals 2e|I|(1− T ) [Eq. (2.34)] so that
shot noise is suppressed by the factor 1−T relative to Schottky’s result, even

79
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Figure 7.1: Origin of noise. (a) In a classical vacuum tube the randomness giving
raise to the ‘Schroteffect’ stems solely from fluctuations in the reservoirs, while
the transmission through the vacuum occurs with unit probability [see app. C].
(b) QPC as a coherent conductor: at zero temperature randomness is due to
scattering within the conductor, only. Although this scattering can generally be
classical or quantum-mechanical only quantum scattering generates noise.

predicting zero noise for perfect transmission, which is clearly different to
Schottky’s result. But what about T � 1? In this case Schottky’s formula
S = 2e|I| is obtained for both the vacuum tube and the coherent QPC,
although they are distinct systems concerning the origin of noise.

Generally, noise is due to randomness, which can be classical or quantum
in nature. Randomness can be inherent in the reservoirs emitting charges
(emission noise) or in the transmission process between emitter and collec-
tor (transmission noise). The ‘Schroteffekt’ observed in a vacuum tube is
solely due to fluctuations of the state occupancy in the reservoirs leading to
random emission of electrons while the transmission from cathode to anode
through vacuum occurs with unit probability [app. C]. Loosely speaking,
the vacuum is noiseless. In an electrical conductor at zero temperature, it
is just the other way around. The emission from an ideal reservoir (a Fermi
gas) into a quantum wire is noiseless [33] because there is no randomness in
the reservoir occupancy due to the sharp Fermi edge present in a degenerate
electron gas. Here, randomness is caused by scattering within the conduc-
tor, which can be either classical (deterministic) or quantum-mechanical.
Both add to the electrical resistance, but only quantum scattering gener-
ates noise. This has been conjectured by Beenakker and van Houten [103].
In this chapter we present an experiment which verifies this fundamental
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statement by measuring shot noise of open chaotic cavities1.

7.2 Theory

A schematic drawing of a chaotic cavity connected via two QPCs to a left
(L) and a right (R) reservoir is given in Fig. 7.2(a). At the contacts charge
transport takes place within an integer number N of energy channels with
transmission probability T = 1 [see also chap. 6]. Since electrons pass the
contacts with unit probability, they are noiseless. Nevertheless, there is a
fundamental resistance RL,R associated with each contact: R−1

L,R = GL,R =
2e2/h · NL,R [2, 4]. Here, backscattering is caused by the chaotic motion
inside the cavity. An electron which enters the cavity from the left contact
scatters chaotically inside the cavity and leaves it after the dwell time τD,
either at the left or the right contact with a probability of 50% averaged
over all possible trajectories (symmetric contacts assumed)2.

The total resistance R of the chaotic cavity is simply given by the series
of the left and right contact resistances: RL + RR (the region inside the
cavity has negligible resistance). Note that the simple addition law R =
RL + RR holds irrespectively of whether chaos within the cavity is classical
or quantum. As will be shown below this is markedly different for shot
noise, the occurrence of which relies on the presence of quantum scattering,
i.e. diffraction caused by the wave nature of electrons. Because the degree
of diffraction can be tuned in the experiment by changing the effective dwell
time τD, this statement can experimentally be verified.

The shot noise power of an open cavity, at T = 0, can be expressed in
terms of the fluctuating distribution function fC of the electrons inside the
cavity [60]:

S = 2/R ·
∫

dE 〈fC(p, r)[1 − fC(p, r)]〉. (7.1)

〈. . .〉 denotes the average over momentum direction p/p. There are three
important time-scales in the problem: 1) the ballistic flight time τF , which
is the time an electron takes to traverse the cavity once; 2) the dwell time
τD; and, 3) the quantum scattering time τQ, which qualitatively equals the
mean time during which the classical trajectory is ‘lost’ by diffraction3.

1The cavities are chaotic due to scattering from defects and boundaries. See also
chapter 6.

2The cavities are chosen large enough with single electron level spacings δE � eV so
that a sufficiently large ensemble of eigenstates is probed.

3The ‘correlation length’ ∆ϕλ of the fluctuations of the distribution function fC [see
Fig. 7.2(c,d)] due to chaotization and Lyapunov divergence of classical trajectories is
proportional to eλτ with the Lyapunov exponent λ ∝ τ−1

F [see app. B]. In the regime
of small-angle scattering ∆ϕsc < ∆ϕλ, where ∆ϕsc denotes the typical scattering angle
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Figure 7.2: Chaotic cavity in the ‘classical’ (a,c) and ‘quantum’ (b,d) regime.
(a) In the classical case scattering is deterministic so that electrons with a specific
momentum direction p/p inside the cavity can be identified to originate either
from the left or the right reservoir. This is illustrated by the random speckle
pattern inside the cavity. (b) In the quantum case it cannot be decided whether
the electrons came from the left or the right side because the wave function is
spread over the whole cavity. (c,d) The shot noise power is determined by the
fluctations 〈fC(1 − fC)〉 of the state occupancy fC . (c) In the classical limit fC

takes on either the value 1 or 0, and S ∝ 〈fC(1 − fC)〉 = 0, although 〈fC〉 �= 0, 1.
If quantum diffraction occurs fC can take on an arbitrary value between 0 and 1
within the energy interval [µR, µL]. In the ’full’ quantum limit (strong diffraction)
〈fC(1 − fC)〉 = 〈fC〉(1 − 〈fC〉), and for 〈fC〉 = 1/2 the shot noise is 1/4 · 2e|I|.
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Because of the relatively large cavities and small openings in the present
experiments, τD � τF .

7.2.1 Classical regime

The classical regime is characterized by τQ � τD. In this regime classical
(deterministic) trajectories are well defined. The distribution function fC

at a given point within the cavity and for a given energy E can be ex-
pressed as a function of momentum direction p/p [Fig. 7.2(c)]. Since the
cavity is chaotic, a large number of different trajectories cross this given
point. However, classical physics is deterministic allowing to trace back
each trajectory to its origin, which is uniquely determined to be the source
contact (left contact at chemical potential µL) or the drain contact (right
contact at chemical potential µR < µL). In the relevant energy window for
transport, i.e. µL = µR + eV ≥ E ≥ µR, fC equals either 0 or 1. It is 1
if the particular trajectory originates from the left contact, while it is zero
otherwise. The product fC(1 − fC), therefore, always equals zero and shot
noise will be absent. Intuitively, this appears to be very surprising, because
of the presence of chaos. Classical chaos leads to a very strange function
fC , which only takes on the values 0 and 1, but may switch between these
two values in a very erratic and dense way. This, however, does not produce
noise!

7.2.2 Quantum regime

If on the other hand, quantum diffraction cannot be neglected (τQ < τD),
the situation is drastically changed. Due to quantum scattering on impu-
rities and at the boundaries of the cavity an electron wave (classically the
‘trajectory’) may split into two or more partial waves leaving the cavity at
different exits. A momentum state within the cavity cannot be traced back
unambiguously to either contact, but carries information of both contacts
simultaneously. Consequently, fC is a weighted sum of fL and fR and can
now take on values between 0 and 1. This uncertainty of not knowing where
the electron came from and where it will go to is the source of noise. In the
‘full’ quantum limit, i.e. τQ � τD, the electron wave spreads over the whole
cavity [see Fig. 7.2(d)]. and 〈fC(1 − fC)〉 = 〈fC〉(1 − 〈fC〉). If, in addition,
the cavity is symmetric, 〈fC〉 equals 1/2 yielding S = 1/4 ·2e|I| for the shot
noise power [40, 60], what has only recently been confirmed [see chap. 6].

∆ϕsc ≡ |p − p′|/p, the quantum scattering time τQ is determined by the Ehrenfest
time τE of the chaotic system [111]. In this experiment however, quantum scattering is
large-angle scattering and the quantum scattering time τQ is defined within the concept
of semiclassical transport starting from the stationary Boltzmann equation for fp as

τ−1
Q =

∑
p′ Wpp′ , where Wpp′ is the rate of quantum scattering [112] [see app. B].
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7.2.3 Crossover between classical and quantum regime

The crossover between classical and quantum regimes in chaotic cavities
was theoretically discussed by Agam et al. [111]. For a symmetric cavity
the noise power S is [Eq. (6.24)]

S = Seq[1 + F (β coth β − 1)], β ≡ eV

2kBθ
, (7.2)

where F ≡ S/2e|I| is the Fano factor defined as the current-normalized
noise power at zero temperature. The Fano factor F decays to zero in the
classical limit where τQ/τD → ∞ and is to the first order in τQ/τD given
by

F =
1
4

(
1 − τQ

τD

)
. (7.3)

The noise power S can be written as S = SCl + SQ, where SCl = Seq =
4kBθ/R is the equilibrium noise of the contacts. This part is insensitive to
quantum mechanics and exists irrespectively of whether scattering within
the cavity is quantum or classical. In contrast, the second non-equilibrium
part SQ ∝ F is a sensitive probe of quantum mechanics.

7.3 Experimental

Cavities of size L comparable to the mean free path l are experimentally
realized in a two dimensional electron gas (2 DEG) [see also sect. 6.4 for
experimental details]. Two QPCs, electrostatically defined by metallic split
gates, connect the cavity to the reservoirs [Fig. 6.8(a) or inset of Fig. 7.3].
On the lateral two sides the electrons are confined by wet chemical etching of
the 2 DEG. The openings of the cavity can be altered by varying the gate
voltages. So called ‘open’ cavities are defined when both quantum point
contacts are adjusted to a conductance plateau with an integer number N
of fully transmissive (T = 1) modes.

The deviations from the quantum limit (F = 1/4) towards the regime
of deterministic scattering (F < 1/4), described by Eq. (7.3), is explored
here by changing the dwell time τD, which is an experimentally controlable
parameter. The dwell time depends on the area A of the cavity and the
conductances GL,R of the contacts [Eq. (6.31)]:

τD =
2e2m

π�2
· A

(GL + GR)
. (7.4)
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Figure 7.3: Fano factor F = S/2e|I| vs inverse dwell time τ−1
D of a symmetric

cavity (NL = NR). With increasing τ−1
D the Fano factor F becomes smaller then

1/4 (quantum limit) indicating a crossover from full quantum to deterministic
(classical) scattering inside the cavity. The numbers at the data points indicate
the number of fully transmitted modes N at the contacts. (Top panel) Measured
ratio between the total resistance R and the series resistance RL + RR of the
two contacts as a function of τ−1

D . Since this ratio is always 1 the electronic
motion inside the cavity is chaotic. (Inset) Scanning electron microscope picture
of the cavity. For the zero-field data, gates A and B were used, whereas for the
measurements in a magnetic field we worked with the gates A and C.

7.4 Zero-magnetic field measurements

In a first experiment the openings (conductances) of the contacts have been
changed in order to alter τD. In Fig. 7.3, the Fano factor F ≡ S/2e|I| of a
symmetric (NL = NR) cavity defined by the two gates A and B [Fig. 6.8(a)]
is plotted as a function of the inverse dwell time τ−1

D for four different
settings (NL = NR = 5, 14, 22 and 40).

As the contacts are further opened and the dwell time is subsequently
reduced, the shot noise is observed to decrease. The Fano factor F shows
a pronounced decay below the quantum limit 1/4. A linear fit of the data
to Eq. (7.3) yields a τQ of ∼ 270 ps. It should be emphasized here, that the
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Figure 7.4: A magnetic field reduces the
dwell time τD ∝ 1/B. Theoretically, this
effect can be described as a change of the
area of the cavity, because for fields corre-
sponding to a cyclotron radius Rc smaller
than the size L of the cavity, an annulus
is formed at the edge with an inner part
of the cavity not contributing to trans-
port and noise. For not too strong mag-
netic fields, this annulus is considered as
a ‘new’ chaotic cavity with reduced area
A = 2RcLc with Lc ∼ L the circumfer-
ence of the cavity.

total resistance R equals the series resistance RL + RR of the two contacts
within the measurement accuracy of ∼ 3 % [top panel of Fig. 7.3]. Hence,
the shot noise measurements are carried out in a regime where the direct
(ballistic) transmission of electrons from the left to the right contact can be
neglected. The suppression of shot noise observed here is a consequence of
reduced diffraction and serves to demonstrate that shot noise disappears in
the limit of purely classical scattering.

7.5 Magnetic field dependence

An alternative way to change the dwell time τD is to apply a perpendic-
ular magnetic field. Since a magnetic field forces the electrons on circular
orbits with the cyclotron radius Rc = mvF /eB, the dwell time τD will be
reduced with increasing magnetic field B provided Rc < L. An annulus of
skipping orbits is formed in the vicinity of the cavity edge [inset Fig. 7.4],
contributing both to transport and noise, whereas the bulk of the cavity
does not participate in transport either because of very slow diffusion, or
because of the energy gap between Landau levels at high magnetic fields.
Such an annulus represents a ‘new’ chaotic cavity inside the actual cavity.
For low magnetic fields (large filling factors), mthe electron dynamics inside
the annulus can still be considered as being random (because of impurities
or irregularities in the geometry of the cavity). Thus Eq. (7.2) and (7.3)
are still valid with the area A in Eq. (7.4) replaced by A = 2RcLc, where
Lc ∼ L is the circumference of the cavity. This leads to 1/τD ∝ B.

Fig. 7.5 shows the measured Fano factor F as a function of inverse dwell
time τ−1

D in a magnetic field. Again a drastic reduction of F with increasing
τ−1
D is observed, while the total resistance R approximately equals the series

resistance RL +RR of the two contacts for B < 1.2 T [top panel in Fig. 7.5].
A linear fit according Eq. (7.3) results in a quantum scattering time τQ



7.6 Conclusions 87

0 1 2 3

0.00

0.05

0.10

0.15

0.20

0.25

0.5

1.0
0 1 2 3

magnetic field B  (T)

F
 =

 S
 / 

2e
|I|

R
 / 

(R
L 

+ 
R

R
)

inverse dwell time 1/τD  (GHz)

θ = 270 mK

(           )τQ
τD

0.25.  1 -F =

τQ ~ 480 ps 

integer
quantum
Hall regime

Figure 7.5: (Top panel) Total resistance R normalized to the series resistance
RL + RR as a function of inverse dwell time τ−1

D . (Bottom panel) Fano factor
F = S/2e|I| vs τ−1

D . F deviates from the quantum limit 1/4 with increasing τ−1
D

indicating a crossover from full quantum to classical scattering inside the cavity
as for the measurements in zero magnetic field.

of ∼ 485 ps, which is in qualitative agreement with τQ obtained from the
measurements in zero field. If the magnetic field is further increased beyond
1.2 Tesla, the ratio R/(RL + RR) starts to deviate from unity and equals
1/2 at the highest magnetic field. Here, we enter a new regime in which
a significant fraction of electrons is ballistically transmitted from source to
drain. The last measurement point in Fig. 7.5 with F � 0 and R/(RL +
RR) = 0.5 corresponds to the integer quantum Hall regime with filling factor
ν = 4, where the electrons propagate within two spin-degenerated ballistic
edge states.

7.6 Conclusions

In conclusion, we have experimentally demonstrated that the shot noise
in electron transport through mesoscopic conductors is a purely quantum
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phenomenon. Shot noise is absent if scattering is completely determinis-
tic. Chaotic cavities have proven to be an ideal model system for study-
ing the quantum-to-classical crossover, because the electron dwell time can
be changed either by varying the opening to the cavity or by applying a
magnetic field. The observed suppression of shot noise demonstrates that
Schottky’s ‘Schroteffekt’ disappears in electrical conductors if quantum un-
certainties are replaced by classical deterministic physics.



Chapter 8

Shot noise of series quantum
point contacts

In this chapter the shot noise of a series of quantum point contacts forming a
sequence of cavities in a two-dimensional electron gas is studied theoretically
and experimentally. The noise in such a structure originates from local scat-
tering at the point contacts as well as from chaotic motion of the electrons
in the cavities [see chapt. 6 and 7]. For a single scatterer of transmission
probability T the Fano factor F equals 1 − T and reaches 1/3 in the limit-
ing case of an infinite number of scatterers [113]. Thus, the case of a large
number of point contacts in series models a diffusive wire with randomly
placed impurities, for which the Fano factor is 1/3, too [subsect. 2.4.2]. The
work presented here is devoted to this crossover from F = 1−T for a single
scatterer to F = 1/3 in the diffusive regime.

8.1 Crossover from a single scatterer to the diffusive
regime

The shot noise of a sequence of N planar tunnel barriers has been calculated
by de Jong and Beenakker within a semiclassical description based on the
Boltzmann-Langevin approach [113]. For equal transmission probabilities
Ti=1,...,N = T the Fano factor equals

F =
1
3

(
1 +

N(1 − T )2(2 + T ) − T 3

[T + N(1 − T )]3

)
. (8.1)

According to this result F reaches 1/3 with increasing barrier number
(N → ∞) for any value of the transparency T ∈ [0, 1].1 Hence, in this

1In a simple one-dimensional system, in which electrons tunnel through N identical
barriers, and where no correlations occur between current fluctuations at different barri-
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Figure 8.1: Schematic of the considered system: N quantum point contacts
forming a series of cavities. fn=0....,N denote the distribution functions of the
electrons. In such a system shot noise arises due to quantum diffraction inside the
cavity as well as to partitioning at the contacts.

description a diffusive conductor can be modeled as the continuum limit of
a series of tunnel barriers. However, the calculation in Ref. [113] is only
valid for one-dimensional transport since it neglects transverse motion of
the electrons in between the barriers2. It is therefore not appropriate to
describe our physical system consisting of a series of quantum point con-
tacts. Here, we consider the case that there are cavities between the barriers
in which the electrons scatter chaotically leading to additional cavity noise
[40, 60].

In general, the fluctuations in the total current through a system as
shown in Fig. 8.1 can be written as [60]

δI = δIS
n + Gn(δVn−1 − δVn), n = 1, . . . , N (8.2)

using the fact that the total current is conserved. Gn = G0

∑
k Tkn (G0 =

2e2/h) is the conductance of the n-th barrier and δVn the voltage fluctu-
ations inside the n-th cavity. δIS

n are the current fluctuations of a single
QPC [34, 35] [see Eq. 2.32]:

〈δIS
n δIS

m〉 = Snδnm (8.3)

ers, the noise of all barriers is just averaged. The total voltage noise in this case would be
SV = N (2e|I|R2) with R the resistance of a single barrier. Thus, the Fano factor follows
as F = SV /(NR)2/2e|I| = 1/N and shot noise disappears with increasing N . This is the
case for example in a series of N vacuum tubes [114].

2A series of planar tunnel barriers could be modeled by series QPCs in the integer
Quantum Hall regime with no backsacttering in the cavities between the barriers. Ex-
perimentally, it turned out to be very difficult to measure noise in this regime due to the
non-linearities in the IV-characteristics of the point contacts at high magnetic fields [see
also Fig. 2.6].
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with

Sn = 2G0

∑
k

∫ ∞

0

dE
[
Tknfn−1(1 − fn−1) + Tknfn(1 − fn)

+Tkn(1 − Tkn)(fn−1 − fn)2
]
. (8.4)

Summing the square of Eq. (8.2) over n, while assuming equal conductances
Gn = G, the total noise power follows as

S ≡ 〈δI2〉 =
1

N2

N∑
n,m=1

〈δIS
n δIS

m〉 =
1

N2

N∑
n=1

Sn, (8.5)

where we have assumed δV1 = δVN = 0, i.e. no fluctuations in the potential
of the perfect metallic leads.

8.1.1 Non-interacting electrons

The distribution function fn of the n-th cavity follows from the conservation
of numbers of electrons in each energy interval [60] [see also sect. 6.3.1]

fn(E) =
(

N − n

N

)
fL(E) +

n

N
fR(E), (8.6)

with fL(E) = fF (E, eVL, θ) and fR(E) = fF (E, eVR, θ) the equilibrium
Fermi function in the left and right reservoir, respectively. θ denotes the
bath temperature. For simplicity only one propagating mode will be consid-
ered for the moment with the backscattering parameter Rn ≡ 1 − Tn = R
assumed to be the same for all barriers. Substituting the distribution func-
tion fn from Eq. (8.6) into Eq. (8.4), the total noise of N point contacts in
series follows from Eq. (8.5):

S =
4GSkBθ

N2

{
1
3

[
(2N2 + 1) + (N2 − 1)

eV

2kBθ
coth

(
eV

2kBθ

)]
+R

[ eV

2kBθ
coth

(
eV

2kBθ

)
− 1
]}

(8.7)

GS = G/N is the total conductance of the device. In the zero-temperature
limit we obtain for the Fano factor

F ≡ S

2e|I| =
(

1
3
− 1

3N2
+

R
N2

)
. (8.8)
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Using the Fano factor F (8.8), Seq = 4GSkBθ and β ≡ (eV/2kBθ) [see
Eq. (7.2)], Eq. (8.7) can be rewritten in a more simple and transparent
form:

S = Seq

[
2
3

+
1
3
−
(

1
3
− 1

3N2
+

R
N2

)

+
(

1
3
− 1

3N2
+

R
N2

)
(β coth β)

]
= Seq

[
1 + F (β coth β − 1)

]
. (8.9)

For a single QPC (N = 1) F equals the backscattering parameter R = 1−T
as expected. For N = 2 we have a single cavity which is separated from the
leads by two QPCs and for ideal contacts (R = 0) the Fano factor is 1/4.
If the QPCs are in the tunneling regime (R � 1) the noise is dominated by
the QPCs and the dynamics inside the cavity play no role. The Poissonian
voltage noise of the two contacts adds up resulting in a Fano factor 1/2.
In the intermediate regime F = 1

4 (1 + R). Increasing the number of QPCs
(N → ∞) the Fano factor F reaches 1/3 independent of R = 1 − T as for
the calculation in Ref. [113].

In Fig. 8.2(a) the result of Eq. (8.8) is compared to the result for one-
dimensional tunnel-barriers [113]. For point contacts with low transparen-
cies (T = 0.1) the results are very similar because in this case the noise
is dominated by the contacts. But for high transparencies (T = 0.9)
the Fano factor including ‘cavity noise’ [Eq. (8.8)] increases much faster
with the number of QPCs than the one-dimensional model of de Jong and
Beenakker [113].

8.1.2 Interacting electrons

In case of electron-electron interaction within the cavities the distribution
function inside the n-th cavity fn(E, θ) equals a Fermi function fF (eVn, θn)
at an elevated electron temperature θn [Fig. 8.3]. Vn = V (1 − n/N) is
the potential in the n-th cavity with V = VL − VR the potential difference
between left and right reservoir. The electron temperature θn follows from
the energy balance equation using the Wiedemann-Franz law [107]:

θ2
n = θ2 +

3n(N − n)
N2

(
eV

πkB

)2

. (8.10)

Using Eq. (8.4) and (8.5) the noise in this case of hot electrons is given by

S =
2

N2

N∑
n=1

{
GkB(θn + θn−1)
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Figure 8.2: Theoretical prediction for shot noise normalized to the Poissonian
limit 2e|I| as a function of the number of QPCs N in series for cold (a) and
hot electrons (b) at zero bath temperature. The crosses (×, +) in the left plot
correspond to a calculation of de Jong and Beenakker [113] for one-dimensional
transport, not including the noise arising from chaotic motion of the carriers in
the cavities between the barriers. This is taken into account for Eq. (8.8).

+
∑

k

∫ ∞

0

dE Tkn(1 − Tkn) [fn−1 − fn]2
}

. (8.11)

The integral in Eq. 8.11 cannot be calculated analytically for the general
case. Numerical results for the Fano factor are shown in Fig. 8.2(b)3. Ana-
lytical expressions can be given for Ti=1,...,N = 1

F =
2
√

3
πN2

N−1∑
n=1

√
n(N − n) (8.12)

and for the tunneling regime (Ti=1,...,N � 1) in the diffusive limit (N → ∞)

F =
2
√

3
π

∫ 1

0

dx
√

x(1 − x) (8.13)

3The calculations were performed by a program written in C/C++ [see app. D], which
requires as input parameters the number of barriers N , the transmission probabilities T1,2

of the first two modes (the others are 0), the current range, the bath temperature T as
well as the Fermi energy of the 2 DEG.
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Figure 8.3: Temperature profiles for 2, 3, 4 and 50 barriers in series. In case
of inelastic electron-electron scattering electrons thermalize within the cavities
and the temperature drastically increases above the bath temperature leading to
enhanced noise. For a large number of barriers the temperature profile has a
parabolic shape as for a metallic diffusive wire [115].

with x = n/N ∈ [0, 1]. In both cases, the Fanofactor F equals
√

3/4 in
the continuum limit N → ∞, in agreement with the result for a diffusive
conductor with electron heating [41, 47, 116].

8.2 The device

Experimentally, a structure as described in Fig. 8.1 has been realized in a
2 DEG by a series of up to four QPCs across a wet-chemical etched Hall-
bar. The 2 DEG forms at the interface of a standard GaAs/Al0.3Ga0.7As-
heterojunction and its properties are described in sec. 6.4. The different split
gates are spaced by 20 µm and the Hall-bar is 100 µm width. Thus, the size
of the cavity is rather large (τD � τee) so that electron heating is present
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1 µm20 µm

(a) (b)

Figure 8.4: Scanning electron microscope images of the measured device. (a)
For point contacts forming a sequence of large cavities. (b) The single point are
defined with split gates.

[see sect. 6.5]. Voltage noise has been measured as a function of current
for one to three QPCs in series4 with fixed transmission probabilities. The
transmission of a single point contact can be adjusted by measuring its
conductance G = G0

∑
k Tk [for details see sect. 6.4]. The spectral density

of the voltage fluctuations are typically averaged over a frequency bandwith
of 1 kHz at around 7 to 9 kHz.

8.3 Results and discussion

In Fig. 8.5 the Fano factor F ≡ S/2e|I| extracted from the shot noise mea-
surements is plotted as a function of the number of point contacts. The
black dots correspond to experimental data obtained for a transmission
probability T = 0.9 of each single QPCs. The dashed line is the prediction
of Eq. (8.8), whereas the crosses correspond to the one-dimensional calcula-
tion of Ref. [113]. For N = 1 shot noise is strongly suppressed compared to
SPoisson = 2e|I|, as expected for a single QPC with high transmission prob-
ability [36]. When N goes from 1 to 3 shot noise becomes larger. Because in
the system depicted in Fig. 8.1 not only partition noise at the contacts con-
tributes to the total noise but also additional cavity noise, the Fano factor
indeed increases faster with increasing number of the contacts N than pre-
dicted by the one-dimensional theory. Since the cavities are large compared
to the mean free path of the electrons the electrons stay relatively long in
the cavity so that inelastical scattering cannot be excluded. However, the

4 In the experiment, we used only up to three QPCs because one of the four did not
show proper conduction quantization.
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Figure 8.5: The black points are experimental data for one mode transmitted
at the point contacts with probability T = 0.9. The dashed line are theoretical
predictions including cavity noise for non-interacting electrons [Eq. (8.8)]. The
crosses correspond to the one-dimensional model of de Jong and Beenakker [113].

uncertainties of the experimental data in this experiment do not allow to
distinguish between the cold- and hot-electron regime.

8.4 Conclusions

We studied the shot noise of a series of QPCs forming a sequence of cavities.
Theoretical calculations along the lines of Ref. [60] show that the shot noise
reaches 1/3 and

√
3/4 of the Poissonian limit for hot and cold electrons,

respectively, when the number of point contacts N is increased to infinity.
Noise measurements on a series of 1, 2 and 3 QPCs defined in a 2 DEG
are in reasonable qualitative agreement with a new theory that takes the
contribution from the cavities into account.



Appendix A

Theoretical expressions for the
fermionic HBT experiment

This appendix contains the derivation of the expressions for the auto- and
cross-correlations between the fluctuations in the transmitted and reflected
beam in the fermionic Hanbury Brown and Twiss experiment. In the first
part the calculations are performed within the scattering approach [sect. 2.1]
along the notes of Ref. [33]. In a second part we present a purely classical
derivation of the same expressions.

A.1 Scattering approach

The current amplitudes of the incoming (â) and outgoing states (b̂) in the
considered system [Fig. A.1] are related via the scattering matrix s:

 b̂1

b̂2

b̂3


 =


 r11 t21 t31

t12 r11 t32
t13 t23 r33




 â1

â2

â3


 . (A.1)

Due to the chirality of the edge state the scattering matrix can be calculated
easily. As an example, the transmission probability |t32|2 from contact 2

p t

B

µ2 = 0

µ3 = 0µ1 = eV

Figure A.1: Three probe geome-
try illustrating the experiment de-
scribed in chapter 5. p and t are
the transmission amplitudes of the
two quantum point contacts. At
ν = 2 only one spin-degenerated
edge channel is propagating.
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to contact 3 is given by the probability for reflection at the first contact
(1− p) times the probability for transmission at the second point contact t:
|t32|2 = (1 − p)t. For the complete scattering matrix we have

s =


 r1 0 t1

t′1t
′
2 r2 r′1t

′
2

t′1r
′
2 t2 r′1r

′
2


 (A.2)

with

|t1|2 = |t′1|2 = p, |r1|2 = |r′1|2 = 1 − p (A.3)
|t2|2 = |t′2|2 = t, |r2|2 = |r′2|2 = 1 − t. (A.4)

In the low-frequency limit the correlator between current fluctuations in the
leads α and β expressed in terms of the scattering matrix is generally given
by [33]

〈∆Iα∆Iβ〉 = 2
e2

h
∆ν

∑
γδ,γ �=δ

∫
dE Tr (s†αγsαδs

†
βδsβγ)

× fγ(E) [1 − fδ(E)] . (A.5)

Because of probability conservation the scattering matrix s must be unitary:
ss† = 1. If time-reversal symmetry would hold it would be even symmetric.
From the unitary property we use the following two relations to evaluate
Eq. (A.5):

t′1t
′
2t

′∗
1 r′∗2 + r2t

∗
2 + r′1t

′
2r

′∗
1 r′∗2 = 0

⇒ t′2r
′∗
2 = −r2t

∗
2 (A.6)

t′1r
′
2t

′∗
1 t′∗2 + t2r

∗
2 + r′1r

′
2r

′∗
1 t′∗2 = 0

⇒ t2r
∗
2 = −r′2t

′∗
2 . (A.7)

Furthermore, at zero temperature the Fermi-distribution functions fγ,δ(E)
in Eq. (A.5) are equal to the unitary step function θ(E −µγ,δ). In this way
we obtain for the cross-correlation of the current fluctuations at contacts 2
and 3

〈∆I2∆I3〉 = −2
e2

h
∆ν · t(1 − t)

[
p|µ1 − µ2|

−p(1 − p)|µ1 − µ3| + (1 − p)|µ2 − µ3|
]
. (A.8)

Since contacts 2 and 3 are grounded, µ2 = µ3 = 0 [see Fig. A.1], so that1

〈∆I2∆I3〉 = −2
e2

h
µ1 ∆ν · t(1 − t)p2

1In the experiment contacts 2 and 3 are connected to ground by two series resistor
RS � R [see Fig. 5.4]. The current fluctuations in the transmitted and reflected beam
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= −2eI ∆ν · t(1 − t)p (A.10)

with I = p ·(e2/h)V and eV = µ1. In the limit p = 1 we obtain 〈∆I2∆I3〉 =
−2e|I|∆ν · t(1 − t). The auto-correlations are calculated in the same way
as the cross-correlation:

〈∆I2
1 〉 = 2

e2

h
∆ν · p(1 − p)|µ1 − µ3| (A.11)

〈∆I2
2 〉 = 2

e2

h
∆ν · {pt(1 − t)|µ1 − µ2|

+ p(1 − p)t2|µ1 − µ3| + (1 − p)t(1 − t)|µ2 − µ3|
}

(A.12)

〈∆I2
3 〉 = 2

e2

h
∆ν ·

{
pt(1 − t)|µ1 − µ2| + p(1 − p)(1 − t)2|µ1 − µ3|

+ (1 − p)t(1 − t)|µ2 − µ3|} . (A.13)

In summary, the spectral density of the cross- and auto-correlations Snm =
〈∆In∆Im〉ω for µ2 = µ3 = 0 are [45]

S

2e|I| =




1 − p −t(1 − p) −(1 − t)(1 − p)

−t(1 − p) t(1 − pt) −t(1 − t)p

−(1 − t)(1 − p) −t(1 − t)p (1 − t) [1 − (1 − t)p]


 . (A.14)

Snm ≤ 0 for n �= m and ≥ 0 for n = m. In the Poissonian limit (p → 0)
and for a beam splitter with t = 1/2 we obtain

F ≡ S

2e|I| =




1 −1/2 −1/2

−1/2 1/2 0

−1/2 0 1/2


 , (A.15)

whereas in the case that the states of the incident beam are fully occupied
(p = 1) the Fano factors F are given by (t = 1/2)

F ≡ S

2e|I| =




0 0 0

0 1/4 −1/4

0 −1/4 1/4


 . (A.16)

are detected via the voltage fluctuations across these series resistor RS . Consequently the
chemical potentials µ2 and µ3 are fluctuating and a correction of the order x ≡ RS/R has
to be applied to Eq. (A.10). For p = 1 the cross-correlation of the current fluctuations is
related to the cross-correlation of the voltage fluctuations by

〈∆I2∆I3〉 =
〈∆V2∆V3〉

R2
S

·
[

(1 + 2xt)(1 + xt)2

1 − x(1 − t)

]
. (A.9)

For ν = 1, i.e. only one spin-degenerated edge channel, x 	 12.9−1, and for t = 1/2 the
correction factor [. . .] equals 	 1.2.
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A.2 Classical derivation

The expressions S22 and S23 in Eq. (A.14) for the cross- and auto-correlation
of the fluctuations in the transmitted and reflected beam can also be de-
rived in terms of classical physics. Consider a stream of hard core particles
incident on a beam splitter with n particles arriving at the beam splitter per
unit time interval. Treating electrons as hard core particles somehow incor-
porates the fact that electrons are fermions which cannot occupy the same
state twice [117]. The average particle number 〈n〉 is given by

∑∞
n=0 ρnn

where ρn denotes the probability distribution for exactly n incident parti-
cles. At the beam splitter the particles are scattered either to the transmit-
ted channel with probabilty t or to the reflected with probability (1−t) with
t the transparency of the beam splitter. For the mean transmitted current
we have 〈nt〉 = t〈n〉 and for the mean reflected current 〈nr〉 = (1 − t)〈n〉.
In order to calculate the correlator of the fluctuations 〈∆n2

t 〉 = 〈n2
t 〉− 〈nt〉2

of nt around its mean value 〈nt〉 we will next evaluate the average of the
squared transmitted current 〈n2

t 〉. The probability that i particles out of
n will be transmitted while the others are reflected is given by the factor
ti(1−t)n−i. Furthermore, we can choose i of n indistinguishable particles in
n!/[i!(n − i)!] ≡

(
n
i

)
different ways. Thus, the average over the transmitted

current squared yields

〈n2
t 〉 =

∞∑
n

ρn

{
n∑

i=0

(
n

i

)
ti(1 − t)n−i · i2

}

= t〈n〉 + t2〈n(n − 1)〉. (A.17)

Here, we used the relation2
∑n

i=0

(
n
i

)
ti(1 − t)n−i · i2 = nt + n(n − 1)t2.

From Eq. (A.17) the auto-correlation between the current fluctuations in

2Proof: Consider the binomial expression (a+b)n =
∑n

i=0

(n
i

)
an−ibi with (a+b) = 1.

Taking the first and second derivative with respect to b we obtain:

n(a + b)n−1 = n =
∑(n

i

)
an−ibi−1 · i (A.18)

n(n − 1)(a + b)n−2 = n(n − 1) =
∑(n

i

)
an−ibi−2 · i(1 − i). (A.19)

Finally, the last equation can be rewritten in the following way:

n(n − 1) =
[∑ (n

i

)
an−ibi · i2

]
b−2 −

[∑ (n
i

)
an−ibi−1 · i

]
︸ ︷︷ ︸

= n

b−1(A.20)

n(n − 1)b2 =
∑(n

i

)
an−ibi · i2 − nb (A.21)

nb + n(n − 1)b2 =
∑(n

i

)
an−ibi · i2. (A.22)
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the transmitted beam follows as

〈∆n2
t 〉 ≡ 〈n2

t 〉 − 〈nt〉2

= t〈n〉 + t2
{
〈n2〉 − 〈n〉2

}︸ ︷︷ ︸
= 〈∆n2〉

−t2〈n〉

= t(1 − t) ·
{ t

1 − t
〈∆n2〉 + 〈n〉

}
. (A.23)

Similar the cross-correlation between fluctuations in the transmitted and
reflected beam can be calculated. We first derive the average of the product
ntnr of the current in the transmitted and reflected beam:

〈ntnr〉 =
∞∑
n

ρn

{
n∑

i=0

(
n

i

)
ti(1 − t)n−i · i(n − i)

}

= −t〈n〉 − t2〈n(n − 1)〉 +
∞∑
n

ρnn

{
n∑

i=0

(
n

i

)
ti(1 − t)n−i · i

}
︸ ︷︷ ︸

= nt

= −t〈n〉 − t2〈n(n − 1)〉 + t〈n2〉
= t(1 − t)

{
〈n2〉 − 〈n〉

}
(A.24)

The cross-correlation is then given by

〈∆nt∆nr〉 = 〈ntnr〉 − 〈nt〉〈nr〉
= t(1 − t)

{
〈n2〉 − 〈n〉23

}
− 〈n〉2t(1 − t)

= t(1 − t) ·
{
〈∆n2〉 − 〈n〉

}
. (A.25)

Finally, we briefly show that the formulas Eq. (A.23) and Eq. (A.25) are
equivalent to the expressions of Eq. (A.14). In case of an additional barrier
with transparency p in front of the beam splitter 〈n〉 = p〈nex〉 where 〈nex〉
corresponds to the externally applied current. The fluctuations in the in-
cident beam are 〈∆n2〉 = p(1 − p)〈nex〉. For the normalized correlators we
obtain

〈∆n2
t 〉

〈n〉 = t(1 − pt) (A.26)

〈∆nt∆nr〉
〈n〉 = −t(1 − t)p, (A.27)

which are the same expression as the ones derived before with the scattering
approach.
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Appendix B

Semiclassical theory of noise
in chaotic cavities

Besides a full quantum mechanical description of transport and noise in
mesoscopic systems a semiclassical theory has been introduced, too. In the
following such a description of noise in chaotic cavities is summarized closely
following Ref. [112].

For λF � l transport and noise in electronic systems can be described
by ‘classical’ single particle distribution functions fp(r, t) and two-particle
correlation functions

Fpp′(rr′, t) = 〈δfp(r, t)δfp′(r′, 0)〉. (B.1)

The fluctuating distribution function fp(r, t) equals (2π)d times the den-
sity of electrons1 with position r and momentum p at time t [103, 113].
δf(t) ≡ f(t)−〈f(t)〉 is the time dependent deviation from the time-averaged
distribution function 〈fp(r, t)〉 ≡ fp(r). fp itself obeys the stationary Boltz-
mann equation

d

dt
fp(r) ≡ v∇fp(r) = −IQ[fp(r)], (B.2)

where the classical dynamics of the electrons (such as the motion in a smooth
atomic potential) is taken into account on the left hand side of this equation
(i.e. via the dispersion relations), while quantum scattering is described by
the collision integral

IQ[fp(r)] =
∑
p′

Wpp′ [fp(r) − fp′(r)]. (B.3)

The kernel Wpp′ = Wp′p is the transition rate for scattering from the mo-
mentum state p to p′. The correlation function Fpp′ satisfies the time-

1d denotes the dimension of the system.
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dependent Boltzmann equation in the variables r, p, t [103, 113](
d

dt
+ IQ

)
Fpp′(rr′, t) = 0 (B.4)

with the equal-time correlation given by

Fpp′(rr′, 0) = δ(r − r′)δ(p − p′) fp′(r) [1 − fp(r)] . (B.5)

Classically, IQ is zero and fp(r) is constant along the classical trajectory,
so that the stationary Boltzmann equation Eq. (B.2) can be solved easily. In
this case, the electronic motion is completely deterministic and one knows
from which lead an electron originates. Quantum diffraction leads to IQ �= 0
contributing both to noise and resistance (backscattering).

In diffusive systems quantum scattering dominates resistance and noise.
This is completely different for chaotic cavities where the voltage drop oc-
curs only across the contacts determining the resistance. Because electrons
transmit an open quantum point contact with unit probability, no noise is
generated at the contacts [see sect. 7.2]. Because the dwell time is a free
parameter in the experiment [sect. 7.3] chaotic cavities can be used as a
model system to study the fundamental origin of shot noise as discussed in
chap. 7.

According to Ref. [60] the noise power of a chaotic cavity is determined
by the cavity noise temperature θC and the bath temperature θ:

Snm = −2kBGnm(θ + θC) with (B.6)

kBθC =
∫

dE 〈fp(r)[1 − fp(r)]〉, (B.7)

where 〈. . .〉 =
∑

p δ(E − Ep)ν−1(. . .) denotes the average over momentum
direction p/p with ν = dN/dE the density of states. The delta function
δ(E−Ep) ensures that only these energy states are counted with the energy
corresponding to the momentum state p. Gnm in Eq. (B.6) denotes the
multiterminal conductance [Eq. (6.9)].

As we already discussed in chap. 7 the distribution function fp(r) of a
chaotic cavity (τD � τF ) is a random function of the momentum direction
p/p because slight initial variations in p/p are exponentially amplified as
time evolves [Fig. B.1]. The scale of these fluctuations in fp(r) cavity is
given by the ‘correlation angle’ ∆ϕλ(τ) ∼ exp(−λτ) ∼ exp(−τD/τF ) with
the Lyapunov exponent λ ∼ 1/τF of the underlying classical chaotic system
[111, 118]. Comparing ∆ϕλ to the typical scattering angle ∆ϕsc ≡ |p−p′|/p
[see Fig. B.1] two different regimes can be distinguished [118]:

(i) quantum chaos: ∆ϕsc < ∆ϕλ, and
(ii) quantum disorder: ∆ϕsc > ∆ϕλ.
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Figure B.1: The distribution function within a chaotic cavity [see also
Fig. 7.2(c,d)] is a random function of the momentum direction p/p. ∆ϕλ is the
‘correlation length’ of these fluctuations and ∆ϕsc denotes the typical scattering
angle.

The scattering anlge ∆ϕsc depends on the characteristic scale a of the scat-
tering potential: after interaction of an electron with a scatterer of size a,
the quantum uncertainty in the direction of its momentum is of the or-
der λF /a. Thus a lower-bound estimate for ∆ϕsc is 1/(LkF ) with L the
size of the cavity. For the cavities used in the experiments discussed in
chap. 6 and 7 ∆ϕsc � 10−2 and ∆ϕλ � 10−5. We think that the quantum
scattering is due to a few short-range impurities within the cavity, and it
is therefore large-angle scattering. This would be also consistent with the
observation that the mean free path in the 2 DEG is of the same order as
the cavity size. Thus the cavities are in the regime of ‘quantum disorder’.

B.1 ‘Quantum disorder’

In order to calculate the noise power the cavity noise temperature θC of
Eq. (B.7) has to be determined. Because electrons are scattered over large
angles compared to ∆ϕλ the sum over p′ in Eq. (B.3) can be considered as
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ƒC

ƒn

p-p

Ln

n
Figure B.2: At the contact Ln of the n-th reservoir
the distribution function fp is either fn, when the elec-
tron stems from the reservoir, or fC , when it comes
from the cavity. If fp = fn for a certain p, then
f−p = fC .

‘course graining’ over the rapid fluctuations in fp, and hence the distribution
function fp can be replaced by the averaged distribution of the cavity:
fp → 〈f〉 ≡ fC . Thus Eq. (B.2) can be rewritten as

v∇fp(r) + τ−1
Q [fp(r) − fC ] = 0, (B.8)

where τQ is the quantum scattering time defined via τ−1
Q ≡

∑
p′ Wpp′ .

Multiplying Eq. (B.8) by δ(E − Ep) and summing over p we arrive at∑
p

δ(E − Ep)v∇fp = τ−1
Q

∑
p

δ(E − Ep)[fC − fp]

ν〈v∇fp〉 = ντ−1
Q [fC − 〈fp〉]︸ ︷︷ ︸

= 0

(〈fp〉 = fC)

=⇒ ∇j(E, r) = 0 with (B.9)
j(E, r) ≡ 2eν 〈vfp〉. (B.10)

Here, we used in the second last step ∇v = 0. Integration of Eq. (B.9) over
the area A of the cavity using Gauss’ theorem gives the current conservation
for any given energy interval:∫∫

A

dr∇j(E, r) =
∮

∂A

dl n · j(E, r) = 0

=⇒
∑

n

Jn(E) = 0 with (B.11)

Jn(E) = 2eν
∫

Ln

dl 〈nvfp〉. (B.12)

Ln denotes the opening of the n-th contact and n is the outward normal
vector to the surface [see Fig. B.2].

The next step is to express the current Jn in terms of the distribution
functions inside the cavity fC and in the reservoirs fn. At the contact Ln

the distribution function fp equals either fC or fn depending on whether
an electron originates from the cavity or from the reservoir [Fig. B.2]. For
example if fp = fn for a certain momentum p, then obviously f−p = fC .
Let us now introduce the function ηp = ±1 which equals +1 for electrons
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stemming from the cavity and −1 for electrons from the reservoir. Assume
it is for sure that the electron passing Ln with momentum p′ originates
from the cavity. In this case fp′ = fC , f−p′ = fn and v−p′ = −vp′ , so that
one can write

vp′fp′ + v−p′f−p′ = vp′ (fC − fn)
= 1/2 [vp′(fC − fn) + vp′(fC − fn)]
= 1/2 [vp′(fC − fn) − v−p′(fC − fn)]
= 1/2 [vp′ηp′ + v−p′η−p′ ] (fC − fn).

Thus we have

〈nvfp〉 =
∑
p

δ(E − Ep)ν−1 nvfp

= 1/2
∑
p

δ(E − Ep)ν−1 nvηp (fC − fn)

= 1/2 〈nvηp〉 (fC − fn) (B.13)

and the current Jn can be expressed as

Jn = e−1Gn(fC − fn) with Gn ≡ e2ν

∫
Ln

dl 〈nvηp〉. (B.14)

From Eq. (B.11) and (B.14) the distribution function inside the cavity fC

is obtained as [Eq. (6.14)]

fC =
∑

n

αnfn(E) with αn ≡ Gn/
∑

n

Gn. (B.15)

fC does not depend on τQ because the small contribution to the momentum
relaxation due to quantum scattering is neglected.

In order to obtain the cavity noise which is proportional to 〈fp(1−fp)〉 =
fC −〈f2

p〉 we now express 〈f2
p〉 in terms of fn and fC as we did before for the

current Jn. Multiplying Eq. (B.8) with fp and averaging over p/p yields

∇〈vf2
p〉 = −2τ−1

Q [〈f2
p〉 − f2

C ]. (B.16)

Here, we used 〈fp〉 = fC and ∇(vf2
p) = (∇v)f2

p +2fpv(∇fp) = 2fpv(∇fp)
since ∇v = 0. As for Eq. (B.9) we integrate Eq. (B.16) over the area A of
the cavity using again the η-function, which distinguishes electrons comming
from the cavity or from the reservoir. For the left hand side of Eq. (B.16)
we obtain ∫∫

A

dr∇〈vf2
p〉 =

∑
n

∫
Ln

dl 〈nvf2
p〉
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=
1
2

∑
n

[〈f2
p〉 − f2

n]
∫

Ln

dl 〈nvηp〉

=
1

2e2ν

∑
n

[〈f2
p〉 − f2

n]Gn. (B.17)

In the first step we have used here 〈nvf2
p〉 = 〈nv〉〈f2

p〉, because the dis-
tribution function fp fluctuates on a much smaller scale than the typical
scattering angle (‘coarse graining’). The term on the right hand side of
Eq. (B.16) is simply multiplied by the area A, so that we arrive at

1
2e2ν

∑
n

[〈f2
p〉 − f2

n]Gn = −2A

τQ
[〈f2

p〉 − f2
C ]. (B.18)

Next, we multiply with 2e2ν and divide by
∑

n Gn:

〈f2
p〉 −

∑
n

Gnf2
n/
∑

n

Gn = −τ−1
Q

(
4e2νA/

∑
n

Gn

)
[〈f2

p〉 − f2
C ]

〈f2
p〉 −

∑
n

αnf2
n = −τD

τQ
[〈f2

p〉 − f2
C ], (B.19)

where we have defined the dwell time τD as

τD ≡ 4e2νA/
∑

n

Gn. (B.20)

Solving Eq. (B.19) for 〈f2
p〉 we obtain

〈f2
p〉 =

τD

τD + τQ
f2

C +
τQ

τD + τQ

∑
n

αnf2
n

=
τD

τD + τQ

(
f2

C −
∑

n

αnf2
n

)
+
∑

n

αnf2
n. (B.21)

Thus

〈fp(1 − fp)〉 = 〈fp〉 − 〈f2
p〉 = fC − 〈f2

p〉

=
∑

n

αnfn − τD

τD + τQ

(
f2

C −
∑

n

αnf2
n

)
−
∑

n

αnf2
n

=
τD

τD + τQ

(∑
n

αnf2
n − f2

C

)
+
∑

n

αnfn(1 − fn).

Since∑
n

αnf2
n − f2

C =
1
2

∑
n

αnf2
n +

1
2

∑
n

αnf2
n −

(∑
n

αnfn

)2
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=
1
2

∑
n,m

αnαmf2
m +

1
2

∑
n,m

αnαmf2
n −

∑
n,m

αnαmfnfm

=
1
2

∑
n,m

αnαm(fn − fm)2, (B.22)

where we used
∑

n αn = 1, we finally arrive at

〈fp(1 − fp)〉 =
∑

n

αnfn(1 − fn)

+
τD

τD + τQ

1
2

∑
n,m

αnαm(fn − fm)2. (B.23)

Integrating over energy E according to Eq. (B.7) we obtain the cavity noise
temperature

θC = θ +
τD

τD + τQ
T , (B.24)

T =
1
2

∑
n,m

αnαm

∫
dE (fn − fm)2. (B.25)

In the particular case of only two terminals the noise power S and the Fano
factor F follow as

S = Seq[1 + F (β coth β − 1)], β =
eV

2kBθ
, (B.26)

F =
τD

τD + τQ

G1G2

(G1 + G2)2
, (B.27)

where Seq = 4GkBθ with G = G1G2/(G1 + G2) the total conductance.
For a symmetric cavity (G1 = G2) the Fano factor thus equals 1/4 in the
quantum regime (τD � τQ) and vanishes in the classical regime where
τQ ∼ 1/� → ∞.

B.2 ‘Quantum chaos’

If ∆ϕsc < ∆ϕλ the ‘coarse graining’ fp → 〈f〉 ≡ fC of Eq. (B.8) is not valid.
This regime of ‘quantum chaos’, where fp ≡ f(ϕ) is a smooth function on
the scale ∆ϕsc, was considered in a recent paper by Agam et al. [111]. They
obtained for the Fano factor of a symmetric cavity

F =
1
4

exp

(
− τE

τD

)
, (B.28)
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Figure B.3: Quantum-to-classical crossover of the Fano factor for the regime of
‘quantum disorder’ [Eq. (B.27)], ‘quantum chaos’ [Eq. (B.28)] and the 1st-order
expansion of both predictions [Eq. (7.3)]. The gray area roughly denotes the
regime in which shot noise has been measured in the experiments discussed in
chap. 7 in order to extract the quantum scattering time τQ.

with τE = 1/λ ln(a/λF ) ∼ τF ln(kF L) the so called Ehrenfest time. Because
τE � τD in the experiment the exponential in Eq. (B.28) can be expanded:

F =
1
4

(
1 − τE

τD

)
. (B.29)

This result coincides with the result of Eq. (B.27) (G1 = G2) in the limit
τQ � τD if τQ � τE . The two different expressions for the crossover of
shot noise from the ‘quantum’ to the ‘classical’ regime for ‘qantum chaos’
[Eq. (B.28)] and ‘quantum disorder’ [Eq. (B.27)] are compared in Fig. B.3.



Appendix C

Shot noise of vacuum tubes

In this appendix the shot noise of vacuum tubes is discussed in detail. It
will be shown that the ‘Schroteffekt’ in vacuum tubes, first described by
Schottky in 1918 [26], is a classical phenomenon which is due to thermal
fluctuations of the occupancy in the cathode. Some parts of this appendix
are based on notes by C. Schönenberger (”Shot Noise in Schottky’s vacuum
tube is CLASSICAL”, ITP, UCSB (2001)) originating from discussions with
E. V. Sukhorukov, C. W. J. Beenakker, H. Grabert and myself.

C.1 Shot noise of a two-terminal conductor

We start with a simple derivation of the expression for the power spectral
density of the noise of a two-terminal conductor [Eq. (2.32)] along Martin
and Landauer [90]. In their paper the fluctuating currents are represented
as a result of random transmission of electrons from one terminal to the
other. Different processes contribute to the noise for each energy E and
mode n:

1. A current pulse occurs whenever an electron wave packet incident from
the left terminal is scattered into an empty state in the right terminal.
The rate τ−1

rl of these events is proportional to the probability fL(E)
for an energy state E in the left reservoir to be occupied times the
probability 1 − fR(E) for the state in the right reservoir, in which
the electron scatters into, to be unoccupied, times the transmission
probability from the left to the right: T rl

n (E) ≡ Tn(E):

τ−1
rl ∼ fL(E)[1 − fR(E)]Tn(E). (C.1)

The factor 1 − fR(E) ensures that the Pauli principle is fulfilled.

2. Of course the reverse process that electrons scatter from an occupied
state in the right reservoir to an unoccupied state in the left reservoir

111
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contributes to the noise, too. The rate of these processes is given by:

τ−1
lr ∼ fR(E)[1 − fL(E)]Tn(E), (C.2)

where T lr
n (E) = T rl

n (E) ≡ Tn(E) has been taken into account.

Since we require an expression for the fluctuations, i.e. the deviations
from the mean current, the mean current squared, which is proportional to
Tn(E) [fL(E) − fR(E)], has to be subtracted. Thus the contribution from
electrons at energy E in one specific mode n to the noise is proportional to:

fL(E)[1 − fR(E)]Tn(E) + fR(E)[1 − fL(E)]Tn(E)

− [fL(E) − fR(E)]2 T 2
n(E). (C.3)

The coefficient follows from the fact that if no bias is applied (V = 0) the
expression for the thermal noise 4kBTG must be recovered:

S = 4kBTG = 4kBT
2e2

h

∫
dE

(
− ∂f

∂E

)∑
n

Tn(E)

= 2
2e2

h

∫
dE 2f(E)[1 − f(E)]

∑
n

Tn(E). (C.4)

In equilibrium (V = 0) fL(E) = fR(E) ≡ f(E). Thus the expression in
(C.3) equals

2f(E)[1 − f(E)]Tn(E). (C.5)

Comparing Eq. (C.4) and Eq. (C.5) the general expression for the shot noise
of a two-terminal conductor (in the zero frequency limit) follows as [34, 35]:

S = 2
2e2

h

∑
n

∫
dE {fL(1 − fR)Tn + fR(1 − fL)Tn − [fL − fR]2 T 2

n}

= 2
2e2

h

∑
n

∫
dE {[fL(1 − fR) + fR(1 − fL)]Tn(1 − Tn)

+ [fL(1 − fL) + fR(1 − fR)]2 T 2
n} (C.6)

C.2 Vacuum tubes

Figure C.2(a) shows the schematics of a vacuum tube (triode): The heated
cathode (K) made of a wounded tungsten wire boils off electrons into a vac-
uum. These are attracted by the positively charged anode (plate) (Edison
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(b)

grid
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Figure C.1: Vacuum tubes: (a) Schematics of a triode. Electrons having enegies
larger than the work function W of tungsten are emitted from the heated cathode
(K), travel through the vacuum and are attracted by the positive anode (A).
(b) Photograph of a historical tetrode (triode with additional grid) containing 4
electrodes (Telefunken EL 153).

effect). A grid (or many grids) between cathode and anode, which is neg-
atively charged, controls the electron current. By designing the cathode,
grid(s) and plate properly, the tube will make a small AC signal voltage
into a larger AC voltage, thus amplifying it [119].

In case that the anode is floating no net current will flow from the cath-
ode to the anode [Fig. C.2(a)]. Instead a negative space-charge is formed in
front of the cathode, originating from evaporated electrons which are hold
back by the ionized atoms. The size χ of the space-charge region can be
calculated solving the Poisson-equation ∆ϕ(x) = −en(x)/ε0 for the electri-
cal potential ϕ(x) with the electron density n(x) = n0 exp(−eϕ(x)/kBθ) �
n0 [1 − eϕ(x)/kBθ], where n0 is the electron densitiy within the cathode:

hot
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Figure C.2: (a) Space-charge region formed in front of the cathode in a open-
circuited tube. (b) For sufficiently high bias voltages V the space-charge is re-
moved (saturation regime) and the potential drops linearly. W denotes the work
function.
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χ =
√

ε0kBθ

n0e2
. (C.7)

The higher the temperature the larger the space-charge region.
When the circuit is closed and the cathode is kept on a higher temper-

ature than the anode, a thermionic current will flow from the cathode to
the anode. The magnitude of this current is limited by the negative space-
charge emitted by the cathode. This is also true when the anode is kept at
a positive potential with respect to the cathode, because the electrons near
the cathode act as a screen and tend to prevent the field due to the anode
from being felt in the region near the cathode. In this regime, where the
current is limited not by emission but by the space-charge it is given by

I =
√

2
9π

√
e

m

V 3/2

L2
(C.8)

with L the distance between cathode and anode [119]. Only when the bias
voltage V is sufficiently large all electrons are attracted by the anode and the
space-charge region is removed. In this case, the current saturates (does no
longer depend on the anode voltage) and is determined by the temperature
of the cathode [Fig. C.3].

In the space-charge limited regime where the possibility of escape of an
electron is limited by the repulsion of the electrons in the space (Coulomb
interaction) shot noise is suppressed. Full shot noise S = SPoisson = 2e|I|
is only present in the saturation regime [28]. The question whether the shot
noise in the saturation regime is classical or quantum in nature is discussed
in sect. C.3. Before the electrical field and current in the saturation regime
will be estimated.
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rr
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t

anode voltage

I3/2

space-charge saturation

Figure C.3: Current-voltage char-
acteristics of a vacuum tube illus-
trating the 3/2-power law [Eq. (C.8)]
and the saturation point (S). The
dashed curves are IV-curves for differ-
ent grid voltages. Within the satura-
tion regime the current does no longer
depend on the anode voltage because
all electrons emitted by the cathode
are collected at the anode.
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Figure C.4: Image potential deter-
mining the barrier shape in emission of
electrons from the hot cathode for dif-
ferent electrical fields E . For very high
fields the barrier becomes very thin so
that electrons can tunnel through and
the noise is quantum.

C.2.1 Electrical field and current in the saturation regime

At the edge of the vacuum barrier the electron density is approximatively
given by n0 = a−3 exp(−W/kBθ) � 5 · 1016 m3 with a � 1.2 Å the typical
interatomic distance, W = 4.5 eV the work function of tungsten and the
cathode temperature θ = 2000 K. The size χ of the spac be-charge region
follows from (C.7) and is of the order 10 µm. The charge build up at the
cathode corresponds to an electrostatic surface potential of kBθ/e so that
the surface electric field can be estimated as E � kBθ/eχ. Inserting numbers
the saturation field is of the order 104 V/m.

The electrical current density due to thermionic emission from a heated
conductor is given by the Richardson-Dushman equation [120]:

j = L θ2 exp(−W/kBθ) (C.9)

with L = emk2
B/2π2

�
3 = 120 AK−2cm−2. This expression is only correct

if the electrical field E is high enough so that the space-charge is removed
(saturation regime). The saturation field E combined with the potential
formed by the holes in the (planar) cathode (image-potential) leads to an
electrical potential φ(x) given by

φ(x) = −Ex − e

4πε0

1
x

, (C.10)

which is illustrated in Fig. C.4. The maximum of φ(x) lies at x0 =
√

e/4πε0E ,
where the barrier is lowered by eφ(x0) = −2e

√
eE/4πε0 � −8 meV. This

is negligible in comparison with the work function W = 4.5 eV, so that the
saturation current can be estimated disregarding the barrier lowering. For
a cathode area of 10−2 cm−2 and θ = 2000 K the emission current is of the
order 10 µA.

C.3 The ‘Schroteffekt’ in vacuum tubes

In the saturation regime, where no space-charge region exists at the cathode
and fR = fanode = 0, the shot noise power due to emission of electrons from
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the cathode is given according to Eq. (C.6) by

S = 2
2e2

h

∑
n

∫
dE {fcathodeTn(1 − Tn)︸ ︷︷ ︸

quantum

+ fcathode T 2
n︸ ︷︷ ︸

classical

}. (C.11)

Here we made use of the fact that the occupation of the hot cathode is small
(classical): fL = fcathode = exp(−E/kBθ) � 1. Therefore fL(1− fL) � fL.
The current I due to emission at the cathode equals

I =
2e

h

∑
n

∫
dE fcathode Tn (C.12)

There are two terms in Eq. (C.11) contributing to the noise: the first
term is the quantum mechanical part since it only contributes for trans-
mission probabilities T �= 0, 1. The second term is classically because it
dominates when all transmission coefficients are classical, i.e. 0 or 1.

Classical: Because all Tn are 1, T 2
n = Tn and the shot noise is given by

S = 2
2e2

h

∑
n

∫
dE fcathode Tn. (C.13)

The current is
I =

2e

h

∑
n

∫
dE fcathode Tn (C.14)

so that the Fano factor F ≡ S/2e|I| follows as

F =
1
2e

4e2

h

h

2e
= 1 (C.15)

which is Schottky’s formula S = 2e|I|.

Quantum: If all Tn are small (Tn � 1) the noise is due to tunneling
(quantum diffraction). In this case the quantum term ∼ Tn in Eq. (C.11)
dominates while terms proportional to T 2

n are negligibly small so that the
noise is given by

S = 2
2e2

h

∑
n

∫
dE fcathode Tn. (C.16)

For the current we have the same expression (C.14) as in the classical case
what leads to a Fano factor of 1 as before. We again obtain Schottky’s
formula S = 2e|I|, this time however, originating from quantum diffraction.

Thus, in order to understand the nature of shot noise in vacuum tubes
the transmission probabilities Tn have to be evaluated.
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Figure C.5: Transmission probability
vs. energy according Eq. (C.17) for dif-
ferent saturation fields E .

C.3.1 Transmission probability at the cathode

The quantum-mechanical transmission probabilty is given by [121]

T �
[
1 + e−2πE/�ω0

]−1

(C.17)

for electrons with energy E above the barrier [Fig. C.5]. This energy is given
by kBθ with the cathode temperature θ. ω0 denotes the negative curvature
at the barrier top and determines whether the barrier is sharp or smooth.
It can be obtained from the ‘force-constant’

f = e

∣∣∣∣∂2ϕ

∂x2

∣∣∣∣
x=x0

= 2
√

4πε0e E3/2 (C.18)

with ω0 =
√

f/m :1

ω0 =
(

16πε0e

m2

)1/4

· E3/4. (C.19)

If �ω0 � kBθ, T = 1 and the classical part of the shot noise in (C.11)
dominates. In the other limit �ω0 � kBθ the transmission T is very small
and the shot noise is due to tunneling (quantum diffraction).

First rough shot noise measurements in vacuum tubes were carried out
by Hartmann in 1921 [27]. A very careful study of the ‘Schroteffekt’ was
performed by Hull and Williams in 1925 [28].

In the first part of this experiment shot noise was measured in the sat-
uration regime, where the thermionic current is limited by temperature2.
The corresponding parameters are given in the first two lines of Tab. C.1.
In this regime the full Schottky-noise 2e|I| (F = 1) has been measured in
excellent agreement with Millikan’s value for the electron charge e. The

1This is analogous to the mechanical oscillator ẍ + ω2
0x = 0 with F = −fx and

Epot = 1
2
fx2.

2In order to avoid space-charge a very strong electric field at the cathode surface was
achieved by connecting anode plate and grid together [see Fig. C.1].
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E [V/m] VG [V] VP [V] i0 [mA] θ [K] �ω0/kBθ T F

3 · 106 120 120 1 1675 3.2 10−2 1 1.00
3 · 106 120 120 5 1940 2.7 10−2 1 1.00
1 · 104 -6 130 1 1675 4.4 10−4 1 0.93
1 · 104 -6 130 3 1805 4.1 10−4 1 0.49
1 · 104 -6 130 5 1940 3.8 10−4 1 0.20

Table C.1: Experimental parameters from shot noise measurements of Hull and
Williams in 1925 [28]. VG is the voltage at the grid and VP at the anode plate.
i0 is the thermionic current. F = S/2e|I| denotes the Fano factor. The second
last column shows that the shot noise observed in this experiment is a classical
phenomenon.

ratio �ω0/kBθ � 1 so that the transmission is 1. Therefore the shot noise
observed in this experiment is classical.

In the second part of the experiment the effect of the space-charge on the
shot noise was investigated at lower electric fields E . The corresponding pa-
rameters are given in the last three lines of Tab. C.1. At lower temperatures
the emission current is limited by temperature and the full Schottky-noise
is observed. For higher temperatures however the space-charge is increased
and the shot noise is gradually suppressed due to Coulomb interaction.

In conclusion it has been shown that the shot noise observed in vacuum
tubes is classical, what is in profound difference to shot noise observed in
mesoscopic conductors.



Appendix D

Barrier Noise with heating

The following c-code calculates the shot noise for a series N QPCs for the
case of inelastic ee-scattering within the cavities in between the contacts.
The program allows to vary the transmission of the first two modes between
0 and 1. Thereby, all contacts are treated symmetrically.

/* NUMERICAL CALCULATION OF BARRIER NOISE WITH HEATING */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#define num_kT 50 /* limits of integrations */
#define VoltageSteps 5 /* voltage steps */
#define intrv 1000 /* integration steps */
#define k 1.380658E-23 /* k Boltzmann */
#define e 1.602E-19 /* electron charge */
#define pi 3.141592654 /* pi */
#define Ro 12909.1132963 /* resistance quantum */
#define Go 7.74646543918E-05 /* conductance quantum */

int answer,i,j,n,m,N;
float NBarriers; /* number of barriers */
float a,b,c,d; /* dummy variables */
float T0=0.27; /* bath temperature */
float T[50],mu[50]; /* temp./chem.pot. (V) */
float E_F=7.5e-3; /* Fermienergy in Volts */
float low=0,up=0;
float e1,e2,e3,e4,e5,st=0;
float IntA=0,I1A,I2A,I3A,I4A,I5A;
float IntB=0,I1B,I2B,I3B,I4B,I5B;
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float I_max,V_max,I,V;
float Ga1A,Ga2A,Ga1B,Ga2B,RA,GA,RB,GB;
float R,G,Sn,S,fanofactor;
char File_par[16],File_out[16];
FILE *par,*out;

float qua (float x)
{double res;
res=exp(2*log(x));
return res;}

float f (float x, float mu, float T)
{double res;
res=1/(1+exp((x-mu)/(k*T)));
return res;}

main()
{

E_F=E_F*e;
printf("\tNumerical Integration to calculate noise\n");
do
{

I_max=0,V_max=0,I=0,V=0;
Ga1A=0,Ga2A=0,Ga1B=0,Ga2B=0;
printf("LogFile:\t\t"); scanf("%s",File_par);
par=fopen(File_par,"w");
printf("OutputFile:\t\t"); scanf("%s",File_out);
out=fopen(File_out,"w");
fprintf(out,"N\tI\tS\tF\n");
printf("barrier number (2-...)\t"); scanf("%i",&N);
NBarriers=N;
printf("transm.ch1 QPC A (0-1)\t"); scanf("%f",&Ga1A);
printf("transm.ch2 QPC A (0-1)\t"); scanf("%f",&Ga2A);
printf("transm.ch1 QPC B (0-1)\t"); scanf("%f",&Ga1B);
printf("transm.ch2 QPC B (0-1)\t"); scanf("%f",&Ga2B);
RA=Ro/(Ga1A+Ga2A); GA=Ro*(Ga1A+Ga2A);
RB=Ro/(Ga1B+Ga2B); GB=Go*(Ga1B+Ga2B);
G=(GA+GB)/2; R=(RA+RB)/2;
printf("R_tot\t\t\t%e Ohm\n",N*R);
printf("I_max (nA)\t\t"); scanf("%f",&I_max);
I_max=I_max/1e9; V_max=I_max*N/G;
printf("Vleft-Vright\t\t%e V\n",V_max); printf("\n");
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/* tempearature and chemical potential */
for (m=0; m<VoltageSteps+1; m++)
{

Sn=0,S=0,fanofactor=0;
I1A=0,I2A=0,I3A=0,I4A=0,I5A=0;

I1B=0,I2B=0,I3B=0,I4B=0,I5B=0;
V=m*V_max/VoltageSteps; /* actual voltage */
I=m*I_max/VoltageSteps;
fprintf(par,"%e\t\n",I);
printf("temp. and chem.pot.for I=%f nA\n",I/1e-9);
printf("n\tN\t\tT[n] (K)\tmu[n] (eV)\n");
for (n=0; n<N+1; n++)
{

b=n;c=N;a=b*(c-b)/(c*c);
printf("%i\t%i\t",n,N);
T[n]=sqrt(T0*T0+4.0962680e7*a*V*V);
mu[n]=V*(1-b/c);
printf("\t%f\t%e\n",T[n],mu[n]);
fprintf(par,"%e\t%e\n",T[n],mu[n]);
mu[n]=mu[n]*e; /* voltage to energy */

}
fprintf(par,"\n");

/* integration */
printf("* wait for noise calculation *\n");
for (n=0; n<N; n++)
{ /* adjust limits */

low=-num_kT*k*(T[n]+T[n+1])/2+(E_F+(mu[n]+mu[n+1])/2);
up = num_kT*k*(T[n]+T[n+1])/2+(E_F+(mu[n]+mu[n+1])/2);

st=(up-low)/intrv;
IntA=0; e1=0,e2=0,e3=0,e4=0,e5=0;
for (i=0; i<intrv+1; i++)
{

e1=st*i+low;
e2=st*(4*i+1)/4+low;

e3=st*(2*i+1)/2+low;
e4=st*(4*i+3)/4+low;

e5=st*(i+1)+low;
I1A=qua(f(e1,E_F+mu[n],T[n])-f(e1,E_F+mu[n+1],T[n+1]))*st;
I2A=qua(f(e2,E_F+mu[n],T[n])-f(e2,E_F+mu[n+1],T[n+1]))*st;
I3A=qua(f(e3,E_F+mu[n],T[n])-f(e3,E_F+mu[n+1],T[n+1]))*st;
I4A=qua(f(e4,E_F+mu[n],T[n])-f(e4,E_F+mu[n+1],T[n+1]))*st;
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I5A=qua(f(e5,E_F+mu[n],T[n])-f(e5,E_F+mu[n+1],T[n+1]))*st;
IntA=IntA+(I1A+I2A+I3A+I4A+I5A)/5;
IntB=IntB+(I1B+I2B+I3B+I4B+I5B)/5;

} /* END Integration loop */
Sn=Sn+Go*(k*(T[n]+T[n+1])+(Ga1A*(1-Ga1A)+Ga2A*(1-Ga2A))*IntA);

} /* END n-loop */
S=2*Sn/qua(NBarriers); /* noise */
printf("current noise\t\t%e\n",S);
fanofactor=S/(2*e*I); /* fanofactor */
printf("fanofactor\t\t%e\n",fanofactor); printf("\n");

} /* END m-loop */
fprintf(out,"%i\t%e\t%e\t%e\n",N,I,S,fanofactor);
fclose(out);
fclose(par);
printf("continue (no=’0’)\t"); scanf("%i",&answer);

}
while (answer>0);
} /* END main() */
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Terrier; sowie den Diplomanden: Michael Brunner und Jürg Furer.
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