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I. INTRODUCTION

Any physical system obeys some laws, the acceleration
of a body is determined by the its mass and the force
acting on the body. The corresponding law, New-
ton’s law, applies to many systems of different size,
i.e. to the motion of planets within our stellar sys-
tem, to human beings, to a tennis ball, and within
some limitations, even to the motion of a collection of
atoms. Not every law remains valid over a large span
of length scales. Nonetheless, one can learn a lot by
asking how different quantities scale, i.e. how a qual-
ity such as the mass, velocity, etc. depends on the size
of the object under consideration. As we go form the
macroworld, where physical laws are known, down to
the nanoworld or even atomic scale, the scaling ap-
proach is useful to understand the very new problems
we may be facing at the smaller size regime. Here, I
would like to illustrate scaling using examples primar-
ily from mechanics.

II. DEFINITION OF LENGTH SCALING

Consider a ping-pong ball having diameter d and a
tennis ball having diameter D. Assume that the ten-
nis ball is 2-times bigger than the ping-pong ball, so
that D = 2d. We may now ask, for example, how
much bigger the volume of the tennis ball to that of
the ping-pong ball is. Sure, it is 8-times bigger, or 23.
If the tennis ball were k times larger in its linear di-
mension, the volume would be k3 larger. We say that
volume scales as the third power of its linear dimen-
sion. In scaling we compare always similar looking
objects, i.e. both the tennis ball and the ping-pong
ball are spheres. To retain the similarity all lengths
are scaled, either blown up or squeezed down, simi-
larly. In the following we will be using the letter L to
denote a characteristic length of the object, for exam-
ple the diameter or radius of the balls. We then say
that volume scales as L3. We use the notation:

volume = V ∼ L3 (1)

Similarly, we would write for the surface area

area = A ∼ L2 (2)

III. THE HUMAN AS A MACHINE

How does the power of a human scale with its size?

As a reminder power P is energy E per time t. The
available energy in our body scales with its volume.
However, our body cannot deliver power that scales as
L3, since this would contradict some basic laws from
thermodynamics. Any machine operating close to
thermodynamic equilibrium has an efficiency smaller
than one. Consequently, some of the stored energy
has to go into heat and cannot be used to perform
work. So our body can heat up for some time, but
this cannot go on for ever. If we go jogging we first
heat up to reach some equilibrium. From now on,
the heat generated in our body must leave our body.
Since this heat release is via the skin, it scales as the
surface. Therefore the (equlibrium) power of a human
(animal) scales as:

power human ∼ L2 (3)

I note, that the peak power can scale with the L3, but
only for a relatively short instance.

How often do we have to eat or drink?

The amount we eat scales with the volume, i.e. the
size of our stomach. Therefore, the added amount of
energy Efood scales with the volume too. After a big
dinner we have to digest for a period Tdigest. Since
Efood = PTdigest, we find for the scaling of Tdigest:

period without supplied food ∼ L (4)

We may also talk about the rate (or frequency) of
eating, which is the inverse of the respective time:

rate of eating ∼ L−1 (5)

We can learn quite a lot from these simple equations.
For example, an animal living in the desert has to wait
for a long time to find food, hence, it is better big!

If we compare a baby with an adult, the baby neces-
sarily needs to eat more often (has a larger frequency
of eating). That is why parents need to get up during
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the night to feed their babies. A fly is in search of
food all the time.

If we look into the interior of our body, their or mil-
lions of nanomchines (proteins) working. It is obvious
that these nanomachines can only function if food is
around all the time. They are imbedded in a soup of
‘food’, called ATP.

IV. FORCE AND ACCELERATION

The gravitational force on earth is given by FG = mg,
where g is the gravitational acceleration and taken to
be a constant. Therefore,

weight ∼ L3 (6)

However, most forces do scale differently, not with
the third power of L. The reason is that the size of
structures, for example the steel bars in a bridge, the
diameter of our legs, are optimized according to the
strength of the material. A bone (or a piece of steel)
can sustain forces up to a maximum stress. Stress is
defined as the force per area. Therefore, structural
forces scale (for constant stress) with the area (the
cross section):

structural force ∼ L2 (7)

mg
mg/4

d

Have a look at the figure. Taking four legs, each one
has to carry a force of mg/4, where m is the mass of
the animal. Since stress is taken to be constant, we
have mg/πd2 = const. Therefore:

leg diameter ∼ L3/2

Again, we can learn a lot, both for the large and small
scale: big animals have over-proportional legs, small
ones have very thin legs.

Going down to the ultimate smallness, i.e. molecu-
lar biology, the concept of legs does not make sense
anymore. As you know, cells have no legs.

What about acceleration. Galilei found that all ob-
jects accelerate exactly identical. Hence, for gravita-
tional forces, the acceleration a is scale independent.
This is not true for structural forces. For example, if
you ask how fast you can accelerate (or be accelerated
in e.g. an accident) without breaking your bones, the
answer is:

maximum acceleration ∼ L−1 (8)

As a consequence, small objects can accelerate fast,
large ones cannot. This is the reason why we have
difficulties to hit a fly. Because of its small size the fly
accelerates much too fast for us to react.

V. HOW FAST: SPEED AND FREQUENCY

Simple mechanics tells us that the frequency of an
oscillator is given by f =

√
k/m, where k is the

spring constant. This equation does not yet help us
too much, because we do not know the scaling of the
spring. If we add n similar springs with spring con-
stant k in series, the effective new spring constant is
reduced to k/n. In contrast, if we add the springs in
parallel, the new spring constant is enlarged to nk. A
piece of flexible material can be considered as a col-
lections of springs. If we think in terms of a rod the
number of springs in series scales as the length of the
rod. The number of springs in parallel, on the other
hand, scales as the cross section, i.e. as L2. The ef-
fective spring constant of a three-dimensional object
scales as L2/L:

spring constant ∼ L (9)

It follows from this equation that the frequency scales
according to:

frequency ∼ L−1 (10)

Since the frequency is the inverse of a characteristic
time (for a harmonic oscillator the period of motion),
the velocity v scales as v ∼ a/f , where a is the accel-
eration and f the frequency. Taking what we know
from before (equ. 8), we are let to conclude that:

velocity ∼ L0 (11)

(I note here, that this equation is only valid, if there is no

friction. We will have a look at friction below.)

It is a good moment to check consistency. Energy is
given by work, which is force times distance. If you
look at the rate of energy/work per unit time, we get
what we call power. Hence, power equals force times
velocity: P = Fv. As F ∼ L2 and v ∼ L0, we find
P ∼ L2 as before.
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We learn that the dynamics, determined by the fre-
quency, is fast on the small scale, but net velocities
are scale independent provided there is no friction.
We know from our own experience, that this scaling is
wrong if friction is determining the motion. A feather
falls much slower in air than a bottle of wine (if un-
fortunately it slips out of our hands).

VI. FRICTION

In Physics-I we learn that the friction force FR is
given by FR = µFG, where µ is the coefficient of
friction (a material parameter). This law predicts
FR ∼ L3. Though this law is correct, it fails on the
small scale (micrometer and nanometer). Friction is
due to the adhesion between bodies in contact. It
therefore should be determined by the area of con-
tact. The crucial point to realize is that all bodies
rest on three legs, even if there are four as in case of
a table. Hence, friction is determined by a few points
where contact is established. Using continuum me-
chanics, one can show that the area of contact scales
with the body weight. This is the origin of the above
law. If we focus on a single contact, or assume that
the whole surface is in true contact, which is possible
by using a lubricant, the friction force scales with the
area of contact:

contact friction ∼ L2 (12)

(This scaling law can also be obtained by saying that shear

stress should be scale-independent. Since shear stress is

given be the shear force - the frictional force - divided by

the area of contact, Fshear ∼ L2.)

Consider now a viscous fluid in which the object is
embedded. Then, basic physics laws due to Newton
tell that the frictional force is determined by the ve-
locity gradient. More explicitly, shear stress is pro-
portional to the velocity gradient. Hence, a constant
shear stress, typical velocities scale as:

velocity with friction ∼ L1 (13)

This is indeed different to the scale-independence of
velocity without friction.

If the movement of objects is determined by friction,
the velocities are getting small in small objects. We
know that very small grains of sand, or better dust,
can stay in air for a long time. Their velocity relative
to the surrounding air is virtually zero. Dust from a
volcano eruption can be spread over a whole continent.

VII. POWER OF A GENERIC MEN-MADE
MACHINE

The following figure represents our generic machine.
Water streams through a pipe with cross-section A at

v

h

ω

velocity v. For the density of water we use the symbol
ρ. Per unit time, the pipe delivers mass, determined
by ρAv. This mass falls down, attracted by earth
gravitational acceleration g, to keep the rotating wheel
in motion. This wheel can deliver mechanical power,
which is given by the efficiency of the conversion (a
constant) times the gravitational energy, determined
by the height h. Hence, we have P = ghṁ = ghρAv ∼
L3, provided v can be taken as constant. Therefore,

machine power, no friction ∼ L3 (14)

This is equation holds if friction can be neglected. Un-
der this assumption we have learned that the velocity
is scale-independent. Usually, this is true for large ma-
chines, the ones we human tend to build. It is more
convenient to divide the power by the volume of the
machine, i.e. to look at the power density:

machine power density at no friction ∼ L0 (15)

Hence, the power density is scale-independent. Note,
however, if it comes to the exchange of energy, the
situation is different, as I have tried to explain in the
first section. Exchange of energy (and information)
can at most scale with L2 (the area).

Let us look at small machines, where friction sets the
limit on velocities. Since v ∼ L1, we have:

machine power density, friction limited ∼ L1 (16)

The whole molecular bio-machinery is small (actually
very small) and functions in a liquid environment in
which velocities are limited by friction. Hence, this
equation predicts that bio-machines must be ineffi-
cient. This appears as a contradiction, because we
are taught that biology has had millions of years to
perfect itself!?
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VIII. POWER OF A MOLECULAR
BIO-MACHINE

Molecular motors work different to men-made ma-
chines. They operate close to thermal equilibrium.
As already mentioned, ‘food’ in the form of APT is
around each bio-machine in excess. The time needed
to capture the ‘food’ is determined by the thermal dif-
fusion time τd. If the protein (the molecular machine)
is of linear size L, the diffusion time scales as:

diffusion time ∼ L2 (17)

The rate of uptake of APT is not only determined by
the respective time scale but also by the number of
APTs that can bind to the protein. The latter scales
with the surface, i.e. with L2, too. The power is
therefore, scale invariant:

power density molecular machines ∼ L−3 (18)

This is the solution of the above problem. Nature has
found a way to design machines with very large power
densities at a small scale. This scaling-law predicts,
that the smaller the better. Indeed, bio-machines are
very small proteins.

Very impressive is an absolute comparison. A men-
made machine typically delivers a peak power of or-
der 1 MW/m3. A motor protein can deliver a force
of order 1 nN at a velocity of 10µm/s. This yields
a power of 10 fW. Taking for the volume a size of
10 nm, yields for the power density the amazing value
of 10 GW/m3. (I hope, I have not done anything
wrong). This number reflects what potentially could
be the peak power. This is however (may be also
fortunately) never reached. The equilibrium power
of a human amounts to approximately 1 kW/m3 and
peak powers (for a very short instant) come close to
1 MW/m3.

IX. EXERCISE: JUMP HEIGHT

Try to find the scaling-law for the jump height against
gravitational acceleration. Do this in an explicit man-
ner using d and l to denote the diameter and length
of the legs, and V to denote the volume of the body.
You should arrive at the following expression:

jump height ∼ ld2

V
∼ L0 (19)

Hence, the jump height is scale invariant. A grasshop-
per can jump as high as we can do. Sure, such state-
ments have to be taken with caution. A beetle can
generally not jump as high.

X. EXERCISE: VELOCITY AGAINST
GRAVITATION

The question is: Who can run faster uphill, a small or
a large person? Assume that we are asking not for the
peak speed, i.e. the one that is possible for a short pe-
riod, but the steady-state velocity uphill. To answer
this question, you have to express the power at a given
vertical velocity for a body of mass m against gravi-
tational acceleration g. Since we ask for the steady-
state, the power scales as ∼ L2. The answer to the
question is:

running velocity against gravitation ∼ L−1 (20)

XI. COMPARISON

The following table compares scaling for the mechan-
ical power:

power densities scaling

equilibrium L2

peak, no friction L0

peak, (viscous) friction L1

peak, molecular machines L−3

The table illustrates that scaling exponents depend on
the underlying physics and can vary quite a lot.

XII. A BIT ELECTRONICS

Scaling laws are particularly important in the field
of integrated circuit (IC) technology. As you know,
each generation of a memory chip contains more bits.
This is only possible, if the size of the electrical el-
ements (transistors, capacitors and resistors) scale
down. How they scale determines design rules.

We have started the mechanical part above, by noting
that the scaling of structural forces is determined by
the strength of the material. The same is true in elec-
tronics, in which the electrical field strength has to
respect a maximum value beyond which there is what
engineers call a breakdown. Hence, the electrical field
E is taken to be scale-independent:

electric field ∼ L0 (21)

Because voltage V is field times length:

voltage ∼ L1 (22)
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The mechanical force F acting, for example on a ca-
pacitor plate, is given by the field times the area of
the plate:

force ∼ L2 (23)

Next, we look at Ohm’s law for the resistance R =
ρl/A, where ρ is the specific resistivity (a material
constant), l the length of the resistor and A its cross-
section. Therefore:

resistance ∼ L−1 (24)

Ohm’s law says that the current I is given by V/R:

current ∼ L2 (25)

For the electrical power P = IV we find:

power ∼ L3 (26)

These equations are very nice, because both the cur-
rent density (current per unit area) and the power
density (power per unit volume) are scale invariant,
provided the assumption of constant electrical field
holds. If these equations would hold circuit engineer-
ing of new smaller chips would be simple. However,
all scaling laws have limitations. Today, one of the
foremost problem in this field of research is the scal-
ing of the resistance. Microfabricated interconnects
are very thin, so that the wire thickness can hardly
be scaled anymore. Then, R ∼ L0 and I ∼ L. Conse-
quently, the current density will scale as ∼ L−1 which
is disastrous. If the current density increases beyond
some threshold the wires are destroyed!

There are many more problems of this kind. In partic-
ular quantum mechanical tunneling sets limits on the
thickness of gate oxides. Yet another problem is found
in the electrical charge, which is used to store the in-
formation. Charge scales as L3. Hence, it rapidly
gets very small. If downscaling will go on, a storage
capacitor may store only one single electron. At this
ultimate limit, scaling must break down.

Without going into details, the future of electronics
must consider the quantized nature of matter, the fact
that charge is a multiple of single electrons and the
fact that localization (to store some charge at one spot
in space) is made impossible by quantum-mechanical
tunneling.

At the atomic scale, physical laws are very different,
sometime surprisingly different. I mention only two
recent phenomena:

A guitar string vibrates with some tone. If we increase
the tension, the tone gets higher. If we do the same
on a string of atoms, i.e. four atoms in a row, the
outcome is reversed. If you pull on the string, the
vibration frequency is decreased!
Ohm’s lay tells that the electrical resistance increases
with length. How about single atoms. The resistance
of a single atom can be the same as that for two
atoms in series. The two atom resistance is not twice
the one of a single atom!

XIII. CONCLUDING REMARKS

This lecture serves to demonstrate that scaling-laws
can be used to understand the distinct difference in
behavior of similar objects at different size. We have
used simple physical laws from classical physics. We
may use these laws to extrapolate from macrophysics
to microphysics. We should however never forget, that
all laws have a range of validity. Scaling laws are great
to get some insight, but should always be used with
caution. In the field of nanoscience, the breakdown of
classical scaling is set by quantum mechanics and the
granularity of matter (single electron, single atom),
so that the laws of large numbers (statistical physics)
cannot be used anymore. Actually, the breakdown of
classical physics is what makes nanophysics an excit-
ing area of research for physicists. Nanophysics could
actually be defined as such.
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